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Introduction

The fundamental laws necessary for the mathematical treatment of a
large part of physics and the whole of chemistry are thus completely
known, and the difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.

— Paul A. M. Dirac ’Quantum Mechanics of Many-Electron Systems’,
Proceedings of the Royal Society (1929), A, 123, 714-733.

The field of condensed matter is concerned with a complete understanding of
all forms of ordinary matter, in particular solids and liquids. It seeks to explain
their structure, their mechanical and electromagnetic properties both in ambient
conditions and when subjected to high or low temperature, pressures or magnetic
fields. The discovery of quantum mechanics allowed posing this problem in a unifying
picture of many nuclei and electrons all interacting quantum mechanically through
Coulomb force. However, the systems of interest, whether a tip of a pencil or a tea
in a cup, consist of a monstrous number of these interacting nuclei and electrons.
Indeed, just within such tip of a pencil there is roughly 1026 carbon atoms forming
a solid structure - far more than there are grains of sand in the whole Sahara. And
so, as Dirac stated, although we can write down the ab initio equations governing
such system, the pursuit of their exact solution is futile.

In the face of this seemingly intractable task, we adopt a different viewpoint. For
every question, we first reduce the original ab initio formulae down to their simplest
possible form, which however still captures the essence of the problem and only
then we look for their solution. Indeed, this approach has proven to be extremely
fruitful. Take the electrons. Already at a seemingly superficial level of analysis by
neglecting all the interactions between them and preserving just their fermionic
nature in form of Pauli’s exclusion principle a surprisingly rich array of phenomena
in Nature can be explained. For example, the heat capacity of metals and their
electronic density of states or the emission and absorption spectra of light atoms.
Sometimes, one substitutes the original system altogether. Rather then thinking in
terms of interacting nuclei and electrons take just an ensemble of a few hundred
classical point particles interacting through simple Lennard-Jones pair potential.
By simulating such a system across a range of temperatures and densities a phase
diagram emerges, containing three common phases of matter: Gas, liquid, and solid.
In some parts of the diagram, these phases are separated by sharp boundaries and
they represent the points where the phase transitions occur.

At the outset, studying such simple artificial systems might seem detached from
the complicated reality, instead, the opposite is true. The collective behavior of many
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2 Thesis

interacting constituents is universal. By tuning the two parameters of Lennard-
Jones potential, the energy scale and the characteristic distance, one can infer the
temperature-density phase diagram of noble gases, water or even more complex
molecules. Another instance of such universality is the celebrated Laudau’s Fermi
liquid theory, which describes the low-temperature behavior of most metals in terms
of quasiparticles, representing the collective motion of the underlying electrons.
While the electrons might be interacting strongly, these quasiparticles will behave
as almost free with their effective mass dictated by the detailed chemical composition
of the material. It is this notion of universality, which underpins the study of realistic
condensed matter systems by simplified effective models.

In this work, we are concerned with a particular subset of such effective models,
the so-called quantum magnets. They describe interacting magnetic moments, spins,
arranged on a lattice. Their origin can be traced to a problem of interacting electrons
in a periodic potential provided by the inert nuclei arranged on a lattice, which is a
generic description of a typical solid with a crystal structure. Suppose, there is just
one orbital with a single valence electron per lattice site, which is free to participate
in the interaction as the rest is tightly bound to the nuclei and in the chemical
bonds forming the crystal. If the strong interaction suppresses the mobility of these
electrons, the whole system can be described just by interacting magnetic moments
frozen on lattice sites

H =
∑

〈ij〉
J1,ijSi · Sj +

∑

〈〈ij〉〉
J2,ijSi · Sj +

∑

〈ijkl〉
Qijkl(Si · Sj)(Sk · Sl) + . . . , (1.1)

where Si is the spin operator on site i and 〈ij〉 denotes the nearest neighbors, 〈〈ij〉〉
the next-nearest neighbors, 〈ijkl〉 the quartet of sites and so on. The interaction
constants J1,ij , J2,ij , Qijkl, . . . are given by the detailed chemical composition and
the crystal structure of the material.

In this work we will be concerned with paradigmatic examples of such systems
in two dimensions. The spin-1/2 isotropic Heisenberg antiferromagnet, defined on a
square lattice

H = J
∑

〈ij〉
Si · Sj , (1.2)

with J > 0 and its frustrated extension, the so-called J1 − J2 model

H = J1

∑

〈ij〉
Si · Sj + J2

∑

〈〈ij〉〉
Si · Sj , (1.3)

with J1, J2 > 0. Among many others, the J1 − J2 model captures the magnetic
properties of cuprates, a large family of strongly-correlated materials. The complete
characterization of its phase diagram is still an open question. While the limit
J2 = 0 corresponding to Heisenberg antiferromagnet is Néel ordered and has been
understood in terms of Landau-Ginzburg theory, the nature of the phase in its
highly frustrated regime J2/J1 ≈ 0.5 remains unclear. The tremendous effort of
the last thirty years has been concentrated on unraveling its true nature as it might
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host a spin liquid, which is an exotic, highly entangled phase of matter with unusual
fractional excitations. Its existence was conjectured by P.W. Anderson in 1973 [1].

Due to their strongly-correlated character and a presence of sign problem the
frustrated quantum magnets have been primarily studied by variational methods
and they represent an extremely challenging problem. Tensor networks are a new-
comer among the more established variational methods such as variational Monte
Carlo or density-matrix renormalization group. In two dimensions the infinite pro-
jected entangled-pair states represent efficient tensor network ansatz for lattice
models motivated by the entanglement properties of gapped ground states of lo-
cal Hamiltonians. The main objective of this work will be to advance the current
state-of-the-art in optimization of such tensor networks through algorithmic differ-
entiation, which is a fast and generic method for computing numerically precise
gradients of complicated scalar functions of many variables, in our case, the vari-
ational energy. We believe, that with these improvements the tensor networks will
set the new standards for variational studies of frustrated magnets.

This thesis is organized as follows

• In Chapter 2 we first motivate and define infinite projected entangled-pair states
and then formulate the basic tools necessary for their treatment

• In Chapter 3 we introduce the optimization methods for infinite projected
entangled-pair states. The imaginary-time evolution and in particular, the gra-
dient optimization using algorithmic differentiation

• In Chapter 4 we investigate complications arising in the imaginary-time opti-
mization across continuous phase transition between non-magnetic and magnet-
ically ordered phases of Heisenberg antiferromagnet on coupled ladders.

• In Chapter 5 we move to gradient optimization with automatic differentiation
and study the frustrated J1 − J2 model.

and finally in Chapter 6 we summarize the outcome of our work and discuss the
future directions.
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The conception of the (infinite) matrix product states, (i)MPS, and later the (in-
finite) projected entangled-pair states, or shortly (i)PEPS, was to a great degree
motivated by the distinctive property of the ground states of quantum lattice mod-
els which are governed by local interactions. If the system is also gapped then, in
the plain terms, the degree of correlation between the different spatial parts of the
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6 Thesis

system will be strongly limited. This short preliminary section aims to give a more
precise description of the above property, the so-called area law, in the terms of the
entanglement entropy (for a comprehensive review see Ref. [2]). Afterward, we will
argue why the states respecting the area law stand out from the rest of the states
in the Hilbert space and how (i)MPS and (i)PEPS take advantage of this fact in
the search for the ground states of local Hamiltonians. At the end of this section,
we address the violations of the area law in the systems that are still governed by
the local Hamiltonians which however are not gapped. The violations are of a direct
relevance since the gap generically closes at the point of continuous phase transi-
tion or is not present at all in the phases with the spontaneously broken SU(2)-spin
symmetry. Finally, in this context, we formulate the central problem which will be
the focus of this work.

2.1.1 Preliminary: The area law of entanglement entropy

In order to state the area law, we first define the notion of the entanglement entropy,
which quantifies the degree of all correlations between two distinct spatial parts of
the system. Let us make an arbitrary bipartition of the underlying lattice into a
compact region A and its complement B

lattice = A ∪B. (2.1)

Taking a generic pure state |ψ〉 of the system, we aim at constructing a reduced
density matrix ρA of the subsystem A which carries all the information about the
expectation values of operators supported on A. The state |ψ〉 can be expresssed in
the Hilbert space given by the tensor product of Hilbert spaces HA and HB of the
regions A and B

|ψ〉 ∈ HA∪B where HA∪B = HA ⊗HB. (2.2)

Choosing an orthonormal basis {|a〉} inside the space HA and {|b〉} in HB, the
generic state |ψ〉 can be written as

|ψ〉 =
∑

ab

cab|a〉|b〉, (2.3)

using a shorthand notation for the tensor product |a〉|b〉 := |a〉 ⊗ |b〉 1. The reduced
density matrix ρA is then defined to be

ρA := TrB(|ψ〉〈ψ|), (2.4)

where the operation of partial trace TrB(.) maps the operators from the full Hilbert
space HA∪B into the operators on the subsystem A. In this case, a simple pure state
density matrix |ψ〉 〈ψ| is mapped into some mixed state reduced density matrix ρA

1 The inner product in HA⊗HB is naturally given elementwise as 〈a′|〈b′||a〉|b〉 = 〈a′|a〉〈b′|b〉 =
δa′aδbb′ .
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over HA. Using the selected bases inside the Hilbert spaces of regions A and B we
can define the result of the partial trace, component by component, as follows

ρA = TrB(|ψ〉 〈ψ|) =
∑

a,a′

(ρA)a,a′ |a′〉〈a|

(ρA)a,a′ :=

(∑

b

c∗a′bcab

)
.

(2.5)

The reduced density matrix ρA contains all the information about the state of the
system living in the region A. We can use it to quantify how strongly is the region
A correlated with its complement B. The good measure of the “quantity” of all
correlations is the entanglement entropy SA, defined as the Von-Neumann entropy
of the reduced density matrix ρA

SA := −TrA(ρA log ρA). (2.6)

It is important to state that the SA is exactly equal to the SB, and so the definition
is consistent 1.

Now we can give a more precise statement of the area law as the relation between
the entanglement entropy of the subsystem A with its complement B. Defining the
basic terms

∂A := boundary of A (2.7)

|A| := volume of A; |∂A| := length of ∂A (2.8)

the celebrated area law [3], reads

Area law A state |ψ〉 ∈ HA∪B obeys the area law if for any bipartition of the
system into the region A and its complement B in the thermodynamic limit where
both |A|, |B| → ∞ while |A| � |B|, the entanglement entropy SA scales at most
with the length of the boundary of A: SA = O(|∂A|).

In one dimension the area law translates into S1D
A = const, since the boundary of a

line split into two parts is just a single point. In two dimensions it instead becomes
S2D
A = O(L) where L = |∂A| is the usual length of ∂A, e.g. if A is a disk then L is

the length of its perimeter.

2.1.2 Projected entangled-pair states: The 21st-century ansatz for two-
dimensional local and gapped models

Let us ask the following question: among all the states in the Hilbert space, are
the states obeying the area law exceptional ? The answer is positive. They are, and

1 this fact can be readily verified by choosing orthonormal bases {|a〉} in HA and {|b〉} in HB

such that the coefficient matrix cab in the Eq. 2.3 is diagonal. Such choice of the bases is dubbed
the Schmidt decomposition.
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spectacularly so, since a random state in the Hilbert space will have the entangle-
ment entropy scaling with the volume |A| of the subsystem instead as conjectured
by Page in 1993 [4] and proved few years later (see Refs. [5, 6]). This result estab-
lished that the area law states are rare, yet by itself it did not make them physically
interesting.

In classical systems (e.g., spin models), the whole state is given just by a product
of states of the individual spins, the so-called product state

|ψ〉 = |↑〉1 |↓〉2 |↑〉3 |↑〉4 . . . |→〉i |↓〉i+1 . . . (2.9)

For all such product states, the area law holds trivially. The reduced density matrix
ρA for any A will be simply a pure state density matrix and hence SA = 0, which
quantifies the intuitive notion of no correlations between the region A and the rest
of the system. Mean-field solutions of spin systems are a prime example of such
states 1. But typically, and especially in one and two dimensions, the ground state
of a spin system defined in the spin basis would be a (complicated) superposition
of such product states

|ψ〉 =
∑

s1s2...

cs1s2... |s1s2 . . .〉 , (2.10)

where the number of the relevant coefficients c is exponentially large with the system
size. Can we make any statement about the entanglement properties in such case ?
Or perhaps at least in the specific case of local and gapped Hamiltonians ?

The tremendous effort at the beginning of the 21st century into the study of
the entanglement properties of quantum mechanical systems led to a key insight.
The ground states of all local and gapped Hamiltonians in one dimension obey the
area law. In two dimensions, the ground states of local and gapped Hamiltonians
seems to obey the area law. No counterexample is known. The rigorous result for
the systems in the dimension lower than two was established by Hasting and Koma
in 2006 [7], who in their seminal work connected the gap and locality with the
exponential decay of all connected correlations, and eventually the area law.

The physical intuition behind the proof in one dimension and the belief for the
area law to hold also in two dimensions stems from the decay of the correlations.
If the system is gapped and local, all correlations should decay exponentially with
the distance as exp(−r/ξ), where ξ is the correlation length, which is inversely
proportional to the gap. Hence, the correlation between the regions A and B is,
roughly speaking, coming only from the strip of width ξ around the boundary ∂A.
Such consideration naturally leads to the entanglement entropy SA scaling at most
with the length |∂A| of the boundary.

This property of the ground states was the guiding principle towards finding
their efficient parametrization. The states respecting the area law form just an
exponentially tiny subspace within the whole Hilbert space as conjectured by Page.
Moreover, this subspace must contain the ground state of all local and gapped one

1Mean-field in the sense of all spin operators being replaced by their expectation values, which
are then determined by minimizing the energy.
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dimensional systems. It also contains the ground state of plenty (if not all) local
and gapped two dimensional systems.

The vast part of the condensed-matter landscape, including the domain of quan-
tum magnetism, is described by the effective models, which are local. Therefore, this
“physical” or “relevant” corner of the Hilbert space is among the first places where
one should look for the ground state. This is the fundamental realization that moti-
vates the class of variational states that satisfy the area law by construction hence
targeting solely the most relevant part of the Hilbert space. It is at this point where
the (i)MPS and their two-dimensional counterpart (i)PEPS enter.

Now we give the specific definitions of these variational states. For the MPS we
adopt the definition due to the Schwollock [8], which for a system of N spin-S sites
with the open boundary condition reads

|MPS〉 =
∑

s1s2...sN

cs1s2...sN |s1s2 . . . sN 〉 ,

cs1s2...sN = Traux(M s1M s2 ...M sN−1M sN ) :=
∑

a1...aN

M s1
1a1
M s2
a1a2

. . .M sN−1
aN−1aN

M sN
aN1.

(2.11)

This MPS is parametrized by the set of N rank-3 tensors {M} with the auxiliary
bond dimension D (indexed by a’s). The tensors M need not to be the same for
the different sites s1, . . . , sN . Thus, the exponentially large number of coefficients c
is now expressed using only NdSD

2 parameters, where dS is the dimension of the
physical spin S

dimension of the Hilbert space of spin-S : dS = 2S + 1. (2.12)

The entanglement entropy under any bipartition is at most SA = log D. The MPS
provide, in a sense, the complete solution to all local and gapped Hamiltonians in
one dimension. To approximate the related ground state for a system of size N
such that | |MPS〉 − |ψ〉 | < ε, the necessary D is at most polynomial in 1/ε and
independent of N [9, 10].

The PEPS were conceived in 2004 as a direct generalization of MPS to finite
two dimensional systems by Verstraete and Cirac [11, 12]. Few years later, together
with Jordan [13], they extended PEPS to homogenous, infinite lattices under the
name iPEPS. Both PEPS and in particular iPEPS are a very efficient variational
wavefunctions, which directly paramatrize the area law corner, since they obey it
by construction. We define a PEPS for a spin-S system of size N = L×L with the
open boundary conditions on a square lattice as follows

|PEPS〉 =
∑

s1s2...sN

cs1s2...sN |s1s2 . . . sN 〉 ,

cs1s2...sN = Traux(as1as2 . . . asN ),

(2.13)
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Traux(as1as2 . . . asN ) :=
∑

r1...rN
c1...cN

(as111c1r1
as21r1c2r2

. . . asL1rLcL1

a
sL+1

c11cL+1rL+1
asL+2
c2rL+1cL+2rL+2

. . .as2LcLr2Lc2L1

...
...

...

a
sN−L+1

cN−2L+111rN−L+1
. . . asNcN−LrN11). (2.14)

This PEPS is parametrized in the terms of N rank-5 tensors {a}, where each tensor
asuldr has a site (or spin) index s of dimension dS and four auxiliary indices of bond
dimension D, related to the four directions of the square lattice: up, left, down, and
right. Hence, the suggestive arrangement of a’s in the above expression. For such a
PEPS, the entanglement of a bipartition into two halves is at most SA = L log D
and again we have used only polynomial number of parameters NdSD

4. The iPEPS,
to be introduced in detail in Sec. 2.2, exploit the translational symmetry and use
only polynomial number of parameters independently of the system size. Therefore,
they stand out as an extremely promising candidate for the variational studies of
the effective lattice models found in the field of condensed matter.

2.1.3 Gapless systems and the violations of the area law

If the ground state has to belong to the area law corner, besides locality, which is
physically well-motivated, the only constraint on the Hamiltonian is the existence
of the gap between the ground state and the rest of the spectrum. Yet in this work,
the main topics of our interests are

• Exotic phases of spin systems. In particular, the spin-liquids and the valence
bond solids (VBS) both of which preserve the SU(2)-spin symmetry.

• Phase transitions. The quantum phase transitions between these exotic phases
and the more ordinary broken-symmetry phases captured by the Landau-
Ginzburg theory.

Both in the symmetry-broken phases and at the point of the continuous phase
transition the gap vanishes. Out of the several consequences, the single most relevant
one for (i)MPS or (i)PEPS based description of such phenomena is the violation of
the area law. The true ground state does no longer belong into the area law corner.
How does the violation impact the accuracy of the ansatz ?

In one dimension, the violation is at most logarithmic

SA = O(log L), (2.15)

where L = |A| is the length of the subsystem [14]. This is a relatively mild violation
and as such (i)MPS still stand out as the state-of-the-art variational method even for
one-dimensional local but gapless systems. Highly-accurate description of physics
at the criticality is possible due to the two main factors. Firstly, the (i)MPS can
be efficiently and reliably optimized with D pushed up to 104. Secondly, gathering
all the information across the four decades of D, the well understood scaling of the
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observables with the bond dimension ultimately leads to the reliable estimates for
the thermodynamic limit.

In two dimensions the situation is more delicate. If the ground state has a
Fermi surface, e.g. the case of free fermions, the area law will be violated by a
multiplicative factor SA = O(L log L), as shown by Wolf [14]. A different, less severe
yet very important scenario concerns the ground state which spontaneously breaks
the continuous symmetry. In such a case, as shown by Metlitsky and Grover [15],
the Area law is violated by a subleading logarithmic term

SA ∝ αL+ (NG/2) log L, (2.16)

where NG is the number of Nambu-Goldstone modes in the system. Hence, this
violation is common to be found in the realm of quantum magnetism, an ubiquitous
Néel phase of anti-ferromagnets being an example. Therefore, the central question
of this work which we want to address is

The descriptive power of iPEPS Can iPEPS still give us an insight into the
continuous phase transitions and exotic phases of both frustrated and frustration-
free quantum magnets, despite the violations of the area law which is the core
principle behind the ansatz ?

At this point, contrary to the case of MPS the limits of iPEPS are poorly un-
derstood. Moreover, the optimization of iPEPS is extremely challenging and only
very small values of bond dimension, between D = 10 and D = 24 depending on
the exact method used, can be considered. In conclusion, we consider the ability
of an iPEPS-based variational approach to explain the physics of two-dimensional
quantum magnets to be an open question.

