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Introduction

The reductionist hypothesis is accepted without question by the great major-

ity of the physicist community. The behavior of all the animate or inanimate

matter is assumed to be controlled by the same set of fundamental laws, which,

except under certain extreme conditions, we feel that we know very well. Nev-

ertheless the reductionist hypothesis does not by any means imply a ”construc-

tionist” one: the ability to reduce everything to simple fundamental laws does

not imply the ability to start from these laws and reconstruct the universe.

In condensed matter physics there exist many examples where the behavior

of a large and complex aggregate of elementary particles was not anticipated

from basic quantum mechanics [1] . The off-diagonal long range order under-

neath superconductivity and superfluidity is just an example of a phenomenon

that is practically impossible to deduce from the Schrödinger equation, but

becomes accessible once the perspective is enlarged to account for the collec-

tive behavior of matter. Even if we had at our disposal techniques that would

allow us to treat a large number of elementary constituents of matter and their

fundamental interactions, we are not certain that we could reconstruct all the

phenomena we observe. Indeed, some physical properties shown by condensed

matter may have their foundation in the complex of particles and their mutual

interactions considered as a whole. Anyway, since we are not able to calcu-

late everything starting from first principles, the only possibility we have to

unveil the physics behind some materials properties is to address directly the

collective behavior of matter. The physics of strongly correlated and many

body systems deals with these properties which ”emerge” from the particles

and their mutual interaction considered as a whole.

Another vital aspect of quantum matter is phase coherence. Phase coher-

ence is at the origin of the quantum mechanical behavior observed in macro-

1



2 Introduction

scopic measures, such as transport measures, on mesoscopic electronic devices.

For instance, rings of the micrometer size, made out of two-dimensional electron

gas on GaAs-AlGaAs heterostructures, show the beautiful magneto-resistance

oscillations typical of the Aharonov Bohm effect [2]. In this context the role

of disorder is fundamental. Disorder can destroy phase coherence and thus it

may cancel the beautiful quantum features that could be observed in macro-

scopic measures. Nevertheless, at the meantime disorder itself can be at the

origin of quantum properties of matter. Non-interacting electrons back-scatter

off impurities and, in this backscattering process, they preserve phase memory.

The time-reversed paths that contribute to back-scattering interfere construc-

tively with one-another and conspire to localize electrons. For this reason, a

disordered non interacting gas of electrons is always insulating in one and two

dimensions, while a critical amounts of disorder is required in three dimensions.

The physics of disordered systems without interactions and of interacting

but clean systems, has been studied since long and great achievements have

been obtained, so that today we feel that we gained a good insight in both

fields. Nevertheless, strong disorder together with strong interaction are much

harder to tackle. In fact, disorder and Coulomb interaction compete against

each other. On the one hand, electrons would like to localize in places which

are energetically favorable. On the other hand, such localization generally in-

hibits the electrons from being well separated from each other, which would

better accommodate their mutual Coulomb interaction. This frustration en-

tails complex physical behavior that gives rise to a plethora of exciting new

phenomena; one for all the possible existence of a metal-insulator transition in

two dimensions, which was believed impossible [3].

Traditionally, disorder is included as a perturbative correction in strongly

interacting theories or, conversely, interaction is treated as a perturbation in

non-interacting theories of disordered systems. Nevertheless, neither of these

perturbative approaches can account for the interaction-disorder frustration

described above. Renormalization group theories based on a quantum-field

theory approach succeeded in describing the metal-insulator transition in dis-

ordered weakly-interacting systems [4, 5, 6]. In the meantime, Dynamical Mean

Field Theory (DMFT) was developed and provided new insights into the long-

standing issue of the interaction-induced metal-to-insulator transition,the so
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called Mott transition [7]. Very recently DMFT has been extended to include

disorder effects so to address the interplay between disorder and strong in-

teraction [8]. However this scheme neglects spatial correlations and becomes

exact only in the limit of infinite-coordination lattices. Since spatial charge

fluctuations are very important to determine the transport properties, an al-

ternative method that could allow to treat disorder and strong correlations on

equal footing would be highly desirable.

In this thesis we consider a variational wave function approach as a possible

route to describe the competition between disorder and strong electron-electron

interaction in two dimensions. In particular we aim to obtain a transparent

and physically intuitive understanding of the competition between these two

localizing forces within the simplest model where they both are active, namely

the disordered Hubbard model at half filling and in a square lattice. Our ap-

proach is based on an approximate form of the ground-state wave function,

which we believe contains the physically relevant ingredients for a correct de-

scription of both the Mott and the Anderson insulators, where electrons are

localized by the Coulomb repulsion and by disorder, respectively. For strongly

interacting fermionic systems, a standard variational wave function is con-

structed by a correlation term acting on a Slater determinant, the latter being

an uncorrelated metallic state. Previous variational calculations showed that a

long-range density-density correlation factor, so called Jastrow factor, is needed

to correctly describe the Mott insulator [9]. This term, which is collective by

definition, correlates spatially charge fluctuations, thus preventing their free

motion that would otherwise imply metallic conductance. For this reason, our

variational wave function does include such a term. Anderson localization is

instead mostly a matter of single-particle wave functions, hence it pertains to

the uncorrelated Slater determinant which the Jastrow factor acts onto. We

consider both the case in which we enforce paramagnetism in the wave function

and the case in which we allow for magnetic ordering.

Summarizing briefly our results, we find that, when the variational wave

function is forced to be paramagnetic, the Anderson insulator to Mott insulator

transition is continuous. This transition can be captured by studying several

quantities. In particular, a novel one that we have identified and that is easily

accessible variationally is the disconnected density-density fluctuation at long
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wavelength, defined by

lim
q→0

Ndisc
q = lim

q→0
〈n̂q〉〈n̂−q〉,

where n̂q is the Fourier transform of the charge density at momentum q, 〈. . . 〉
denotes quantum average at fixed disorder and the overbar represents the av-

erage over disorder configurations. We find that N disc
q→0 is everywhere finite in

the Anderson insulator and vanishes critically at the Mott transition, staying

zero in the Mott insulator.

When magnetism is allowed and the hopping only connects nearest neigh-

bor sites, upon increasing interaction the paramagnetic Anderson insulator

first turns antiferromagnetic and finally the magnetic and compressible Ander-

son insulator gives way to an incompressible antiferromagnetic Mott insulator.

The optimized uncorrelated Slater determinant is always found to be the eigen-

state of a disordered non-interacting effective Hamiltonian, which suggests that

the model is never metallic. Finally, when magnetism is frustrated by a next

to nearest neighbor hopping, the overall sequence of phases does not change.

However, the paramagnetic to magnetic transition within the Anderson insula-

tor basin of stability turns first order. Indeed, within the magnetically ordered

phase, we find many almost degenerate paramagnetic states with well defined

local moments. This is suggestive of an emerging glassy behavior when the

competition between disorder and strong correlation is maximum.
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Overview

The thesis is organized as follows:

In chapter 1 we discuss the physics of disordered systems giving a brief

overview on the Anderson metal-insulator transition. Subsequently we de-

scribe the most significative experimental examples of effects induced by the

competition between disorder and interaction, i.e. the existence of a metal in a

two-dimensional disordered electron system and the non Fermi-Liquid behav-

ior of doped Si:P semiconductors. We conclude the chapter introducing the

disordered Hubbard model.

In chapter 2 we describe our variational wave function and the criteria we

adopt in order to detect the conducting properties given only the ground-state

wave function. The second part of the chapter is a more technical one, where

we discuss the Variational Monte Carlo method and the Stochastic Reconfigu-

ration optimization algorithm.

In chapter 3 we show our variational results for the paramagnetic sector

of the disordered Hubbard model. We show that disorder is screened due to

the Coulomb repulsion and that, for interaction higher than a critical value,

a charge gap opens up in the excitation spectrum and thus the wave function

becomes an incompressible Anderson insulator.

In chapter 4 we consider the magnetic properties of the ground state of

the disorder Hubbard model and we discuss the magnetic phase diagram of the

model both with only first-neighbors hopping and with a frustrating second

neighbors hopping term t′. In both cases we show that a finite value of the

interaction is needed in order to have a finite magnetization. Moreover we

show that an intermediate phase with finite magnetization, but, at the same

time, finite compressibility, is stabilized between the paramagnetic Anderson

insulator and the magnetic Mott insulator. From our calculations it emerges

that, in presence of a finite t′, this intermediate phase is reduced.





Chapter 1

Interplay of disorder and

electron-electron interaction.

Since their early applications, independent-electron approaches, like Hartree-

Fock of density-functional theory within the local density approximation, have

led to a fairly complete understanding of the electronic properties of many

different materials. Within these schemes the metallic or insulating behavior

is determined only by the existence of an energy gap between highest occu-

pied single-particle levels and lowest unoccupied ones. A necessary but not

sufficient condition for an insulating behavior is therefore an even number of

electrons per unit cell. When this number is odd, one should expect always a

metallic behavior unless symmetry breaking phenomena, like magnetism, in-

tervene to increase the unit cell, e.g. doubling it as in the case of Neèl order, so

to fulfill the above criterium. However, the independent-electron approaches

fail in describing the insulating character of a wide range of materials. The

first compound that attracted the attention of the scientific community for its

unexpected insulating behavior was NiO. NiO is a transition metal-oxide with

one conduction electron per unit cell, and therefore, according to band theory,

it should be a metal. Nevertheless it shows an insulating behavior, which is as-

cribed to the predominant d character of the valence electrons, as Mott pointed

out in his pioneering work [10]. In order to explain the NiO insulator, Mott

imagined a crystalline array of atomic potentials with one electron per atom

and a Coulomb interaction between the electrons. If the lattice spacing is suffi-

7



8 Interplay of disorder and electron-electron interaction.

ciently large, the overlap between the atomic wave functions is small, giving a

very small energy gain due to delocalization of charges throughout the lattice.

In this case, the dominant energy contribution comes from the Coulomb repul-

sion, which favors electron localization. Today it is well accepted that, when

the electron interaction is sufficiently strong, the independent electron picture

fails and the system can be insulating even with an odd number of electrons

per unit cell. These systems, whose insulating character is induced by electron

correlations, are called Mott insulators. Typical experimental examples are the

transition metal oxides, such as the aforementioned NiO, layered organic mate-

rials [11, 12] and, recently, advances in the laser techniques permitted to realize

Mott insulators with cold atomic gases trapped in optical lattices [13, 14].

However interaction is not the only source of localization. There are systems

that are insulators neither because of a filled conducting band nor because

of a strong repulsive interaction, but because of disorder. These systems are

called Anderson insulators. In the conventional view of an Anderson insulator,

electrons are treated as non interacting particles that become ”localized” by

the scattering off impurities or defects. The non-interacting assumption can be

extended to take into account weak correlations that introduce renormalized

disorder and temperature dependent Fermi liquid parameters [37, 38]. How-

ever, when strong correlation becomes so strong to push the system towards a

Mott transition, the above framework becomes poorly justified.

Conversely, the traditional description of a Mott transition in a clean system,

as the one provided by dynamical mean field theory [7], is likely to be not

sufficient when disorder is taken into account, since it is difficult to imagine

how quasiparticles with a vanishing residue could cope with a finite disorder

strength upon approaching a Mott transition.

The above discussion justifies the need of an alternative approach that could

deal simultaneously with the physics of Anderson’s and Mott’s localization.

In this chapter we will briefly survey the theory of the Anderson localiza-

tion and emphasize experimental evidences of the emerging relevant role of

correlations.
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1.1 Anderson localization

In his famous paper on the “Absence of Diffusion in certain Random Lattices”,

Anderson presented a simple model to show that, in lattices where the energy

varies randomly from site to site, particle diffusion may not take place [15]. He

introduced a simple tight-binding Hamiltonian

H = −t
∑

〈ij〉,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
∑

i

εin̂i, (1.1)

where t is the hopping amplitude, ĉ†i (ĉi) creates (destroys) an electron with

spin σ on site ri, n̂i it the electron number operator and εi are random on-site

energies distributed according to some distribution function characterized by

a width D.

For D << t, the Kohn-Luttinger theory of transport is applicable [16]. Bloch

waves lose phase coherence on a length of the order of the mean free path l,

which in this case is much longer than the de Broglie wavelength, thus jus-

tifying a semiclassical description of electron motion. Between two successive

scattering events, electrons move ballistically and one recovers the conventional

resistive behavior.

When D � t, the Hamiltonian (1.1) describes electrons moving in random

potential-wells that are typically very deep compared to the kinetic energy.

Anderson pointed out that, in this case, a single-particle wave functions may

become localized, in the sense that its envelope decays exponentially from some

point in space r0, i.e.,

ψn(r) ' e−
|r−r0|

ξ , (1.2)

where ξ is the localization length, and ψn(r) = 〈r|ψn〉, see Fig.(1.1). The

existence of localized states is better understood in the limit of very strong dis-

order. The zeroth-order description amounts to neglect the kinetic energy; the

eigenstates are simply localized orbitals within each potential well. Perturba-

tion theory in the hopping generates an admixture between different orbitals.

The main point is that such admixture can not produce an extended state

built of a linear combinations of infinitely many localized orbitals. The reason

is that orbitals that are nearby in space, so that the wave functions overlap

significantly, have in general very different energies, so that the admixture is



10 Interplay of disorder and electron-electron interaction.

Figure 1.1: Typical wave functions of (a) extended state with mean free path

l; (b) localized state with localization length ξ.

small because of the large energy denominator. On the other hand, states that

are nearly degenerate, are in general very far apart in space, so that the overlap

is significantly small. Thus, in the strongly disordered limit, the wave function

will be exponentially localized. A way to measure numerically the localization

of a single particle wave function on a discrete lattice is to calculate the Inverse

Participation Ratio (I.P.R.), which is defined as

I.P.R. =
∑

i

|〈i|ψn〉|4, (1.3)

where 〈i|ψn〉 satisfies the normalization condition. The I.P.R. is a dimension-

less number in the range [0, 1]. It is equal to one for a completely localized

state, and for an extended state it goes to zero in the limit N → ∞. Indeed,

for an orbital n completely localized on one site j, 〈i|ψn〉 ∼ δi,j and, substitut-

ing in Eq. (1.3), we find that I.P.R. = 1. On the contrary, for a plain wave

〈i|ψn〉 ∼ 1/
√
N and thus

I.P.R. ∼
∑

i

1

N2
=

1

N
, (1.4)

which leads to limN→∞ I.P.R. = 0.

The properties of disordered systems depend crucially on the dimensional-

ity. In three dimensions, the disorder can drive a metal-to-insulator transition.

In fact, in the presence of disorder, the density of states acquires tails of lo-

calized states – localization occurs first where the density of states is low, see

Fig.(1.2) [17]. If D is not so large as to localize the whole band, then ener-
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Figure 1.2: Left: density of states of a clean system. Right: density of states

in presence of disorder.

gies Ec, called mobility edges, separate localized states in the band tails from

extended ones in the band center, and the metal-insulator transition can be

triggered by sweeping the chemical potential across the ”mobility edge” Ec.

The chemical potential can be moved across the mobility edge by doping the

system; alternatively the metal-insulator transition can be achieved by increas-

ing the density of impurities/defects, i.e., by increasing the region of localized

states.

In one dimension, all single-particle wavefunctions are localized, however weak

the disorder is, as Mott and Twose rigorously proved [18]. It turns out that

two dimensions (2d) is the lower critical dimension for a metal-insulator tran-

sition, as conjectured by Abrahams et al. on the basis of a scaling ansatz [19].

Hence, also in 2d all single-particle wavefunction are localized by arbitrarily

weak disorder. A key prediction of the scaling theory was that, in thin metal-

lic films, the resistance at moderately low temperatures should logarithmically

increase with decreasing temperature, a prediction that has become known

as the weak localization effect. Experiments performed in the early 1980s on

different 2d systems confirmed these predictions [20, 21, 22]. The agreement

between theoretical expectations and experimental results was convincing, and

for nearly two decades, the question of whether a conducting state is possible

in 2d was considered settled up. The weak localization in two dimension is a

result of a non-interacting theory. Nevertheless, subsequent theoretical works

showed that weak electron-electron interaction has perturbatively a localiza-

tion effect [23], which adds to the weak localization phenomenon (for a review

on disordered electronic systems see e.g. Ref.[24]).
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1.2 Metal-insulator transition in 2d

Even though the weak localization theory in 2d was widely accepted, from time

to time some indications appeared that this approach might not be always cor-

rect. Finkelstein [25] and Castellani et al. [26] considered the interplay of

disorder and interactions using perturbative renormalization group methods

and they showed that, for weak disorder and sufficiently strong interactions, a

2d system scales toward a state with finite nonzero conductivity as temperature

is lowered. Unfortunately, the conclusion was not very definite since the the-

ory’s range of validity was exceeded as this ”metallic” region was approached.

Only with the groundbreaking experimental work of Kravchenko and cowork-

ers, the validity of the weak localization in 2d was really put into question

[3, 27]. Kravchenko has been the first to observe and claim that, above some

critical density nc, high-mobility silicon MOSFET’s display a metallic behavior,

i.e. resistivity that decreases with decreasing temperature down to the lowest

accessible ones, see Fig.(1.3). Below this critical density, the behavior of the

resistance looks insulating, thus suggesting that a metal-insulator transition

occurs by varying the density. At the critical density, the resistivity is found

to be independent of temperature and of order of the quantum resistance unit,

h/e2 = 25.6 kΩ. These findings were later confirmed in other high-mobility 2d

devices. A common feature of all the systems that show such a behavior is

the low carrier density ne below 1011cm−2. Instead of being small compared

to the Fermi energy, at these electron densities the electron-electron interac-

tion energy Ee−e is the dominant energy scale. Estimates for Si MOSFET’s at

ne = 1011cm−2 yield

Ee−e ∼
e2

ε
(πne)

1
2 ' 10 meV (1.5)

while

EF =
π~

2ne
2m∗

' 0.58 meV, (1.6)

where e is the electron charge, ε is the dielectric constant, EF is the Fermi

energy, and m∗ the effective electron mass (for a MOSFET on a (100) surface,

a valley degeneracy of two is taken into account when calculating the Fermi

energy). The dimensionless parameter rs = Ee−e/EF thus assumes values

above 10, indicating a strongly interacting regime [28]. Therefore, what distin-
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Figure 1.3: ρ(T ) for electron densities across the metal-insulator transition.

The critical electron density value is nc = n3 = 7.25×1010cm−2 and n1 < n2 <

n3 < n4 < n5 [27]

.

guishes these samples from those studied in the 1980s is that the strength of

interaction. Thus it is straightforward wondering whether it is just the strong

interaction that is responsible of the observed behavior. The old problem of

the interplay between disorder and electron-electron interaction is present here

in an extreme limit and it yields to many questions that are still far from being

solved.

Various explanations of the observed metallic behavior – downturn of con-

ductance lowering temperature – have been suggested during the years, ranging

from non-Fermi-liquid hypotheses, to emerging superconductivity and to tem-
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perature dependent scattering on charged traps and/or temperature dependent

screening; nevertheless the stabilization of a metallic phase in 2d is still con-

troversial [29, 4, 30]. Within a perturbative renormalization-group approach,

Castellani et al. succeeded in describing a stable metallic state in 2d; in par-

ticular, they showed that, in the case of weak disorder, the theory remains

under control over a wide temperature range if a renormalization of the energy

scale (relative to the length scale) is properly taken into account [5]. Later,

by a two-loop renormalization-group calculation in the limit of large valley de-

generacy, Punnose and Finkel’stein unveiled the existence of a strong-coupling

fixed point that describes a genuine 2d metal-insulator transition [6], which

was subsequently claimed to be in accord with experiments [31]. However,

more recent experiments on p-type GaAs/AlGaAs quantum wells have raised

several questions on the correct interpretation of the observed transition, in

particular about the role of inhomogeneities in such a very diluted systems

where screening is extremely poor [32, 33].

In connection with the topic pertinent to this thesis, it is worth noticing

that, in spite of the fact that interaction in these high-mobility devices is

undoubtedly strong, it is less clear whether Mott physics plays any relevant

role. It is conceivable that, because of the low carrier density, these systems

are very close to a Wigner crystalization, which may be viewed as the analogous

of a lattice Mott transition in the continuum. However this analogy is quite

weak, since when dealing with Wigner crystalization and disorder one has to

really worry about inhomogeneities, glassy behavior, clustering [33], all features

that go beyond the simple Mott phenomenon but may be crucial to explain

the observed behavior.

1.3 Phosphorus doped Silicon

The systems where the Mott physics seems to be really working are phosphorus-

doped and boron-doped silicon, Si:P and Si:B. In Si:P and Si:B three-dimensional

impurities states form a narrow conducting band in the electronic gap. The

impurities are displayed randomly, so that the disorder can lead to an An-

derson metal-insulator transition. At the same time, conduction electrons are

strongly interacting, since the impurity band is narrow, hence could be driven
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to a Mott transition, which is supposedly the case for uncompensated Si:P

upon varying doping. Therefore Si:P and Si:B are clear examples systems in

which both disorder and interaction are strong, and indeed the competition

between these two localizing forces yields to the appearance of unexpected fea-

tures. Experiments on doped semiconductors show thermodynamic anomalies

that cannot be consistently explained within the field-theoretical approach, de-

veloped by Finkel’stein [34]. This approach achieved important improvements

over previous perturbative works and quickly led to a faithful description of the

metal-insulator transition for disordered interacting systems in the presence of

magnetic impurities or a magnetic field [35]. These results were soon supple-

mented by a derivation in terms of many-body perturbation theory [5] and

by interpretations in terms of a Fermi liquid theory [36, 37]. However, in the

absence of either magnetic impurities or magnetic fields, a full understanding

of the metal-insulator transition has proved much harder [4]. Fig.(1.4) shows

electron-spin-resonance (ESR) results for the magnetic susceptibility of three

samples of Si:P,B [39]. We note two surprising features. (i) The magnetic sus-

ceptibility is power law diverging as the temperature T → 0 in the insulating

as well as in the metallic phase. (ii) The behavior of the magnetic suscepti-

bility is smooth across the transition. This suggests that whatever is causing

the magnetic anomalies does not critically depend on what is happening to

the charges, a property shared by the Mott localization. Indeed, the activated

conductivity observed below the critical density in Si:P suggests the existence

of a Mott-Hubbard gap, hence an insulating phase that is most likely a dis-

ordered Mott insulator. On the contrary, compensated Si:(P,B) shows in the

insulating phase a more conventional Efros-Shklovskii variable-range-hopping

behavior of conductance, which suggests that a Mott-Hubbard gas still exists

and explains the local moments, but the metal-insulator transition is primarily

an Anderson transition of itinerant quasiparticles. A similar anomalous behav-

ior as that of the magnetic susceptibility[41] is present also in the specific heat,

shown for Si:P in Fig.(1.5) as a function of temperature and for three electron

densities ne/nc = 0.78, 1.09, and 1.25, where nc is the critical value at the

metal-insulator transition [40]. The phonon contribution, proportional to T 3,

is shown as dashed lines for each of the three samples. The solid line represents

the ”free”-electron contribution cv0 = γ0T , which was calculated using the Si
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Figure 1.4: Temperature dependence of normalized susceptibility χ/χPauli of

three samples Si:P,B with different normalized electron densities ne/nc =

0.58, 1.1, 1.8. Solid line through data are a guide for the eye [39]

.

conduction-band mass, consistent with specific heat measurements well above

nc. These curves show that the specific heat coefficient diverges too at low

temperatures both in the insulating and in the metallic side of the transition,

pointing to the existence of a very large number of degrees of freedom at low

temperatures.

The singular behavior of both specific heat coefficient and magnetic susceptibil-

ity in the insulating phase of Si:P is consistent with the model of a disordered

quantum antiferromagnet

H =
1

2

∑

i6=j

Ji,jSiSj, (1.7)
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Figure 1.5: Specific heat of Si:P as a function of temperature. Dashed lines

represent the phonon contribution AT 3 for θD = 640K and the solid line are

the expected specific heat γ0T for degenerate electrons with effective mass

m∗
0 = 0.34m0. The lighter dashed line over the T, 0.7K data of the ne/nc =

0.78 sample represent a T 0.4 power-law fit. Inset: Different low-temperature

behaviors of three samples. [40]

.

proposed by Bhatt and Lee [42]. In Eq.(1.7) Ji,j is an exponential function of

the distance |ri − rj|, with ri being the positions of the donor atoms. Within

the Bhatt and Lee scenario, which implicitly assumes that the insulator is

Mott-like, there exist a hierarchy of energy/temperature scales that control the

quenching of the impurity spins. Specifically, at any finite temperature T there

is a finite concentration Nfree(T ) of spins that are still free, hence contribute

in a Curie-Weiss fashion to the susceptibility, χ(T ) ∼ Nfree(T )/T , and carry
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a finite entropy S(T ) = Nfree(T ) ln 2. This implies a well defined relationship

between specific heat and magnetic susceptibility, specifically if χ(T ) ∼ T−α

then cv ∼ T 1−α, which is actually verified in the insulating phase[40, 43, 44, 45].

Extending the Bhatt-Lee scenario on the metallic side of the transition, one

could imagine a kind of two fluid model, where itinerant electrons coexist with

localized moments, which can be shown to arise within Hartree-Fock approxi-

mation by the interplay of interaction and disorder [46], the two constituents

being coupled by a Kondo exchange. This assumption would still lead to the

same relationship as before – χ(T ) ∼ T−α implies cv ∼ T 1−α – even if one

takes into account, although in an approximate manner, Kondo screening ef-

fects [47, 48]. However, experiments do not seem to be in agreement, as they

show a specific heat coefficient much greater than one would expect by the

magnetic susceptibility through the above relationship, suggesting that there

are other low energy degrees of freedom that accumulate at low energy besides

the local moments.

Therefore, if, one one hand, there are plenty of evidences that in doped

semiconductors the Mott and the Anderson localization phenomena are both

active, on the other hand there is still not a satisfactory theory that explains all

the observed properties. Like in the aforementioned example of high-mobility

2d electron gas systems, even in this, apparently simpler case, many ingredi-

ents conspire to complicate the physics. Local moments in the disordered metal

should be a source of spin-flip scattering in a strictly two-fluid model – local

moments plus non-interacting itinerant quasiparticles coupled one to another

by a Kondo exchange. The convention scaling theory of Anderson localization

would then predict a positive magneto-conductance, which is not observed.

Therefore, the two-fluid scenario is not truly correct – the two constituents

are not really distinct; local moments couple one to another by RKKY ex-

change; residual interactions between quasiparticles may not be negligible. In

conclusion, the need of a better understanding of the interplay between dis-

order and strong correlations overbearingly emerges even in the case of doped

semiconductors.
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1.4 The disordered Hubbard model

The simplest model that contains both correlations and disorder is the one

band disordered Hubbard model

H = −
∑

i6=j ,σ

ti,j

(

ĉ†i,σĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2 +
∑

i

εin̂i (1.8)

where i and j denote sites ri and rj, ĉ
†
i,σ(ĉi,σ) creates (destroys) an electron

with spin σ on the site ri and n̂i =
∑

σ ĉ
†
i,σĉi,σ is the density operator at site

ri. The term one-band refers to the assumption that only one Wannier state

per site is considered. This approximation is valid when the Fermi energy lies

within a single conduction band, implying an irrelevant contribution of the

other bands. Since only one atomic level per atom is considered, each lattice

site can appear in four different quantum states: empty, occupied by one spin-

up electron, occupied by one spin-down electron, doubly occupied. The first

term is responsible for the band energy gain that favors delocalization over the

whole lattice. The hopping parameter ti,j, i 6= j, controls the bandwidth of the

system and depends on the weighted overlap of close-by orbitals:

ti,j =

∫

dr φi(r)
∗

(∇2

2m
+ Vion

)

φj(r), (1.9)

where φi(r) is a Wannier orbital centered on site ri and Vion is the potential

created by the positive ions forming the lattice. The Hubbard U comes from

the Coulomb repulsion of two electrons sharing the same orbital:

U =

∫

dr1dr2 |φj(r1)|2
e2

|r1 − r2|
|φj(r2)|2. (1.10)

This term is only an approximation of the true Coulomb interaction, since it

completely neglects the long-range components that are present in realistic sys-

tems. The disorder can be introduced in the model through a random hopping

matrix ti,j (off-diagonal disorder) and/or through random on-site energies εi

(diagonal disorder). In what follows we assume only diagonal disorder, namely

the hopping parameters ti,j depend only on the distance between site ri and

rj and the on-site energies are picked up from a flat distribution between −D
and D.
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In the limit D = 0, i.e., when all the energies εi are equal, the model reduces

to the single band Hubbard model. The Hubbard model was independently

introduced by Hubbard [49], Gutzwiller [50] and Kanamori [51], in 1963 in order

to understand magnetism in transition metals. Currently it is widely used to

study strongly-correlated systems, nevertheless it has been solved exactly only

in the one-dimensional case [52], since, in spite of its simplicity, the Hubbard

model is far from being trivial. Its phase diagram depends on the electron

density ne = N/L (with N the number of electrons and L the number of lattice

sites), and the ratio U/t. Moreover, different lattice geometries and different-

range hopping terms (first, second, etc. neighbors) can influence the resulting

phase diagram. In the generic case and at half-filling, one electron per site,

this model must display a Mott metal-to-insulator transition by increasing U ,

characterized by the opening of a charge gap in the spectrum. Since the Mott

insulator has local moments, most likely a magnetic ordering intervenes below a

critical temperature that might contaminate the nearby metallic phase, unless

in the case of a paramagnetic-metal to a magnetic-Mott-insulator first order

transition. In particular examples of nested band dispersions, the magnetic

insulator might exhaust all the phase diagram for any U > 0, as it is the case

for strictly nearest neighbor hopping.

For U = 0 but D > 0, the model (1.8) is equivalent to the Anderson model

(1.1), discussed at the beginning of the chapter. As we discussed, this model

is always insulating. However, as we mentioned, the probability to find un-

occupied single-particle eigenstates arbitrarily close to the chemical potential,

although very far apart in distance from almost degenerate occupied states, is

finite in the thermodynamic limit. Therefore, unlike a Mott insulator, the An-

derson insulator has a finite compressibility – absence of energy gap for charge

excitations.

When both U and D are finite, a plethora of different phases may emerge:

magnetically disordered Anderson insulators with or without local moments;

magnetically ordered Anderson insulators; magnetically ordered or disordered

Mott insulators; and eventually paramagnetic or magnetic metals with or with-

out free local moments. The aim of this work is to identify in simple cases what

are the phases that are actually stable at zero temperature.



Chapter 2

The Variational approach

The aim of this thesis is to study the interplay of disorder and electron-electron

interaction in two dimensions. As we discussed in the previous chapter, the

simplest model to describe such a system contains a kinetic term, an on-site

Coulomb repulsion and on-site disordered potentials :

H = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2 +
∑

i

εin̂i (2.1)

where U is the on-site electron-electron repulsion and t the hopping amplitude.

εi are the on-site potential energies, which are chosen randomly from a flat

distribution between −D and D. We focus our work on the two-dimensional

case at half filling, i.e., we study a square lattice with N sites and N electrons.

Indeed, this is the case in which the interplay between disorder and interaction

has its more spectacular effects.

For D = 0 the model (2.1) reduces to the well-known Hubbard model :

H = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2. (2.2)

Despite its simplicity, the exact ground state of the Hubbard Hamiltonian

in two dimensions is not known. Nevertheless, important insights into the

ground-state properties can be assessed by the variational method where the

exact ground state is approximated by a trial state. In this approach, the

expectation value of the Hamiltonian can be calculated with the important

fact that for all wave functions the variational energy gives an upper bound of

21
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the exact one. Therefore, given a trial wave function |ψt(α)〉 depending on a

set of parameters {αk} with k = 1, ...n, the best approximation to the ground

state is given by the parameters that minimize the variational energy

Evar(α) =
〈ψt(α)|Ĥ|ψt(α)〉
〈ψt(α)|ψt(α)〉 . (2.3)

The key point is to find a variational ansatz that contains the electronic

correlation between electrons in a proper way; in fact a good form of the

proposed wave function allows one to derive the physical properties of the

corresponding phases in a straightforward way.

In the first part of the following chapter, we will introduce appropriate trial

states |ψt(α)〉, that can be easily treated by numerical methods. First of all

we will discuss the Gutwiller wave function supplemented with a long-range

Jastrow factor as variational ansatz for the Hubbard model without disorder.

Then, we will extend this wave function to inhomogeneous systems, in order

to study the properties of the Hamiltonian (2.1). We will also discuss how

to understand the low-energy properties of the system from the correlation

functions of the ground-state wave function.

The second part of the chapter is a more technical one: we will discuss how

to calculate the expectation value of the energy, or of an observable in general,

by aims of the quantum Monte Carlo technique. Finally, we will introduce the

optimization algorithm, i.e., the Stochastic Reconfiguration method, and we

will discuss some minimization examples.

2.1 The variational wave function for a clean

system

In a milestone paper, Gutzwiller suggested an elegant way to define a correlated

wave function. Indeed, the main effect of local interaction, such as the electron-

electron repulsion in the Hubbard model, is to reduce the probability to find

doubly occupied sites. Therefore, a good guess for the trial ground state is

|ψG〉 = exp[−g
∑

i

n̂2
i ]|SD〉, (2.4)
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where g is a variational parameter and |SD〉 an uncorrelated Slater deter-

minant, like for example a free fermion wave function [53]. For g = 0 the

Gutzwiller wave function reduces to the non-interacting ground state, the Slater

determinant |SD〉, while for g = ∞ it describes a state without double occu-

pancies, corresponding to the atomic limit obtained for U/t = ∞. At half

filling, the latter state is an insulator since charge fluctuations are completely

forbidden and each site is occupied by one electron. Since the Gutzwiller wave

function may describe both the uncorrelated and the infinitely correlated lim-

its, one would expect that it may be also accurate for finite values of U/t,

making it possible to describe the Mott-insulator transition that takes place

in the paramagnetic sector. However, exact analytical calculations in 1D and

quantum Monte Carlo studies in higher dimensions [54, 55, 56], showed that

the Gutzwiller wave function is always metallic and becomes insulating only

for U/t = ∞. In fact for any finite U , g is also finite and thus there is a finite

number of doubly occupied sites (doblons) and empty sites (holons). Since

there is no correlation between empty and doubly occupied sites, these objects

are free to move, implying a finite conductibility. Indeed, at half-filling, holons

are positively charged objects with respect to the average of one electron per

site, while doblons are negative charged objects, and once an electric field is

applied to the system, holons and doblons flow in opposite directions and a

finite charge current is generated. For U/t = ∞ all the charge fluctuations

are completely suppressed and indeed the variational parameter g becomes

infinite. Therefore, in this limit the Gutzwiller wave function becomes an insu-

lator, which, however, is non realistic, since charge fluctuations are completely

frozen.

In order to obtain an insulating state at finite U , the wave function must

contain long-range correlations between holons and doblons. In this respect,

recently Capello et al. [9] proposed as variational ansatz

|ψJ〉 = GJ |SD〉, (2.5)

where G is the Gutzwiller factor defined in Eq. (2.4), |SD〉 a non-interacting

Slater determinant, and J is the Jastrow factor

J = exp[
1

2

∑

i,j

vi,j(n̂i − 1)(n̂j − 1)], (2.6)
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with vi,j variational parameters that depend upon the distance, i.e., vi,j =

v(|ri − rj|). Capello et al. showed that the density correlations introduced by

the Jastrow factor are indeed the important correlations between holons and

doblons that make it possible to obtain a Mott insulating state. In fact, we

can re-express the density-density term in Eq.(2.6) in the following form

(n̂i − 1)(n̂j − 1) = d̂id̂j + ĥiĥj − ĥid̂j − ĥj d̂i (2.7)

where d̂i = n̂i,↑n̂i,↓ and ĥi = (1 − n̂i,↑)(1 − n̂i,↓) are the operator that counts

the doblons and the holons on the site ri, respectively. Thus it follows that a

negative Jastrow parameter vi,j < 0 implies a long-range attraction between

holons and doblons and a long-range holon-holon and doblon-doblon repulsion.

The Jastrow factor (2.6) was first introduced as variational ansatz in the

continuum [57] . Several numerical works, sustained by analytical calculations,

proved that it describes accurately the low-energy properties of liquid Helium

[58, 59]. Afterwards, the Jastrow factor applied to a Slater determinant |SD〉
has been proposed also for fermionic problems [60, 61, 62]. The most successful

example is given by the Fractional Quantum Hall effect that can be explained

using the Laughlin variational wave function. Indeed, this state can be easily

written as the product of one-body and two-body Jastrow factors

ψL(zi) = exp[
1

ν

∑

i6=j

ln(zi − zj)] exp[
∑

l

|zl|2] (2.8)

where ν is the filling factor (that must be odd in order to obtain the correct

symmetry properties) and zj = xj+iyj is the complex adimensional coordinate

of the jth particle [63]. In all these examples the functional form of the Jastrow

wave function is kept fixed: in fact the Jastrow factor in its most generic

form (2.6) involves many variational parameters, whose number grows with the

lattice size. Keeping fixed the functional form of vi,j implies a wave function

that is easy to handle, but however it may give a result that is biased by the

choice of the functional form and the variational flexibility may be lost.