2.2 The infinite projected entangled-pair states, their diagram-
matic notation, and reduced density matrices

This brief section aims to introduce the basics of iPEPS. First, to define iPEPS, as
an appealing extension of the finite PEPS into the thermodynamic limit. Second,
to introduce the diagrammatic notation of tensors and their contractions, as it will
ease the manipulations and clarify tensor network expressions appearing throughout
the rest of this work. Using this notation, we define a tensor network that represents
the iPEPS itself. Finally, to build the reduced density matrices of iPEPS which are
well defined even in the thermodynamic limit and contain accessible information
about the observables. We close this section by a short comment on iPEPS with
partially broken translational symmetry.
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2.2.1 The iPEPS as a Thermodynamic Limit of the Translationally In-
variant PEPS

In order to introduce iPEPS we follow the original exposition due to Jordan [13].
Taking the finite PEPS for spin-S system on a square lattice of size L×L with the
open boundary conditions, as defined in the Eqs. (2.13) and (2.14), we take the limit
of L → ∞. Moreover, since we are interested only in the translationally invariant
states, we place the same tensor a on every site

|iPEPS〉 =
∑

s1s2...

cs1s2... |s1s2 . . .〉 ,

cs1s2... = Traux(as1as2 . . .),

(2.17)

Traux(as1as2 . . .) :=
∑

r1r2...
c1c2...

(
. . .

...
...

...
...

. . . as7c7r9c6r10 as8c8r10c1r11 as9c9r11c10r12 . . .

. . . as6c6r8c5r1 as1c1r1c2r2 as2c10r2c11r3 . . .

. . . as5c5r7c4r6 as4c2r6c3r5 as3c11r5c12r4 . . .
...

...
...

...
. . . ),

(2.18)

where the tensors a within the trace are explictily arranged on a square lattice. In the
very same way as in the finite PEPS case, the single rank-5 tensor asulrd has a physical
index s of dimension dS and four auxiliary indices of bond dimension D. These
auxiliary indices are again interpreted as indices along the up, left, down, and the
right directions of the square lattice. The iPEPS gives the variational approximation
for the (infinitely many) coefficients c in terms of a single tensor a with only dSD

4

parameters. The value of any single coefficient cs1s2... is given by the contraction of
infinitely many tensors a arranged on the square lattice as suggestively done in the
defining equation1.

The proper interpretation of this infinite sum is called for. We will address this
point and put the iPEPS ansatz on a solid footing by introducing the reduced
density matrices of iPEPS. However, before doing that, we first define a convenient
diagrammatic notation which will be instrumental in manipulating expressions with
(infinitely) many tensors.

2.2.2 Diagrammatic notation and the tensor networks

We define any rank-r tensor as a shape (circle, square, ...) with r legs corresponding
to the individual indices of the tensor. A rank-1 tensor is equivalent to a vector,
rank-2 tensor is equivalent to a matrix. They will constitute the basic building
blocks of more complicated expressions. Let us remark that the notion of a rank of
a tensor is not strict in the following sense: any two (or more) indices i1, i2, . . . , iN

1we arranged the tensors in a (clockwise) spiral, growing from the central site s1 outwards.
This is just a matter of convenience and does not have any significance for the later analysis
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Figure 2.1: The basic diagrammatic definitions. Top row: vector V , rank-3 tensor
T , and rank-4 tensor A. Middle row: matrix M , rank-5 tensor a, and rank-N tensor
T . The shape is arbitrary. The indices might be assigned to individual legs when
necessary. Bottom row: the equivalence between the three different forms of the
rank-N tensor T , from left to right, the original rank-N tensor, a certain matrix
form with fused indices I = (i2 . . . iN ), and finally its vector form with all indices
fused into a single index I ′ = (i1i2 . . . iN ).

of a tensor can be combined, or fused, to form a single index I

fusion(i1 . . . iN → I) :=

{
I := i1 ⊗ i2 ⊗ . . .⊗ iN
dim(I) = dim(i1)× dim(i2)× . . .× dim(iN )

(2.19)

where the dimension of the index I is given by the product of the dimensions of
the combined indices. We will exploit this freedom to give an interpretation of the
different tensors appearing through the manipulation of the tensor expressions. The
corresponding diagrammatic notation of all the basic building blocks is defined in
Fig. 2.1. So far, we have defined just an operation of fusion, which changes the rank
of the tensor. The essential operation of the tensor calculus is the contraction, which
takes two tensors A and B and performs their contraction along the specified pair
of indices (which have to share the same dimension). The result can be interpreted
as a new tensor, inheriting the uncontracted indices of both A and B.

Tensor contraction The diagrammatic definition

⇔
∑

i1i′1

Asi1i2...δi1i′1B
s′
i′1i
′
2... = (AB)ss

′

i2...i′2...
. (2.20)

All tensor expressions, which we will encounter throughout the rest of this work
are composed solely of tensors contracted through their indices. The diagrammatic
equivalent is a (possibly infinite) set of shapes connected by lines. Hence the name
tensor networks.
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Figure 2.2: The iPEPS tensor network. Left: on-site tensor a with the legs
labeled by the corresponding indices. The vertical leg is the spin index (black line)
and the in-plane legs are the auxiliary indices (grey lines). Right: tensor network
representing the vector of coefficients cs1s2... of iPEPS. The network is infinite in
all in-plane directions, auxiliary indices pointing out of the network are understood
to be contracted with the next copies of the tensor a.

Using the introduced diagrams for tensors and their contraction allows us to
give the diagrammatic definition of the iPEPS from Eq. (2.17). More specifically,
we give the tensor network which represents all the coefficients c as the contraction
of an infinite tensor network, defined in the Eq. (2.18) and composed only from
copies of the single on-site tensor a.

2.2.3 The reduced density matrices of iPEPS

As mentioned before, the infinite sum that encodes the vector of coefficients c of
the iPEPS [Eq. (2.18)] is not a tractable object. Instead, we adopt the following
point of view: iPEPS primarily serve as the source of the reduced density matrices.
Suppose we are interested in the observables that live in the compact region R. As
we will show, we can extract the reduced density matrix ρR for the region R in
a well-defined manner. Afterwards, all the observables O in the region R can be
readily evaluated as

〈O〉 = TrR(ρRO). (2.21)

To construct ρR, first split the system into the region R, and its complement R̄.
Then express the total wave function accordingly, as in the Eq. (2.2), on the product
space of the Hilbert spaces of R and R̄

|iPEPS〉 =
∑

s1s2...

cs1s2...|s1s2...〉 =
∑

s1...sr
sr+1...

cs1...srsr+1...|s1...sr〉|sr+1...〉, (2.22)

where the indices s1...sr belong into the region R, while the remaining indices
sr+1 . . . belong into the complement R̄ instead. The reduced density matrix ρR
is obtained by taking the partial trace over the complement R̄. Using the result of
the Eq. (2.5) we get

ρR = TrR̄(|iPEPS〉 〈iPEPS|)

=
∑

s1...sR
s′1...s

′
R


 ∑

sR+1,...

c∗s′1...s′RsR+1...cs1...sRsR+1...


 |s1 . . . sR〉 〈s′1 . . . s′R| . (2.23)
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Figure 2.3: The reduced density matrix (ρR)s1s2,s′1s′2 represented as a double-
layer tensor network, where the region R contains two spins s1s2 (red vertical
lines). The network is understood to be infinite, with the auxiliary indices on
the edge connecting to next on-site tensors in both layers. All other spin indices
are contracted (vertical black lines). All the auxiliary indices are contracted (gray
in-plane lines).

The above expression is completely general. Notice, that the matrix elements of
ρR are given by the contraction of the coefficient vectors c, c∗ along all the indices
sR+1, . . . inside the region R̄. Now we substitute for the coefficients c, c∗ the iPEPS
parametrization and without a loss of generality, take the region R that contains
just two neighbouring sites s1 and s2. The corresponding reduced density matrix,
given in components, is

(ρR)s1s2,s′1s′2 =
∑

s3,...

Traux((a∗)s
′
1(a∗)s

′
2(a∗)s3 . . .)× Traux(as1as2as3 . . .). (2.24)

Let us make use of the diagrammatic tensor network expression, as defined in
Fig. 2.2, for the iPEPS coefficients. The above equation is equivalent to two such
tensor networks with all their spin indices except on the sites one and two con-
tracted. Hence, we have obtained a very illustrative interpretation of the iPEPS
reduced density matrix as a double-layer tensor network, shown in the Fig. 2.3.
After normalization, given by TrR(ρR), we have a well-defined density matrix for
two neighboring sites. The reduced density matrices for any compact region R have
a similar form. Let us remark, that the reduced density matrices for finite PEPS
are obtained in the same way.

In this work, we are mainly concerned with the effective models of quantum mag-
netism, which typically contain just nearest- or next-nearest-neighbor interaction.
As a consequence, it is enough to consider just a few basic regions. In fact, taking
a square region R = 2× 2, we can already evaluate the energy of the Hamiltonians
of the Heisenberg model or the J1 − J2 model. The second most important regions
to consider are thin strips of length L, e.g. R = L × 1, as their reduced density
matrices contain the information about all two-point correlation functions.

It is clear now, that the reduced density matrices are the most important objects
parametrized by iPEPS. Hence, we have to understand how to construct them, which
means to make sense of a contraction of the infinite double-layer tensor network.
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Figure 2.4: Tensor network representation of iPEPS which partially break the
symmetries of the square lattice. Left: bipartite iPEPS with two unique tensors
{a, b} in 2 × 1 unit cell. Middle: iPEPS targeting the columnar VBS with two
unique tensors {a, b} in 2 × 1 unit cell. Right: iPEPS with four unique tensors
{a, b, c, d} arranged in 2 × 2 unit cell. Besides the AFM order and the columnar
VBS, it can also support a plaquette VBS.

Before we move onto that topic, we complete the introduction of iPEPS by briefly
describing their generalization to unit cells with more than one tensor.

2.2.4 The iPEPS with partially broken translational symmetry

When targeting the ground states of Hamiltonians, which have the spatial symmetry
of the lattice, an obvious choice is the translationally invariant iPEPS with the
same tensor on every site. However, the ground state might spontaneously break
the spatial symmetry, at least partially. Such instances can still be straightforwardly
captured by iPEPS. To do so, we introduce a unit cell with just a few unique tensors.
The whole lattice is then tiled with this unit cell. For example, a bipartite tiling of
the square lattice requires two tensors a, b

|iPEPS(a, b)〉 =
∑

s1s2...

cs1s2...|s1s2...〉

=
∑

s1s2s3s4...

Traux(as1bs2as3bs4 ...)|s1s2s3s4...〉, (2.25)

which are then arranged appropriately on the lattice. The tensor network represent-
ing such iPEPS is shown in Fig. 2.4. Depending on the unit cell and the pattern in
which the lattice is tiled a rich set of wave functions with reduced spatial symmetries
can be built. Among simple but important examples are iPEPS which can support
various VBS orders such as columnar or plaquette VBS (see Fig. 2.4). The number
of variational parameters grows only linearly, as the number of unique tensors within
the unit cell. The reduced density matrices for these extended iPEPS are defined
in the very same way as in the translationally invariant case. They are obtained by
the contraction of the corresponding infinite double-layer tensor networks.
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2.3 Contracting infinite tensor networks - Part I

We have established that iPEPS ansatz provides a very efficient parametrization of
the area law abiding wave functions and their reduced density matrices. However,
to obtain these reduced density matrices for generic iPEPS, in principle we have to
contract an infinite double-layer network. To make the problem tractable we have to
frame it differently. After all, our true aim is to formulate a well defined numerical
procedure, which can be implemented on a computer and used to compute the
observables of iPEPS, such as the energy or the correlation functions.

Let us go back for a moment to a conceptually simpler and well-defined case of
a finite PEPS of size L×L on a square lattice with the open boundary conditions.
Moreover, let this PEPS, which we dub uniform PEPS, be constructed from the
copies of a single tensor a. Suppose, that we are interested only in the observables
in the bulk of the PEPS. More broadly, in the reduced density matrix ρR(L) of a
region in the center of the double-layer network of this PEPS. For a finite uniform
PEPS of sufficiently large size L , the reduced density matrices in the bulk are
indistinguishable from the reduced density matrices of the translationally invariant
iPEPS built from the same tensor a. Indeed, for the (i)PEPS with the exponentially
decaying correlations there is a length L ∝ 1/ξ, with ξ being the correlation length,
beyond which there are virtually no correlations. Therefore, we define the reduced
density matrix ρR of iPEPS by the following limit

ρR := lim
L→∞

ρR(L), (2.26)

where the region R is in the centre of the L× L uniform PEPS.
As such, the reduced density matrices of iPEPS are well-defined and to compute

them, we instead look for the best approximation1 of ρR(L) of the uniform PEPS
with the progressively increasing size L × L. Once there is no appreciable change
between the reduced density matrices above some length Lc, we take such fixed
point ρR(Lc) to be equivalent to the reduced density matrices of the corresponding
iPEPS itself.

In the rest of this section, we will introduce in the necessary detail the principal
algorithms that execute the above-described procedure and find the fixed point re-
duced density matrices. We will present the so-called corner transfer matrix method
(CTM), which can handle both simple iPEPS composed from a single unique tensor
as well as the more complicated iPEPS with several tensors within the unit cell.

2.3.1 Prologue: Statistical mechanics of classical two-dimensional mod-
els and the corner transfer matrix

The first appearance of the corner transfer matrix method can be traced all to way
back to the early work of R. J. Baxter on classical statistical mechanics (see Ref. [16]

1for the finite PEPS the exact contraction of the finite double-layer network is possible, yet
feasible only for very small systems. Such a task is a #P-hard problem and no algorithm with
polynomial running time is known [2]
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for a more recent exposition). In his pursuit for the solution to the eight-vertex
model 2, Baxter introduced CTM as a variational approximation for its partition
function [17]. The partition function is given by a contraction of (infinitely) many
identical Boltzmann weight factors Auldr, with the indices {uldr} representing a
classical spin degrees of freedom, living on the links of the square lattice. When the
partition function is expressed diagrammatically, we immediately recognize it as an
instance of a tensor network, shown in Fig. 2.5(a)-(c)). Hence, in a sense, Baxter
was the first one to address the problem of contracting infinite tensor networks, at
least in the context of lattice models in physics.

The CTM is a slight twist to the more familiar row-to-row transfer matrix (RTM)
approach. Within RTM approach, the partition function Z =

∑
X exp{−βE(X)} is

expressed as a product of the matrices R. Given a configuration of the system X,
their elements encode the interaction between the degrees of freedom Xi and Xi+1

in the consecutive rows of the lattice [see Fig. 2.5(d)]. The matrices R themselves
are exponentials of certain Hermitian matrices and hence non-negative. Under the
generic assumptions (local interactions, translational symmetry, independence on
the boundary condition in the thermodynamic limit) the partition function is then
compactly expressed as

Z = Tr(RL) ⇒ diagonalize R ⇒ Z =
∑

n

λLn . (2.27)

Hence, after diagonalizing R, it is clear that the partition function and its depen-
dence on the temperature can be fully elucidated from the spectrum {λ0, λ1, . . .}
(ordered in a descending fashion) of the row-to-row transfer matrix. In fact, one of
the dominant features which governs the physics of the system in question is the
ratio between the leading and the subleading eigenvalue. In the case of the gapped
spectrum, λ1/λ0 < 1, in the thermodynamic limit both the partition function as
well as other thermodynamic quantities given by the logarithmic derivates of Z
with respect to some external parameter p are completely dominated by the leading
eigenvalue only

Z = λL0

[
1 +

∑

n>0

(
λn
λ0

)L]
; ∂plnZ =

LλL0
Z

[
∂pλ0

λ0
+
∑

n>0

(
λn
λ0

)L ∂pλn
λn

]
, (2.28)

⇒ lim
L→∞

⇒ Z = λL0 ; ∂plnZ = L

[
∂pλ0

λ0

]
. (2.29)

Therefore, a good approximation of the leading eigenvalue λ0 immediately leads
to estimates of intensive quantities such as magnetization, obtained by taking its
derivative with respect to the applied magnetic field. Computing directly the free
energy might not be possible as it depends on the actual magnitude of λ0. Fortu-
nately the intensive quantities do not share this dependence.

2vertex or ice-type models represent a family of models relevant for crystal lattices with hydro-
gen bonds. Linus Pauling introduced first such model in 1935, to account for residual entropy of
water ice.
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Figure 2.5: Vertex model: (a) Boltzmann weight A on each vertex of a square
lattice associated with a particular configuration of four classical spin variables
(uldr). A is a real rank-4 tensor which elements are functions of β and any other
relevant parameter e.g. interaction strength. (b) Boltzmann weight of a concrete
configuration of spins on the square lattice. It is a product of numbers, elements of
tensors A obtained by fixing the values of all their indices. (c) Partition function
of the vertex model given by the sum of weights for all possible configuration.
A result of contracting the tensor network. (d) Partition function expressed as a
product of row-to-row transfer matrices R (the trace is omitted). Each matrix R is
given by the contraction of one of the rows of the network. (e) Partition function
expressed as a product of four corner transfer matrices C. Each matrix C is given
by the contraction of one of the four corners of the network.

While the RTM approach splits the partition function into the product of ma-
trices associated with the rows of the system, Baxter in his original work split the
partition function into the product of four matrices C, and coined them corner ma-
trices for the obvious reason, as shown in Fig. 2.5(e). To see the contrast, take a
system of size 2L× 2L with periodic boundaries, and express the partition function
as Z = Tr(R2L) with RTMs. Leaving the size of the system unchanged, assume an
open boundary conditions instead. The partition function can now be expressed by
the product four matrices Z = Tr(C4), each matrix C accounting for all interactions
within one of the four L×L corners of the system. By diagonalizing these matrices,
the partition function is given just by their eigenvalues

Z = Tr(C4) =
∑

i

µ4
i (2.30)
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The role of the spectra of the corner matrices C and the RTMs are identical, they
contain all the information about the system. For sufficiently large L, the depen-
dency on the boundary vanishes, and the two approaches coincide. Whereas the
expression (2.29) for the partition function by RTMs greatly simplifies as L → ∞,
no such obvious simplification happens for the spectra of the corners. However, al-
most all the elements of these corners are exponentially tiny numbers, made up of
sums of products of Boltzmann weights A. Thus, it is reasonable to expect that the
spectrum of the corners decays rapidly and so just a first few eigenvalues µ already
provide a very good approximation for the partition function and its derivatives.

Baxter found an analytic expression for the eigenvalues of the corners and solved
the particular limit of the eight-vertex model. However, for generic models, an an-
alytical solution is not known. Nevertheless, Baxter’s idea is at the heart of later
developed numerical CTM methods.

The fundamental (and surprising) relation between Baxter’s work and the com-
putation of the reduced density matrices of iPEPS is given by the following real-
ization. The double-layer network of iPEPS is formally equivalent to the partition
function of a vertex model. By contraction of all spin indices and the fusion of the
selected auxiliary indices in the double-layer network of iPEPS one obtains a net-
work identical to the partition function of a vertex model in the thermodynamic
limit. This fact is illustrated diagrammatically in Fig. 2.6. The equivalence is only
formal since the Boltzmann weights A of any vertex model are non-negative. There
is no such restriction on the tensors (or “weights”) A for the double-layer network
of iPEPS. The same equivalence holds between the double-layer network of uniform
PEPS and the partition function of a vertex model of L× L system.

In the upcoming section, we introduce a numerical method that provides an
efficient approximation of the corner matrices for arbitrary “vertex-like” models.
Doing so not only allows for the study of many classical two-dimensional models,
but more importantly it will also solve the main problem of our interest, which is
how to compute the reduced density matrices of iPEPS.