Recently, thanks to recent developments of the minimization technique (see

below), it has been possible to afford a full optimization of the Jastrow factor,

despite a large number of parameters. The full optimization permitted to

show that the Jastrow factor is the key ingredient to describe a Mott insulator
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in a variational approach, despite the fact that it was generally considered

irrelevant for the description of strongly correlated systems (its use was believed

to influence only the accuracy in energy). Indeed, the Gutzwiller wave function

supplemented with a long-range Jastrow factor is able to describe the metal-

insulator transition without any symmetry breaking. For instance, this wave

function is able to reproduce all the known phases of the one dimensional t− t′
Hubbard model. [9, 64].

2.1.1 Criteria to distinguish the metallic and insulating

phases

The Kohn criteria. Transport measures distinguish a metal from an insu-

lator, nevertheless in a variational approach the conductivity is not accessible

and other criteria must be employed.

In a milestone paper, Kohn [65] pointed out that the qualitative difference

in the conducting properties of a system reflects a different arrangement of

electrons in the ground state. In particular, a metallic wave function is sensible

to a change in the boundary conditions, while an insulating state is not, since in

insulators all electron states are localized. Therefore, the conducting properties

of a system can be studied assuming periodic boundary conditions, threading

the system with a flux Φ and looking at the change in the ground-state energy.

In fact, it can be proved that

ω∗
D ∼ d2E0

dΦ2
(2.9)

where ω∗
D is the weight of the Drude peak of the optical conductivity and E0

the ground-state energy. Thus there is a tight connection between the DC

conductivity and the behavior of the ground-state energy with respect to a

change of Φ, in other words d2E0

dΦ2 6= 0 becomes a criterion to distinguish the

metal from the insulating phase, without disorder, at temperature T = 0.

It has been proved that the variational wave functions of the Gutzwiller

type, thus including also the Jastrow wave function, are always metallic ac-

cording to the Kohn criteria [66]. In particular it has been showed that for the

Gutzwiller wave function |ψG〉

ω∗
D = −4πTg (2.10)
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where Tg is the kinetic energy evaluated using |ψG〉. Since for every finite U , Tg

is finite, it follows that ω∗
D is always finite. Therefore, one would be tempted

to believe that it is impossible to describe an insulator within the variational

approach. Indeed, these type of wave functions fail in describing an insu-

lating state according to the Kohn criteria because the ”Gutzwiller/Jastrow”

prescription gives an approximation E(Φ) to the ground-state energy E0(Φ)

whose accuracy varies with Φ leading to an incorrect estimate of d2E0/dΦ
2.

However, this is not the end of the story. In fact, the previous statement is

based on the assumption that the functional form of the Jastrow factor does

not change in the presence of Φ. Instead, in presence of a finite flux, it may

acquire an odd part under inversion, making it possible to correctly reproduce

the behavior of the ground-state energy. In particular in order to describe in

a proper way the response to the flux Φ, we should add to the Jastrow factor

the term

JΦ = exp[
∑

i,j

wi,jĥid̂j] (2.11)

where ĥi(d̂i) is the holon (doblon) operator and wi,j acquire an antisymmetric

component, i.e., wi,j − wj,i 6= 0 when Φ 6= 0.

In practice, with the variational method it is more convenient to discrim-

inate the Mott insulator from the metal through correlation functions that

can be calculated in the absence of a flux, as it is very unhandy to follow the

changes of the variational wave function due to the presence of a finite flux Φ.

The f-sum rule. Following always the Kohn idea that the transport prop-

erties are reflected in the arrangement of electrons in the ground state, it is

possible to show that the metal-insulator transition can be determined from

the different behavior of the static structure factor Nq:

Nq = 〈n̂−qn̂q〉 − 〈n̂q〉〈n̂−q〉 (2.12)

where n̂q is the Fourier transform of the local density operator n̂i = n̂i,↑ + n̂i,↓

and 〈...〉 indicates the average over the optimized wave function. Naturally, in

a clean system 〈nq〉 = δq,qB where qB = 2π(n,m), with n,m integer numbers,

are the reciprocal lattice vectors corresponding to the Bragg peaks.

We can estimate the average energy ∆q of the low-lying excitations through
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the relation

∆q =

∫∞

0
dω
π
ωSq(ω)

∫∞

0
dω
π
Sq(ω)

, (2.13)

where Sq(ω) is the dynamical structure factor, related to the static structure

factor through the relation

Nq =

∫ ∞

0

dω

2π
Sq(ω). (2.14)

After some simple calculations, from Eq.(2.13) we obtain that

lim
q→0

∆q ∼
q2

Nq

. (2.15)

Therefore the charge excitation spectrum, and thus the metallic or insulating

behavior of the system, can be inferred from the behavior of Nq for q → 0:

in fact since the numerator behaves like q2, Nq ∼ q means that the system is

gapless (the average energy of an excitation is zero), while Nq ∼ q2 is a nec-

essary condition for the charge gap to be finite (for a detailed demonstration,

see appendix A). This argument, generally known as f-sum rule was first in-

troduced in Ref.[67]. Within the variational approach, the use of a long-range

Jastrow factor ensures that the f-sum rule holds also variationally, once we

assumed that nq|ψt〉 represents the excited state, with |ψt〉 the approximated

ground-state wave function. In fact from the condition that determines the

variational minimum
∂Evar
∂vq

= 0 ∀q, (2.16)

we find the f-sum rule relation

∆q = Eq − E0 ∼
q2

Nq

, (2.17)

where Eq and E0 are respectively the variational energy of nq|ψt〉 and |ψt〉 and

Nq is the density-density correlation factor calculated over |ψt〉. As an example,

we show in Fig.(2.1) the variational results for the Hubbard model (2.2): for

U < UMI
c = (8.5 ± 0.5) t we have that Nq ∼ q, while for U/t ≥ 9, Nq ∼ q2.

The metal-insulator transition and the Jastrow factor. From the f-

sum rule discussed above, it is possible to make a link between the properties



28 The Variational approach

 0

 0.02

 0.04

 0.06

 0.08

 0.1

N q
 /q

 

 

Nq ~ q2  

Nq ~ q  

24   

20   

16   

12   

8   

4   

2π3π/2 π/20

v q
 x

 q
2  

q

L=98, U/t=7
L=162, U/t=7

L=98, U/t=8
L=162, U/t=8

L=98, U/t=9
L=162, U/t=9
L=98, U/t=10

L=162, U/t=10

Figure 2.1: Upper panel: static structure factor Nq divided by |q| as a function

of |q| for different values of the interaction U . Lower panel: optimized Jastrow

potential vq multiplied by |q|2 as a function of |q| for different values of the

interaction U . Calculations have been done for different lattice sizes: L = 98

(circles) and L = 162 (squares).

of the excitation spectrum and the correlation function calculated from the

ground-state wave function. Then, we can infer that the static structure factor

behaves like Nq ∼ q for a metal and Nq ∼ q2 for an insulator. In the following,

we will make a further step and show that, within a Jastrow-Slater variational

state, there is a tight connection between Nq and the Jastrow parameters. In

particular, we show that in order to correctly reproduce the static structure

factor of an insulator, without breaking any symmetry, a long-range component

of the Jastrow is necessary.

Let |x〉 be an electronic configuration in real space. For all that operators
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θ that depend only on such positions, for example the charge-density structure

factor itself, the quantum average

〈θ〉 =
〈ψ|θ|ψ〉
〈ψ|ψ〉 (2.18)

can be written in terms of the classical distribution |ψ(x)|2 = |〈x|ψ〉|2
P

x′ |〈x
′|ψ〉|2

, as

〈θ〉 =
∑

x

〈x|θ|x〉|ψ(x)|2. (2.19)

Since |ψ(x)|2 is a positive quantity, we can define an appropriate correspon-

dence between the wave function |ψ〉 and an effective potential V (x):

|ψ(x)|2 = e−V (x). (2.20)

In the limit of strong interaction the charge fluctuations are small and thus we

can safely assume that only the two-body term is relevant; therefore, we can

write the potential in the quadratic form:

V (x) '
∑

q 6=0

veffq nq(x)n−q(x) (2.21)

with nq(x) Fourier transform of the local density of the configuration |x〉. If

we consider nq(x) as continuous complex variable, the classical average Nq =
∑

x nq(x)n−q(x)e
−V (x) turns into a standard Gaussian integral, yielding to

Nq ∼
1

veffq

. (2.22)

It follows immediately that in order to obtain the insulating behavior of the

static structure factor, Nq ∼ q2, the effective potential (2.21) must diverge as:

veffq ∼ 1

q2
+ less singular terms. (2.23)

If we choose as variational ansatz the Jastrow wave function |ψ〉 = J |SD〉,
it turns out that the potential V (x) contains the contributions coming from the

Slater determinant |SD〉 and the Jastrow factor J . If we want to describe the

Mott transition without any symmetry breaking, the non-interacting |SD〉 is a

metallic state at half filling. The static structure factor of a metal behaves like
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Nq ∼ q and thus |SD〉 will contribute to the effective potential of Eq.(2.21) only

with less singular terms, typically of order O(1/q). Therefore, in this approach

the Jastrow factor is the key ingredient to obtain a Mott insulator: at the Mott

transition the Jastrow changes form, i.e., vq ∼ 1/q2 for small momenta, and in

this way it opens up a charge gap in the system.

In Fig.(2.1) we report vq × q2, where vq is the Fourier transform of the

optimized vi,j for the Hubbard Hamiltonian (2.2). For U/t ≤ 8 the Jastrow

factor behaves like vq ∼ 1/q, while for U/t ≥ 9, vq ∼ 1/q2. Thus, only by

looking at the behavior of the Jastrow term, we are able to conclude that at

UMI
c = (8.5 ± 0.5) t the system becomes a Mott insulator, in agreement with

the behavior of the static structure factor Nq, see upper panel of Fig.(2.1).

2.2 The variational wave function with disor-

der

In order to study the competing role of disorder and electron-electron inter-

action, we use a trial wave function that includes both correlations through

a long-range Jastrow term and the possibility to have local non-homogeneous

densities. Our variational ansatz is

|ψ〉 = J ΠiGi|SD〉. (2.24)

|SD〉 is the ground state of a system of N electrons described by the non

interacting mean-field Hamiltonian

HMF = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
∑

i,σ

ε̃i,σn̂i,σ, (2.25)

being ε̃i,σ variational parameters. We are going to study the ground-state prop-

erties of the Hamiltonian (2.1) both in the paramagnetic and in the magnetic

sectors. In order to study the paramagnetic Anderson-Mott transition, we im-

pose the wave function (2.24) to be paramagnetic, by fixing the variational

parameters ε̃i,↓ = ε̃i,↑. On the contrary, to study the magnetic properties of the

ground state of (2.1), we consider a variational wave function that can break

the spin-rotational symmetry, namely we allow the variational parameters to
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be ε̃i,↓ 6= ε̃i,↑. The local Gutzwiller factors Gi are defined as

Gi = exp[−gin̂2
i ], (2.26)

and J is the long-range Jastrow term

J = exp

[

1

2

∑

i,j

vij(n̂i − 1)(n̂j − 1)

]

. (2.27)

While the Gutzwiller factors have been defined with a different parameter gi

for each site in order to capture the non-homogeneous character of the system,

we will consider only translational invariant vi,j = v(|ri − rj|). This choice is

done in order to reduce the number of variational parameters and so to make

the problem tractable from a numerical point of view. Nevertheless, we expect

that this choice will not give a strong bias, since the Jastrow factor plays a

primary role in the strong coupling regime where the disorder effects are highly

suppressed; therefore a translational invariant Jastrow factor should be a fairly

good approximation.

To summarize, the variational parameters are: N Gutzwiller factors gi,

N auxiliary energies ε̃i for the paramagnetic wave function (for the magnetic

wave function we have 2N parameters corresponding to ε̃i,↑ and ε̃i,↓) and the

Jastrow parameters vi,j. In principle, we could also allow for site dependent

hopping amplitudes in the mean field Hamiltonian (2.25), however we checked

that this further variational freedom does not qualitatively modify the final

results. In table (2.1) we report a comparison between the optimized energy

hop. par. no hop. par.

U=1 −2.31373(7) −2.31356(7)

U=8 −0.3615(1) −0.3576(1)

U=12 0.3855(2) 0.3885(2)

Table 2.1: Optimized energies with and without site dependent hopping am-

plitudes as variational parameters. The optimization is done for D/t = 5 and

18 sites..

corresponding to the variational wave function defined in (2.24) and (2.25) and
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the energy corresponding to a wave function including also the site dependent

hopping amplitudes. The values are reported for one disorder configuration: a

larger variational freedom leads to a better estimate of the ground-state energy,

however the loose in accuracy is never larger than 7%. Moreover, computing

physical properties of the system, we observe that there is not qualitatively

difference from the two solutions. For example in Fig.(2.2) we report the
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Figure 2.2: I.P.R. with disordered hopping amplitudes (blue curve) and without

disordered hopping amplitudes (green curve), for D/t = 5 and 18 sites.

results for the inverse participation ratio I.P.R. =
∑

i |〈i|ψf〉|4, where |ψf〉 is

the normalized eigenvector corresponding to the Fermi level of the disordered

Hubbard Hamiltonian (2.1).

2.2.1 The static structure factor Nq with disorder

In a disordered system q is not a good quantum number, nevertheless the aver-

age over different disorder configurations restores the translational invariance.

This fact implies that the density-density structure factor Nq is a meaningful

quantity to assess physical properties. After averaging, the f-sum rule should

be a good criterium also to distinguish the compressible Anderson insulator

from the incompressible Mott insulator. In particular, we expect that Nq ∼ q

for the Anderson insulator and Nq ∼ q2 for the Mott insulator.

In the following, in order to gain a better understanding on the static struc-

ture factor, we focus on the non-interacting case. While in a ordered system
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Figure 2.3: Density-density correlation function 〈n̂qn̂−q〉 for the Anderson in-

sulator. Left panel: 〈n̂qn̂−q〉 vs. q in the (1,1) direction. Right panel: discon-

nected part Ndisc
q vs. q. Data points are averaged over 48 disorder realizations

for a lattice of size N = 800.

〈n̂q〉 = δq,qB with qB = 2π(n,m), in presence of disorder 〈n̂q〉 is finite since

the translational invariance is broken. This implies that, for a given disorder

configuration, 〈n̂q〉 6= 0, but, after the disorder average 〈n̂q〉 = 0. However,

Ndisc
q = 〈n̂q〉2 may be finite and, in fact, as Belitz pointed out [68], it is re-

lated to the elastic scattering of electrons that can transfer momentum without

transferring energy, due to the coupling to a random potential. Because of that,

in a disordered system, it is meaningful to subtract Ndisc
q from the definition

of the static structure factor

Nq = 〈n̂−qn̂q〉 − 〈n̂q〉〈n̂−q〉. (2.28)

We use the notation Ndisc
q = 〈n̂q〉2, since in the Feynman diagram representa-

tion of the density-density correlation function 〈n̂qn̂−q〉, Nq is the connected

part, while 〈n̂q〉2 = 〈n̂q〉〈n̂−q〉 represents the disconnected part.

In Fig.(2.3) we report the ”total” density-density correlation function 〈n̂qn̂−q〉
and the disconnected term Ndisc

q calculated for a system of N = 800 sites and

with disorder strength D/t = 5, averaged over 48 disorder realizations. In

almost all our work we choose D/t = 5, which is indeed a strong disorder: in

this way the localization length at U = 0 is small compare to the numerically

accessible system sizes and thus the interplay between disorder and interaction

is more evident.
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In Fig.(2.4) the static structure factor Nq is shown: Nq → 0 for q → 0 as
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Figure 2.4: Connected part Nq of the density-density correlation function for

the Anderson insulator plotted against q in the (1,1) direction. In the inset we

show Nq/q, from which is clear that Nq ∼ q. Data points are averaged over 48

disorder realizations for a lattice of size N = 800.

we expect from the particles number conservation (see appendix A) and, most

interestingly, Nq ∼ q in agreement with the fact that the Anderson insulator

is gapless.

2.3 The Variational Monte Carlo method

The first step in a variational approach is to define a good trial state |ψt(α)〉,
which is a function of a set of variational parameter α = {αk} for k = 1, . . . , p,

in order to include the particle-particle correlations in a proper form. Neverthe-

less, once a correlated wave function is defined, the problem of computing the

expectation value of the Hamiltonian (the variational energy) is not easy be-

cause of the presence of correlation factors (the Gutzwiller and Jastrow terms)

that make it not possible to apply the Wick theorem, like for mean-field states.

In particular for the Hubbard model, since each site can be either singly oc-

cupied, by a spin up or down, or empty or doubly occupied, the generic state
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reads |x〉 = | ↑, ↑, 0, ↓, ↑, 2, 2, ↑, ↓, ...〉 and thus the Hilbert space contains 4N

different configuration states, where N is the number of lattice sites. Therefore,

for N larger than 20, the problem becomes numerically intractable.

In the following, we show how to approach this problem through a Monte

Carlo sampling of this huge Hilbert space. To this purpose, by using the

completeness of the basis I =
∑

x |x〉〈x|, we can write the expectation value of

a generic observable Ô like:

〈O〉 =
〈ψt(α)|Ô|ψt(α)〉
〈ψt(α)|ψt(α)〉 =

∑

xO(x)ψ2
α(x)

∑

x ψ
2
α(x)

(2.29)

where ψα(x) = 〈x|ψt(α)〉 and O(x) is defined in the following way:

O(x) =
〈x|Ô|ψt(α)〉
〈x|ψt(α)〉 . (2.30)

Following Eq. (2.29), we can recast the calculation of 〈O〉 as the average of

a random variable O(x) over a probability distribution px given by:

px =
ψ2
α(x)

∑

x ψ
2
α(x)

. (2.31)

Within the Monte Carlo algorithm, it is possible to generate a sequence of

configuration |xn〉, with n = 1, . . . ,M , the so called Markov chain, distributed

according to the desired probability px. Then, since O(x) can be easily com-

puted for any given configuration |xn〉, we can evaluate the expectation value

of the observable Ô as the mean of the random variable O(x) over the visited

configurations:

O =
1

M

M
∑

n=1

O(xn). (2.32)

We would like to mention that in this section the overbar denotes the statistical

average, while usually we denote with an overbar the disorder average. In

order to obtain the wanted Markov chain, the first step in any Variational

Monte Carlo algorithm consists in choosing the initial coordinates {ri}0 for the

N particles on the lattice, i.e., the initial configuration |x0〉, either randomly

(within the choice of ψ2(x) 6= 0) or taking them from a previous Monte Carlo

simulation. Then a new trial configuration |xT 〉 is chosen by moving a particle

from its old position to another site.
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The Markov chain is then constructed following the Metropolis algorithm.