Figure 2.6: Left: contracted double-layer network representing the norm of
iPEPS. Contracting first the on-site tensors a, a∗ that are on top of each other
gives a network equivalent to the partition function of a vertex model. Right: de-
tailed contraction of the on-site tensor asuldr with its complex conjugate a∗

ūl̄d̄r̄
. The

result is a new tensor Au′l′d′r′ with the auxiliary indices given by the fusion of
the paired indices (uū), (ll̄), (dd̄), and (rr̄). The dimension of the fused indices of
tensor A is d = D2.
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Figure 2.7: Partition function of 5×5 system with an open boundary condition.
Its contraction is split and accumulated into eight distinct parts, corner tensors C
of dimension χ× χ and half-row/-column tensors T of dimensions χ× χ× d. We
call χ the environment bond dimension, or just an environment dimension. For the
equality to be exact, the environment dimension must be (at least) χ = dL/2.

2.3.2 Corner transfer matrix renormalization group

In 1992, the DMRG algorithm was invented by White [18] and quickly became the
state-of-the-art method for simulation of one-dimensional quantum systems. Shortly
after, Nishino and Okunishi in their pioneering work [19, 20] derived a variational
approximation for Baxter’s corner matrices of the vertex model 1 and solved it using
the ideas of DMRG. In doing so, they also provided us with a variational solution to
the contraction of double-layer networks of uniform PEPS since these two problems
are equivalent.

Their approach starts by considering a small finite system of size L×L with open
boundary conditions. Its partition function is given by the contraction of just a small
number of tensors A. As a first step, all the contractions are accumulated into eight
distinct parts except the single site in the center of the network. Four corner tensors
C, familiar from the Baxter’s CTM, and four new tensors T , the so-called half-row/-
column tensors. Together, we call these tensors environment tensors E = {C, T}
and give their diagrammatic definition in the Fig. 2.7. For small enough systems,
the tensors C and T can be computed explicitly. However, that quickly becomes
impossible as the required environment dimension grows exponentially with the
system size L. Therefore, for large L, the tensors C and T can be only approximate.
The contraction of the partition function is thus approximated by the environment
tensors

Z(L) = TrL×L(AA . . . A) = lim
χ→dL/2

Tr(CTCTATCTC), (2.31)

with the exact result recovered in the limit of exponentially large environment di-
mension χ. A basic variational principle for the best rank-χ environment tensors
{C, T} can be formulated by maximizing the approximate partition function

{C, T} = argmin
rank−χ

|Z(L)− Tr(CTCTATCTC)|. (2.32)

Hence, the next goal is to find the solution of the above variational problem. Before

1in their work Nishino and Okunishi were considering the symmetric 16-vertex model on a
square lattice, which includes Ising or Potts model as a special case
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proceeding, let us mention, that the weights Auldr are symmetric under arbitrary
permutation p of the indices. Such tensor are dubbed C4v symmetric 1

C4v symmetric tensor: Auldr = Ap(uldr), (2.33)

This permutation symmetry is retained by the environment tensors C and T , hence
their elements satisfy the following identities

Cij = Cji Tiju = Tjiu. (2.34)

This detail will be important soon.
The central question is how to find these best approximate tensors for a system

of (large) size L ? Nishino and Okunishi proposed an elegant solution analogous to
the process of DMRG. Suppose we start with the small system, of size 3 × 3, and
hence we can compute the tensors {C(3), T (3)} exactly. Now the key step comes:
let us grow the system by a single layer of sites as illustrated in Fig. 2.8. The
system becomes effectively of size 5 × 5 with the outermost layer formed from the
environment tensors {C(3), T (3)} 1. In the spirit of RG, we want to reduce the
enlarged network back into its original form with only four corners C, four half-
row/-column tensor T and a central site A. However, just contracting the tensors
in order to form the new environment tensors {C(5), T (5)} will not do since every
such contraction will increase their environment dimension by the factor d

C̃(id)(jr) =
∑

i′j′ul

C
(3)
i′j′T

(3)
i′iuT

(3)
j′jlAuldr, (2.35)

T̃(iu)(jd)r =
∑

l

T
(3)
ijl Auldr. (2.36)

Thus, in order to complete the RG step, we have to truncate the enlarged environ-
ment dimension from χd back to χ. Therefore, the next step is to find the projector
P , which truncates the enlarged tensors {C̃, T̃} in the optimal way.

Clearly, by truncation of the enlarged tensors, some of the information about
the system will be lost. The question is how to throw away the least important bits.
Consider the matrix ρ = (C(3))4. Due to the symmetries of {C, T}, given in the
Eq. (2.34), ρ is hermitian and it can be interpreted as a reduced density matrix of
a particular subsystem. Cut the partition function network from the center to the
edge, the ρ is then the reduced density matrix of the degrees of freedom associated
with the indices that have been cut in this way (see Fig. 2.9). In DMRG, one seeks
the optimal truncation of a Hamiltonian of the enlarged one-dimensional quantum
system. By diagonalizing it, the most relevant subspace is identified. Nishino and
Okanishi realized, that the enlarged reduced density matrix ρ̃ = C̃4 can play a simi-
lar role. And hence, now we have a lead on how to construct the optimal projectors.
Take ρ̃ and diagonalize it

ρ̃ = USU †, (2.37)

1the permutation of the indices can be interpreted as the rotation of the underlying square
lattice. The group of symmetries of the square lattice is a C4v point group.

1in contrast with Baxter’s approach, the introduction of half-row/-column tensors T is necessary
in order to express the enlarged network through the environment tensors as done in Fig. 2.8
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Figure 2.8: Top: A single RG step. First, the partition function network is
enlarged by a single layer of sites A and the necessary environment tensors
{C(i), T (i)}. Second, the enlarged network is approximated by the new network
with the updated environment tensors {C(i+1), T (i+1)} of the same dimensions.
Tensor {C(i+1), T (i+1)} have “absorbed” the added layer of sites A and the orig-
inal environment tensors in the eight distinct parts of the network (denoted
by dashed lines). Bottom: Equations defining the updated environment tensors
{C(i+1), T (i+1)}. The projector P , a tensor of dimensions χ × χ × d, truncates
the dimension of the enlarged corners C̃ and half-row/-column tensors T̃ in the
optimal way (see text).

where we assume that the eigenvalues S are ordered in the descending manner. The
most important subspace is then spanned by the eigenvectors with the eigenvalues
of the largest magnitude 2. Hence, the optimal projector is built up from precisely
the χ leading eigenvectors

P := U[:,χ]. (2.38)

Now we are finally in the position to complete the RG step, by truncating the
enlarged tensors {C̃, T̃} as illustrated in Fig. 2.8 back to their original environment
dimension χ. This concludes a single RG step, resulting in a set of new environment
tensors {C(5), T (5)}, which however effectively describe a larger system of size 5×5.
The new environment tensors approximate the larger system in the optimal way,
that is minimizing the variational principle of the Eq. (2.45). Each such RG step
enlarges the system from the size L to L+ 2.

The necessary truncation introduces an error, which we estimate now. Consider
the enlarged density matrix ρ̃ = C̃4 (shown in Fig. 2.9). Its trace gives an approxi-
mate partition function Z(L−1) of a system of size (L−1)× (L−1), due to leaving

2in the case of iPEPS, the eigenvalues might be negative since weights A are no longer Boltz-
mann weights as in the case of vertex models.
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Figure 2.9: Left: reduced density matrix ρχ of dimensions χ×χ with respect to
the cut from the center of the system to the edge (red line). Right: reduced density
matrix ρ̃χd of the enlarged system of dimensions χd× χd to the same cut.

out the enlarged half-row/-column tensors T̃

Z(L− 1) ≈ Tr(C̃4) =

χd∑

i=1

S4
ii, (2.39)

where the second equality comes from the eigendecompostion of the enlarged corner,
Eq. (2.37). The projector truncates the enlarged corner down to the rank-χ. Hence,
the sum of the fourth powers of the eigenvalues S of the ignored subspace estimates
the error on the partition function due to truncation

error(χ) =

χd∑

i=χ+1

S4
ii (2.40)

Thus, the sufficiently fast decay of the spectrum of C̃ is crucial for the error to
remain small.

With the single RG step done, we can now iterate the procedure and obtain
the best rank-χ environment tensors for a L × L system of any size L. Simply
start with the small 3× 3 system and the corresponding set of environment tensors
E(0) = {C(0), T (0)}. Perform a series of L/2 RG steps. At each step i, one has the
optimal environment E(i) for system of size (3 + 2i) × (3 + 2i). After L/2 steps,
the tensors E(L) provide the optimal rank-χapproximation of the partition function
of the system of size L × L and by the equivalence also a double-layer network of
uniform PEPS. This process constitutes the CTMRG algorithm.

Iterating the RG steps until no appreciable change in the environment tensors
is observed results in the so-called fixed point environment tensors. They repre-
sent the best rank-χ approximation of the environment tensors for the partition
function/double-layer network in the thermodynamic limit. Typically, these fixed
point tensors are independent of the initial environment. We summarize the whole
CTMRG procedure in the concise algorithmic form together with the details con-
cerning the numerical implementation in Appendix B.1.
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Figure 2.10: Top: The definition of the environment ER and its rank-χ approx-
imation by the fixed point environment tensors from CTMRG. Example for the
region R = 2× 1. Bottom: The rank-χ approximation of the reduced density ma-
trix of iPEPS. Taking the environment ER, the indices on the boundary of the
region R originating from the tensors T (red in-plane lines), are unfused into their
original form (see Fig. 2.6 for their origin). Afterwards, the on-site tensors a, a∗

are contracted with the unfused indices completing the construction of the rank-χ
approximation of the reduced density matrix.

2.3.3 Reduced density matrices of iPEPS from the Corner Transfer
Matrix Renormalization Group

At last, we can connect the results of the CTMRG algorithm with the construc-
tion of the reduced density matrices of iPEPS. For a given iPEPS, the CTMRG
gives the optimal rank-χ fixed point environment tensors {C, T} representing the
contraction of the eight distinct parts of the corresponding double-layer network in
the thermodynamic limit. Let us isolate any rectangular region R of the double-
layer network. Now, we can replace the rest of the double-layer network with the
fixed point environment tensors. These tensors, contracted along their environment
dimensions form the so called environment ER of the region R, which we define
diagrammatically in the Fig. 2.10. The examples of such environments for the most
important regions are

E1×1 = Trenv(CTCTCTCT ), (2.41)

E2×1 = Trenv(CTTCTCTTCT ), (2.42)

E2×2 = Trenv(CTTCTTCTTCTT ), (2.43)

EL×1 = Trenv(CT . . . TCTCT . . . TCT ), (2.44)

where the Trenv(.) denotes the contraction of all environment indices. From top to
bottom: E1×1 is the most compact and holds the information about expectation

values of local observables, such as magnetization m =
√∑

α=x,y,z〈Sα〉2, E2×1 and



26 Thesis

Figure 2.11: Four important examples of the environments for different regions
R built from the fixed point tensor {C, T} (as with Lego

TM

bricks). In the clock-
wise order: E1×1, E2×1, E2×2, and EL×1 for arbitrary length L of the strip. The
red lines represent the uncontracted auxiliary indices localized at the boundary
∂R.

E2×2 are minimal environments necessary to evaluate the energy of the nearest
and the next-nearest neighbor Hamiltonians respectively, and finally EL×1 is the
environment used to compute two-point correlation functions. The illustrative dia-
grammatic representation of these environments is given in the Fig. 2.11. The final
step is to fill these environments ER with the on-site tensors a, a∗ which belong into
the enclosed region R, as shown in the Fig. 2.10. And thus we ultimately recover
the reduced density matrices ρR of iPEPS.

These reduced density matrices of iPEPS we have just constructed are only ap-
proximate, more specifically they are the rank-χ approximation ρR(χ) of the true
ones. Their accuracy is governed by the environment dimension χ of the environ-
ment tensors {C, T} used in their construction. Hence, to obtain the definite esti-
mate of observables in the thermodynamic limit for the given iPEPS, the following
extrapolation is necessary

〈O〉iPEPS = 〈iPEPS| O |iPEPS〉 = lim
χ→∞

Tr(ρR(χ)O). (2.45)

Therefore, in practice, the CTMRG is performed for increasingly larger environment
dimension χ. For each χ, construct the reduced density matrix ρR(χ) and compute
the expectation value Oχ = Tr(ρR(χ)O). Continue until the Oχ converges to the
desired precision. The speed of convergence with χ is directly related to the decay
of the spectra of the (enlarged) corner tensors C.
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2.4 Example I: spin S = 2 AKLT state

We can now demonstrate the validity, performance, and properties of the CTMRG
algorithm introduced above. In order to so, we choose certain paradigmatic spin
states, which are represented exactly as iPEPS of finite bond dimension D. Since
their physical properties were analyzed both analytically and by other numerical
approaches, such as Monte Carlo, they provide a vital benchmark for CTMRG.

As the first example, we present the analysis of spin S = 2 AKLT state on
a square lattice. This valence bond (VB) state is a particular instance of a much
broader family of VB states named after Affleck, Kennedy, Lieb, and Tasaki who
constructed them in 1988 [21]. In their seminal work, the AKLT quartet showed
how to build these SU(2)-invariant VB states and their parent Hamiltonians in
one dimension, two dimensions or on arbitrary lattice. Also, they proved results
about some of their important properties such as the existence of a gap and the
exponential decay of all correlations in one dimension. Tensor networks emerge as a
natural candidate for a framework to investigate AKLT states due to the compact
representation they provide. We construct the iPEPS representation of the S = 2
AKLT state and give its parent Hamiltonian in Appendix A.1.

2.4.1 Results from CTMRG: The expectation values of AKLT state

Taking the iPEPS of the spin S = 2 AKLT state, we now execute the CTMRG and
obtain the fixed point tensors. Afterward, from the environments as the ones given
in the Fig. 2.11 we build the reduced density matrices and compute the observables.
First, let us remark that the convergence of the CTMRG to the fixed point tensors
{C, T} is very rapid in spite of the distance between the spectra of the corner ma-
trices used as the convergence measure. It is more stringent than local observable
such as energy. The main results are summarized in the Fig. 2.12. Both the energy

and the on-site magnetization, computed as m =
√∑

α=x,y,z〈Sα〉2, are (nearly) nu-

merically exact zeros. We also compute the dimer-dimer correlation Dhh(r) between
the two horizontal dimers Dh(0) and Dh(rx) shifted by r sites along the x-direction

Dhh(r) = 〈Dh(0)Dh((2 + r)x)〉, (2.46)

where the horizontal dimer operator is defined as Dh(R) = SR · SR+x. In-
terestingly, the dimer-dimer correlation decays exponentially to its finite value
Dhh(r → ∞) = 12.663307, converged with respect to χ as well. This is a mani-
festation of the underlying VB structure of the AKLT state.

Partial insight into the performance of CTMRG is given by the spectra of the
corner matrices shown in Fig. 2.13. The precision and the speed of convergence is
governed directly by the decay of the spectra , see Eq. (2.40). In the case of AKLT,
the corner spectra decay very rapidly, with Cii decreasing below 10−3 already for
i > 27. The last remark concerns the degeneracies appearing in the spectra of
the corner matrices. For all selected values of χ except χ = 36, the multiplets are
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Figure 2.12: CTMRG applied to spin S = 2 AKLT state on a square lattice. The
environment was considered converged once the distance between the spectra of the
corner matrices in two consecutive iterations was smaller than εCTM = 10−8. Left:
energy under the parent Hamiltonian computed from the environment E2x1 after
each iteration. Middle: on-site magnetization computed after each iteration. Right:
dimer-dimer correlation of horizontal dimers computed from the environment EL×1
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Figure 2.13: Detailed look at the corner spectra of S = 2 AKLT state Cii of the
converged environment {C, T} for an increasing environment dimension χ. Left:
First 40 eigenvalues of the corner spectrum. The degeneracies are the reflection
of the SU(2) symmetric nature of the AKLT state and they are exact up to the
numerical precision, except in the case of χ = 36 (see text). Right: Decay of
the spectrum up to the maximal value of χ = 96. The relative importance of the
subspace, related to C4

ii, captured by the environment bond dimension over χ & 75
is less then 10−16 for any observable.

numerically almost exact. They are the direct consequence of the SU(2) invariance
of the state. The only exception is the χ = 36 case since this choice of the subspace
truncation cuts the multiplet and induces a tiny splitting (∼ 10−5).
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2.5 Example II: Short range resonating valence bond state

The second example for a demonstration of the CTMRG in action will be the short-
range resonating valence bond (RVB) state. Originally put forward by Baskaran,
Zou, and Anderson in 1987 as a possible explanation of high-Tc superconductivity
in cuprates [22], the RVB states have been investigated in many contexts since then.
Taking a lattice in two dimensions, half-filled with electrons, we can imagine pairing
all the electrons in VBs (singlets) without imposing any limitation on the distance
between the paired electrons. First, consider a single lattice covering, which is a
product state of VBs. The RVB states are then constructed from the superposition
of a macroscopic number of different lattice coverings.

The short-range RVB (srRVB) is the simplest state from this family, containing
only the lattice coverings with the nearest-neighbor valence bonds. The srRVB is
then defined as an equal weight superposition of all such coverings. We give the
pictorial definition of srRVB on a square lattice in the Fig. 2.14. In the seminal
paper introducing the PEPS ansatz, Verstraete and Cirac also gave an elegant rep-
resentation of srRVB in the terms of C4v symmetric iPEPS with bond dimension
D = 3 [12]. We give a detailed account of their construction in Appendix A.3.

2.5.1 Results from CTMRG: Observables in the srRVB

The main results for the local observables computed by the CTMRG are shown
in the Fig. 2.15. Contrary to the AKLT state, a parent Hamiltonian of the srRVB
cannot be written in the terms of nearest- or even next-nearest neighbor spin-spin
interaction. Instead, we compute the variational energy of srRVB under the Hamilto-
nian of antiferromagnetic Heisenberg model. The immediate difference with respect
to the AKLT state is the number of iterations necessary to converge energy with
the precision 10−8. At least 103 iterations were needed for the environment bond di-
mension as small as χ = 108. And for the largest χ considered, χ = 288, the amount
of necessary iterations is nearly 4×103. For the state such as srRVB, it is necessary

Figure 2.14: Short-range RVB state on a square lattice defined as the equal
weight superposition of nearest-neighbor valence bond coverings. The orientation
of the singlets is chosen such, that they all point into the sublattice-A sites (red
circles).
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Figure 2.15: Energy and magnetization of srRVB computed from CTMRG. Left:
Convergence of the energy computed for the antiferromagnetic Heisenberg model
with CTMRG iterations. The energy converges by merging of the two distinct
branches. Middle: Extrapolation of energy as a function of 1/χ. Right: convergence
of the magnetization. Some choices of the environment bond dimension lead to the
tiny symmetry breaking.

to perform extrapolation in 1/χ to obtain observables in the thermodynamic limit.
The extrapolated value of the energy is e(χ→∞) = −0.59191(3).

While the srRVB is by construction SU(2) invariant, the truncation in CTMRG
can induce spurious finite magnetization. Its appearance coincides with the cutting
of the multiplet in the corner spectra. The magnitude of this symmetry breaking
vanishes with the increasing χ, being only of the order 10−7 for the largest environ-
ment bond dimension considered. However, if the χ is chosen with the attention to
preserving the multiplets in their entirety, such as for χ = 108, 144 the magnetiza-
tion vanishes exactly.

Next, we evaluate the correlation functions. In particular spin-spin correlations

C(r) = 〈S(0).S(rx)〉. (2.47)

and the connected dimer-dimer correlations defined as

DC
hh(r) = 〈Dh(0)Dh((2 + r)x)〉 − 〈Dh(0)〉〈Dh((2 + r)x)〉. (2.48)

The results for the correlation functions are summarized in the Fig. 2.16. The spin-
spin correlations decay exponentially, except for the cases where the choice of the
truncation induces a tiny magnetization leading to the saturation of the spin-spin
correlations to a finite value. Connected dimer-dimer correlation functions reveal the
critical character of the srRVB. They decay as a power law with an exponent η, only
to eventually crossover into the exponential decay regime around the length scale ξχ
induced by the finite environment bond dimension χ. This behavior is the genuine
property of the srRVB since the power-law exponent η grows with the increasing χ.
For the largest χ considered the exponent has a value of η(χ = 288) ≈ 1.03.