Given the nth configuration of the Markov chain |xn〉, the proposed one |xT 〉
will be accepted, i.e., |xn+1〉 = |xT 〉, with a probability P equal to

P = min[1,R] with R = |ψα(x
T )

ψα(xn)
|2 (2.33)

where ψα(xn) and ψα(x
T ) are the variational wave functions associated with

the configurations |xn〉 and |xT 〉, respectively. In practice, a positive random

number 0 ≤ η ≤ 1 is extracted: if η ≤ R the proposed move is accepted and

|xn+1〉 = |xT 〉, otherwise the proposed move is refused and |xn+1〉 = |xn〉. After

a certain number of steps, the configurations |xn〉 generated at each step n are

independent from the initial condition |x0〉 and are distributed according to

the probability px defined above. Notice that this algorithm does not require

to know the normalization of the wave function since it always deals with the

ratios. This is a big advantage of Monte Carlo methods since the normalization

constant implies a sum over the total (huge) Hilbert space.

Once the Markov chain is constructed, it is possible to compute the stochas-

tic average (2.32). Indeed the central limit theorem ensures that:

lim
M→∞

O =
∑

x

pxO(x). (2.34)

The statistical error related to the fact that we are sampling a finite set of

configurations scales like 1/
√
M , if the configurations |xn〉 are independent

from each other. Therefore, for large enough and no correlated samplings, the

stochastic average calculated with the Metropolis algorithm gives a reliable

estimate of the true expectation value of the system.

In order to ensure uncorrelated samples, the bin technique is generally used.

This corresponds to average first among Mbin configurations:

O
i

bin =
1

Mbin

Mbin
∑

n=1

O(xin), (2.35)

where |xin〉 is the nth configuration state of the ith bin. In this way the quantities

O
i

bin are less correlated than the original ones. Then one can compute the

average value as

O =
1

Nbin

Nbin
∑

i=1

O
i

bin, (2.36)
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where Nbin = M/Mbin. The variance can be evaluated in the standard way as

σ2(O) =
1

Nbin

Nbin
∑

i=1

(

O
i

bin −O
)2

. (2.37)

In a system with finite disorder, once the expectation value O has been

computed, the average over different disorder configurations must be evalu-

ated. Therefore, we fix a disorder configuration and we compute O as ex-

plained above. Then we repeat the same calculation for several disorder re-

alizations and we average the obtained results. We notice that, especially for

small Coulomb interactions, different disorder configurations may give rather

different results on physical quantities.

2.4 The Stochastic Reconfiguration method

In the previous section, we explained how to compute the variational energy

for each set of variational parameters α = {αk} i = 1, . . . , p by aims of the

Metropolis algorithm. The variational parameters have to be adjusted in order

to find the wave function that is closer to the exact ground state. In the

following we show how to optimize the variational wave function minimising

the energy through the Stochastic Reconfiguration algorithm, introduced in

Ref. [69].

First of all we reintroduce the notation |ψt(α)〉 for the variational wave

function depending on the set of parameters α = {αk} k = 1, ...p; let |ψt(α0)〉
be the wave function depending on the initial set of variational parameters. If

we consider a small variation of the parameters αk = α0
k + δαk, we can linear

expand the corresponding wave function |ψt(α)〉 in the following way

|ψt(α)〉 =

(

|ψt(α0)〉 +

p
∑

k=1

δαk
∂

∂αk
|ψt(α0)〉

)

. (2.38)

We define on each configuration |x〉 the local operators Ok, corresponding to

Ok(x) through the relation 〈x|Ok|x′〉 = Ok(x) δx,x′ where

Ok(x) =
∂

∂αk
lnψt(x). (2.39)
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Then we can rewrite |ψt(α)〉 in a more compact form:

|ψt(α)〉 =

p
∑

k=0

δαk O
k|ψt(α0)〉 (2.40)

where we imposed O0 = I and δα0 = 1 for convenience. However, the normal-

ization of |ψt(α)〉 will naturally lead to δα0 6= 1. In this case, the variation of

the parameters will be obviously scaled like

δαk →
δαk
δα0

(2.41)

and |ψt(α)〉 will be proportional to |ψt(α0)〉 for small δαk/δα0. It has to be

noticed that Eq. (2.40) can be read as the expansion of |ψt(α)〉 on the subspace

spanned by the basis set {|ψt(α0)〉, Ok|ψt(α0)〉} with k = 1, . . . , p, namely the

subspace defined by the variational parameters.

Now the key point is to determine the new parameters so to have a lower

variational energy. The Stochastic Reconfiguration algorithm is based on the

projection method idea: the exact ground state can be filtered out by iteratively

applying the Hamiltonian to the trial wave function. In particular, we can

apply one step of the power method starting from |ψt(α0)〉

|ψ′
t(α)〉 = (Λ −H)|ψt(α0)〉, (2.42)

where Λ is a large positive constant in order to lower the energy. The equations

for determining the new parameters can be found by imposing that |ψ ′
t(α)〉

coincides with |ψt(α)〉 in the subspace spanned by the vectors {Ok|ψt(α0)〉}
with k = 1, . . . , p. Then, by combining Eqs. (2.42) and (2.40) and projecting

the result on the kth component of the Hilbert space, we obtain

〈ψt(α0)|Ok(Λ −H)|ψt(α0)〉 =

p
∑

k′=0

δαk′ 〈ψt(α0)|OkOk′|ψt(α0)〉. (2.43)

Thus we found a system of (p + 1) linear equations that can be solved to

calculate the parameters δαk.

Substituting k = 0 in the system (2.43) we obtain the relation for δα0

δα0 = Λ − E −
p
∑

k=1

δαk〈Ok〉 (2.44)
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that inserted in Eq. (2.43) for k 6= 0 returns

〈H〉〈Ok〉 − 〈OkH〉 =

p
∑

k′=1

〈Ok′Ok〉δαk′ −
p
∑

k′=1

〈Ok′〉〈Ok〉δαk′ (2.45)

where 〈...〉 indicates the average over |ψt(α0)〉. We recognise the first part of

Eq. (2.45) to be the generalised forces

fk = −1

2

∂E

∂αk
= 〈H〉〈Ok〉 − 〈OkH〉 (2.46)

and we define the positive definite p× p matrix

sl,k = 〈OlOk〉 − 〈Ol〉〈O〉. (2.47)

With this notation the Eq. (2.43) can be rewritten in the compact form

p
∑

l=1

δαl sl,k = f k. (2.48)

Finally, the parameters variations δαk can be rescaled by an acceleration

constant δt, i.e., δαk → δαk/δt. Thus the Stochastic Reconfiguration algorithm

becomes

δαk = δt
∑

l

s−1
k,l f

l; (2.49)

from this relation we observe that the role of the acceleration δt is to control

the extension of the optimisation steps.

The positive definiteness of the matrix sk,l ensures that the algorithm con-

verges. In fact the energy variation corresponding to a small change in the

parameters is:

∆E = −δt
p
∑

k=1

p
∑

l=1

s−1
k,lf

kf l +O(δt2), (2.50)

which is always negative for small enough δt, unless the minimum condition of

fk = 0 is reached.

It has to be noticed that the Stochastic Reconfiguration method is very

similar to the simpler Steepest Descent method. In fact substituting sk,l with

the identity δk,l, Eq. (2.49) defines the Steepest Descent algorithm

δαk = f kδt. (2.51)
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The fundamental difference between the Stochastic Reconfiguration minimi-

sation and the Steepest Descent method is the definition of the distance ∆α

between a new set of parameters {αk′} and the previous one. The distance ∆α

is crucial for the stability of the optimisation method: in fact in these iterative

methods the new parameters have to be chosen close enough to the old ones

in terms of the prescribed distance. As it is explained in Ref. [70], within

the Stochastic Reconfiguration scheme ∆α is chosen to be the square distance

between the wave functions ψt(α
′
k) and ψt(αk) corresponding to the two differ-

ent sets of parameters. On the contrary, in the Steepest Descent method the

distance is simply defined as

∆SD
α =

p
∑

k=1

(α′
k − αk)

2. (2.52)

Sometimes a small change in the parameters corresponds to a large change of

the wave function, and conversely a large change of the variational parameters

can imply only a small change in the wave function. The Stochastic Recon-

figuration method takes into account this effect through a better definition of

the distance ∆α. In Fig.(2.5) we report the comparison between the energy

evolution as a function of the minimisation iterations using the Stochastic Re-

configuration algorithm and the Steepest Descent algorithm. It is immediate

to notice that the energy is already converged at the 100th iteration in case of

the Stochastic Reconfiguration algorithm, while in the Steepest Descent case

it still has to converge at the iteration number 300.

The algorithm takes the name Stochastic since both the forces and the

matrix sk,l are determined stochastically, evaluating the averages in Eqs. (2.46)

and (2.47) within the Monte Carlo scheme as explained in the previous section.

For example within the Monte Carlo scheme, the forces are equal to

fk =
1

Mweight

Mweight
∑

i=1

Ok(xi)ELOC(xi) −OkH(xi) (2.53)

where ELOC(xi) = 〈xi|H|ψ〉/〈xi|ψ〉, OkH(xi) = 〈xi|OkH|ψ〉/〈xi|ψ〉 andMweight

is the number of sampled configurations. This indeed implies that the forces

fk are always determined with some statistical noise ηk. It follows that even

when the variational minimum is reached, the parameters will fluctuate around
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Figure 2.5: Comparison of the Monte Carlo energy evolution as a function

of the minimisation iterations using the Stochastic Reconfiguration algorithm

(green points) and the Steepest Descent algorithm (red points). The optimiza-

tion is done for U/t = 6 and D/t = 5 for a lattice of size N = 50.

their mean value. Therefore, it is necessary to average over a certain number of

iterations in order to find the optimal parameters that are close to the energy

minimum. The evolution of the variational parameters during the minimisation

iterations can be described by the Langevin dynamics where the statistical

noise plays the role of the thermal noise:

∂αk
∂t

= fk + ηk. (2.54)

By increasing the number of sampled configurations Mweight the statistical noise

diminishes, namely ηk ∼ 1/
√

Mweight. Therefore, there is an optimal value of

Mweight that guarantees a fast convergence and prevent the parameters from

being biased by the statistical error. Moreover, the optimal number of sampled

configurations Mweight depends on the value of the electron-electron interaction

U and of the disorder D (in units of the hopping t).

In Fig.(2.6), we show the different energy evolutions for different values

of the number of sampled configurations Mweight, for U/t = 4 and D/t = 5

on a lattice of N = 98 sites. We observe that the convergence is faster for

Mweight = 4000: it could be quite unexpected that Mweight = 4000 is better than

Mweight = 7000 and Mweight = 9000. A possible reason could be the presence
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Figure 2.6: Left panel: comparison of the Monte Carlo energy evolution as a

function of the minimisation iterations. Different curves correspond to different

values of the number of sampled configurations Mw.. The optimization is done

for U/t = 4 and D/t = 5 for a lattice of size N = 98. Right panel: energy

evolution with a fixed number of sampled configurations Mweight = 4000 for

U/t = 8 (red curve) and U/t = 20 (green curve). The optimization is done for

D/t = 5 on a lattice of N = 50 sites.
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of local minima in the energy landscape: in this case generalized forces, with

larger statistical noise, can lead to the true minima faster. In Fig.(2.6) we also

report also the energy evolutions for U/t = 8 and U/t = 20. In both cases

Mweight = 4000. It is immediate to notice that Mweight = 4000 is sufficient for

U/t = 8, but not for U/t = 20.

To summarize, a single iteration step of the Stochastic Reconfiguration min-

imization scheme can be described as follows: i) a set of variational parameters

is given {αk} after the i-th iteration, ii) we calculate f k and sk,l statistically

through a small Monte Carlo simulation, iii) a new set of variational parameters

αk is determined from Eq. (2.49) with a suitable choice of δt.
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Figure 2.7: a) Energy evolution (left panel) and two parameters evolution (right

panel) as a function of the minimization steps for the paramagnetic solution. b)

Energy evolution (left panel) and two parameters evolution (right panel) as a

function of the minimization steps for the magnetic solution. The optimization

is done for U/t = 16 and D/t = 5 for a lattice of size N = 98.

In Fig.(2.7) we report some examples of energy and parameters convergence

both for the paramagnetic (a) and the magnetic (b) solution. We argue that the

energy evolution in the magnetic case is due to the following mechanism: the
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initial parameters ε̃i are in a paramagnetic configuration, i.e., ε̃i,↑ = ε̃i,↓, which

corresponds to a local minimum so that at the beginning of the simulation the

parameters do not change much. Moving from the local minimum, thanks to

the statistical noise, the algorithm finds out that with ε̃i,↑ 6= ε̃i,↓ the energy

is lowered. At the end of the simulation the energy is converged to a lower

minimum corresponding to the antiferromagnetic solution.



Chapter 3

The paramagnetic

Anderson-Mott transition

Disorder and electron-electron interactions are both legitimate routes to local-

ization. In the first case, the single-particle eigenstates are localized because

of the scattering with impurities, but the charge gap vanishes and the system

is compressible; in the second case, the strong Coulomb repulsion localize elec-

trons and a gap in the excitation spectrum opens, making the system incom-

pressible. As we discussed in the first chapter, the interplay between disorder

and interaction is one of the most challenging problems in condensed matter.

On a theoretical ground, some insights in such a difficult problem can be gained

studying the Anderson-Mott transition in the paramagnetic sector, where in-

deed the charge gap opens up just because of the electron-electron interaction

and not because of the onset of long-range magnetic order. Any approach

based on a single-particle description, like unrestricted Hartree-Fock [71], can

uncover the Mott transition only if spin-rotational symmetry is explicitly bro-

ken, which introduces spurious effects due to magnetism. More sophisticated

approaches, like those based on dynamical mean-field theory (DMFT) [7], can

in principle manage without magnetism [8, 72, 73, 74, 75, 76], but they may

miss important spatial correlations, since these are treated in a mean-field-like

fashion.

In this chapter, we demonstrate that, within a variational approach, it is

possible to describe the Anderson-Mott transition in the paramagnetic sector.

45
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We concentrate our analysis on the case of a disordered Hubbard Hamiltonian

defined by

H = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2 +
∑

i

εin̂i, (3.1)

where the hopping term is restricted to nearest neighbor sites of a square

lattice. In the following, we consider the half filled case, where the number of

sites N is equal to the number of electrons. We define a paramagnetic wave

function |ψ〉 = J ΠiGi|SD〉, where |SD〉 is the ground state of the mean-field

Hamiltonian

HMF = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
∑

i,σ

ε̃i,σn̂i,σ. (3.2)

The paramagnetic character of the variational state is enforced by fixing ε̃i,↑ =

ε̃i,↓. In this way, the Slater determinant does not break the spin symmetry.

Moreover, J is the Jastrow factor J = exp[1/2
∑

i,j vi,j(n̂i − 1)(n̂j − 1)] and

Gi are the local Gutzwiller terms Gi = exp[−gin̂2
i ] discussed in the previous

chapter.

In the following, we construct the paramagnetic phase diagram of the dis-

ordered Hubbard model (3.1) and we show that, within this approach, the

Mott transition is continuous, in agreement with DMFT results. Moreover,

we find that the charge gap opening in the Mott insulator is accompanied by

the vanishing of limq→0 〈n̂q〉〈n̂−q〉, the overbar denoting the impurity average.

Therefore, this quantity, that is related to the compressibility fluctuations, can

be interpreted as an order parameter, which permits to distinguish the two

insulators, Anderson versus Mott, in a variationally easy way. We also discuss

the disorder suppression due to the interaction in the strong-coupling regime

and thus the effect of an increasing localization length induced by the inter-

action. Finally, we define local quantities, e.g., the local kinetic energy, in

order to detect the inhomogeneous character of the system and to assess the

possibility that different lattice sites approach the Mott transition in different

ways.

Actually, from our calculation, the following picture of the Anderson-Mott

transition emerges: given a finite disorder D, with increasing electron-electron

interaction, the localization length of the single-particle eigenstates increases
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and, in this sense, the non-interacting ground state |SD〉 becomes more metal-

lic. However, the Gutzwiller and Jastrow factors build strong charge correla-

tions in the full variational wave function. Therefore, above a critical value

of the interaction U ≥ UMI
c , a charge gap opens up, making the ground state

an insulator. In the regime U ∼ D, we observe that the kinetic energy has

a maximum and indeed also the single-particle eigenfunctions are maximally

extended. Nevertheless, we do not find any evidence in favor of a stabilization

of a metallic phase.

3.1 Results for the 2d Hubbard model with di-

agonal disorder

In the previous chapter we discussed that in a clean system it is possible to

discriminate variationally metals from Mott insulators by looking at the equal-

time density-density structure factorNq = 〈n̂q n̂−q〉−〈n̂q〉〈n̂−q〉. Indeed, Nq ∼ q

implies the existence of gapless states, while Nq ∼ q2 indicates that charge ex-

citations are gaped. Moreover, we saw that there is a tight connection between

the long-wavelength behavior of Nq and the Fourier transform of the Jastrow

factor vq, namely vq ∼ 1/q for a metal and vq ∼ 1/q2 for an insulator. We

discussed that this distinction should equally work in our model after disorder

average.