Finally, we comment on the spectra of the corner matrices (see Fig. 2.17) which
show extremely slow decay compared to the example of the AKLT state. The mul-
tiplet structure appears, similarly as in the AKLT case. A careful look at the mul-
tiplets reveals that for χ = 72, 198 (and most probably also 288) the truncation cut
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Figure 2.16: Correlation functions of srRVB. Left: spin-spin correlations showing
exponential decay. For the cases of χ = 72, 198, 288 the saturation is due to the tiny
magnetization induced by the truncation cutting the multiplet of the corner spec-
tra. Middle: connected dimer-dimer correlations with the crossover from algebraic
into exponential decay around the length scale ξχ. Right: power law exponents for
the dimer-dimer correlations extracted by the fit to the Ornstein-Zernike formula
r−ηexp(−r/ξχ).

10
-1

10
0

 0  5  10  15  20  25  30  35  40

C
ii

i

χ=288

χ=198

χ=144

χ=108

χ=72

10
-2

10
-1

10
0

 0  50  100  150  200  250  300

C
ii

i

Figure 2.17: Corner spectra Cii of srRVB as a function of the environment bond
dimension χ. Left: First 40 eigenvalues of the corner spectrum. For the value of
χ = 108, 144 the multiplets are numerically almost exact. Right: The full spectrum
decays only algebraically and does not seem to saturate even at small values of i.

the multiplet thus inducing a tiny finite magnetization. The overall slow decay of
the corner spectra explains the significantly higher number of CTMRG iterations
necessary to converge the observables. Moreover, contrary to the AKLT state which
appears to be gapped, all of the individual eigenvalues of the corners grow with
the increasing environment bond dimension. This is in stark contrast to the usual
behavior of states which satisfy the area law. The srRVB is an example of finite-D
iPEPS which belongs into the class of rather exceptional states, displaying critical
behavior without violating the area law.
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2.6 Contracting infinite tensor networks - Part II

The CTMRG method has been originally developed for symmetric vertex models,
where the weights A are invariant under any permutation p of their indices Auldr =
Ap(uldr). On the other hand, it is not unusual for the ground state to break the
spatial symmetry of the Hamiltonian. In the case of quantum magnetism, the clear
examples are various VBS ground states, which (partially) break the translational
and rotational symmetry of the square lattice. To address such cases, it is necessary
to extend the ansatz beyond the single tensor and drop the assumptions on the
invariance with respect to permutations of the auxiliary indices. But doing so comes
with a price, the CTMRG method must be appropriately generalized as well.

In this section, we will first extend the CTMRG to single-site iPEPS but without
any assumptions on the symmetry properties of the on-site tensor a, and consec-
utively its double-layer version A, under the permutation of its auxiliary indices.
Afterward, as the last point, we will consider iPEPS with more tensors within a unit
cell (as in the Fig. 2.4) and formulate the final version of the so-called directional
CTM algorithm. It will serve us as the principal computational tool for the study
of the vast array of iPEPS.

Alternatively, one can use the so-called channel environments [23, 24] which
are based on the boundary MPS, inspired by the RTM approach to classical two-
dimensional systems.

2.6.1 Directional CTM: Moving beyond the C4v symmetry

The generalization of CTMRG beyond C4v symmetric tensors was given by Orus
and Vidal [25] and later perfected by Corboz [26]. The method is known as direc-
tional CTM. The basic idea is the same as in the symmetric case. Approximate the
contraction of the (infinite) tensor network by a set of finite rank-χ environment
tensors. Apply RG procedure to these environment tensors and eventually converge
to their fixed point forms. Recover the thermodynamic limit properties in the limit
of χ→∞. However, since we cannot exploit the symmetry on the auxiliary indices
anymore, several complications have to be addressed.

First, we have to consider four different corner tensors {C1, C2, C3, C4, }, and
four different tensors half-row/-column tensors {T1, T2, T3, T4}1, defined diagram-
maticaly in the Fig. 2.18. Growing the system by a single layer of sites, leads to a
set of four enlarged corners C̃1, . . . , C̃4 and four enlarged half-row/-column tensors
T̃1, . . . , T̃4. We would like to identify the most important subspaces of dimension at
most χ of these enlarged corners as to truncate them optimally.

In the case of C4v symmetric iPEPS, it was enough to diagonalize the reduced
density matrix ρ̃ = C̃4. Its leading χ eigenvectors provided the optimal projector
along the cut (see Fig. 2.9). For generic iPEPS instead, we have to deal with four

1contrary to the symmetric case there is no relation between, for example, upper left corner
tensor C1 and lower right C3. The same is true for any pair of half-row/-column tensors.
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Figure 2.18: Contraction of the tensor network is split and accumulated into eight
distinct parts. The contraction of each one of these eight parts is approximated by a
finite rank-χ tensor. These tensors are four corner tensors C1, . . . , C4 of dimension
χ × χ and four half-row/-column tensors T1, . . . , T4 of dimensions χ × χ × d. For
arbitrary an on-site tensor A, Cs and T s are assumed to be different with no simple
relation between them.

Figure 2.19: Four matrices Q1, Q2, Q3, Q4 of dimensions χ×χ and their enlarged
counterparts Q̃1, Q̃2, Q̃3, Q̃4 of dimensions χd×χd associated to the different cuts
of the whole network.

different cuts and hence four different enlarged matrices Q̃1, ..., Q̃4, defined dia-
grammaticaly in the Fig. 2.19. These matrices are not density matrices in a strict
sense as they are not symmetric. Nevertheless, they contain the information about
the most relevant subspaces along these cuts. However, contrary to the case of sym-
metric iPEPS, we are facing two conceptual complications. First, since the matrices
Q̃ are not symmetric in general they will have different left and right subspaces.
Second, the most relevant subspaces for each of the cuts might differ. The last point
makes a crucial difference, since for the symmetric iPEPS the projector obtained
from the diagonalization of C̃ was optimal for each of the four cuts.

There is no known rigorous approach to find the globally optimal truncation for
all the enlarged corners C̃1, . . . , C̃4 at once. To make the problem tractable, Orus
and Vidal introduced a heuristic method, the so-called directional CTM. Instead
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Figure 2.20: Left move of the directional CTM. Top: the network with envi-
ronment tensors after i-th update is first grown by inserting a column. Enlarged
environment tensors, enclosed inside the red dashed rectangles, are identified on
left side of the network. Finally, the enlarged tensor are truncated to rank χ. Bot-
tom: definition of the truncated tensors using the projectors P4, P̄4. The resulting
tensors with incremented index are taken to form the new environment.

of growing the system by a single layer at once, proceed by “one lattice direction”
θ = {1 ∼ up, 2 ∼ right, 3 ∼ down, 4 ∼ left} at the time. At each RG step grow the
system by inserting a single row or column in the chosen direction θ. Afterward,
absorb the added tensors into the new enlarged environment tensors. Finally, using
a set of projectors Pθ, P̄θ of dimensions χd × χ, related to current direction of the
growth, truncate the enlarged tensors back to the original environment dimension
χ. The full account of this process, for a single RG step dubbed move, along the left
direction is illustrated in the Fig. 2.20. The directional CTM continues to iteratively
grow and truncate the system alternating the moves for the different directions until
the fixed point is reached. While the outline of the procedure is straightforward, the
construction of the projectors is crucial for the environment tensors to converge
correctly. The caveat lies in the mutual dependence of the truncations along the
different cuts. Careless truncation along a single cut might spoil optimality for other
cuts, thus preventing the directional CTM from converging either to the correct state
or completely.

Currently, the most widely used and empirically well tested recipe for the con-
struction of the projectors is due to Corboz [26] and we adopt it in this work as
well. It is based on the so called biorthonormalization developed in the context of
the finite-temperature DMRG by Huang [27] where a finite rank approximation to
the non-Hermitian transfer matrix is sought. To motivate his approach, lets make
a step back and consider an enlarged network split by a horizontal cut as shown in
the Fig. 2.21, leaving all the cut indices uncontracted. To execute a left move, we
identify the two parts of the split network as R4 and R̄4. By contracting the indices
on the left part of the cut, we recover R4R̄4 = Q̃2, while the contraction of the right
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Figure 2.21: Definition of the top and bottom halves R4, R̄4 of the network
with respect to left move (θ = 4). We interpret both R4 and R̄4 as a matrix
of dimensions χd × χd. In order to move from diagrammatic to the algebraic
representation without any ambiguity, we define the matrix R4 with the indices
to the right side of the cut as row indices, while the indices on the left side of
the cut are the column indices. For the matrix R̄4 the role of row and column
indices is exactly the opposite. Under this definition, its clear that R4R̄4 = Q̃2

and R̄4R4 = Q̃4. Bipartitions into Rθ, R̄θ for the other directions θ are defined
by keeping the cut (red line) still while rotating the network by a multiple of 90◦

degrees.

indices gives R̄4R4 = Q̃4. Now lets ask the following question: what is the best pair
of projectors P4, P̄4, that truncate the dimension along the left cut (one in Q̃4) from
χd down to χ such, that the truncated matrix Q̃P2 = R4P̄4P4R̄4 is as close to its
original Q̃2 as possible ? The answer is to take

{P4, P̄4} = argmin
rank(R4P̄4P4R̄4)=χ

|R4P̄4P4R̄4 −R4R̄4|. (2.49)

The crucial point here is to disentangle truncations along different cuts. Suppose,
that we have found the optimal projectors P2, P̄2 for the right cut by analyzing
the matrix Q̃2. If the truncation by projectors P4, P̄4 leads to a Q̃P2 , which differs
substantially from its original Q̃2, then the projectors P2, P̄2 found earlier might
no longer be the best choice. Unless taken care of, we might never arrive to the
environment tensors which are at least reasonably close to the optimal ones by
alternating the directions of truncation as outlined in the directional CTM. The
solution is found by first taking the SVD of R4R̄4 = Q̃2, as it leads to the best rank
χ approximation. Afterwards, we can relate the truncated SVD to projectors P4, P̄4

R4R̄4
SV D
= Ũ S̃Ṽ † → R4P̄4P4R̄4 = USV † → P̄4P4 = R−1

4 USV †R̄−1
4 ≈ 1χd×χd

(2.50)

where U = Ũ:,χ; S = S̃χ; V = Ṽ:,χ. (2.51)

The last step is to express the projectors without the use of the explicit inverses
R−1

4 , R̄−1
4 . In order to do so we exploit the following resolution of the identity

R−1
4 R4R̄4R̄

−1
4 = R−1

4 Ũ S̃Ṽ †R̄−1
4 = R̄4(R4R̄4)−1R4 = R̄4Ṽ S̃

−1Ũ †R4. (2.52)

Substituting the truncated SVD into the last expression, we define the projectors
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Figure 2.22: Left: The projectors P̄4, P4 truncate the spaces of the left cut, while
minimizing the distance between the projected enlarged matrix Q̃P2 = R4P̄4P4R̄4

and its original Q̃4. Right: projectors P̄4, P4 are constructed from the result of
the truncated SVD of the matrix Q̃2 = R4R̄4. The projectors for other cuts are
obtained by the same formula from the appropriate Rθ and R̄θ matrices.

P4, P̄4

R̄4Ṽ S̃
−1Ũ †R4 ≈ (R̄4V S

−1/2)(S−1/2U †R) = P̄4P4, (2.53)

P̄4 = R̄4V S
−1/2; P4 = S−1/2U †R4. (2.54)

This choice of the projectors leads precisely to the condition that the rows of P4

and the columns of P̄4 form the so called biorthonormal bases (P4)ik(P̄4)kj = δij .
For the illustrative diagrammatic representation of these projectors see Fig. 2.22.
Recently, a new construction of the projectors has been proposed [28] that targets
directly their final form at the fixed point of CTM, leading to faster convergence
for critical iPEPS such as srRVB. Finally, truncating the enlarged tensors with the
biorthonormal projectors completes the directional move. By alternating these RG
moves, the directional CTM reliably converges to the fixed point. We formulate the
complete algorithm and address its details in Appendix B.2.

In conclusion, given a single-site iPEPS, the directional CTM provides the set
E = {C1, C2, C3, C4, T1, T2, T3, T4} of fixed point environment tensors of rank χ that
approximate the contraction of the infinite network. Combining them, an environ-
ment ER of an arbitrary rectangular regions R of the iPEPS can be constructed
in the same way as for the symmetric iPEPS. We present such environments for
the most relevant examples of region R in the Fig. 2.23. Environments along the
different directions of the lattice are no longer constrained to be identical.

2.6.2 Directional CTM: Beyond single-site iPEPS

After formulating the CTM for iPEPS without the C4v symmetry, the next and the
final necessary step is to extend it to iPEPS with unit cells. The formulation we will
present, due to Corboz [26], is in the essence a heuristic, but a well-motivated exten-
sion of the directional CTM. The wealth of the empirical evidence of its performance
for numerous iPEPS with unit cell sizes ranging from 2× 1 up to 12× 2 [29] estab-
lish it as the state-of-the-art method. We will adhere to the notation introduced by
Corboz, as it conveniently translates into the actual implementation.
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Figure 2.23: Four important examples of the environments for different regions
R built from the converged E = {C1, C2, C3, C4, T1, T2, T3, T4}. In the clock-wise
order: E1×1, E2×1, E1×2, E2×2. Environments for the correlation functions are ob-
tained by elongating the environment E2×1 (E1×2) along the horizontal (vertical)
dimension. The red lines represent the uncontracted auxiliary indices localized at
the boundary ∂R.

First, the iPEPS ansatz now assigns a (double-layer) on-site tensor ar (Ar)
to each site of the square lattice tilling it with the unit cells. The generaliza-
tion of the directional CTM starts with making the environment tensors posi-
tion dependent. For every site r = (x, y) there is now a set of environment ten-
sors Er = {Cr

1 , . . . , C
r
4 , T

r
1 , . . . , T

r
4 }. Together, they form a complete environment

E = {Er}. Since the iPEPS is still translationally invariant (at the level of unit
cells), the actual number of different environment tensors is given by the number of
the unique on-site tensors within a unit cell. For example, for iPEPS with two-site
unit cell with the tensors a, b there are just two sets of different environment ten-
sors. Other tensors instrumental in the directional CTM acquire space-dependence
in exactly the same manner. Those are specifically the halves of the network Rr

θ and
R̄r
θ, which are defined with respect to a cut, and the projectors P r

θ and P̄ r
θ that are

built from these halves. We give the diagrammatic definition of Rr
θ and R̄r

θ for all
four directional moves in the Fig. 2.24.

The directional CTM then proceeds by alternating the up, left, down, and the
right moves. But this time, each move composed of inserting the row/column fol-
lowed by the truncation is done for every non-equivalent lattice site r, that is, not
occupied by the identical on-site tensor. For every truncation the projectors P r

θ and
P̄ r
θ are constructed according to the Eq. (2.53) from the halves Rr

θ and R̄r
θ of the

network. We give the diagrammatic definition of the position-dependent move for
the left direction in the Fig 2.25. The complete algorithm and the details concerning
its implementation are presented in Appendix B.3.

Once the convergence is reached, the set of fixed point environment tensors E
can be used to build rank-χ environments ER and the subsequent approximation
of the reduced density matrices of iPEPS. The environments ER are constructed
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Figure 2.24: Definition of the position dependent halves of the network Rr
θ and

R̄r
θ. Top: the definition of the halves Rr

4 and R̄r
4 for the left move with respect

to the selected site r. The left (blue) and right (red) part of the horizontal cut is
distinguished. The x and y are unit vectors in horizontal and vertical directions
of the lattice. Bottom: Definition of the halves with respect to the site r for the
remaining three moves, in order up, right, and down.

Figure 2.25: Left move of the directional CTM with unit cells. Top: the net-
work with environment tensors around the site r is grown by a column. Enlarged
environment tensors, enclosed inside the red dashed rectangles, are identified on
left side of the network. Finally, the enlarged tensor are truncated to rank χ using
the projectors P r

4 , P̄ r
4 , P r−y

4 , and P̄ r−y
4 . This process is done for all non-equivalent

sites r within the unit cell. Bottom: definition of the truncated environment tensors
using the projectors P r

4 , P̄ r
4 , P r−y

4 , and P̄ r−y
4 . The resulting environment tensors

are shifted by a unit vector y.

analogously to the previous case (see Fig. 2.23), but with the attention to position
r which dictates what environment tensors Cr

θ , T r
θ have to be contracted to create

the environment. Allowing for different on-site tensors on different lattice a plethora
of new states can be described. This extension of the directional CTM will be the
cornerstone of iPEPS approach to several systems in the rest of this work, such as
the dimerized Heisenberg model or the J1 − J2 model.
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3.1 The overview

The iPEPS tensor networks provide a very efficient parametrization of the ground
states of local and gapped Hamiltonians with only a polynomial number of param-
eters independent of the system size. This is the key property that motivates us
to study the quantum magnets through iPEPS-based variational wave functions.
However, selecting a variational wave function through physical insight is just the
first part of the variational approach. The second, equally important part is the
optimization of the variational parameters guided by the energy minimization. The
zero-temperature variational principle dictates that the best approximation of the
true ground state is achieved by the variational wave function with the parameters
tuned to give the lowest possible energy.

Within the domain of tensor network wave functions for local Hamiltonians, the
difference between the optimization of (i)MPS in one dimension and (i)PEPS in two
dimensions is dramatic. For MPS the question of efficient optimization is to a large
degree settled. The state-of-the-art methods, in particular, DMRG and TDVP [30],
reliably lead to the best variational states of finite-size systems for MPS with as
many as O(108) parameters1. In contrast, the optimization of iPEPS represents a
formidable problem and is an active area of research. The question of what is the

1 the reason why these methods work so well is still not fully understood [2, 9]. In detail, both
DMRG and TDVP optimize the system by the so-called alternating least-squares. The hard non-
linear problem of optimizing all tensors within the MPS is split into a series of “local” quadratic
problems where only a single tensor is optimized at any given time. Yet, there is no guarantee that
such an approach leads to the global minimum.

39
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method, leading to the best variational iPEPS for a wide range of local Hamiltonians
remains open.

The complexity of optimizing an iPEPS can be traced to three main sources.
First, contrary to (i)MPS, the observables cannot be computed exactly and instead
an approximation scheme such as directional CTM has to be used. Second, any
figure of merit, e.g. energy or the distance between the two iPEPS wave functions,
guiding the optimization is a highly non-linear function of the variational param-
eters. It is notoriously difficult to find the global optimum of such functions. In
fact, it is an NP-hard problem. Ultimately, there is a significant redundancy in
the iPEPS representation due to the gauge freedom associated with the contracted
auxiliary indices. For (i)MPS with open boundaries, a so-called canonical form can
be enforced, which fixes the gauge and eliminates the redundancy. In iPEPS, the
presence of the loops in the network prevents such gauge-fixing [31].

After setting the scene, we now turn to two main approaches that led to con-
siderable progress. The first one is the imaginary-time evolution, while the second,
more recent, is the direct energy minimization based on gradients. We will introduce
the imaginary-time evolution in the context of iPEPS and formulate two flavors of
the algorithms widely used to optimize iPEPS. Finally, we will turn our attention
to more rigorous gradient-based methods. We will introduce the paradigm of differ-
entiable tensor networks, a novel approach to the computation of the gradients. It is
based on the well established numerical technique called reverse-mode algorithmic
differentiation (AD), also known as the backpropagation in the machine learning
community. The AD optimization is readily applicable to all types of iPEPS, with
extremely favorable properties, in terms of complexity, robustness and most impor-
tantly the resulting variational iPEPS. We consider it the new state-of-the-art for
iPEPS optimization.