In Fig.(3.1), we report the variational results of Nq for different values

of the interaction U and D/t = 5 (as we already discussed, we take such a

large value of D in order to have a localization length that, at U = 0, is

smaller than the numerically accessible system sizes). The results are averaged

over different disorder realizations, which range between 6 and 24, depending

on the strength of the interaction U . In addiction, the Fourier transform vq

of the optimized Jastrow parameters vi,j is reported in Fig.(3.2) for different

values of the interaction U and for different lattice sizes. A clear change of

the behavior is observed at UMI
c /t = (11.5 ± 0.5) in both quantities, similarly

to what was found in the clean Hubbard model [77]. For small values of the

interaction strength, i.e., for U < UMI
c , we have that Nq ∼ q and vq ∼ 1/q,

whereas Nq ∼ q2 and vq ∼ 1/q2 in the strong-coupling regime U > UMI
c . The
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Figure 3.1: Static structure factor Nq divided by q plotted versus q in the (1, 1)

direction, for different values of the interaction U and D/t = 5. The change in

the small wave-vector behavior permits us to identify the Mott transition at

UMI
c = (11.5±0.5)t . Data points are averaged over several disorder realizations

for a lattice of size N = 98.
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Figure 3.2: Jastrow parameters vq multiplied by q2, plotted in the direction

(1, 1) for disorder D/t = 5 and for different values of the interaction U . Cal-

culations have been done for different lattice sizes: N = 50 (squares), N = 98

(circles), N = 162 (triangles).

latter behavior is symptomatic of the presence of a charge gap hence of a Mott

insulating behavior [9]. In Fig.(3.3) we report the Fourier transform of the

Jastrow parameters for different values of the interaction U and the disorder

D. For D/t = 4 we find that UMI
c

∼= 11 t, whereas for D/t = 6 we have
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Figure 3.3: Fourier transform of the Jastrow parameters vq × q2 for N = 98,

different values of the interaction U , D/t = 4 (left panel), and D/t = 6 (right

panel). For D/t = 4 we find UMI
c /t ∼ 11 and for D/t = 5 UMI

c /t ∼ 12.

UMI
c

∼= 12 t. Moreover we notice that, for the clean case D = 0 and within the

same approach, a metal-insulator transition at UMI
c = (8.5 ± 0.5)t was found

[77], indicating that disorder competes with U and pushes the Mott transition

to higher U . We sketch the resulting phase diagram in the (U,D) plane in

Fig.(3.4). We would like to emphasize that the present results are qualitatively

similar to those obtained within the clean Hubbard model. In particular, we

find that the transition is likely to be continuous, since the linear coefficient of

Nq goes continuously to zero at the phase transition. Additional evidence in

favor of a second-order transition will be given by considering compressibility

fluctuations that will be presented in the following paragraph.

D

8.5 12

ANDERSON 
INSULATOR

MOTT
INSULATOR

U

5

Figure 3.4: Phase diagram for the paramagnetic Anderson-Mott transition.

It is worth pointing out that, unlike in the case of a clean system, for
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U < UMI
c , Nq ∼ q is not associated to a metallic behavior but only to a gapless

spectrum, also characteristic of an Anderson insulator. Our variational Monte

Carlo results compare well with those obtained within recent extensions of

DMFT to account for disorder effects [76]. Also within this approach, the

paramagnetic Mott and Anderson insulators are continuously connected by a

second-order phase transition. In addition, although there are discrepancies in

the critical values of the interaction, we notice that the slope of the transition

line UMI
c = UMI

c (D) found within our approach is similar to the one obtained

within DMFT.

3.2 The compressibility fluctuations

In the previous paragraph, we showed that our variational approach is able

to describe the paramagnetic Anderson-Mott transition. Here, we identify a

novel order parameter, namely the disconnected term of the density-density

correlations Ndisc
q , which gives strong evidence in favor of a truly continuous

phase transition between the Anderson and the Mott insulators. This quan-

tity, at long wave-length, can easily distinguish between the two insulating

states. In the previous chapter we discussed that N disc
q = 〈n̂q〉〈n̂−q〉 is rather

different for clean and disordered systems. In the former ones, N disc
q gives rise

to the elastic scattering Bragg peaks δq,qB , with qB = 2π(n,m), while in the

latter ones it is finite for every finite momentum q. From the diagrammatic

a)                                                b)

Figure 3.5: a) Feynman diagram representation of 〈n̂q〉 and 〈n̂−q〉. Rectan-

gles indicate vertex corrections including both interaction and impurity inser-

tions. Lines indicate fully renormalized Green’s functions. b) The average over

disorder couples 〈n̂q〉 and 〈n̂−q〉. The dotted line denotes one impurity line

connecting the two Feynman diagrams representing 〈n̂q〉 and 〈n̂−q〉.

representation of Ndisc
q , one can realize that, for q → 0, it is closely related to
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Figure 3.6: Disconnected part of the density-density correlation function N disc
q

versus the interaction U . Data points are averaged over different disorder

realizations and error bars indicate the standard deviation of the average dis-

tribution.

the electron compressibility fluctuations. In fact, the two quantum averages

〈n̂q〉 and 〈n̂−q〉 correspond to the two tadpoles Feynman diagrams, shown in

Fig.(3.5), where the solid lines represent fully renormalized Green’s functions,

i.e., including both disorder and interaction corrections. The average over dis-

order couples the two tadpoles, see Fig.(3.5). The net result is two ”bubbles”

connected by impurity lines, which could be regarded as compressibility fluc-

tuations. Therefore, Ndisc
q is a faithful order parameter for the phase transition

between the Anderson insulator, which is compressible, and the Mott insu-

lator, which is incompressible. Fig.(3.6) shows that N disc
q , calculated for the

smallest wave-vector available in a finite lattice and averaged over disorder,

goes continuously to zero at the phase transition. This identifies a simple and

variationally accessible way to distinguish between an Anderson insulator and

a Mott insulator.

Moreover, as can be extracted from Fig.(3.7), the general trends of N disc
q for

all momenta are very much alike, although disorder fluctuations are larger for

larger q vectors. This fact demonstrates that the fluctuations 〈n̂i〉〈n̂j〉 become

local as U increases and eventually vanish at the Mott transition.
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direction. Data points are averaged over different disorder realizations and

error bars indicate the standard deviation of the average distribution.

3.3 Static screening of disorder

The suppression of disorder due to the interaction is an idea that has been

discussed by several authors. The connection between disorder screening and

delocalization effects, possibly leading to a metallic phase for U ∼ D, is prob-

ably the most interesting aspect that may emerge from this issue. It has to

be emphasized that here we are considering the ground-state properties of the

disordered Hubbard model, and thus we are referring to static screening of

disorder, namely the change and redistribution of the on-site energies by the

electron-electron repulsion U . In the following, we will discuss how disorder

gets screened by interaction, both in the atomic limit, which is relevant at

strong coupling, and within Hartree-Fock approximation, which properly de-

scribes the weak-coupling regime. These results have been recently discussed

by Henseler et al. [78] and are in good agreement with recent numerical works

[71, 79, 80]. However, as we discuss below, in all these approaches the disorder
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suppression breaks down at large values of the interaction U , a result that we

argue is not realistic. Indeed, our variational results, indicate that disorder is

highly suppressed also in the Mott regime, in contrast to other approaches.

Let us start with the atomic limit. In this case the Hamiltonian reduces to

H =
∑

i

εin̂i +
U

2

∑

i

(n̂i − 1)2. (3.3)

In the absence of interaction (i.e., U = 0) all the localized states with energy

εi < 0 are doubly occupied and the others are empty. When the interaction

is considered, each doubly-occupied site pays a cost in energy equal to U/2.

If U > 2D, all sites are singly occupied and the Mott insulator is recovered.

On the other hand, if U ≤ 2D, those sites with energy εi < −U/2 are doubly

occupied, those with energy −U/2 < εi < U/2 are singly occupied and the

others are empty, see Fig.(3.8). Therefore, the knowledge of the bare energy

εi

−D  

D  

0
−U/2

U/2

U<2D U>2DU=0

Figure 3.8: Energy level occupation in the atomic ground state with doubly

occupied (black), singly occupied (grey), and empty levels (white). Since we

are in the strongly localized regime each level correspond to a site. The case on

the left corresponds to the Anderson insulator: all sites with energy εi < 0 are

doubly occupied. The case on the right corresponds to a Mott insulator: all

sites are singly occupied. The case in the center represents an Anderson-Mott

insulator. Here, a fraction of localized sites are doubly occupied or empty as

in an Anderson insulator, but a finite number of sites are singly occupied, as

in a Mott insulator.

value εi of a generic site ri permits to know its occupation. However, the
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actual energy level can be renormalized by the interaction, leading to a disorder

screening, which will depend upon the local density n̂i. Let us uncover this

concept in detail considering for simplicity just one site ri with energy εi. If

this site is doubly occupied, the corresponding state has energy 2εi + U/2. A

single particle excitation consists in emitting one electron; after the electron

emission, the site is singly occupied and the energy is εi. Therefore, the single-

particle spectral function has an emission peak at ω = εi +U/2. We can define

renormalized on-site energies ε̃i, such that the single-particle spectral function

has a peak in ε̃i; in this case we have ε̃i = εi + U/2. If the site ri is empty, the

corresponding state has an energy equal to U/2 and, to obtain an excited state,

we have to absorb an electron, paying an energy εi−U/2. Finally, the last case

corresponds to a singly occupied site. The single particle spectral function has

two peaks: an emission peak at εi + U/2 and an absorption peak at εi − U/2.

In summary, the rule for replacing bare site energy εi by a renormalized one is











































εi → εi +
U

2
if εi ≤ −U

2

εi → εi +
U

2

εi → εi −
U

2











if − U

2
< εi ≤

U

2
with equal probability

1

2

εi → εi −
U

2
if εi >

U

2

. (3.4)

From weak to intermediate Coulomb repulsions, these shifts lead to renormal-

ization of the probability function P (ε̃) with a reduced width. On the other

hand, for large values of the interaction U , the distribution P (ε̃) becomes bi-

modal, with two peaks centered one at U/2, the other at −U/2. Each peak is

as large as the distribution P (ε), corresponding to U = 0, and, therefore, in

the strong interaction regime, the atomic limit predicts no disorder screening.

A similar result is obtained within the Hartree-Fock approximation. In this

approach, like in all weak coupling approaches, the redistribution of the on-site

energies is related to the compressibility of the system [81]. In fact the screened

random potential is

ε̃i,σ = εi,σ + U〈n̂i,−σ〉, (3.5)
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which in the case of a paramagnetic solution, εi,↑ = εi,↓ = εi, becomes:

ε̃i = εi +
U

2
〈n̂i〉. (3.6)

In the weak coupling regime we can apply linear response theory and thus

〈n̂i〉 = 〈n̂i〉0 +
∑

j

χij ε̃j (3.7)

where 〈...〉0 means the average respect to the non-interacting clean Hamiltonian

and χi,j is the proper density-density response function at ω = 0. If we substi-

tute Eq. (3.7) in Eq. (3.5) and we consider the half-filled case, i.e., 〈n̂i〉0 = 1,

we obtain

ε̃i = εi +
U

2
+
U

2

∑

j

χi,j ε̃j. (3.8)

Neglecting the constant term U/2, the equation for the renormalized on-site

energy becomes
∑

j

(δi,j −
U

2
χi,j)ε̃j = εi (3.9)

that can be rewritten in a matrix form as

(I − U

2
χ̂)ε̃ = ε (3.10)

where ε̃ (ε) is the vector of components ε̃i (εi) and χ̂ is the matrix of elements

χi,j. Therefore, it is straightforward to obtain a relation for the renormalized

energies

〈ε̃iε̃j〉 =
∑

k

(I − U

2
χ̂)−1

i,k (I −
U

2
χ̂)−1

j,k〈ε2k〉, (3.11)

where we used that the original random energies are not correlated, i.e., 〈εiεj〉 =

〈ε2i 〉δij. First of all, it has to be noticed that the screened disorder ε̃i is corre-

lated, namely that, contrary to the unscreened disorder 〈ε̃iε̃j〉 6= 0 for i 6= j.

Another important fact is that, within this weak-coupling approach, the disor-

der is no longer screened in the Mott phase. Indeed, whenever the charge gap

is finite, χ(q, ω = 0) = 0 for every q, implying that χi,j = 0. Therefore, in this

limit, it is immediate to see that 〈ε̃iε̃j〉 = 〈ε2i 〉δij.
However, the fact that disorder is not suppressed in the regime of strong

correlations, and in particular close to the Mott transition, is highly question-

able. On the one hand, in the limit of U = ∞ one expects that translational
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invariance is recovered, but, on the other hand, a substantial mass enhance-

ment takes place, making plausible to have a behavior close to the atomic limit

(where there is no screening for U � D). In this context, DMFT calculations

are in sharp discrepancy with results obtained within Hartree-Fock or in the

atomic limit [8, 82]. In fact, they show that the screening remains strongly en-

hanced also for large values of the interaction U , whereas Hartree-Fock and the

atomic limit approximations predict a reduction and a complete cancellation

of the disorder suppression. However, DMFT predicts that the randomness of

the system is completely cancelled at the Mott transition, while, in realistic

systems, we expect the disorder to be strongly but not perfectly screened, even

in the vicinity of the Mott transition.

Within our variational approach, we evaluate the disorder suppression by

calculating the variance of the distribution of the on-site energies of the mean-

field Hamiltonian (3.2)

∆2 =
1

N

∑

i

(ε̃i − ε̃)2, (3.12)

where ε̃ is the average of ε̃i over all sites, namely

ε̃ =
1

N

∑

i

ε̃i. (3.13)

Moreover, since ∆2 is a purely mean-field quantity, we also calculate the density

fluctuations

δn2 =
1

N

∑

i

〈n̂i − 〈n̂i〉〉2 (3.14)

that are related to the randomness of the full variational wave function (includ-

ing the Gutzwiller and the Jastrow factors). Both ∆2 and δn2 are averaged over

different disorder realizations. In Fig.(3.9) we report the variational results of

∆, compared with the one obtained by the Hartree-Fock approximation. The

latter one leads to a disorder screening only for moderate interactions, while

it gives almost unscreened on-site energies in the strongly-correlated regime.

On the contrary, our variational approach is able to capture the physics of a

realistic system, also for large interaction U , where the disorder, though fi-

nite, is highly suppressed. The redistribution of on-site energies leads to a

decreased localization of the electronic state at the Fermi level. The fact that

the single particle wave functions get more and more extended by increasing
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Figure 3.9: Left panel: standard deviation of the distribution of the mean

field parameters ε̃i (see text) obtained with the paramagnetic wave function

(red curve) and within the Hartree-Fock approximation (blue curve). Right

panel: standard deviation of the distribution of the on-site density δn (see

text) for the paramagnetic state. Results are averaged over 12 different disorder

configurations.

interaction, is evident from Fig.(3.10), where we report the I.P.R. =
∑

i〈i|ψf 〉4
of the normalized eigenstate |ψf〉 at the Fermi level of the mean-field Hamil-

tonian (3.2). Even though within this approach we cannot access dynamical

quantities like DC conductivity, hence we can not address the question of a

possible stabilization of a conducting phase with moderate Coulomb repulsion,

the previous outcome shows an increase in the ”metallicity” of the ground

state. This result is in agreement with the fact that the linear slope of Nq has

a non-monotonic behavior as a function of U , showing a peak for U/t ∼ 7 that

indicates an accumulation of low-energy states around the Fermi energy, see

Fig.(3.11). In fact, the linear slope of Nq is related to the compressibility of

the system. At the same time, we observe that the charge fluctuations δn have

a maximum for U ∼ D, indicating that in the regime U ∼ D the wave func-

tion has its maximum extension, see Fig.(3.9) However, it has to be noticed

that the Slater determinant |SD〉 is the ground state of a mean-field Hamil-

tonian that, no matter how large is the Coulomb repulsion, always describes

non-interacting tight-binding electrons with on-site disorder. Therefore, even

though the single-particle eigenstates may have a very long localization length
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because of the suppression of the effective on site disorder ε̃i, yet this length

remains finite in two dimensions, see also the size scaling of the I.P.R. reported

in Fig.(3.10). Moreover, since the Jastrow factor is not expected to delocalize

single particle orbitals, within this approach, the many-body wave function

always describes an Anderson insulator below the Mott transition.

In conclusion, from our data the following picture of the paramagnetic

Anderson-Mott transition emerges. At finite disorder D and U = 0 the ground

state is an Anderson insulator, which is compressible, but with localized elec-

tron states. When the on-site interaction U is added, the Gutzwiller factors

reduce the double occupancies and at the same time the local ε̃i are renormal-

ized. Thus, while the Gutzwiller factors introduce the correlations in the wave

function, the Slater determinant |SD〉 becomes more and more ”metallic”, i.e.,

the single-particle localization length increases. At the transition the Jastrow

factor induces long-range correlations between empty and doubly occupied sites

and the wave function becomes a Mott insulator.
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Figure 3.12: Average g (left panel) and standard deviation ∆g (right panel) of

the distribution of the Gutzwiller parameters.

3.4 Local quantities

In this section, we want to analyze in more detail the role of disorder at the

Mott transition. A first glimpse of the basic effect of disorder on the transition

was outlined by Mott, who pointed out that important consequences can even
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be seen when the system is in the strongly localized regime, i.e., in the atomic

limit. When U ≤ 2D there is a mixture of doubly occupied, empty and single

occupied sites, see Fig.(3.8). In this regime the Mott gap vanishes, although

a fraction of sites behaves as localized moments. We can describe this state

as an inhomogeneous mixture of a Mott and an Anderson insulator. This

physical picture is very transparent and intuitive. The non-trivial question is

to understand the role of the kinetic term, given also the fact that mobility is

increased by the interplay of disorder and interaction (see discussion above).

In particular, one could expect strong inhomogeneities, in which sites of the

system with a metallic character may coexist with localized electrons. This

possibility has been discussed by Aguiar et al., who approached the Anderson-

Mott transition from the metallic side [83]. From their scaling analysis, a

two-fluid behavior emerges at the critical point, where a fraction of sites turn

into local moments, with a vanishing quasi-particle weight Zi → 0, while the

remaining ones are either doubly occupied or empty, with Zi → 1. The fact

of having important inhomogeneities up to the transition point (and even in

the Mott phase) is also evident from our calculations. In Fig.(3.12), we report

both the average g and the standard deviation ∆g of the distribution of the

parameters gi. We have that |g| increases with the interaction U in order to

reduce the doubly occupied sites, while ∆g has a non-monotonic behavior with

a maximum close to the critical value UMI
c .

In order to gain a deeper understanding on the local behavior, namely how

each single site behaves across the Anderson-Mott transition, we introduce a

local f-sum rule. In real space, the dynamical structure factor is defined as

Si,j(ω) =

∫

dteiωt〈n̂i(t)n̂j(0)〉 (3.15)

and thus we can define a local dynamical structure factor

Sj(q, ω) =
1

N

∫

dteiωt
∑

i

〈n̂i(t)n̂j(0)〉eiq(ri−rj). (3.16)

Using the fluctuation-dissipation theorem and the Heisenberg equation of mo-

tion (see appendix A), we calculate directly the first momentum of the ”dy-

namical structure factor” of site rj

Σj(q, ω) =

∫ +∞

0

dω

π
ω Sj(q, ω) =

1

N

∑

i

〈[[n̂(ri), H], n̂(rj)]〉eiq(ri−rj). (3.17)
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After some simple algebra, we obtain the relation

Σj(q) = −2t
∑

<i>j ,σ

〈c†i,σcj,σ + h.c.〉eiq(ri−rj) + 2t
∑

<i>j

〈c†i,σcij, σ + h.c.〉. (3.18)

where 〈i〉j indicates the sum over the first neighbors of site rj. Defining a local

static structure factor

Nj(q) =
1

N

∑

i

〈n̂in̂j〉eiq(ri−rj) (3.19)

we can recast the f-sum rule in a local form

∆j(q) =
Σj(q)

Nj(q)
; (3.20)

the limq→0 ∆j(q) is a detector for a local gap, making it possible to clarify if at

the Mott transition all sites become localized (with finite moments) simulta-

neously, or charge fluctuations are possible. The evaluation of both Σj(q) and

Nj(q) requires the computation of equal-time correlations functions, which can

be easily done in the variational Monte Carlo scheme.