3.2 Imaginary-time evolution

The imaginary-time evolution is a general method to find the ground state of a
many-body system. It is rooted in the observation, that a long time limit τ → ∞
of imaginary-time evolution exp(−τH) under the Hamiltonian H is equivalent to
a projector on the ground state. Suppose, that we are concerned with finding the
ground state |0〉, which has the energy E0. Therefore, the imaginary-time evolved
initial state |ψ0〉 expanded in the basis of the energy eigenstates reads

e−τH |ψ0〉 =
∑

n

|n〉e−τEn〈n|ψ0〉

= |0〉e−τE0〈0|ψ0〉+
∑

n>0

|n〉e−τ(En−E0)〈n|ψ0〉.
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Figure 3.1: A complete set of four partial Hamiltonians Hp for NN Hamiltonian
on a square lattice. Each blue-edged rectangle represents a two-site interaction
term.

Under the assumption of a finite gap ∆ it follows that En−E0 ≥ ∆ for all n. Hence,
by taking a long time τ limit we recover the ground state

τ →∞ : e−τH |ψ0〉 = |0〉〈0|ψ0〉+O(e−τ∆). (3.1)

As far as the initial state has a non-zero overlap with the ground state, which is
usually the case if we choose |ψ0〉 at random, and the gap ∆ is finite then the
imaginary-time evolution projects out the ground state exponentially fast 1.

3.2.1 Imaginary-time evolution of iPEPS under local Hamiltonians

While the general outline is conceptually simple, the imaginary-time evolution op-
erator

U(τ) := e−τH , (3.2)

is a complicated object and its size grows exponentially with the system size. How-
ever, since we are interested in local Hamiltonians, we can greatly simplify the
evolution operator U(τ) by the means of Suzuki-Trotter decomposition. It is a con-
trolled approximation of the exponential of the sum of non-commuting operators
by the product of their exponentials. Take a generic nearest-neighbor (NN) Hamil-
tonian H. On a regular lattice with coordination z we can split it into a sum of z
non-commuting partial Hamiltonians Hp

H =

z∑

p=1

Hp, (3.3)

Hp :=
∑

〈i,j〉(p)
hij . (3.4)

where each Hp represents a mutually commuting subset of NN interaction terms
hij , e.g. spin-spin interaction Si · Sj , captured by 〈i, j〉(p). In other words, Hp is a
certain covering of the lattice by non-overlapping NN interaction terms. See Fig. 3.1
for an example with NN Hamiltonian on a square lattice.

1imaginary-time projection is well behaved for finite-size systems, due to the presence of a
finite-size gap and hence enjoys the exponential convergence property. The intrinsic gap ∆ of the
Hamiltonian in the thermodynamic limit is recovered by size-scaling. If the ∆ is vanishing, the
evolution experiences the so-called critical slowing-down.
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Since each individual Hp consists only of mutually commuting terms, taking a
small time step ε we may approximate the evolution operator U(ε) as

U(ε) |ψ〉 = exp(−ε
z∑

p=1

Hp) |ψ〉 ≈
z∏

p=1

exp(−εHp) |ψ〉+O(ε2), (3.5)

U(2ε) |ψ〉 ≈
z∏

p=1

exp(−εHp)

1∏

p=z

exp(−εHp) |ψ〉+O(ε3). (3.6)

The first row corresponds to the simple first order Trotter decomposition. The
second row instead, gives the second order, or symmetric Trotter decomposition as
the sequence of Hp in the second product is reversed. The so-called Trotter error
introduced by this approximation can by systematically improved by reducing the
time step ε. Due to Hp being just a sum of commuting terms, its exponential can
be expanded exactly into the product of individual exponentials. Doing so for the
first order Trotter decomposition leads to the final form UT (ε) of the approximate
evolution operator

UT (ε) |ψ〉 :=

z∏

p=1

exp(−εHp) |ψ〉 =

z∏

p=1

∏

〈i,j〉(p)
uij |ψ〉 , (3.7)

where uij := exp(−εhij) and they are dubbed Trotter gates. The result for the
symmetric decomposition is analogous. Any Trotter gate acts just on two sites and
as such their exact form can be readily computed. This is a tractable expression,
which can be directly applied in computer simulations.

Now we are in the position to perform an approximate long time evolution
τ →∞ as to project out the ground state. Since the evolution operator satisfies the
following composition property

U(τ1 + τ2) = U(τ1)U(τ2), (3.8)

the long time evolution can be approximated simply by the repeated application of
the Trotter decomposed short-time evolution operators

U(τ)|ψ0〉 =

M∏

n=1

U(ε)|ψ0〉 ≈
M∏

n=1

UT (ε)|ψ0〉+MO(ε2), (3.9)

where ε = τ/M is the time step. The total Trotter error scales as MO(ε2) ≈ O(ε)
in the case of first order Trotter decomposition. The second order decomposition
improves the error scaling to O(ε2). The systematic improvement is obtained by
increasing the number of discretization steps M . The intricate long-time evolution
is thus approximated by a (large) product of Trotter gates

U(τ)|ψ0〉 ≈
M∏

n=1




z∏

p=1

∏

〈i,j〉(p)
uij


 |ψ0〉+O(ε). (3.10)
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Figure 3.2: Trotter decomposed imaginary-time evolution operator in one and
two dimensions. Left: time evolved iMPS |iMPS0〉. At step m the partial evolution
operator UT,p for p = 1+(m mod 2) is applied. Each UT,p is represented by a layer
of non-overlapping two-site Trotter gates u acting on the physical indices (vertical
lines). Right: time evolved iPEPS |iPEPS0〉. Each horizontal layer of Trotter gates
(blue shapes) represents an action of a single partial evolution operator UT,p in
similar manner as in the case of iMPS. The Trotter gates act on the physical indices
of iPEPS (black vertical lines).

This is a general result, and as far as the Hamiltonian is local the Trotter decom-
position is always available. Although for less localized Trotter gates, e.g. acting on
three sites, the minimal number of partial Hamiltonians Hp can quickly grow.

The Trotter decomposed imaginary-time evolution operator of Eq. (3.10) can be
readily applied to iPEPS. Interpreting the single two-site Trotter gate as a tensor
in the spin basis

uij =
∑

sisj ,s′is
′
j

(u)sisj ,s′is′j |sisj〉 〈s′is′j | , (3.11)

we can express the whole evolution as a tensor network. We give the diagrammatic
interpretation of both time-evolved iMPS and iPEPS in Fig. 3.2, The network rep-
resenting the time-evolved iPEPS extends into a third dimension, which plays the
role of the imaginary time. Each discretization step is represented by a set of layers
of Trotter gates, depending on the number of partial Hamiltonians Hp. Each layer
represents the action of a single partial evolution operator

UT,p(ε) := exp(−εHp). (3.12)

As we stated before, The Trotter error is reduced by increasing the number of
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steps M which in effect makes the network taller. The complete contraction of this
network gives the ground state, which in principle can be described by iPEPS.
However, directly contracting a network of iPEPS time-evolved by M steps results
in iPEPS with bond dimension D ∝ O(kM ), where k is the internal dimension of
the Trotter gate1. This exponential growth of entanglement with time cannot be
sustained, therefore it is necessary to use a different strategy to extract the ground
state from the time-evolved network.

3.2.2 Contracting time-evolved iPEPS

To make the contraction of time-evolved iPEPS tractable, we want to preserve the
efficient representation at any point in the evolution. The basic premise is for the
ground state to be well described by iPEPS with a (relatively) small bond dimension
D. Therefore, the key is to proceed layer by layer while maintaining the optimal fixed
D approximation of the so far contracted network. At each step m contracting a

single layer of gates, which make up the partial evolution operator U
(m)
T,p (ε), with the

current state |ψm〉 produces a new iPEPS. However, its bond dimension is increased
on the bonds where the Trotter gates act. The elementary task at every step is thus
to find an iPEPS of bond dimension D that minimizes the distance from the iPEPS
time-evolved by the partial evolution operator UT,p(ε). Formally, taking iPEPS |ψm〉
at step m, the optimal approximation of the time-evolved state in a class of iPEPS
with bond dimension D is given by

|ψm+1〉 = argmin
|φ〉∈iPEPS(D)

∣∣∣|φ〉 − U (m)
T,p (ε)|ψm〉

∣∣∣ . (3.13)

The distance F to be minimized, induced by the usual inner product on the physical
Hilbert space, is composed of four terms

F(φ) := | |φ〉 − |Uψm〉 |2 = 〈φ|φ〉 − 〈Uψm|φ〉 − 〈φ|Uψm〉+ const, (3.14)

where |Uψm〉 = U
(m)
T,p (ε)|ψm〉 is a shorthand notation for the time-evolved iPEPS.

This minimization problem is quite complicated. The individual terms making
up the distance F are equivalent to the contracted double-layer tensor networks,
and as such they must be evaluated approximately, e.g. by the means of CTM.
Moreover, the distance F is a highly non-linear function of the on-site tensors,
which define the iPEPS |φ〉. In effect, one has to resort to iterative methods in
an attempt for a solution. But generically within every iteration, the evaluation
of the distance requires CTM for both the norm 〈φ|φ〉 and the overlaps 〈Uψm|φ〉
or 〈φ|Uψm〉, which makes the computational expense1 for just a single iteration
already too high.

1internal dimension of the Trotter gate (u)sisj ,s′is′j is given by the rank of the matrix u(sis
′
i)(sjs

′
j)

.
1 the complexity of CTM is O(χ3d3), with d = D2 being the dimension of the double-layer

tensors. The time-evolved iPEPS has a bond dimension increased by the factor k, the internal
dimension of the Trotter gate, which for the operator such as spin-spin interaction Si ·Sj is k = 4.
Therefore, the contraction of the overlap term 〈Uψm|φ〉 by CTM is roughly 43 times slower than
for the norm 〈φ|φ〉.
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Figure 3.3: iPEPS ansatz for Simple Update Top left: two-site bipartite iPEPS
extended by the weights λ1, . . . , λ4 for SU optimization. There are four non-
equivalent links between on-site tensors each requiring a diagonal matrix of weights
λ. Top right: four-site iPEPS with 2 × 2 unit cell extended by eight weights
λ1, . . . , λ8. Bottom: Simple update ansatz for environment tensors. The environ-
ment bond dimension is taken to be one, which makes corner tensor C trivial. The
half-row/-column tensors T are built just from the product of weights λ, one from
the bottom and one from the top layer of the double-layer network. The weights
used to build T depend on its position in the network.

To move forward, the intractable minimization problem of Eq. (3.13)) is instead
replaced by a simplified alternative based on the heuristic reasoning. Its solution
should provide a good approximation of the imaginary-time evolved iPEPS for suf-
ficiently small time step. We present two such recipes, the so-called Simple and Full
update, extensively used to optimize iPEPS tensor networks.

3.2.3 Simple update

The Simple Update (SU) for two-dimensional nearest-neighbor Hamiltonians was
introduced by Jiang [32] and later extended to next-nearest neighbour interac-
tion [33] and beyond [34]. In its essence, it is a straightforward generalization of
the imaginary-time evolution of iMPS by the so-called time-evolving block decima-
tion (TEBD) [35]. In one dimension, the equivalent minimization of Eq. (3.13) for
time-evolved iMPS can be solved efficiently and exactly by imposing the so-called
canonical form. The environment of any finite segment of iMPS, composed just from
the left and right boundary vectors of dimension D2, is encoded by the diagonal
D-dimensional matrices λ (dubbed weights). These weights are part of the iMPS
and allow for fast and exact computation of both the norm and the overlaps of
iMPS (for details see [35]). The SU optimization starts by augmenting the iPEPS
ansatz with the weights λ on every auxiliary bond. We show examples for two types
of iPEPS: two-site bipartite iPEPS and four-site iPEPS in the Fig. 3.3. For other
cases, the weights are added analogously. To compute observables by the CTM we
can recover the usual iPEPS with no weights by simply absorbing them back into
on-site tensors.

Now, we address the two main approximations done by SU in order to simplify
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Figure 3.4: Top: The distance fSU minimized during a single step of SU opti-

mization. It is minimized with respect to tensors Γ
(1)
a , Γ

(1)
b and the weight λ1 on

the link where the gate u acts. Bottom: The SU is performed on two-site bipartite
iPEPS, optimized for nearest-neighbor Hamiltonian. At step m, the iPEPS |ψm〉
time-evolved by a single partial evolution operator UT,p(ε) is approximated as a
new iPEPS |ψm+1〉, formed from the tensors that minimize the distance fSU .

the minimization problem of Eq. (3.13). The first one is done at the level of the
partial evolution operator UT,p(ε), which is by itself a product of Trotter gates. For
a sufficiently small time step, the UT,p(ε) can be expanded up to first order as

UT,p(ε) =
∏

〈i,j〉(p)
uij(ε) ≈

∑

〈i,j〉(p)
uij(ε) +O(ε2). (3.15)

For translationally invariant Hamiltonians the pairs 〈i, j〉(p) define a certain periodic
arrangement of the identical Trotter gates, as shown in the Fig. 3.2. At the level
of unit cells, the iPEPS is also periodic and hence it is enough to minimize the
distance between iPEPS evolved by a single Trotter gate

|ψm+1〉 = argmin
|φ〉∈iPEPS(D)

Floc(φ) := argmin
|φ〉∈iPEPS(D)

||φ〉 − u(ε)|ψm〉| . (3.16)

The on-site tensors found by solving this “local” problem define a new iPEPS which
is optimal up to first order in the time step. The second approximation is essential
but drastic. The environments of the double-layer networks defining the norm and
overlap, that make up the distance Floc in the above minimization, are approxi-
mated just by the weights λ. We give the diagrammatic definition of the equivalent
environment tensors C and T in the Fig. 3.3. Such an approximate environment
is effectively rank-1 and completely neglects all the correlations between different
spatial regions of the system. In fact, it can be shown that with such an environment
the SU optimizes the system as though it lives on a Bethe lattice [36].

With the two key approximations in place, the original minimization problem
of the Eq. (3.13) is replaced by a significantly easier one, given in the terms of
distance fSU which is defined diagrammaticaly in the Fig. 3.4. Inside the distance
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fSU , only the small local networks play a role. They consist of the on-site tensors
upon which the single gate u acts and the weights connected to these sites. The
distance fSU is minimized using SVD since it finds the best rank-D approximation
of the time-evolved local network . We give a detailed account of the SU process
for both NN and NNN interaction, including the important details relevant for
numerical implementation in Appendix B.4. The tensors found by doing so are
then replaced in every unit cell of the iPEPS. The SU optimization proceeds by
contracting the whole three-dimensional network of time-evolved iPEPS layer by
layer alternating the placement of the corresponding gate within the unit cell as
per the applied partial evolution operator UT,p. After a sufficient number of steps,
the evolution reaches a fixed point iPEPS that represents the τ → ∞ limit of
imaginary-time evolution under SU. Once the weights are absorbed into the on-
site tensors resulting in a regular iPEPS, the observables can be extracted from the
wave function with the CTM. Although very crude, the SU is fast. Taking an iPEPS
with bond dimension D its complexity for two-site gate u is just O(D3), and for a
three-site gate, necessary for the NNN interaction, it becomes O(D6).

Finally, let us comment on the single parameter that controls the SU optimiza-
tion, which is the time step ε of the Trotter decomposition. Even though in principle
the Trotter error can be made arbitrarily small by reducing the time step, this fact
is not reflected in the results of SU. The truncation error introduced at each SU
step by keeping the bond dimension D fixed spoils this feature. As a rule of thumb,
smaller time steps improve the final optimized iPEPS but it is not guaranteed to
always be the case.

3.2.4 Full update and fast full update

The SU optimization described above is fast, but at rather steep price. Spatial
correlations, which are present in the wave function, are basically ignored during the
time evolution when solving the local problem of the Eq. (3.16). Hence, the fixed-
D iPEPS successively produced by SU are far from being optimal. Instead, they
can be very poor approximations of the wave function time-evolved by the partial
evolution operator UT,p. These shortcomings of SU are even more pronounced for
highly-correlated ground states such as spontaneous symmetry-broken phases of
which there is plenty to be found in quantum magnets, a prime example being the
ground state of Heisenberg antiferromagnet.

Full update (FU) is a more refined approach to imaginary-time evolution of
iPEPS, introduced by Jordan et al. [13]. The true minimization problem of the
Eq. (3.13) is still beyond reach. The aim of FU is to avoid the severe approximation
of the environments that appear in the local problem given in the Eq. (3.16). The
distance Floc, between the iPEPS |ψm〉 time-evolved by a single gate u and its
fixed-D approximation |φ〉 reads

Floc(φ) = 〈φ|φ〉 − 〈uψm|φ〉 − 〈φ|uψm〉+ const. (3.17)

Since both the norm and overlaps are still highly non-linear functions of the on-site
tensors of |φ〉 a simplification, although less extreme, is done: the iPEPS |φ〉 is taken
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to be identical to the initial iPEPS |ψm〉 except the on-site tensors on which the
gate u acts. Initially, only the NN Hamiltonians were considered, but later the FU
was extended also to systems with NNN interactions requiring three-site gates [37,
38]. The resulting approximate distances, denoted fFU , take the form

fFU (ã, b̃) = 〈ψm(ã, b̃)|ψm(ã, b̃)〉 − 〈uψm|ψm(ã, b̃)〉 − 〈ψm(ã, b̃)|uψm〉 , (3.18)

fFU (ã, b̃, c̃) = 〈ψm(ã, b̃, c̃)|ψm(ã, b̃, c̃)〉 − 〈uψm|ψm(ã, b̃, c̃)〉 − 〈ψm(ã, b̃, c̃)|uψm〉 ,
(3.19)

where in the first row the on-site tensors {ã, b̃} affected by the two-site gate u play
the role of variables. The second row is analogous, except the L-shaped gate u is
assumed to act on three sites {ã, b̃, c̃}. We illustrate these two important cases of
distance fFU covering the NN and NNN Hamiltonians in the Fig. 3.5. Considering
the diagrammatic form of fFU , it is natural to interpret each of these minimizations
as an “impurity” problem embedded in the (constant) environment of the double-
layer iPEPS |ψm〉 that surrounds the affected sites. Once found, the optimal tensors
{ã, b̃} ({ã, b̃, c̃}), are replaced in every unit cell defining a new approximate time-
evolved iPEPS |ψm+1〉. Effectively, the solution of the local impurity problem is
promoted to a global one. The details of solving the above impurity problem by the
means of Alternating least-squares are given in Appendix B.5.

This concludes the approximate solution of the original minimization of
Eq. (3.13) by FU. Within every FU step the time-evolved iPEPS |uψm〉 with the
increased bond dimension is approximated by the iPEPS |ψm+1〉 of a fixed D. Af-
terwards, the last step before moving on to the next layer of gates is to compute
the new fixed point environment tensors Em+1 by the CTM. In principle, the CTM
should be iterated until convergence to do so. However, that is a very costly process.
For sufficiently small time steps the change in the on-site tensors is assumed to be
small. Hence only a few iterations of CTM starting from the previous environment
Em should already provide a good enough environment Em+1 of the updated iPEPS.
Indeed, for time step ε → 0 the on-site tensors remain unchanged and there is no
need to recompute the environment1. This variation of the Full update, known as
Fast full update (FFU) [39, 40] provides a dramatic speed-up by performing only
a single CTM step (or just a few) every time the on-site tensors are updated.