In Fig.(3.13), we report the distribution of Σj(q), evaluated at the smallest

value of q available within a lattice of N = 98 sites, i.e., q = (π/7, π/7). For

small momenta Σj(q) is proportional to the local kinetic term Tj:

Tj = t
∑

〈i〉j ,σ

〈c†i,σcj,σ + h.c.〉. (3.21)

The average value of Σj(q) slightly increases by increasing U and it has a

maximum in the regime U ∼ D, like limq→0Nq/q (see previous section). For

small values of the interaction U the distribution of Σj(q) (or equivalently, the

one of Tj) is rather large and it shrinks for increasing interaction strength, in

agreement with the fact that the disorder is suppressed by interaction. Just

before the transition, i.e., U/t ∼ 10, the distribution spreads out again, even

though not as much as in the strong-D/small-U regime, and indeed the variance

of the distribution has a maximum at U = UMI
c . A summary of the average

value of Σj(q) and its standard deviation is reported in Fig.(3.14). This picture

can be interpreted as a two-fluid like behavior, where a fraction of sites can

be regarded as localized spins (i.e., with vanishing charge fluctuations), while
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Figure 3.13: Distribution of Σi(q) ∼ q2Ti over the lattice sites and the disorder

configurations, evaluated at q = (π/7, π/7). Different curves correspond to

different values of the interaction U . Calculations are done for D/t = 5. The

accumulated statistics is the number of lattice sites(N = 98) times the number

of disorder configurations.

the remaining sites behave like in the Anderson insulator, i.e., they have finite

charge fluctuations and no net magnetic moments. For U > UMI
c , all the

electrons are almost localized by the interaction and indeed the distribution of

Σj(q) has a very sharp peak.

Finally, in Figs.(3.15) and (3.16) we report the distributions of Nj(q) and

∆j(q). The behavior of the local structure factor is very similar to the one of

the local kinetic term, namely a rather large distribution in the weak-coupling

regime and a more peaked form for strong couplings. By contrast, the distri-

bution of ∆j(q) is rather narrow for U < UMI
c , where limq→0 ∆j(q) ∼ 0 due to

a vanishing gap in the Anderson phase. For small values of the wave vector q,
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Figure 3.14: Average Σ(q) = 1
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i Σi(q) and standard deviation σ of the

distribution of Σj(q) at different interaction values U . Here N is the number

of accumulated statistics, i.e., the number of lattice sites times the number of

disorder configurations.

the distribution of ∆j(q) is peaked around a single value that tends to zero for

q → 0. Nevertheless, the distribution has very long tails (with almost invisi-

ble weight), which are related to disorder fluctuations; these tails tend to be

suppressed by increasing values of the interaction U . For U > UMI
c , a charge

gap opens up in the average density of states but the size of the gap turns out

to be different from site to site, which implies a rather broad distribution, see

Fig.(3.16).
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Figure 3.15: Distribution of the local structure factor Nj(q) for different values

of the interaction U .
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Figure 3.16: Distribution of ∆j(q) for different values of the interaction U .





Chapter 4

Magnetic properties of the

Anderson-Mott transition

On the square lattice at half filling, in the absence of frustration and disorder,

an arbitrarily weak repulsive Hubbard interaction U is able to induce long-

range antiferromagnetic order. In fact, in this case, the presence of a perfect

nesting implies a diverging susceptibility at Q = (π, π) that, in turn, opens up

a finite gap at the Fermi level. Therefore, the ground state is a band insulator

for every finite value of the interaction U > 0. By contrast, in the presence of

a local random potential, the charge gap may be filled by (localized) energy

levels, possibly destroying the long-range magnetic order. The full problem,

with strong disorder and electron-electron correlation, is particularly difficult

to tackle, since no perturbative approaches are possible. In this chapter, we will

focus on this issue, starting from the simplest Hubbard Hamiltonian with local

disorder and applying the improved variational technique introduced in the

previous chapters, here generalized to describe also antiferromagnetic order.

Therefore, the model is

H = −t
∑

<i,j>,σ

(

ĉ†i,σĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2 +
∑

i

εin̂i, (4.1)

and the variational wave function is defined by |ψ〉 = JΠiGi|SD〉. As usual,

Gi are the local Gutzwiller projectors Gi = exp[−gin̂2
i ] and J the Jastrow

factor J = exp[1/2
∑

i,j vi,j(n̂i − 1)(n̂j − 1)] applied to the ground state of the

67
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(non-interacting) Hamiltonian:

HMF = −t
∑

<i,j>,σ

(

ĉ†i,σ ĉj,σ + h.c.
)

+
∑

i,σ

ε̃i,σn̂i,σ. (4.2)

Here, we allow for different local potential for up and down spins, i.e., ε̃i,↑ 6= ε̃i,↓,

in order to give the possibility of having a finite magnetization.

The variational energy landscape, for this generalized wave function, has

different local minima. Nevertheless, we will show that, in the case of the simple

unfrustrated Hamiltonian of Eq.(4.1), all physical properties corresponding to

different minima are the same.

First, we will discuss the phase diagram of the disordered Hubbard model

(4.1) with only a nearest-neighbor hopping t. In this case, a finite value of the

interaction UAF
c is needed for having the onset of long-range magnetic order:

below UAF
c the system is described by a standard paramagnetic (compressible)

Anderson insulator, above UAF
c a finite antiferromagnetic order parameter de-

velops, that unexpectedly coexists with a gapless spectrum and, therefore, a

finite compressibility. By further increasing the interaction U , the ground state

encounters a second phase transition to an incompressible antiferromagnetic in-

sulator with a finite charge gap. Interestingly, in the paramagnetic Anderson

insulator, local moments with a finite value of m̂i = n̂i,↑− n̂i,↓ develop, suggest-

ing that itinerant electrons may not be able to fully screen magnetic impurities

created by disorder. Then, in the last part, we will add a next-nearest-neighbor

(frustrating) hopping t′. Also in this case, we will show that the Mott insulating

phase is always accompanied by magnetic order, though with a sufficiently large

ratio t′/t many local minima appear in the energy landscape, with competing

magnetic properties. In particular, although we find that the lowest-energy

solution has magnetic long-range order, many other states with localized mo-

ments but no long-range order may be stabilized.

4.1 Local minima and accuracy of the wave

function

The variational energy landscape of the disordered Hubbard model (4.1) is

characterized by the presence of different local minima. In fact if we start from
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different points in the parameter space, namely from different values of gi, vi,j

and ε̃i,σ, we converge to different solutions. For example in Fig.(4.1) we show

the different energy evolution, as a function of optimization steps, obtained

starting from two different points in the parameters space. In the following, we

will consider two possibilities, either we start from a paramagnetic point, with

ε̃i,↑ = ε̃i,↓, or from a staggered point, with ε̃i,σ = ε̃i + σ(−1)|xi+yi|δ. In both

cases, during the Monte Carlo simulation, these conditions are relaxed and

the two on-site energies are optimized independently, so to allow a complete

freedom to modify the starting configuration.
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Figure 4.1: Energy evolution as a function of optimization steps for a typical

disorder configuration, starting from a paramagnetic point, i.e., ε̃i,↑ = ε̃i,↓ (red

squares), and starting from a staggered point, i.e., ε̃i,σ = ε̃i + σ(−1)|xi+yi|δ

(green circles). Simulations have been done for N = 98, D/t = 5, U/t = 10

(left panel) and U/t = 16 (right panel).

In contrast to the paramagnetic case (where we force to have equal on-site

energies, see the previous chapter), in which the energy landscape has just

one minimum, when allowing a magnetic wave function different local minima

may appear. This feature is particularly evident for large enough Coulomb

repulsion, whereas in the weak-coupling regime we recover a simple picture with

one minimum. In table (4.1), we report some example for different values of U/t

and 98 sites. Remarkably, the appearence of different local minima is related

to the presence of short-range or weakly long-range magnetic correlations. In

fact, as it will be discussed in the following, by increasing the on-site Coulomb
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repulsion, some sites acquire a finite magnetization and eventually, above a

critical value UAF
c , order, giving rise to the typical staggered pattern. Whenever

local moments are present or the magnetization is very small, there are many

different electronic arrangements that give similar energies but may be hardly

connected by simple Metropolis (single-particle) moves, so to define metastable

local minima.

U/t = 2

# 1 −2.76483(3) −2.76480(3)

# 2 −1.68989(3) −1.68936(3)

# 3 −2.11823(3) −2.11827(3)

# 4 −1.95084(3) −1.95087(3)

U/t = 10

# 1 0.1007(1) 0.1016(1)

# 2 −0.3911(1) −0.3858(1)

# 3 −0.8317(2) −0.8300(1)

# 4 −0.9896(1) −0.9905(1)

U/t = 16

# 1 0.0212(1) 0.0231(2)

# 2 −0.7770(1) −0.7765(2)

# 3 −0.4901(2) −0.4805(2)

# 4 −0.4780(2) −0.4775(2)

Table 4.1: Variational energy of the optimized wave function obtained starting

from a paramagnetic point, i.e., ε̃i,↑ = ε̃i,↓ (left column), and from a staggered

point, i.e., ε̃i,σ = ε̃i + σ(−1)|xi+yi|δ (right column), for D/t = 5, different

disorder configurations and ratios U/t.

However, the presence of different local minima is not a dramatic problem in

order to understand the physical properties of the disordered Hubbard model.

In fact, generally, all physical quantities, as for instance the localization length

or the density-density structure factor Nq, give similar results in all these cases.

Therefore, we can safely conclude that all the optimized states share the same

physical properties. As an example, in Fig.(4.2) we show the on-site magneti-



4.1 Local minima and accuracy of the wave function 71

U�t=10 U�t=16

U�t=10 U�t=16
1

-1

<mi>

Figure 4.2: On-site magnetization 〈m̂i〉 = 〈n̂j,↑ − n̂j,↓〉 for a typical disorder

configuration and interaction values U/t = 10 and U/t = 16. The upper

panels correspond to the wave function obtained from the paramagnetic point,

the lower panels correspond to the solution obtained from the staggered point.

zation 〈m̂i〉 = 〈n̂j,↑ − n̂j,↓〉 pattern, for the variational wave function optimized

both starting from the paramagnetic point and from the staggered point. It is

evident that there is no considerable difference between the two wave functions

(notice that also for U/t = 16 the magnetization values are slightly different,

though it does not appear from the color scale). We remark that, in most cases,

we obtain a lower variational energy by starting from the paramagnetic point,

see for instance table (4.1). Therefore, though in some particularly delicate

cases we considered different starting points, we usually chose to initialize the

simulation with a paramagnetic configuration.

Finally, we would like to discuss the accuracy in energy for a 4 × 4 lattice,

where the exact ground state can be calculated by the Lanczos algorithm. In

particular, we consider various wave functions: i) the magnetic state with on-

site Gutzwiller and Jastrow factors (that corresponds to our best ansatz), ii) the

paramagnetic state presented in the previous chapter (again with Gutzwiller

and Jastrow terms), iii) a magnetic state with only Gutzwiller projectors, and

iv) a magnetic mean-field state (i.e., without any correlation term) |SD〉. For
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Figure 4.3: Accuracy in energy of different variational wave functions (w.f.)

for a 4 × 4 lattice with D/t = 5: i) the magnetic w.f. (red squares),ii) the

paramagnetic w.f. (green circles), iii) magnetic w.f. without Jastrow factors

(blue triangles), iv) the Hartree Fock w.f. (violet stars). The exact ground-

state energy is computed by the Lanczos algorithm.

U = 0, the exact ground state wave function can be obtained, implying a

very good accuracy also for small but finite values of U/t. However, even for

U/t = 4, the Hartree-Fock state, with no Gutzwiller and Jastrow factors, give

a much poorer accuracy than the other three wave functions, see Fig.(4.3).

For U/t < UAF
c /t ∼ 6.5 there is no difference between the paramagnetic and

the magnetic wave functions and for both of them the accuracy is lower than

4%. Moreover, we notice that both for small and large interaction values, e.g.,

U/t = 4 and U/t = 16, the Jastrow factor is not so crucial, since already the

wave function iii) gives reasonably good accuracies. In fact, on the one hand,

the on-site Gutzwiller factor can easily account for the small charge correla-

tions induced by the Coulomb repulsion in the weak-coupling regime. On the

other hand, for large U/t, the ground state has a finite magnetization and the

charge-charge correlations can be already described within a (gaped) mean-

field state. In the more difficult regime, when U ∼ D, our magnetic state with
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both on-site Gutzwiller projectors and the long-range Jastrow term may give a

considerable improvement over the other states considered here. It should be

stressed however that this Jastrow factor is essential to have a paramagnetic

Mott insulator, whereas in the magnetic case it is not strictly necessary to

capture the correct nature of the ground state (see also the discussion below),

since the charge gap can be naturally opened by a finite antiferromagnetic

mean-field parameter.

4.2 Magnetic phase diagram

Let us turn to the physical properties of the disordered Hubbard model (4.1).

In order to assess the magnetic properties of the ground state, we consider the

magnetization defined by:

M =
1

N

∑

j

eıQrj〈m̂j〉, (4.3)

where m̂j = n̂j,↑ − n̂j,↓. In analogy with the clean model, also in presence

of disorder, by increasing the electron-electron repulsion, there is a tendency

toward magnetic order at Q = (π, π). Therefore, in the following we restrict

the calculations to this momentum. Whenever D > 0, a finite value UAF
c is

needed to have a true long-range antiferromagnetic order.

In Fig.(4.4), we report our variational results for D/t = 5 and different

values of the Coulomb repulsion and for U/t = 4 and various disorder strength.

Fixing D/t = 5, we find that UAF
c /t = 6.5 ± 0.5, and indeed for U < UAF

c the

magnetization vanishes. Moreover, as we discussed in the previous chapter,

information about the compressibility can be obtained from the disconnected

term of the density-density correlation function Ndisc
q = 〈n̂q〉〈n̂−q〉. In Fig.(4.4)

we also observe that this quantity vanishes at UMI
c /t = 10.5±0.5, signalling the

the opening of a charge gap. Remarkably, there is a finite region in which both

the magnetization and the compressibility fluctuations are finite. This implies

a stable regime that shows antiferromagnetic long-range order without any

charge gap. We notice that this intermediate phase with finite magnetization

and compressibility is reduced when we consider U/t = 4 and change the

disorder strength, see Fig.(4.4). In this case, we can estimate that DAF
c /t =
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Figure 4.4: Upper panel: compressibility fluctuations Ndisc
q with q = (π/7, π/7)

and staggered magnetization M for D/t = 5 and different values of the inter-

action U for a lattice of size N = 98. Data points are averaged over different

disorder realizations. Lower panel: the same as above, but for U/t = 4 and

different values of the disorder D.

2.5±0.5 and DMI
c /t = 1±0.5. These results lead to the phase diagram sketched

in Fig.(4.5), which is in close agreement with previous mean-field calculations

[71, 84, 85]. For U = 0 the system is a (paramagnetic) Anderson insulator for

every finite disorder D > 0, since for a non interacting bi-dimensional system

is valid the scaling theory of localization [19]. In a similar way, for D = 0 the

ground state is a Mott insulator with antiferromagnetic order for every U > 0.

When both disorder and interaction are finite, there is an intermediate phase

between the paramagnetic Anderson insulator and the antiferromagnetic Mott

insulator. This phase is characterized by long-range magnetic order, but also

by a finite compressibility. Though some authors identified this phase with a

metal [71], we do not find any evidence in favor of it.

Let us now consider in more detail the nature of the Anderson-Mott tran-

sition that emerges from our variational approach, once we allow for spin-
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Figure 4.5: Variational phase diagram of the magnetic sector of the ground

state. PAI stands for Paramagnetic Anderson Insulator, AAI for Antiferro-

magnetic Anderson Insulator and AMI for Antiferromagnetic Mott Insulator.
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Fourier transform vq × q2 of the Jastrow parameters versus |q| in the (1, 1)

direction. Calculations are done on a lattice of N = 98 sites for different

values of the interaction and D/t = 5. Data points are averaged over different

disorder realizations.
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rotational symmetry breaking. We would like to remind the reader that in the

paramagnetic case, the Mott insulator can be obtained only thanks to a sin-

gular Jastrow factor, i.e., vq ∼ 1/q2. In this case, the mean-filed Hamiltonian

is always gapless and the charge gap opens because of the strong correlations

induced by the Jastrow term. In the magnetic case instead, two different mech-

anisms can open up a gap: i) the long-range charge correlations induced by

the Jastrow factor and ii) the onset of long-range antiferromagnetic order. For

U < UMI
c = (10.5 ± 0.5) t, the static structure factor behaves like Nq ∼ q

and the Fourier transform of the Jastrow parameters like vq ∼ 1/q; on the

other hand, for U > UMI
c , we have that Nq ∼ q2 and vq ∼ 1/q2. Thus in the

intermediate phase with long-range magnetic order and finite compressibility,

Nq ∼ q and vq ∼ 1/q, in agreement with the f-sum rule. Nevertheless, we notice

that the change in the behavior of vq at the Mott transition is less sharp with

respect to the paramagnetic case studied in the previous chapter, see Fig.(4.6).