With the updated environment, the FU (or FFU) proceeds to contract the next
layer in the network of imaginary-time evolution. Eventually, after contracting a
sufficient number of layers this approximate evolution reaches the fixed point. Since
within FU the environment of the iPEPS is always available, the convergence can be
established by directly observing the variational energy. The final iPEPS provides
the best variational approximation of the true ground state by the FU optimiza-
tion. Similarly as in the case of SU, decreasing the time step ε generally improves
the variational energy but eventually, the truncation error introduced at each step

1strictly speaking, this is not true since the FU for vanishing time step leaves the on-site tensors
unchanged up to a gauge. Performing at least a step of CTM maintains the compatibility of the
environment tensors with the new gauge.
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Figure 3.5: Derivation of the approximate distance fFU minimized by the FU
for two-site bipartite iPEPS optimized under the action of translationally invariant
NN Hamiltonian. Starting from the top, the true distance F between iPEPS time
evolved by UT,p [see Eq. (3.13)] is approximated by the local problem Floc involving
just a single Trotter gate u. Afterward, the problem is linearized by allowing only
two tensors directly modified by the gate to vary. The distance between such iPEPS
|ψm(ã, b̃)〉 and the original |ψm〉 evolved by a single two-site gate u is denoted fFU .
Bottom: Four-site iPEPS with 2 × 2 unit cell is optimized by FU with respect to
the NNN Hamiltonian. Its Trotter decomposition is given in a terms of L-shaped
three-site gates u. The fFU is a distance between the iPEPS |ψm〉 evolved by a
single three-site gate u and its modified version now with three different tensors
|ψm(ã, b̃, c̃)〉.

catches up and prevents further improvements. Overall, the FU leads to consider-
ably better variational iPEPS than SU at the expense of complexity, as every (F)FU
step invokes at least a single iteration of the costly CTM procedure.
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3.3 Gradient based methods

The imaginary-time evolution performed either by SU or the more refined (F)FU
ultimately does not provide a good enough variational iPEPS in many challenging
cases. The severe and uncontrolled approximations taken within those methods in
order to obtain numerically feasible algorithms put a hard limit on their precision.
While this might not prevent either of them to describe sufficiently well the gapped
and weakly correlated phases, it certainly becomes a problem when addressing the
continuous phase transitions.

The direct energy minimization takes a more rigorous approach, treating the
optimization of iPEPS as a type of non-linear optimization problem

|Ψ〉 = argmin
|φ〉∈iPEPS(D)

〈φ|H|φ〉
〈φ|φ〉 , (3.20)

to be solved within a class of iPEPS with a bond dimension D. There are two
principal levels of difficulty with such optimization problem. The first and the more
ambitious one, is to find the iPEPS |Ψ〉 which realizes the global minimum of the
energy. For a highly non-linear function of many parameters, it is an archetypal case
of NP-hard problem. Instead, we will focus on the (relatively) simpler task, which
is to find the best local minimum starting from a guess |ψ0〉. The standard way to
proceed in such a case is to minimize the function using the gradients1. Treating
all N on-site tensors a = {a, b, . . .} which define the iPEPS |φ(a)〉 as a single point
in a large NdSD

4-dimensional parameter space, we are interested in computing the
gradient of the variational energy

g0 := ∇E(a0) = ∇〈φ(a0)|H|φ(a0)〉
〈φ(a0)|φ(a0)〉 , (3.21)

at arbitrary point a0. The gradient g0 completely describes the energy in the imme-
diate vicinity of the point a0. More precisely, adjusting the tensors in the direction
da by a small step β → 0 the resulting change in the energy is

E(a0 + βda) = E(a0) + βg0.da +O(β2). (3.22)

Therefore, once the gradient has been computed the tensors can be adjusted ac-
cordingly as to decrease the energy. The most straightforward scheme to do so is
the so-called steepest descent optimization

ai+1 = ai − βigi,
E(ai+1) = E(ai)− βi|gi|2 +O(β2

i ),
(3.23)

where at each step i, the tensors are adjusted in the direction opposite to the

1 in general, the evaluation of the energy is costly as it requires the converged CTM. Thus the
alternative gradient-free optimization methods which rely on the fast evaluation of the objective
function are ruled out.
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gradient by a step βi. The sufficiently small step guarantees the decrease in the
energy. Eventually, the steepest descent arrives at the local minimum of the energy.
The corresponding iPEPS |Ψ〉 is a candidate for the best variational state with bond
dimension D. There are more refined ways to reach the local minimum in terms of
speed of convergence, all of which rely on the gradients, and we will return to them
later.

The fundamental ingredient of the outlined optimization is the gradient g. Its
computation for an arbitrary iPEPS |φ(a)〉 is the only difficult and conceptually
new step. The first breakthrough in this direction came in 2016, by Corboz [41]
and Vanderstraeten et al. [24]. Taking a translationally invariant NN Hamiltonian
and a one-site iPEPS |φ(a)〉, fix all but a single tensor a. We are interested in the
gradient of the energy with respect to a∗2. The key observation shows, that it can
be expressed as an infinite sum of the contributions from all two-site terms, where
each individual contribution is naturally interpreted as a tensor network

H =
∑

〈ij〉
hij ,

g = ∇〈φ(a)|H|φ(a)〉
=
∑

〈ij〉
∇Traux(. . . (a∗)s

′
i(a∗)s

′
j . . .)hs′is′j ,sisjTraux(. . . asiasj . . .)

=
∑

〈1j〉
Traux(��

�HHH(a∗)s
′
1 (a∗)s

′
j . . .)hs′1s′j ,s1sjTraux(as1asj . . .) +

∑

1 6∈〈ij〉
Traux(��

�HHH(a∗)s
′
1 . . . (a∗)s

′
i(a∗)s

′
j . . .)hs′is′j ,sisjTraux(. . . asiasj . . .). (3.24)

The final expression has a straightforward diagrammatic interpretation. Each term
represents a contracted double layer network including a single two-site operator h
but with the fixed tensor a∗ missing3. Together, they account for the contributions to
the gradient from all relative positions of the term h with respect to the fixed tensor
a, as illustrated in the Fig. 3.6. In the Refs. [24, 41], an efficient resummation schemes
for the infinite sum that makes up the gradient have been proposed. Both approaches
are based on the methods to contract the double-layer networks, either by extending
the CTM [41] or alternatively using the so called channel environments [24], both
with the complexity O(χ3D6). This progress made the gradient-based optimization
of iPEPS a reality, setting the new standard for optimal iPEPS for prototypical
models of quantum magnets as spin-1/2 antiferromagnetic Heisenberg model on a
square lattice.

Internally, the resummation schemes are tightly connected to the form of the
Hamiltonian. In particular, to the form and the extent of the individual interac-
tion terms. Moving on from NN Hamiltonians to NNN Hamiltonians and beyond,

2or a. For real iPEPS the distinction is irrelevant. For complex tensor a, the energy is still a
real function of a and the gradient is taken only with respect to either real or imaginary part of a.

3the operator h used in such computation of the gradient is modified by subtracting its expec-
tation value h→ h− 〈h〉. This eliminates the (infinite) contribution from the disconnected part of
the sum in the Eq. 3.24, see Ref. [24] for details.
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Figure 3.6: Gradient for NN Hamiltonian is given by the (infinite) sum of contri-
butions from all two-site interaction terms h. The red legs represent the unpaired
indices of the missing tensor a∗ and the violet shapes represent the two-site inter-
action operator h.

requires a non-trivial extension and also leads to an increase in computational com-
plexity. The pursuit for a more versatile methods to evaluate gradients is thus still
on. The most recent development comes from borrowing the state-of-the-art com-
ponent of the leading machine learning frameworks known as backpropagation or
more generally automatic differentiation.

3.3.1 Primer: Automatic Differentiation

The automatic or algorithmic differentiation (AD) represents a set of techniques for
highly efficient evaluation of derivatives of complicated functions. The basic premise
is that any function, no matter how complex, is ultimately just a composition of
(many) elementary functions such as additions, multiplications, or transcendental
functions like exponential. Treated as a computer program, possibly with a control
flow1, the AD evaluates the gradients by “differentiating” the program itself by
automatic application of the chain rule. For a more comprehensive introduction see
the Refs. [42, 43].

Let us analyze in detail the evaluation of the gradient for a scalar function E of
N variables

E : RN −→ R (3.25)

where E is defined as a composition of several vector functions F 1, F 2, F 3, and final
vector to scalar function F 4

E : RN F 1

−→ RM2
F 2

−→ RM3
F 3

−→ RM4
F 4

−→ R
F 4(F 3(F 2(F 1(x)))) = F 4(F 3(F 2(v2))) = F 4(F 3(v3)) = F 4(v4) =: E

(3.26)

Although relatively simple, this model captures all the essentials of the numerical
implementation of the variational wave function (or neural network), which given
a set of parameters x0 evaluates the variational energy. In order to optimize the
parameters, we are interested in the gradient g0 of the function E at the point
x0. The conceptually simplest option is to evaluate the gradient using the finite

1control flow such as branching statements (if) or loops (for,...) does not present any problem
for AD as far as it is uniquely resolved for any input. This is not the case for symbolic differentiation.
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differences

(g0)i ≈
E(x0 + hei)− E(x0)

h
, (3.27)

where ei is unit vector in the i-th direction in the parameter space and h is a small
step size. There are two main issues. The first is practical, as the finite precision
arithmetic introduces numerical errors. The second issue of a major consequence is
the complexity. Since the difference has to be evaluated for all N directions, the
overall cost becomes O(N) × O(E), where O(E) is the complexity of the single
evaluation of E.

Suppose, that the derivatives of the intermediate functions F 1, . . . , F 4, can be
readily computed. This opens another path to the gradient through the direct ap-
plication of the chain rule. For a given function Fn, its Jacobian reads

Jn :=

(
∂Fn

∂vn

)
=




∂Fn
1

∂(vn)1
. . . ∂Fn

1

∂(vn)Mn

...
...

...
∂Fn

Mn+1

∂(vn)1
. . .

∂Fn
Mn+1

∂(vn)Mn
,


 (3.28)

where (vn)i is the i-th component of a vector vn ∈ RMn . Evaluating the Jacobian
at the given point vn = vn0 gives simply a Mn+1 ×Mn matrix of numbers

Jn(vn0 ) =

(
∂Fn

∂vn

)∣∣∣∣
vn=vn

0

. (3.29)

Taking a point x0 and a given direction ei we can compute both the function E
and the corresponding component of the gradient (g0)i as follows

x0 ≡ v1
0 −→ v2

0 = F 1(v1
0) −→ v3

0 = F 2(v2
0) −→ v4

0 = F 3(v3
0)

−→ E = F 4(v4
0), (3.30)

ei ≡ g1
0,i −→ g2

0,i = J1(v1
0) · g1

0,i −→ g3
0,i = J2(v2

0) · g2
0,i −→ g4

0,i = J3(v3
0) · g3

0,i

−→ (g0)i = J4(v4
0) · g4

0,i. (3.31)

The i-th element of the gradient g0 has been evaluated by performing the three
matrix-vector products and the final dot product1 starting from the right

(g0)i = J4(v4
0) · (J3(v3

0) · (J2(v2
0) · (J1(x0) · ei))). (3.32)

This is the so called forward mode of AD, as the initial perturbation ei is propagated
forward through the computation of the function E. The Jacobians Jn, being large-
dimensional objects, are never constructed explicitly, it is enough to perform matrix-
vector multiplications by computing the individual elements on the fly. But contrary
to the finite differences, the components of the gradient are evaluated with full
numerical precision. However, in order to obtain the complete gradient, we still need

1for n = 4, the Jacobian J4 is in fact a row vector, as the F 4 is a scalar function.
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to repeat this procedure N times for each direction in the paramater space. The
complexity scaling with the dimensions of the parameter space is too prohibitive.

Now comes the conceptual leap, in what is called the reverse mode AD. Suppose,
that the function E has been evaluated at the point x0 and all the intermediate
variables v4

0, . . . ,v
2
0 are still available. Therefore, the elements of the Jacobians

J4, . . . , J1 can be computed as well. This allows us to evaluate the product of the
Jacobians in the reverse order now

1 · J4(v4
0) = v̄4

0 → v̄4
0 · J3(v3

0) = v̄3
0 → v̄3

0 · J2(v2
0) = v̄2

0 → v̄2
0 · J1(x0) = x̄0,

(3.33)

where the row vectors v̄4
0, . . . , x̄0 are dubbed adjoints. The first adjoint in the se-

quence1 v̄4
0, is given just by the elements of the last Jacobian J4(v4

0). Every step
is a vector-matrix multiplication, where the adjoint vector multiplies the Jacobian
from the left. The final result x̄0 is actually the gradient itself, which can be simply
verified

x̄0 · ei = (((J4(v4
0) · J3(v3

0)) · J2(v2
0)) · J1(x0)) · ei = (g0)i. (3.34)

And so by performing a single computation of Eq. (3.33), we have obtained the
complete gradient g0 at point x0. Analogously to the forward mode, the Jacobians
do not have to be explicitly constructed. Only the vector-matrix multiplication
functions F̄n, dubbed adjoint functions, are needed. They are defined as

F̄n : RMn × RMn+1
F̄n

−→ RMn

F̄n(vn, v̄n+1) := v̄n+1 · Jn(vn) = v̄n.
(3.35)

With the help of the adjoint functions we can compactly express the reverse algo-
rithm of the “program“ (3.26), which evaluates the gradient

F̄ 1(x0, F̄
2(v2

0, F̄
3(v3

0, F̄
4(v4

0, 1)))) = x̄0. (3.36)

Not only is the gradient computed with full numerical precision, but this time the
crucial difference is in the complexity. It is constant with respect to the number
of parameters N . In fact, it can be proven, that the total number of operations
needed to compute the gradient of a scalar function via reverse mode AD is at most
6 × O(E) [43]. Let us stress that fast execution of the reverse mode AD relies on
the existence of efficient adjoints F̄ , especially for less elementary functions F such
as SVD or diagonalization.

Although we demonstrated reverse AD on the simple example of the Eq. (3.26),
the mechanism is easily extended to arbitrary number of intermediate functions F .
Moreover, the functions F themselves can be a direct product of several “smaller”

1technically, the first adjoint in the sequence is a (co)directional vector ē in the space of outputs,
but for a scalar function there is just a single direction in the space of outputs so ē = 1.
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functions, for example

F : RN F−→ RM

F (x) :=




f(x[1:k′])

g(x[k′+1:l′])

id(x[l′+1:N ])


 =




v[1:k]

v[k+1:l]

v[l+1:M ]


 = v,

(3.37)

where f, g are some vector functions and id is an identity x[l′+1:N ] = v[l+1:M ] [the
dimensions are equal: N− (l′+1) = M− (l+1)]. The Jacobian for such F simplifies
into a block-diagonal form and the formula of the Eq. (3.36) for reverse mode
computation of the gradient is still valid without any change.

In summary, the reverse mode AD enables fast and numerically precise com-
putation of the gradient for any scalar function E implemented as a program that
composes the elementary functions F for which the adjoints F̄ are known. First, the
function E is evaluated keeping all the intermediate variables. In the second stage,
the adjoints are composed in the reverse order, as in the Eq. (3.36), resulting in
the gradient g. The price to pay, is the necessity of preserving all the intermediate
variables. The reverse mode AD is the integral part of the leading machine learning
frameworks such as PyTorch [44] or TensorFlow [45], with backpropagation being
just a special case of more general reverse AD. In essence, they provide two basic
tools. First, a rich set of tensor algebra operations F together with their adjoints
F̄ . Second, the AD engine which takes a user-supplied program for a function E
and evaluates both its value and the gradient automatically by composing in the
reversed order the adjoints of the operations F from which the E is built up. As
the Liao et al. realized in their recent work [46], there is no fundamental obstacle
in applying the machinery of AD to tensor network algorithms.

3.3.2 Differentiating iPEPS algorithms with AD

The properties of the reverse mode AD are very appealing. To employ this technique,
we have to first understand whether the process of the computation of the energy for
a given iPEPS falls into the category of functions as the studied example E(x) in the
Eq. (3.26). The second step is to identify the smallest building blocks of the process
and check if their adjoints exist. If these two conditions are met, the gradient of
the energy of iPEPS can be evaluated by the reverse AD. We will restrict ourselves
to the simple case of one-site C4v symmetric iPEPS and the C4v symmetric NN
Hamiltonian H =

∑
〈ij〉 hij such as Heisenberg model, and show that it is indeed

the case. The following analysis can be straightforwardly extended to directional
CTM with unit cells, making it differentiable by AD as well and we will return to
this matter later in this section.

Let us recall that for such iPEPS, defined in the terms of a single tensor a,
the passage from a to the energy E(a) is composed of two main steps. First, the
CTMRG algorithm converges to the rank-χ fixed point environment tensors {C, T}.
Afterwards, in the second step, the reduced density matrix ρ2×1 is built from the
environment tensors {C, T} (see the Fig. 2.10) and the expectation value 〈h〉 =
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Tr(ρ2×1h) is computed. Finally, the on-site energy is given by E(a) = 2 〈h〉. The
above described steps can be formally expressed as the composition of four functions

E : RdsD4 F init

−→ RM FCTMRG

−→ RM FRDM

−→ R4×4 F e

−→ R. (3.38)

First, F init produces the double-layer tensor A and the initial environment ten-
sors {C0, T 0}, living in a large space RM . Next, the FCTMRG performs the whole
CTMRG algorithm. In fact, from its detailed description in the Appendix B.1, we
can split FCTMRG into N iterations of RG step F step. The N -th step gives the
converged environment tensors1 and the reduced density matrix ρ2×1 is then built
in FRDM . Finally, the function F e evaluates the two-site operator and returns the
variational energy. The whole process is thus a sequence

E : RdsD4 F init

−→ RM F step

−→ RM F step

−→ . . .
F step

−→ RM FRDM

−→ R4×4 F e

−→ R, (3.39)

where the individual functions, specifying only their arguments and outputs, are

F init(a) = (A,C0, T 0),

F step(A,Ci, T i) = (A,Ci+1, T i+1),

FRDM (a,CN , TN ) = ρ2×1,

F e(ρ2×1) = E.

(3.40)

We have expressed the variational energy E(a) as a composition of four different
functions, in the form similar to the example from the Eq. (3.26). Still, at this level
of granularity, their adjoints (or Jacobians) are not easily deduced. Therefore, we
will break down the functions F into their basic constituents.

In general, the tensor network algorithms are ultimately composed of just a few
elementary functions. In particular tensor contractions, which consist of reshapes,
permutations, and finally matrix multiplication. Out of those, only the matrix mul-
tiplication needs to be differentiated as the rest merely reshuffles the elements. In
the case of CTMRG, the only other required operation is the diagonalization. With
this in mind, we expose the whole scalar function E(a) of the Eq. (3.39) down to
such detail in the form of the directed acyclic graph (DAG) shown in the Fig. 3.7.
This DAG provides an equivalent definition of the scalar function E(a). The only
elementary functions making up the whole DAG are the matrix multiplication and
the diagonalization2. For both of them, the adjoint functions are known [46, 47].
Therefore, the gradient of the variational energy E(a) can be readily computed by
the reverse AD. First, the E(a) is evaluated and all the intermediate variables repre-
sented by the vertices of the DAG in the Fig 3.7 are stored. In the second phase, the
adjoint functions are evaluated while traversing the DAG in the opposite direction.

1the control flow statements in CTMRG as the while loop and the if convergence condition
do not present a problem for the reverse AD. For a given iPEPS and the εCTMRG convergence
criterion, there will be just a fixed number N of RG steps executed.

2the truncation as well as the normalization of C, T which we have omitted in the DAG are
just a special case of matrix multiplication.
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Figure 3.7: Complete DAG representation of the function E(a), which evaluates
the variational energy of one-site C4v symmetric iPEPS through CTMRG. The
shapes hold the variables and the arrows represent the functions. Every arrow,
unless labeled, represents tensor contraction of one or more tensors. Exceptions
are the id arrows which are just identities, the trunc arrow is the truncation, and
the diag arrow is the symmetric diagonalization returning the eigenvalues and
the eigenvectors D, U . The tables on the right describe in detail the sequence
of the tensor contractions needed to construct the enlarged corner and the new
environment tensors. The reduced density matrix ρ2×1 is constructed analogously,
just by a series of tensor contractions from tensors a, CN , and TN .

If the same variable v enters several functions F as an argument, its adjoint v̄ is a
sum of contributions from the adjoint version of all those functions

v̄ =
∑

α

F̄α(v, ō), (3.41)

where ō stands for the adjoints of the outputs. This is the case, for example, of the
double-layer tensor A which enters the computation of both the enlarged corner
C2×2 and the T tensor in each step of the CTMRG.
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Let us conclude this section by a few remarks. First, the reverse AD can be
directly applied also to iPEPS with unit cells. Besides more complicated DAG with
many more intermediate variables, the only difference is the use of the SVD to
construct the projectors used by the directional CTM and the adjoint function of
SVD is available [47]. Second, although we have not touched this subject the reverse
AD with the necessary adjoints can be extended to the complex-valued tensors [48].
The most recent development in this direction is the adjoint function of the com-
plex SVD [49], thus covering the main iPEPS algorithms completely. Finally, the
most important remark concerns the real limits of reverse AD. They are set by the
requirement of storing all the intermediate variables during the evaluation of the
variational energy. While for the one site C4v iPEPS, the memory requirements
are not drastic, for the iPEPS with large unit cells they can grow quickly out of
proportions. The need for storing all the intermediate variables can be eliminated
by the use of so-called checkpointing [46]. The intermediate variables within the
checkpointed section of the DAG are not stored. Only the inputs and the outputs
of that section are stored while the rest is recomputed on the fly during the reverse
traversal of the DAG. For example, one can checkpoint the whole RG step F step,
thus saving just the environment tensors {C, T} and avoiding to store large interme-
diate variables such as the enlarged corner. This increases the number of operations
at most by a factor of two. The AD engine as implemented within TensorFlow or
PyTorch (and many other implementations) works directly with the DAG repre-
sentation of the functions to be differentiated. The user-supplied program is turned
into DAG either before or during the execution of the variational energy function.
Therefore, the checkpointing is readily available.



4

Multiplets in coupled spin ladders

CONTENTS

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Benchmark: Isotropic Heisenberg antiferromagnet . . . . . . . . . . . . . . 60

4.2.1 The iPEPS ansatz and the computational details . . . . . . 61
4.2.2 Energy, magnetization, and finite correlation length

scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Case study: Heisenberg antiferromagnet on coupled ladders . . . . 64

4.3.1 Issues with optimization and the rough landscape . . . . . . 65
4.3.2 Appearance of multiplets in the virtual space . . . . . . . . . . 70
4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Introduction

The iPEPS has been widely used in the recent years to assess the properties of
two-dimensional quantum spin systems. Focusing on the spin S = 1/2 and S = 1
quantum magnets we list just a few of the main results achieved so far. The phase
diagram of Shastry-Sutherland model, which provides an effective description of
the orthogonal-dimer AFM SrCu2(BO3)2 was among the first of such challenging
systems addressed by iPEPS [37]. Later, the study of this model in the magnetic
field [26] led to an insight explaining the formation of the magnetization plateaus.
Large scale iPEPS investigation of spin-1/2 Heisenberg antiferromagnet on kagome
lattice [50] provided another piece of evidence supporting the existence of a gap-
less spin-liquid phase in this system. Recently, complete phase diagrams of spin-1
bilinear-biquadratic Heisenberg models on the square and the triangular lattices
were explored [51, 52]. Also the frustrated J1 − J2 model on a square lattice for
both spin S = 1/2 and S = 1 was addressed by iPEPS [38, 53]. All of these results
were obtained by the imaginary-time evolution with SU and FU, still the method
presents critical issues when dealing with the unrestricted optimization of tensors.

One of the discrepancies in the context of the imaginary-time optimized iPEPS
is the overestimated magnetization of the standard spin-1/2 Heisenberg antiferro-
magnet on a square lattice, even after the extrapolation to the limit of large bond
dimension. The iPEPS primarily targets gapped states with finite correlation length,
which is not the case for the symmetry-broken ground state of this model that is
gapless with diverging correlation length. Still, the spontaneous symmetry-breaking
is a common phenomenon in the quantum magnets and thus it is desirable for
iPEPS to provide highly precise description of such phases as well. The recently
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developed finite correlation length scaling [54, 55] was used to obtain the accurate
results for the Heisenberg antiferromagnet or quantum Ising models from the finite-
D iPEPS. However, both mentioned studies relied on the iPEPS optimized by the
direct energy minimization.

In this chapter we first benchmark our implementation of imaginary-time opti-
mization of iPEPS for spin-1/2 Heisenberg antiferromagnet with three-site FU in-
stead of the more common two-site FU. Moreover, we show that the iPEPS obtained
this way can by analyzed by the finite correlation length scaling leading to a very
precise estimates for both the energy and the magnetization in the thermodynamic
limit. In principle, this scaling technique, as developed in the Refs. [54, 55], can be
performed as far as the system is in the magnetically ordered phase. This raises a
tempting prospect of utilizing finite correlation length scaling to improve the iPEPS
analysis of continuous transitions between SU(2)-symmetric and symmetry-broken
phases of quantum magnets. However, there are certain unexpected obstacles that
arise in SU and FU optimization when modeling the continuous transition from the
ordered to non-magnetic phases. In the second part of this chapter we will connect
them to the emergence of a sharp multiplet structure in the “virtual” indices of ten-
sors. In this case, a generic choice of the bond dimension D is not compatible with
the multiplets and leads to a symmetry breaking (e.g., generating a finite magnetic
order). In addition, varying the initial guess, different final states may be reached,
with considerably large deviations in the magnetization value.

This chapter is partly based on the work published as:

[56] J. Hasik and F. Becca, “Optimization of infinite projected entangled pair states:
The role of multiplets and their breaking ”, Phys. Rev. B 100, 054429 (2019)

4.2 Benchmark: Isotropic Heisenberg antiferromagnet

The spin-1/2 Heisenberg antiferromagnet on a square lattice is a paradigmatic model
of a quantum magnetism and despite its deceptively simple form it exemplifies rich
physical behaviour, which can be explained by the theory of spontaneous symmetry
breaking. Its Hamiltonian reads

H =
∑

〈ij〉
Si · Sj , (4.1)

where 〈ij〉 denotes the pairs of nearest-neighbour sites. It has a global SU(2) spin
symmetry. The pioneering work giving the strong evidence for the symmetry broken
ground state was done by P. W. Anderson in 1950’s [57] who performed the per-
turbative spin wave expansion around the classical Néel ground state, estimating
the staggered magnetization at m ≈ 0.303. The finite staggered magnetization is
equivalent to the non-vanishing correlation function

m2 = lim
r→∞

〈S(0).S(r)e−ir.(π,π)〉 (4.2)
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in the thermodynamic limit. The ground state is thus coined to be long-range or-
dered. Moreover, the decay of the connected part of the correlation function

CCS (r) = 〈S(0).S(r)e−ir.(π,π)〉 − 〈S(0)〉〈S(r)〉, (4.3)

is algebraic. Spontaneously breaking the SU(2) symmetry gives rise to gapless Gold-
stone modes. They manifest as spin waves with a transverse polarisation to the
vector of the spontaneous magnetization m = (〈Sz〉, 〈Sx〉, 〈Sy〉) and are responsible
for the algebraic decay of the CCS (r). Inspite of the gapless spectrum and the alge-
braic decay of correlations, the ground state still obeys the Area Law albeit with
a subleading logarithmic correction. This is a generic feature of the ground states
with spontaneously broken symmetries (see Sec. 2.1.3) and it was verified both by
quantum Monte Carlo and the DMRG simulations of antiferromagnetic Heisenberg
model on a square lattice [58].

We benchmark the complete implementation of the directional CTM for unit
cells and both SU and (F)FU optimization on this system.

4.2.1 The iPEPS ansatz and the computational details

We parametrize the ground state by an iPEPS |Ψ(a, b, c, d)〉 with a 2 × 2 unit
cell containing four different on-site tensors a, b, c, and d, with auxiliary bond
dimension D, see Fig. 4.1(a). Within SU, eight additional weights {λ1, . . . , λ8} are
added for each non-equivalent bond between the on-site tensors Γa, Γb, Γc and Γd,
leading to a state denoted as |Φ(Γa,Γb,Γc,Γd, λ1, . . . , λ8)〉, see Fig. 4.1(b). For the
purpose of computing the environment, we absorb the weights into the tensors,
e.g., a = Γa

√
λ1

√
λ2

√
λ5

√
λ6, thus recovering the original form |Ψ(a, b, c, d)〉. To

evaluate observables for a given state, we employ the directional CTM algorithm
extended to unit cells (see Sec. 2.6.2) to construct the environments relative to each
site in the 2 × 2 unit cell. Afterwards, relevant reduced density matrices {ρ} can
be obtained by combining the environments with on-site tensors. We employ two
types of truncated SVD algorithms to speed up the construction of the projectors.
The randomized SVD [59] and SVD based on the Arnoldi iteration [60], reducing
the computational cost of CTM from standard O(χ3D6) down to O(χ3D4).

The Hamiltonian in question, defined in the Eq. (4.1), is the sum of two-site
terms H =

∑
R,R′ hR,R′ . For a sufficiently small imaginary time τ , we simplify the

evolution operator U = exp(−τH) by the symmetric Trotter-Suzuki decomposition
(Eq. (3.6)) into a product of either 2-site or 3-site gates, uR,R′ = exp(−τhR,R′)
and uR,R′,R′′ = exp[−τ(hR,R′ + hR′,R′′)], respectively. Within the 2 × 2 unit cell,
the three sites R, R′, and R′′ are arranged to form all possible L-shaped patterns
covering the two-dimensional lattice. Even though the Hamiltonian contains just
nearest-neighbour interactions, the 3-site gate leads to better optimizations with
respect to the case with two sites.

We perform optimizations of the iPEPS using two-site and three-site Trotter
gates, both with the SU and the FU. To decrease the computational costs of both SU
and FU, we use the scheme with reduced tensors [33, 38]. The in-depth description
of these updates is given in the Appendices B.4 and B.5 respectively. Moreover, in
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Figure 4.1: (a) Regular iPEPS ansatz for 2 × 2 unit-cell. (b) iPEPS ansatz
for SU within the same unit cell. (c) Tensors in capitals denote the double-layer
version of on-site tensors. For example A is given by the contraction of a and
its complex conjugate a† through the physical index. In this case, all tensors
within the ansatz are real. (d) Part of an infinite double-layer tensor network
corresponding to the norm of an iPEPS given by ansatz (c). The rank-χ environ-
ment of the central 2×2 region is assembled from four sets of environment tensors
EA = {CA1 , . . . , CA4 , TA1 , . . . , TA4 }, EB , EC , and ED with the environement bond
dimension χ. The environments for other regions are constructed analogously.

most of the FU simulations, we do not recompute the environment from scratch
after updating the tensors, instead we use the FFU scheme [39], taking only a single
iteration of CTM per applied Trotter gate. For the evaluation of the observables
the CTM is always interated until convergence. In general, we find that for any
fixed time step τ the energy generated by FU optimization reaches a minimum and
then starts increasing. To have a well defined convergence criterion for FU we use
an adaptive τ . Should the energy increase after the FU iteration, we go back to
the previous state and halve the time step, i.e., τ → τ/2. The FU optimization is
terminated once the time step becomes smaller than 10−6. All the computations
have been performed with pi-peps [61], a library for running iPEPS simulations
built on top of ITensor [62].

4.2.2 Energy, magnetization, and finite correlation length scaling

We perform extensive three-site gate FU optimizations of iPEPS with the bond
dimension up to D = 6. The best variational iPEPS was obtained for the bond
dimension D = 6 with the energy e = −0.669395 and the average on-site magne-
tization m = 0.317930. In this case, the environment bond dimension for the final
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Figure 4.2: Energy and magnetization of the isotropic Heisenberg antiferromag-
net from three-site FU with bond dimension up to D = 6. Left: the energies from
the optimal iPEPS with the bond dimensions D = {3, 4, 5, 6} (black triangles)
plotted against the expected dependence 1/ξ3. The corresponding bond dimen-
sions of the points are in the same order as the correlation length ξ. The linear
extrapolation (red dashed line) gives the energy compatible with the QMC esti-
mate. Right: the magnetization squared m2 for all considered bond dimensions
(blue squares) plotted against the 1/ξ. The extrapolated value (red dashed line) is
again in a good agreement with the QMC estimate.

steps of FU was increased up to the value of χ = 288. Altough the iPEPS ansatz
does not enforce the C4v symmetry, it is recovered by the optimization. The relative
difference between the smallest and the largest value of the NN spin-spin interac-
tion term among the eight non-equivalent bonds in the ansatz is just 0.5%. Both
the use of the three-site gates as well as the large χ within (F)FU contributes to the
improvement of the optimal iPEPS with respect to the two-site gate results. The
best finite-D iPEPS from two-site gate FFU reported in the Ref. [39] with D = 7
and χ = 70 has the energy e = −0.669309 and the magnetization m = 0.33490.

In comparison, currently the most precise results for the order parameter of
antiferromagnetic Heisenberg model are based on the quantum Monte Carlo (QMC)
for increasingly large lattices coupled with the finite-size scaling [63, 64] leading to
the value of mQMC = 0.30743(1). Hence, the D = 6 iPEPS still has a relative
error of about 3% on the magnetization. In attempt to extrapolate the finite-D
observables into the thermodynamic limit and reconcile the results with the QMC
we conduct the finite correlation length scaling as in the Ref. [54]. The main idea
is to transfer the established finite-size scaling analysis into the context of iPEPS,
with the correlation length of iPEPS dictating the finite-size corrections. First, the
correlation lengths ξ are extracted from the optimal iPEPS through the analysis of
the double-layer transfer matrices as explained in the Appendix C. Afterwards, we
plot the energy and the magnetization against their expected dependencies on the
correlation length, which are motivated by finite-size scaling for Heisenberg model.
The results are summarized in the Fig. 4.2. The extrapolated value of the energy
e0 = −0.6695 ± 0.0001 is in agreement with the reference QMC value eQMC =
−0.66943(8) [64]. The improvement is even more pronounced for the magnetization
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Figure 4.3: Correlation length of the isotropic Heisenberg antiferromagnet from
three-site FU with bond dimension up to D = 6. The correlation length ξ has
a diverging tendency with the increasing bond dimension. The linear regression
(LR) and the non-linear least squares fit (NLS) to the power law ξ(D) = a/D−κ

predict significantly different exponent κ (see text).

m0 = 0.307± 0.005. Hence, we can conclude that the FCLS improves the estimates
of the observables in the thermodynamic limit also for the FU optimized iPEPS.
However, the error bars on these estimates are relatively large compared to the
analysis based on the gradient-optimized iPEPS of the Refs. [54, 55].

The optimized finite-D iPEPS have a finite correlation length. This is in contrast
to the diverging correlation length expected for the ground state of Heisenberg an-
tiferromagnet, or spontaneously symmetry-broken phases in general. It is assumed
that this is a generic property of the optimized unrestricted iPEPS1 and it is inde-
pendent of the optimization method [54, 55]. In fact, the scaling of the correlation
length with the bond dimension ξ(D) ∝ 1/D−κ shown in the Fig. 4.3 gives κ ≈ 2
similar to the results obtained from the gradient-optimization [54]. With this remark
we conclude the benchmark of the imaginary-time optimization of iPEPS with unit
cells.

4.3 Case study: Heisenberg antiferromagnet on coupled ladders

In order to illustrate the issues facing both the SU and FU optimization, we focus
on a particular case of the dimerized S = 1/2 Heisenberg antiferromagnet on an

1one can construct specific iPEPS using symmetric tensors, which have diverging correlation
length [65]. The srRVB of the Sec. 2.5 is an example.
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array of coupled two-leg ladders:

H = J
∑

R

SR · SR+x +
∑

R

JRSR · SR+y, (4.4)

where SR = (SxR, S
y
R, S

z
R) is the S = 1/2 operator on the site R = (x, y) of a

square lattice and JR = J or JR = αJ , depending on the parity of y. For α = 1
we have an isotropic Heisenberg antiferromagnet on the square lattice and when
α = 0 the system decouples into an array of two-leg ladders. In the former case, the
ground state has Néel antiferromagnetic order and gapless excitations (spin waves);
instead, in the latter case, no long-range magnetic order is present and the spectrum
is fully gapped. Therefore, a quantum phase transition exists at a finite value of the
inter-ladder coupling α [66], as detected by using quantum Monte Carlo methods
at zero temperature [67, 68]. In particular, the precise location of the quantum
phase transition has been determined with high accuracy, i.e., αc = 0.31407(5), also
suggesting that the critical properties are described by the same universality class
as that of the classical three-dimensional Heisenberg model [67].

The phase diagram as well as the nature of the phases is well understood, hence
providing a reference for the optimized iPEPS. In particular, the ability of iPEPS
to describe correctly non-magnetic ground states with strong local entanglement,
notably the existence of nearest-neighbor singlets. This goes beyond the case of the
trivial paramagnetic phase that appears in the quantum Ising model [69], which is
adiabatically connected to a product state over each lattice site. Indeed, the presence
of a local entanglement induces a non-trivial structure in the virtual space, which
is easily broken by a blind opimization, thus leading to some symmetry-breaking
mechanism, e.g., the generation of magnetic order in the ground-state wave function.
We observe that below the critical inter-ladder coupling the vanishing magnetization
is recovered only for selected values of bond dimension D, while a blind optimization
with a generic D gives rise to a spurious finite magnetization down to the limit of
decoupled ladders. This fact has important effects when analyzing a quantum phase
transition between magnetically ordered and disordered phases, possibly obscuring
its nature and preventing the use of FCLS.

Our calculations show that the paramagnetic phase that is stable for α < αc is
built by tensors having a particular structure that does not fit with a generic value
of D. As a consequence, the optimization performed within SU or FU schemes
generally leads to a symmetry-broken state with a small but finite magnetization.
The correct vanishing magnetization is obtained only for a few selected values of
D, making it difficult to perform a scaling for D → ∞. Moreover, for generic D,
especially in the paramagnetic region, the effective energy landscape appears very
rough, featuring many nearly degenerate states with substantially different magneti-
zations. Our results strongly suggest that, within iPEPS (or PEPS), it is extremely
important to make use of symmetries in the tensors, as suggested in Ref. [70] and
developped in Ref. [65].
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Figure 4.4: Typical SU simulation with D = 4 for α = 0.2. The initial tensors
reproduce a valence-bond solid with singlets on the strong rungs of the ladders;
along the optimization 3-site gates are used with time step τ = 0.05. After each
SU iteration (corresponding to the application of 32 gates given by symmetric
Trotter-Suzuki decomposition) the energy is computed (purple circles - left axis)
for the resulting state using CTM with χ = 96. The convergence of SU is tracked
by the distance ∆λ of Eq. (4.5) (blue triangles - right axis) of weights {λ} between
consecutive SU iterations. The pink area corresponds to states with vanishing
magnetization.