In order to understand which is the most relevant ingredient to open a

charge gap, we calculate the static structure factor Nq and the compressibility

fluctuations Ndisc
q close to Mott transition for the full variational wave function

|ψ〉 = JΠiGi|SD〉 and for another state that only contains Gutzwiller terms

|ψg〉 = ΠiGi|SD〉. The Slater deterinant |SD〉 is independently optimized for

the two cases. The results for Nq are reported in Fig.(4.7). Since the linear

slope of Nq is related to the compressibility, we observe that |ψg〉 is less com-

pressible than the full wave function |ψ〉 for U < UMI
c . Nevertheless, the results

for the two wave functions are not very different and the critical interaction

value UMI
c for the Mott transition is the same in the two cases. A similar out-

come can be obtained by Ndisc
q , see Fig.(4.8). Therefore, in the magnetic case,

the charge gap opens mainly because of the presence of a sizable mean-field

order parameter. However, the Jastrow parameters still behave like vq ∼ 1/q2

in the Mott phase. In summary, the following scenario emerges: in the interme-

diate phase with antiferromagnetic order, but finite compressibility, the charge

fluctuations are not completely suppressed and the mean-field density of state

is large at the Fermi level. For larger U values, the Jastrow factor increases

charge correlations and, at the same time, the mean-field density of states get

suppressed at the Fermi level. Finally, a single-particle gap opens and the

system becomes incompressible, see Fig.(4.9). We remark that the tendency
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towards metallicity for intermediate values of U/t is suppressed by the presence

of magnetic order: this can be seen by noticing a reduced density of states at

the Fermi level for U/t = 8. The same information can be also extracted from

the behavior of the Inverse Participation Ratio, which has a non monotonic

behavior in function of U : in fact, for small values of the interaction, the local-

ization length is short because of the strong disorder; then it becomes larger

for higher values of the interaction U due to the disorder screening and then, at

the antiferromagnetic transition, it decreases again. Moreover we notice that

the single particle wave functions are more localized in the magnetic case than

in the paramagnetic one, even in the regime of maximum ”delocalization”, i.e.,

U ∼ D, compare Fig.(4.10) with Fig.(3.10).
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Figure 4.7: Static structure factor Nq divided by q versus q for the full vari-

ational wave function with Jastrow factor (circles) and with only Gutzwiller

projectors (triangles).

In order to better quantify the disorder suppression, we calculate the fluc-

tuations of the on-site density δn2 = 1/N
∑

i〈n̂i − 〈n̂i〉〉2 and the variance

∆2 = 1/N
∑

i(δi − δ)2 of the distribution of the variables δi defined as

δi =
1

2
(ε̃i,↑ + ε̃i,↓) (4.4)

where ε̃i,σ are the variational parameters in the mean field Hamiltonian (4.2).

The distribution of δi contains the relevant information for evaluating the ran-
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Figure 4.8: Ndisc
q for different values of the interaction U . Circles (triangles)

denote the results obtained from the variational wave function with (without)

Jastrow parameters.
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Figure 4.9: Density of states (DOS) of the mean-field Hamiltonian (4.2) with

D/t = 5

domness of the Slater determinant, while ˜εi,σ contains also a constant (stag-

gered) part, namely ε̃i,σ = σ(−1)|xi+yi|∆AF + δi, that should be eliminated in

order to avoid spurious results. We observe that, though disorder is suppressed
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in all interaction regimes, the screening is much more efficient in the param-

agnetic wave function than in the antiferromagnetic one, being ∆ three times

smaller in the former case when U > UMI
c , see Fig.(4.11).
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Figure 4.10: I.P.R. of the single particle eigenstate |ψf〉 at the Fermi level of

the mean field Hamiltonian for different values of the interaction U . Error bars

correspond to the average over different disorder configuration with D/t = 5.
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Figure 4.11: Left panel: standard deviation of the distribution of the variables

δi = ( ˜εi,↑ + ˜εi,↓)/2 defined for the magnetic wave function (green curve), of the

mean-field parameters ε̃i obtained with the paramagnetic wave function (red

curve) and of the parameters ˜εi,σ given by the Hartree Fock approximation

(blue curve). Right panel: fluctuation of the mean on site density δn. Results

are averaged over different disorder configurations, with D/t = 5.
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As for the paramagnetic wave function discussed in the previuos chapter,

also in presence of magnetism there is no evidence of a metallic phase, between

the paramagnetic Anderson insulator and the magnetic Mott insulator. In fact,

the single particle orbitals of the Slater determinant are even more localized

than in the paramagnetic case and the Jastrow and Gutzwiller factors are not

expected to delocalize the orbitals.

4.3 Local magnetic moments

In the first chapter, we mentioned that in three dimensional systems, where

both disorder and interaction are strong (such as Si:P), local magnetic mo-

ments may appear before the metal-insulator transition, thus also deep in the

metallic phase. The presence of local moments is a consequence of the com-

petition between disorder and interaction. In principle, the presence of local

moments may be a general property of disordered materials, not strictly related

to a metallic behavior, so that they should be present also in two-dimensional

systems. With our variational approach, we can address the regime of both

strong disorder and interaction and indeed we find evidence for the appearance

of local magnetic moments in the paramagnetic Anderson insulator.

In order to assess this issue, a simple inspection of the staggered magneti-

zation M is not sufficient and the local magnetization

ML =

√

1

N

∑

i

〈m̂i〉2 (4.5)

must be also considered. In a paramagnetic state with local moments, namely

a state in which some sites have an on-site magnetization 〈m̂i〉 6= 0, the total

staggered magnetization (4.3) is vanishing, i.e., M = 0, while ML is finite. On

the contrary, in the antiferromagnetic phase ML ' M . Therefore, once we

compare ML with M , it is possible to have a good feeling on the presence of

local moments in the ground state. In Fig.(4.12) we compare the staggered

magnetization M and the local magnetization ML both for D/t = 5 and differ-

ent values of the interaction U and for U/t = 4 and different disorder strengths

D. Actually for U > UAF
c = (6.5 ± 0.5) t (and for D < DAF

c = (2.5 ± 0.5) t)

the two magnetization values coincide, while in the paramagnetic phase we
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Figure 4.12: Left panel: staggered magnetization M = 1/N
∑

i(−1)|xi+yi|〈m̂i〉
and local magnetization ML =

√

1/N
∑

i〈m̂i〉2 for D/t = 5 and different

interaction values. Right panel: the same for U/t = 4 and different disorder

values. Calculations are done on a lattice of size N = 98, data points are

averaged over different disorder realizations.

observe that ML > M ' 0. This indeed suggests a magnetically disordered

phase (i.e., M = 0) in which the on-site magnetization 〈m̂i〉 is finite for some

sites ri. We identify those sites with 〈m̂i〉 6= 0 as local magnetic moments. The

presence of local moments can be more appreciated by looking at the pattern

of the on-site magnetization 〈m̂i〉, see Fig.(4.13), and at the distribution of

|〈m̂i〉|, see Fig.(4.14). In Fig.(4.13), the pattern of the local density 〈n̂i〉 and

on-site magnetization 〈m̂i〉 are shown for a typical disorder realization. For

U/t = 4, the ground state is an Anderson insulator with a large number of

empty and doubly occupied sites with 〈m̂i〉 ∼ 0. However, some sites, which

we identify as local magnetic moments, have finite magnetization; they are not

spatially correlated hence long-range magnetism is absent. When the electron

interaction U increases, the number of magnetic sites increases rapidly and the

local moments eventually display the typical staggered pattern of Néel order.

Nevertheless, charge excitations are still gapless and Nq ∼ q. For U/t = 12

the system is a gaped insulator with antiferromagnetic order and a vanishing

compressibility. In this phase Nq ∼ q2 and all the sites are localized spins,

therefore 〈n̂i〉 ' 1 and 〈m̂i〉 ' 1 or −1. This picture is in agreement with

the distribution of the absolute value of the on-site magnetization |〈m̂i〉|, see

Fig.(4.14). Here, we observe that for small interaction values, U/t ∼ 3, the
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Figure 4.13: Local density 〈n̂i〉 (upper panels) and on-site magnetization 〈m̂i〉
(lower panels) for a given disorder realization with D/t = 5 and different values

of U/t. The black contour shows the elementary cell of the lattice which it is

repeated to mimic the infinite lattice with periodic boundary conditions.

distribution has a narrow peak in correspondence of |〈m̂i〉| = 0, however at

the same time it has long tails indicating the presence of local moments. For

U ' UAF
c the distribution is spread between 0 and 0.8, with a small peaks in

correspondence of |〈m̂i〉| ∼ 0. By increasing the interaction strength, the peak

at |〈m̂i〉| ∼ 0 disappears and the one at |〈m̂i〉| ∼ 1 becomes more pronounced.

Finally, in the Mott insulating phase the distribution is completely peaked on

|〈m̂i〉| = 1.

The presence of both paramagnetic sites, with 〈m̂i〉 ∼ 0, and sites with finite

magnetization can be connected with the two-fluids scenario. As we explained

in the first chapter, the two-fluids picture was first introduced to explain the

non-Fermi liquid behavior emerging in the thermodynamic measures of Si:P

doped semiconductors, where the two fluids are the Fermi liquid quasiparticles

and the local magnetic moments. The latter ones can be either free, i.e., non

interacting with the Fermi liquid, or coupled to the conduction electrons by

the Kondo interaction. Moreover, local moments can be totally screened or

strongly suppressed at zero temperature by this Kondo interaction or even by

their mutual magnetic interaction [4]. Here, we are considering a disordered
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Figure 4.14: Distribution of the on-site magnetization |〈m̂i〉|, over the lattice

sites and the disorder configurations. Different curves correspond to different

values of the interaction U . Calculations are done for D/t = 5. The accu-

mulated statistics is the number of lattice sites, times the number of disorder

configurations.

system of electrons in two dimensions, which, in absence of interaction, is an

Anderson insulator with all localized states. Moreover, as we discussed within

our approach, the localization length is always finite, even though it increases

in presence of interaction. Therefore, we cannot identify part of the electrons as

a metallic fluid. Nevertheless, the concomitant presence of local magnetic mo-

ments with other sites having finite charge fluctuations (when the localization

length is larger than the lattice spacing) and an overall finite compressibility

can be regarded as a system with two kind of particles. Indeed, in the regime

U ∼ D, i.e., where electron wave functions are maximally extended, we observe

the coexistence of local moments and paramagnetic sites with 〈n̂i〉 = 0, 1, 2, see

Fig.(4.13). It should be emphasized that, within this picture, there are no truly

itinerant fluids but all particles are localized. Although we cannot address the

question of the Kondo coupling, from our calculations we can conclude that
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there is a finite number of local magnetic moments in the ground state and

thus that the local moments, at least in part, are not screened and survive at

zero temperature.
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Figure 4.15: Distribution of the nearest-neighbor magnetic interaction M i
nn =

1/z
∑

〈j〉i
〈m̂im̂j〉, where z is the number of nearest neighbors, for D/t = 5.

Finally, we consider the nearest-neighbor spin-spin correlation function

M i
nn = 1/z

∑

〈j〉i
〈m̂im̂j〉, z being the number of nearest-neighbor sites and 〈j〉i

the sum over the neighbors of site ri. This quantity gives information about the

closeness of local moments: it is very small for isolated spins, whereas it is large

if spins form clusters. We observe that in the regime of U ∼ D, the distribution

of M i
nn is peaked around zero, indicating that local moments appear almost

isolated. Then by increasing the Coulomb interaction, the peak shifts smoothly

to negative values and saturates to M i
nn = −1 in the antiferromagnetic phase.

It should be noticed that, in all cases, the main interaction between localized

spins is always antiferromagnetic and that a negligible ferromagnetic coupling

is only present before the Mott transition.
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4.4 The Anderson-Mott transition in presence

of large frustration

In the previous sections, we showed that a disordered system of electrons on a

square lattice undergoes a magnetic transition before becoming a Mott insula-

tor. Therefore, the Mott insulator is always accompanied by magnetic order.

However, in disordered materials, one could expect that long-range order may

be strongly suppressed, leading to a bona-fide Mott transition, which is driven

by the electron correlation alone. Since the tendency towards magnetic order

is generally enhanced by an unfrustrated geometry of the lattice (that gener-

ally implies a strong nesting property of the non-interacting Fermi surface),

the presence of a frustrated hopping may help to approach the Mott phase

without any spurious magnetic effects. Moreover, from experimental point of

view, most of the realizations of disordered materials, like for instance Si:P,

can be described by electrons that hop and interact in a random lattice, since

the “active” atoms are randomly placed in the underlying matrix. Here, we

would like to approach the problem from a much simpler point of view and we

consider a periodic lattice with translationally invariant hopping and frustra-

tion is only introduced by considering two different hopping processes, at first

and second neighbors. In particular, we want to study the Hamiltonian

H =
∑

i,j,σ

ti,j

(

ĉ†i,σĉj,σ + h.c.
)

+
U

2

∑

i

(n̂i − 1)2 +
∑

i

εin̂i (4.6)

where ti,j = −t or −t′ if ri and rj are first or second neighbors respectively,

see Fig.(4.16). Similarly to what we did in the previous sections, we define a

variational wave function |ψ〉 = ΠiGiJ |SD〉, with |SD〉 the ground state of a

mean-field Hamiltonian

HMF = −t
∑

<i,j>

(

ĉ†i,σĉj,σ + h.c.
)

− t̃′
∑

<<i,j>>

(

ĉ†i,σ ĉj,σ + h.c.
)

+
∑

i

ε̃i,σn̂i,σ, (4.7)

where, besides the spin-dependent local energies ε̃i,↑ and ε̃i,↓, we also consider

a next-nearest-neighbor hopping t̃′ as a variational parameter to optimize |ψ〉.
The first important point is that a finite frustrating ratio t′/t makes the

energy landscape very jagged. Furthermore, in contrast to the the disordered
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t

Figure 4.16: First neighbors hopping amplitude t and second neighbors hopping

amplitude t′.

model with t′ = 0, where different local minima share very similar physi-

cal properties, here different starting points in the parameter space give rise

to rather different wave functions, especially in the intermediate/strong cou-

pling regime. In fact, we will show that different minima correspond to states

with different properties. In particular, as starting points for the energy op-

timization, we will consider i) a paramagnetic point, with ε̃i,↑ = ε̃i,↓, ii) a

staggered point, with ε̃i,σ = ε̃i + σ(−1)|xi+yi|δ, and iii) a collinear point, with

ε̃i,σ = σ(−1)|xi|. Although the starting point in the first case has ε̃i,↑ = ε̃i,↓, dur-

ing the optimization different values for up and down spins can be achieved. It

has to be noticed that with a 45 degrees tilted cluster (that has been used in this

thesis), the collinear configuration has an intrinsic domain wall, see Fig.(4.17),

since the reciprocal lattice does not contain Q = (π, 0) and Q = (0, π).

1
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Figure 4.17: Example of a collinear configuration, 〈m̂i〉 = (−1)|xi|, for a lattice

with a tilted unit cell of N = 98 sites. The disorder is fixed to D/t = 5.
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In the strong interacting regime, the super-exchange mechanism produces

two (frustrating) antiferromagnetic interactions, i.e., J1 = t2/U at nearest

neighbors and J2 = t′2/U at next-nearest neighbors. The classical ground

state of a translational invariant Heisenberg model with both J1 and J2 can be

easily found. In fact the energy can be always minimized by a planar helix

−→
S = −→e1 cos(Q · r) + −→e2 sin(Q · r) (4.8)

provided that the wavevector Q minimizes the Fourier transform J(Q) of the

magnetic coupling. In the case of the J1−J2 model, the energy is minimized by

Q = (π, π) if J2 <
1
2
J1, i.e., the ground state has Néel order, while if J2 >

1
2
J1

the energy is minimized for Q = (π, 0), Q = (0, π) or any linear combination

of the two. At J2 = 1/2J1 the classical ground state is highly degenerate [86].

In presence of quantum fluctuations, a magnetically disordered phase with

M = 0 is expected close to the first-order classical transition at J2 = 1
2
J1 [87].

Such a non-magnetic phase has been stabilized in a variational calculation for

0.4 . J2/J1 . 0.6 [88]. In analogy, in the clean Hubbard model we expect

to find the maximum frustration close to t′ = 0.7t. Indeed, various numerical

works addressed the physics of the frustrated Hubbard model on a square lattice

and all of them succeeded in finding a non-magnetic phase, although in different

regions of the t′ − U phase diagram [89, 90, 91, 92]. The above argument

refers to a clean system, where there is translational invariance. In presence of

disorder, we can expect that the maximal frustration may be slightly shifted,

presumably towards higher values of t′/t. Here, we study the ground-state

properties for two values of the frustrating hopping, namely t′/t = 0.6, which

is close to the classical point of maximal degeneracy, and t′/t = 1. For all

cases, we start the energy optimization from different points in the parameters

space: the paramagnetic, magnetic, and collinear point. As we discussed above,

starting from different points we converge to different local minima.

For t′/t = 0.6, we find that the solution describing a paramagnetic Ander-

son insulator is stable for U < UAF
c ' 8t. Up to this value of the Coulomb

interaction, we find that the energy of the converged state does not depend

upon the choice of the starting point (as for the unfrustrated case). We no-

tice that, for U/t & 7, different results for the staggered magnetization are

found when considering paramagnetic or antiferromagnetic starting points, see
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Figure 4.18: Difference between the variational energy of the wave function

optimized starting from a paramagnetic point and from an antiferromagnetic

point for t′/t = 0.6. Data points are averaged over different disorder realiza-

tions with a disorder strength D/t = 5.
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Figure 4.19: Compressibility fluctuations Ndisc
q (left panel) and magnetization

M = 1/N
∑

j e
iQrjm̂j with Q = (π, π) (right panel) for t′/t = 0.6. Different

curves correspond to variational wave functions obtained from different points

in the parameter space, namely a paramagnetic point and an antiferromagnetic

point. Data points are averaged over different disorder configurations with

D/t = 5.

Fig.(4.19). In particular, the magnetization is strongly suppressed when con-

sidering a paramagnetic initial condition. This fact shows that, by increasing

the frustrating ratio t′/t, different local minima may have rather different phys-

ical properties, in contrast to what happens in the weakly-frustrated case. For
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UAF
c < U ≤ UMI

c the lowest minimum corresponds to a wave function with

long-range antiferromagnetic order and finite compressibility and for U > UMI
c

the system is a Mott insulator with Néel order, see Figs.(4.19) and (4.18).

These results suggest that the magnetic transition may become weakly first or-

der, with a small jump in the magnetization. However, the case with t′/t = 0.6

does not show particularly strong frustration and the results are very similar

to the ones found for t′ = 0.
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Figure 4.20: Difference between the variational energy of the wave function

optimized starting from a collinear point and from a paramagnetic point for

t′/t = 1. Data points are averaged over different disorder realizations with a

disorder strength D/t = 5.

For t′/t = 1 the solution obtained starting from a staggered set of param-

eters ε̃i,σ gives always the highest energy among the other ones used in this

thesis, and, therefore, it will be excluded from the following analysis. Again,

in the weakly-correlated regime, i.e., U < UAF
c ' 11 t, we find similar en-

ergies for the paramagnetic and the magnetic starting points, see Fig.(4.20).

By increasing the interaction value, the wave function with collinear order

gives the best approximation of the ground state. Moreover, it clearly dis-

plays long-range magnetic order, see Fig.(4.21). It should be noticed that our

approximated wave function may have either magnetic order at Q = (π, 0)

or at Q = (0, π), depending upon the initial conditions of the optimization.

By further increasing U/t, this solution corresponds to a gaped insulator for

U/t ≥ UMI
c /t = (13.5 ± 0.5) and, indeed, Ndisc

q = 0 for U/t > UMI
c , see
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Fig.(4.21). We would like to stress that a larger frustrating ratio has mostly

two effects: the first one is to enhance the first-order character of the magnetic

transition, and second one is to reduce the stability region of the intermediate

magnetic Anderson phase.
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Figure 4.21: Compressibility fluctuations Ndisc
q (left panel) and magnetization

M = 1/N
∑

j e
iQrjm̂j calculated for Q = (π, 0) and Q = (0, π) (right panel)

for t′/t = 1. Ndisc
q and M are evaluated for a wave function optimized start-

ing from a collinear point. Data points are averaged over different disorder

configurations with D/t = 5.
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Figure 4.22: The same as in Fig.(4.21), but for a wave function optimized

starting from a paramagnetic point.

The remarkable feature is that, in a wide range of Coulomb repulsions,
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it is possible to find competing states just by starting from a paramagnetic

wave function. The latter state gives rise to a pattern in which most of the

sites have a net magnetization but an overall vanishing magnetic order, namely

they show “glassy” spin patterns, see Figs.(4.22) and (4.23). For U/t ∼ 16,

these solutions are incompressible, i.e., Ndisc
q ∼ 0 and, therefore, may be viewed

as disordered Mott insulators. By decreasing the interaction strength U , these

metastable states turn compressible, still having a large number of local mo-

ments. Therefore, for t′/t ∼ 1 we find evidence of a spin-glass behavior, in

which metastable states with very different electron configurations have sim-

ilar energies. Although the magnetically ordered solution has a lower energy,

there are large energy barriers that separate different states and we observe a

very slow dynamics. This is the primary reason that prevents one to smoothly

converge to the lowest-energy state, by starting from a generic configuration.

This glass behavior emerges for t ∼ t′, in agreement with our expectations

for the point of maximal frustration in a disordered system. However, once

again, we would like to stress that the actual variational minimum shows, as

in the unfrustrated case, a transition from a Mott to an Anderson insulator,

both magnetically ordered, followed, at lower U , by a further transition into a

paramagnetic Anderson insulator. The possibility to have a direct (probably

first-order) transition between the magnetic insulator and the paramagnetic

Anderson insulator cannot be ruled out for large enough frustration. The

qualitative phase diagram (for fixed disorder D/t = 5) is shown in Fig.(4.24).

In summary, we conclude that, within our variational description and within

the Hamiltonian (4.6), the frustrating hopping t′ has two primary effects. The

first one is the narrowing of the stability region of the magnetic Anderson insu-

lator. In addition, there is some evidence that the magnetic transition turns to

be weakly first order, in contrast to the unfrustrated case. The second and most

important effect of a frustrating hopping term is the existence of a “glassy”

phase at strong couplings, where many paramagnetic states, with disordered

local moments, may be stabilized. Of course, these results may be due to the

fact of having considered on-site disorder, whereas the frustrating hopping is

taken to be translationally invariant. In this regard, a simple generalization to

the Hamiltonian (4.6) can account for a truly disordered lattice, with random

ti,j, which is more pertinent to materials like Si:P.
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Figure 4.23: Local magnetization 〈m̂i〉 for the best variational state, i.e., the

collinear solution, (lower panels) and for a metastable solution (upper panels),

i.e., the paramagnetic solution, for a given disorder configuration with D/t = 5

and t′/t = 1.
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Figure 4.24: Sketched phase diagram for in the (t′ − U) plane. PAI stands

for Paramagnetic Anderson Insulator, AAI for Antiferromagnetic Anderson

Insulator, and AMI for Antiferromagnetic Mott Insulator. In the AAI and

AMI phases, dark colors correspond to collinear order, while bright color to

Néel order.



Conclusions and perspectives

In this thesis we have studied, by means of a variational Monte Carlo technique,

the ground state properties, both magnetic and paramagnetic, of the disordered

Hubbard model at half filling and in two dimensions. This model is the simplest

example where disorder-driven Anderson localization and interaction-driven

Mott localization are both active. This work was originally motivated by theo-

retical proposals according to which a metallic phase could intrude between the

Anderson-insulator and the Mott-insulator in two-dimensions [80, 71], which

might have been relevant in connection with the observed metal-insulator tran-

sition in high-mobility two-dimensional electron gases [3, 27]. Although the

conductivity is a quantity that is not directly accessible by a variational cal-

culations, other properties that we could calculate exclude that a true zero-

temperature metallic phase exists. However, even though our calculation do

not provide any insights on the observed metal-insulator transition in two di-

mensions, we think it might be relevant to another still alive puzzle in dis-

ordered systems, namely the metal-insulator transition in phosphorus doped

silicon.

Concerning our specific calculations, first of all we have showed that a vari-

ational wave function is able to describe the Anderson-Mott transition without

any symmetry breaking, i.e. a transition from a paramagnetic Anderson insu-

lator to a paramagnetic Mott insulator. This is achieved thanks to a long-range

charge correlations induced in the wave function by a Jastrow factor. We have

showed that the transition can be easily detected within variational Monte

Carlo by looking at the behavior of the static structure factor and of the Fourier

transform of the Jastrow parameters, namely following the same criteria for the

Mott transition in a clean system. Moreover, we found that for a disordered

system the disconnected term of the density-density correlation function, i.e.,
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limq→0N
disc
q = limq→0 〈nq〉〈n−q〉, acts as an easily accessible order parameter

for the Anderson-Mott transition. We found that electron-electron repulsion

partly screens disorder: for strong interaction the electrons ”feel” an effectively

very weak disorder potential that should imply an interaction-increased local-

ization length. However, once interaction exceeds a critical value, a gap opens

and the model turns into a Mott insulator. The model seems to be always insu-

lating, yet, upon increasing the strength of interaction, the localization length

may have a non monotonous behavior when we consider the full variational

wave function, in which we allow for magnetism.

When magnetism is allowed, a compressible and magnetic Anderson insu-

lating phase appears between the compressible paramagnetic Anderson insu-

lator and the incompressible magnetic Mott insulator. When magnetism is

not frustrated, all transitions are continuous. When frustration is included

by means of next-to-nearest neighbor hopping, the paramagnetic to magnetic

Anderson insulator transition turns first order. Moreover, we find many, al-

most degenerate with the actual lowest energy state, paramagnetic states in

the magnetic region, which suggests a glassy behavior at finite temperature.

Indeed, all paramagnetic states posses local moments, i.e. magnetic sites that

are almost uncoupled to the rest of the system and would contribute with a

finite −KB ln 2 term to the entropy at finite temperature. Although these re-

sults concern a two dimensional square lattice, when scaling theory does not

predict any metal-insulator transition, yet they clearly show that local mo-

ments arises before the Mott transition, in accord with the actual behavior of

three-dimensional Si:P.

Future perspectives of this work are many aspects of disordered and strongly

correlated systems that we did not take into account. First of all, in connection

with Si:P, the dimensionality: for our numerical convenience we considered two

dimensional models but this system is instead three dimensional. Moreover,

throughout this thesis, we have only considered diagonal disorder, while if

the case of Si:P off-diagonal one is equally important, which could lead to a

further increase of magnetic frustration and near the chemical potential to an

anomalous increase of the localization length.

Second, in connection with high-mobility two-dimensional electron gases, we

did not take into account possible inhomogeneities, our Jastrow factor was
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taken, for numerical convenience, translationally invariant, as well as the long

range Coulomb repulsion, which could play a relevant role in the real materials.

Nevertheless and in spite of its weak aspects in the context of Si:P and

of two-dimensional high-mobility electron gases, our successful description of

a disordered Mott transition in the Hubbard model could be relevant in con-

nection with fermionic atoms trapped in optical lattices. The physics of these

systems represents nowadays a very promising playground for strongly corre-

lated physicists. In the experimental realisations of optical lattices, it is not

difficult to add disorder thus realizing physical realization of the disordered

Hubbard model that we have studied.
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Appendix A

F-sum rule: a detailed

calculation

The first momentum of the dynamical structure factor is defined as

Σ(q) =

∫ ∞

0

dω

π
ωS(q, ω), (A.1)

with the dynamical structure factor

S(q, ω) =

∫

dteiωt〈n̂q(t)n̂−q(0)〉. (A.2)

We are interested in the calculation of the first momentum because it gives us

information on the spectrum gap of the system. In fact the quantity

∆(q) =

∫∞

0
dω
π
ωS(q, ω)

∫∞

0
dω
π
S(q, ω)

(A.3)

is an estimate of the average energy of the low-lying charge density excitations.

The fluctuations-dissipation theorem enunciates that

Imχ(q, ω) = −π
2
(1 − e−βω)S(q, ω); (A.4)

where χ(q, ω) is the Fourier transform of the response function

χ(r − r′, t− t′) = −iθ(t − t′)〈[Â(r, t), B̂(r′, t′)]〉 (A.5)

with Â = B̂ = n̂. Since in this case Â = B̂, Imχ(ω) = −πχ′′(ω), where χ′′(ω)

is the dissipative function defined as

χ′′(q, t− t′) = 〈[n̂q(t), n̂−q(t
′)]〉. (A.6)
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Thus we can write the fluctuation-dissipation theorem as

S(q, ω) = (1 − e−βω)−1χ′′(q, ω). (A.7)

On the other hand it can be proved that

S(q, ω) = (1 + e−βω)−1F (q, ω) (A.8)

where F (q, ω) is the Fourier transform of the fluctuation function

F (q, t− t′) = 〈{n̂q(t), n̂−q(t
′)}〉. (A.9)

From the latter two relations (A.7), (A.8) we can see that at zero temperature,

and thus for β → ∞, the structure factor S(q, ω) is equal both to χ′′(q, ω) and

F (q, ω), where ω is a positive frequency (notice that at zero temperature the

structure factor is defined only for positive frequencies ). Knowing that χ′′(ω)

is an odd function of omega for a model with inversion symmetry, i.e., with

(χ′′(q, ω) = −χ′′(−q, ω)), it follows that

i
∂

∂t
χ′′(q, t) =

∫ +∞

−∞

dω

2π
ω e−iωtχ′′(q, ω) =

=

∫ +∞

0

dω

π
ω e−iωtχ′′(q, ω) =

=

∫ +∞

0

dω

π
ω e−iωtS(q, ω).

(A.10)

Using the definition of the dissipative function and the Heisenberg equation of

motion at equal time, we obtain

Σ(q) =

∫ +∞

0

dω

π
ωS(q, ω) = 〈[[n̂q, H], n̂−q]〉 (A.11)

At the same time we recognize that the integral at the denominator of expres-

sion (A.3) is, for definition, the static structure factor Nq. Since, in a system

with inversion symmetry, F (ω) is an even function of ω we can write

Nq = 〈n̂qn̂−q〉 − 〈n̂q〉〈n̂−q〉 =

∫ ∞

0

F (q, ω)
dω

2π
=

∫ ∞

0

dω

2π
S(q, ω). (A.12)

Thus, using the static structure factor and the commutator (A.11), we find the

relation for the excitation energy (A.3)

∆(q) =
〈[[n̂q, H], n̂−q]〉

Nq

. (A.13)
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For a tight binding model, with a cubic lattice of dimension d, it can be proved

that Σ(q) ∼ (q2/d)T , with T the average value of the hopping term (absolute

value). Therefore it follows that the static structure factor gives information

on the energy spectrum of the system: if for q → 0, we have that Nq ∼ q, then

∆(q) → 0 , otherwise, if Nq ∼ q2, the gap ∆(q) is finite.

Moreover from the relation

Nq =

∫ ∞

0

dω

π
ωχ′′(q, ω) (A.14)

we obtain Nq → 0 for the particle number conservation. Infact we can write

∫ ∞

0

dω

π
χ′′(q, ω) =

∫ q

0

dω

π
χ′′(q, ω) +

∫ ∞

q

dω

π
ωχ′′(q, ω). (A.15)

Since q is very small we can approximate the second integral as

∫ ∞

0

dω

π
χ′′(0, ω) =

∫ ∞

0

dω

π
〈[n̂(0, t), n̂(0, 0)]〉 (A.16)

which it must be equal to zero since the density does not depend on time

because of the electron number conservation. The first integral in the relation

(A.15) is zero if χ′′(q, ω) does not diverge for q → 0.
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[14] R.Jördens, N.Strohmaier, K. Günter, H.Moritz and T.Esslinger, Nature

455, 204 (2008).

[15] P.W. Anderson, Phys.Rev. 109, 1492 (1957).

[16] W.Kohn and J.M. Luttinger, Phys. Rev. 108, 590 (1957).

[17] N.F. Mott, Philos. Mag. 13, 989 (1966).

[18] N.F.Mott and W.D.Twose, Adv.Phys. 10, 107 (1961).

[19] E.Abrahams, D.C.Licciardello, P.W.Anderson and T.V.Ramakrishnan,

Phis. Rev. Lett. 42, 673 (1979).

[20] G.J.Dolan and D.D.Osheroff, Phys. Rev. Lett. 43, 721, (1971).

[21] D.J.Bishop, D.C.Tsui and R.C.Dynes, Phys. Rev. Lett. 44, 1153 (1980).

[22] M.J.Uren, R.A.Davies and M.Pepper, J.Phys C 13, L985 (1980).

[23] B.L.Altshuler, A.G.Aronov and P.A.Lee, Phys. Rev. Lett. 44, 1288 (1980).

[24] P.A.Lee and T.V.Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

[25] A.M.Finkelstein, Z.Phys.B:Condensed Matter 56, 189 (1984).

[26] C.Castellani, C.Di Castro, P.A.Lee and M.Ma, Phys Rev.B 30, 527 (1984).

[27] S.V. Kravchenko and M.P.Sarachik, Rep. Prog. Phys 67, 1 (2004).

[28] E.Abrahams, S.V.Kravchenko, M.P.Sarachik , Rev. Mod. Phys. 73, 251

(2001).

[29] S.He and X.C.Xie, Phys. Rev. Lett. 80, 3324 (1998).

[30] B.Althshuler, D.L.Maslov, Phys. Rev. Lett. 82, 145 (1999).

[31] S.Anissimova, S.V.Kravchenko, A.Punnose, A.M.Finkel’stein and

T.M.Klapwijk, Nature Physics 3, 707 (2007).



BIBLIOGRAPHY 105

[32] J. Huang, J.S. Xia, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev.

Lett. 98, 226801 (2007).

[33] M.J. Manfra, E.H. Hwang, S. Das Sarma, L.N. Pfeiffer, K.W. West, and

A.M. Sergent, Phys. Rev. Lett. 99, 236402 (2007).

[34] A.M.Finkel’stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983).

[35] A.M.Finkel’stein, Zh. Eksp. Teor. Fiz. 86, 367 (1984).

[36] B.Altshuler and A.G.Aronov, Solid state Comm 46, 429 (1983).

[37] C.Castellani and C.Di Castro , Phys. Rev. B 34, 5935 (1986).

[38] C. Castellani, G. Kotliar and P.A. Lee, Phys. Rev. Lett. 59, 323 (1987).

[39] M.J.Hirsch, D.F.Holcomb, R.N.Bhatt and M.A.Paalanen, Phys. Rev. Lett.

68, 1418 (1992).

[40] M.A,Paalanen, J.E.Graebner, R.N.Bhatt and S.Sachdev, Phys. Rev. Lett.

61, 597 (1988).

[41] M.A.Paalanen, S.Sachdev, R.N.Bhatt and A.E.Ruckenstein, Phys. Rev.

Lett. 57, 2061 (1986).

[42] R.N.Bhatt and P.A.Lee, Phys. Rev. Lett. 48, 344 (1982).

[43] J.D.Quirt and J.R.Marko, Phys. Rev. Lett. 26, 318 (1971).

[44] H.Ue and S.Maekawa, Phys. Rev. B 3, 4232 (1971).
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[46] M.Milovanović, S.Sachdev and R.N.Bhatt, Phys. Rev. Lett. 63, 82 (1989).

[47] V.Dobrosavljevic and G.Kotliar, Phys. Rev. Lett. 71, 3218 (1993).

[48] E.Miranda and V.Dobrosavljević, Rep. Prog. Phys. 68, 2337 (2005).

[49] J.Hubbard, Proc. Roy. Soc. London A, 276, (1963).



106 BIBLIOGRAPHY

[50] M.C.Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

[51] J.Kanamori, Prog. Theor. Phys. 30, 275 (1963).

[52] E.H.Lieb and F.Y.Wu, Phys. Rev. Lett. 20, 1445 (1968).

[53] M.C.Gutzwiller, Phys. Rev 134 , A923 (1964).

[54] T.A.Kaplan, P.Horsch and P.Fulde, Phys. Rev. Lett. 49, 889 (1982).

[55] H.Yokoyama and H.Shiba, J. Phys. Soc. Japan 56, 3582 (1987).

[56] W.Metzner and D.Vollhardt, Phys. Rev. Lett. 59, 121 (1987).

[57] R.Jastrow, Phys. Rev. 98, 1479 (1955).

[58] W.L.McMillan, Phys. Rev 138, A442 (1965).

[59] L.Reatto and G.V.Chester Phys. Rev 155, 88 (1967).

[60] B.Sutherland, Phys. Rev.A 4, 2019 (1971).

[61] F.D.M.Haldane, Phys. Rev. Lett. 60, 635 (1988).

[62] B.S.Shastry, Phys. Rev. Lett. 60, 639 (1988).

[63] R.B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[64] M.Capello, F.Becca, S.Yunoki, M.Fabrizio, and S.Sorella, Phys. Rev. B

72, 085121 (2001).

[65] W.Kohn, Phys. Rev 133, A171 (1964).

[66] A.J.Millis and S.N.Coppersmith, Phys. Rev. B 43, 13770 (1991).

[67] R.Roth and K.Burnett, J. Phys B 37, 3893 (2004).

[68] D.Belitz, A.Gold, W.Gotze, and J.Metzger, Phys.Rev.B 27, 4559 (1983).

[69] S.Sorella, Phys. Rev. B 64, 024512 (2001). Phys. Rev. B 71, 241103

(2005).

[70] S.Yunoki and S.Sorella, Phys. Rev. B 74, 014408 (2006).



BIBLIOGRAPHY 107

[71] D.Heidarian and N.Trivedi, Phys. Rev. Lett. 93, 126401 (2004).
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