4.3.1 Issues with optimization and the rough landscape

Let us discuss the results of the optimization technique for both the paramagnetic
and magnetically ordered phase of the Heisenberg model on coupled two-leg ladders
of Eq. (4.4). The details of the ansatz, identical to the one for the Heisenberg
model benchmark, as well as the optimization technique have been described in the
Sec. 4.2.1. First of all, it is important to emphasize that, within both the SU and FU
techniques, the energy can have a non-monotonic behavior along the optimization
procedure. Indeed, the minimization problems of Fig. B.2 and 3.5 do not necessarily
imply that the energy will decrease at every step of the evolution. In general, after
a relatively short transient in which the energy is rapidly decreasing, a minimum is
reached and then a slow but inescapable upturn is obtained, no matter how small
the imaginary-time discretization is. This is due to the fact that the optimization
by SU or FU does not coincide with a true energy minimization [24, 41]. As an
example of this behavior, we report in Fig. 4.4 an optimization performed within
SU for D = 4. Here, we consider α = 0.2, initializing the tensors in order to have
a valence-bond solid, in which singlets are formed along the strong rungs of the
ladders. Tracing the convergence within SU is often done by observing the change
in the weights:

∆λ =

√√√√
8∑

i=1

[
λ

(m+1)
i − λ(m)

i

]2
, (4.5)
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Figure 4.5: Different optimizations by imaginary-time evolution for D = 4 with
2-site and 3-site gates for both SU (left) and FU (right) for a range of values α
across the transition. The environment bond dimension used in CTM is χ = 96.
Black circles denote the best energy states for D = 4 obtained throughout all the
simulations within SU and FU respectively (see text).

between two subsequent iterations (m + 1) and (m), where the weights are always
normalized such that the leading weight λ1 = 1. However, while ∆λ eventually
decreases down to very small values, signaling a converged SU simulation, the energy
(computed with full environment by CTM) shows a non-monotonic behavior with
a clear upturn after a few iterations. In this case, a fixed τ = 0.05 is used, in order
to emphasize the existence of a minimum in the energy; by using an adaptive time
step, as described at the end of Sec. 4.2.1, it would be possible to avoid the rise of
the energy, which is otherwise inevitable. Most remarkably, even though the exact
ground state has a vanishing magnetization m and the initial state has m = 0, a
few steps after the minimum, the magnetization becomes finite, spoiling the correct
feature of the true ground-state wave function. Hence, in the spirit of the variational
principle, we take the lowest-energy state as the “converged” one, for which all the
other physical properties (i.e., correlation functions) are computed. At the outset,
computing the energy at every iteration of SU seems to betray its purpose, as a
crude but fast way to explore the phase diagram; however, if only states given by
converged ∆λ are analyzed, the result gives a completely wrong picture with a finite
magnetization down to the limit of decoupled ladders.

Now, we would like to stress that both the SU and FU schemes do not always
lead to a unique “converged” state, i.e., different starting points may lead to dif-
ferent resulting states. In general, this is not a surprising behavior for nonlinear
optimization, a case of both schemes. Yet for the model of Eq. (4.4), whereas the
final energy varies in a relatively small range, other quantities might show con-
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Figure 4.6: Scaling of the energy (top panels) and the magnetization (bot-
tom panels) with the environment bond dimension χ as computed from the best
variational states for a set of inter-ladder couplings α. Results from CTM using
randomized SVD (rsvd) or Arnoldi iteration (arp) are found to be in a perfect
agreement. Magnetization is converged for small values of χ across all the cases.
Instead, complete convergence of the energy requires higher values of χ especially
close to criticality. Nevertheless, even for α = 0.4 (and D = 5), a very good accu-
racy can be achieved for a modest value of χ = 100, with the difference between
converged value of energy at χ = 300 and χ = 100 being less than 1.4× 10−5.

siderably stronger variation 1. In addition, we find that imaginary-time evolutions
performed with two- or three-site gates may give distinct results, especially within
FU. First of all, we briefly discuss the comparison between optimizations done with
these two sets of gates for D = 4, see Fig. 4.5. Within SU, the difference between
two- and three-site gates is small and there is no notable advantage in using three-
site gates to perform imaginary-time evolution. Instead, within the FU scheme there
is considerable profit in the optimization using three-site gates. Two aspects must
be emphasized. The first one is that the distribution of the magnetization is much
wider in the paramagnetic phase than in the antiferromagnetic one for both the SU
and FU approaches. Indeed, within the magnetically ordered phase, all the final en-

1In general, for a variational state with accuracy η on the energy per site, the accuracy on a
generic correlation function is

√
η. Here, fluctuations in the magnetization are much larger than

this estimation.
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Figure 4.7: Results for the energy and magnetization as obtained within the SU
when starting from different (randomized) initial states for different values of the
inter-ladder coupling α. The value of the auxiliary bond dimension is D = 4 (left)
and D = 5 (right). Black circles denote the best energy states within SU obtained
throughout all the simulations for D = 4 and D = 5.

ergies and magnetizations are distributed in a very narrow region; most importantly,
the fluctuations of m are small with respect to its actual value. By contrast, within
the paramagnetic region, it is possible to stabilize states with huge variations in m,
still having tiny energy differences (e.g., of the order of 0.0005J). We would like to
emphasize that the presence of large fluctuations in the magnetization persists far
away from the critical point, inside the paramagnetic region. This aspect is associ-
ated with the nature of the tensor structure of the wave function and is not related
to the presence of a quantum phase transition. The second aspect, which is by far
much more relevant, is that a generic optimization that starts from random initial
tensors does not give the correct vanishing magnetization within the paramagnetic
phase. This is particularly true within the SU, while the FU scheme highly improves
the quality of the results. Still, paramagnetic states are obtained by requiring both
a carefully selected initial state, e.g., valence-bond solids, and a particular value of
the auxiliary bond dimension, for example D = 4. Let us note that it is possible to
induce a finite magnetization by breaking SU(2) symmetry in approximate environ-
ment, as observed in Ref. [71]. Its true vanishing value is then recovered only in the
limit of χ → ∞. However, this is not our case, as we show in Fig. 4.6. Indeed, the
magnetization is well converged for the values of environment dimension χ used.
For the rest of the analysis, we will use three-site gates since, in general, they give
better energies with respect to the case with two sites. We now discuss the most
important issue of this work, namely, the fact that a paramagnetic state with zero
magnetization can be obtained only for selected values of the bond dimension D,
i.e., the ones that do not break the multiplet structure of the tensors. In Fig. 4.7, we
show the outcomes of several SU optimizations for different inter-ladder couplings
α. The cases with D = 4 and 5 are presented (the cases with D = 2 and 3 give



70 Thesis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.592 -0.588 -0.584 -0.58 -0.576

FU D=4

m

e

0.1

0.2

0.24

0.3

0.4

best e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.592 -0.588 -0.584 -0.58 -0.576

FU D=5

m

e

0.1

0.2

0.24

0.3

0.4

best e

Figure 4.8: The same as in Fig. 4.7 but obtained within FU. Here the value of χ
that determines the dimension of environment tensors is 96 for D = 4 and 100 for
D = 5. Black circles denote the best energy states within FU obtained throughout
all the simulations for D = 4 and D = 5 iPEPS respectively (see text).

completely unphysical results, with large values of m down to α = 0, and therefore
will not be discussed here). The results are qualitatively similar when considering
the FU technique (see Fig. 4.8).

4.3.2 Appearance of multiplets in the virtual space

The most remarkable aspect is that the exact result m = 0 can be obtained only
for a few selected values of the bond dimension, i.e., D = 4 and D = 8, while
for all the other values of D the best energy states break the spin SU(2) symme-
try and develop finite magnetization. As a consequence, a smooth extrapolation of
the magnetization with increasing bond dimension D is not always possible, while
the energy usually has a very regular behavior (see Fig. 4.9). In order to highlight
this feature, we compute the spectrum of the singular values of the matrix that is
obtained by contracting the index connecting two neighboring tensors and glueing
together all the remaining ones of each tensor, thus creating a 2D3 × 2D3 matrix
(where the factor 2 comes from the physical index). This spectrum is particularly
simple within the antiferromagnetic phase, where all singular values are not degen-
erate (see Fig. 4.9). In this case, a given choice of D never spoils the structure of
the spectrum, and no appreciable differences are seen in any correlation function.
By contrast, within the paramagnetic phase a very peculiar multiplet structure ap-
pears, which is preserved only for selected values of D. Indeed, the spectrum shows
degeneracies that depend upon the bond: starting from the largest values, we have
1, 3, 3, 1, . . . (when contracting along the weak bonds with αJ and the strong hor-
izontal bonds along the ladder with J) and 2, 2, 4, . . . (when contracting along the
strong vertical bonds of the ladder with J). Therefore, it is clear that only par-
ticular values of D can accommodate these multiplet structures (e.g., D = 4 and
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ladders (see text) obtained by SU in the paramagnetic phase with α = 0.05 (upper
panel) and α = 0.2 (middle panel), and in the magnetically ordered phase with
α = 0.7 (lower panel).
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D = 8). In all the other cases, multiplets are broken, which leads to a small residual
magnetization. Although m can be made relatively small, a faithful extrapolation
for D → ∞ is not possible, if not limited to the values of D that give the correct
m = 0 result. This outcome poses serious problems whenever we want to describe a
paramagnetic (e.g., spin-liquid) phase with a complicated (and not a priori known)
multiplet structure. Indeed, it is clear that in this case a blind optimization will very
likely lead to a state with a small but finite magnetization, masking the existence
of a truly quantum paramagnet or spin-liquid phase with vanishing magnetization.

As a consequence of the previous results, the magnetization curve by varying
the interladder coupling α is reasonable only for D = 4 (and D = 8, not shown),
being finite and smooth (vanishing) for large (small) values of α (see Fig. 4.10). Still,
for this (small) value of the bond dimension the transition point is underestimated
within SU (i.e., α ≈ 0.24); in addition, a relatively large jump of the magnetization
is observed, in contrast to the exact behavior where a continuous transition takes
places. By emplyoing FU, the critical point shifts towards the correct location (i.e.,
α ≈ 0.27), and also the jump disappears. Notice that at the quantum critical point
the multiplet structure of the tensor is broken and the ground state develops a
finite magnetization. For other choices of the bond dimension the results are clearly
non-physical: for D = 2 and 3 a completely smooth curve may be obtained, with
m > 0 down to α = 0. Instead, for D = 5, 6, and 7 it is remarkably hard to work
out a smooth curve, and most importantly, finite values of m are still obtained
in the paramagnetic regime. This irregular behavior makes it very difficult (if not
impossible) to perform an extrapolation for D → ∞ or finite correlation length
scaling as we did in the isotropic Heisenberg antiferromagnet (α = 1) benchmark.
These issues become more severe especially close to criticality.
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4.3.3 Conclusions

In this case study, we have highlighted a few relevant issues that appear within the
iPEPS optimization. First of all, the widely used SU and FU techniques are very
sensitive to the initial state when applied in a phase with no broken continuous
symmetry, giving final states that may have considerably different physical prop-
erties (e.g., magnetization), while having very close energies. In the example con-
sidered here, the spin-1/2 Heisenberg antiferromagnet on coupled two-leg ladders,
this situation is particularly evident, since large fluctuations in the magnetization
are present within the paramagnetic phase (especially within SU, but also within
FU). The second and the most important aspect, which has not been realized in the
past, is the strong dependence of the results on the bond dimension D. This fea-
ture is intimately related to the presence of multiplets in the tensors of symmetric
states. In the studied case, the paramagnetic phase is adiabatically connected to a
valence-bond solid (VBS) with singlets along the rungs of the ladders. The FU and
SU reach the ground state by progressively adding correlations on top of the initial
VBS through iterative application of Trotter gates, which themselves have a multi-
plet structure (the Si ·Sj operator decomposes into a singlet part and a triplet part).
Without truncation, the multiplets would remain imprinted in the tensors making
up the state. However, the multiplet structure is preserved by truncation only for
specific values of D (e.g., D = 4 and 8), giving rise to well-behaved simulations and
physically correct variational states. Instead, whenever the value of D does not fit
the multiplet structure, some breaking mechanism appears, e.g., leading to a finite
magnetization and a rough energy landscape. By a similar reasoning, we expect
multiplets to play a role also in the VBS phase of the J −Q model [72]. In particu-
larly simple models, such as the one that has been considered here, it is not hard to
find out the exact degeneracy of multiplets and obtain reasonable results, possibly
even with a scaling analysis with D. In more complicated cases (e.g., the frustrated
J1−J2 Heisenberg model on a square or triangular lattice), it might not be easy to
work out the degeneracy, possibly leading to spurious results, with finite magneti-
zation. In this respect, it is particularly important to either use SU(2)-symmetric
tensors [65, 70] or at least impose the multiplets by using abelian symmetries [73,
74] and compare with unconstrained optimization, in order to understand the actual
physical properties of highly entangled ground states.
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5.1 J1 − J2 model - Prototype of frustrated quantum magnet

The conception of RVB theory by Anderson in 1973 [1] initiated a hunt for a phys-
ical realization of such spin liquid states. More than a decade later, together with
Baskaran, they conjectured spin liquid state to be the origin of high-TC supercon-
ductivity in cuprates [22]. Within the domain of quantum magnets a promising
path towards the spin liquid phase is the frustration. The Heisenberg antiferro-
magnet on a square lattice is ordered, but the inclusion of antiferromagnetic next-
nearest-neighbor interaction can supress the magnetic order and instead lead to a
non-magnetic phase. The paradigmatic model of frustrated magnetism, the so-called
J1 − J2 model on a square lattice exemplifies this behaviour. Its Hamiltonian reads

H = J1

∑

〈ij〉
Si · Sj + J2

∑

〈〈ij〉〉
Si · Sj , (5.1)

Figure 5.1: Sketch of a phase diagram of classical and quantum frustrated spin-
1/2 J1 − J2 model. Left: Classical phase diagram contains two phases, Néel an-
tiferromagnet and stripe AF separated by a point J2 = 0.5. Right: Quantum
fluctuations lead to an emergence of a non-magnetic intermediate phase between
two ordered phases.

75
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where 〈ij〉 denotes nearest-neighbor pairs of sites and 〈〈ij〉〉 next-nearest-neighbor
pairs (along diagonals) respectively. For both couplings J1, J2 > 0 the model is
frustrated and from now on we set J1 to unity.

At a classical level, the phase diagram of frustrated spin-1/2 J1 − J2 model
consists of two ordered phases separated by point at J2 = 0.5. The Néel phase for
J2 < 0.5 and a antiferromagnetic stripe phase for J2 > 0.5, illustrated in Fig. 5.1.
The appearance of stripe phase can be understood in the limit J1 = 0, where the
system decouples into two interpenetrating square lattices each hosting a Néel phase
on its own.

First investigation of quantum spin-S J1 − J2 model was carried out in 1988 by
Chandra and Doucot in terms of linear spin-wave theory [75]. Their results showed
an instability of magnetic order (both Néel and stripe) against quantum fluctu-
ations. The effect is most pronounced for the smallest spin S = 1/2, while the
classical picture is correctly recovered in the limit of S →∞, where the instability
region shrinks to a point at J2 = 0.5. Returning to spin S = 1/2, the early pertur-
bative results [76, 77], based on series expansion around dimerized state, predicted
a continuous transition into non-magnetic phase around the point Jc12 ≈ 0.38, after
which an S = 1 gap opens. Eventually, an instability towards ordered stripe phase
develops and the system undergoes a first order transition at Jc22 ≈ 0.62 into stripe
phase.

The present numerical results agree on the existence of paramagnetic phase, how-
ever its true nature remains unsettled. The exact diagonalization study of lattices
up to N = 40 sites [78] concluded a gapped non-magnetic region 0.35 . J2 . 0.66
albeit with substantial finite-size effects. The results from DMRG on long cylinders
2L× L of circumference up to L = 14 differ in the detailed description of the non-
magnetic phase. Computations by Jiang, Yao, and Balents [79] point to a gapped
Z2 spin liquid in the whole region 0.41 . J2 . 0.62. In the DMRG study by Gong
et al. [80], using larger bond dimension, instead two distinct phases were identified
within the non-magnetic region. First, the Néel order vanishes at Jc12 ≈ 0.44 giving
rise to a putative gapless spin liquid phase. Second, a plaquette VBS emerges for
0.5 . J2 . 0.61. The most recent DMRG study by Wang and Sandvik [81] focused
on the level crossing analysis on cylinders with circumference up to L ≤ 10. Their
results point to a gapless spin liquid in the region 0.46 . J2 . 0.52 and a VBS in
the rest of the non-magnetic region extending up to Jc22 ≈ 0.62.

The second widely used numerical method to treat this system is variational
Monte Carlo (VMC), based on the Gutzwiller projected BCS wave functions with
Jastrow factor. Studying L×L lattices of size up to L = 18, Hu et al. [82] report a
gapless spin liquid in the region 0.48 . J2 . 0.6. Similar work by Morita, Kaneko,
and Imada [83], in resemblance to some of the DMRG results, finds an evidence
for a gapped VBS in the region 0.5 . J2 . 0.6. Recently, a study by Ferrari and
Becca [84] of lattices up to size L = 22 strengthened the case for a gapless spin
liquid appearing around Jc12 ≈ 0.48.

Finally, this brings us to the youngest variational method to be applied to J1−J2

model, namely tensor networks and (i)PEPS in particular. Large-scale study by
Liu et. al [85], using finite PEPS with D ≤ 8 on lattices of size up to L ≤ 14
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optimized by stochastic gradient, points to a gapless spin liquid in the whole region
0.42 . J2 . 0.6. Using the U(1)-symmetric iPEPS and FU optimization for D ≤ 9,
Haghshenas and Sheng [38] instead report a columnar VBS in the region 0.53 .
J2 . 0.61, consistent with some of the DMRG and VMC results. An alternative
approach, based on the family of RVB wave functions, was recently proposed by
Poilblanc, Mambrini, and Capponi [71, 86]. They construct extended RVB states
as C4v symmetric iPEPS with D ≤ 7 from a small set of SU(2)-symmetric tensors,
which are then optimized by gradients obtained from finite differences. Focusing
the optimization on a single point J2 = 0.55, the optimal iPEPS provide very good
variational energy and hint at spin liquid ground state with algebraic dimer-dimer
correlations, similar to the example of short-range RVB of Sec. 2.5.

Our goal is to perform high-precision unrestricted iPEPS simulations of J1− J2

model utilizing reverse mode AD. Doing so will provide context for results from both
U(1)-symmetric and extended RVB iPEPS, allowing us to compare extrapolations to
the limit of D →∞. Also, such computation will serve as an important benchmark
for capabilities of gradient optimization with AD. In the rest of this chapter we will
briefly revisit couppled ladders to highlight the benefits of gradient optimization.
Afterward, we will first present the phase diagram of J1−J2 model for 0 ≤ J2 ≤ 0.55
from AD-optimized C4v symmetric iPEPS with D ≤ 6. Second, focusing on the
point J2 = 0.55, we optimize also D = 7 iPEPS and perform extrapolation D →∞.
The extrapolated variational energy is below both the best available DMRG and
VMC estimates. Finally, we compare single-site, 2 × 1, and 2 × 2 unit cell iPEPS
and observe an appearance of VBS for D = 4. All simulations have been performed
with tn-torch [87], an AD-enabled iPEPS library based on PyTorch [44], which
has been developed in the course of this work.

5.2 Lesson from the couppled ladders

The optimization of coupled ladders [see Eq. (4.4)] with FU highlighted several of
its issues. Here, we return to the same system and optimize the 2 × 2 iPEPS with
four on-site tensors |Ψ(a)〉 = |Ψ(a, b, c, d)〉 with gradients computed by AD. At each
step, we first perform the directional CTM and then compute the energy per site
using reduced density matrices of eight non-equivalent bonds. The CTM together
with the computation of energy consitutes the scalar function to be differentiated
and intermediate tensors produced during its execution are stored. The CTM is
considered converged once the difference of energies between two consecutive CTM
iterations goes below εCTM = 10−8. For iPEPS with D = 5 and close to criticality
at α = 0.3 it takes typically forty CTM iterations. Second, the gradient gi with
respect to all on-site tensors ai is evaluated by AD. Finally, the tensors are updated
to ai+1 = ai + βpi by L-BFGS method [88], where pi is a direction and β is the
step size. At each step i, the L-BFGS approximates the Hessian Bi using the past
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Figure 5.2: Coupled ladders model [see Eq. (4.4)] revisited with AD optimization.
Left: Phase diagram obtained by AD for (D,χopt) = (3, 72), (4, 96), and (5, 96). At
D = 4 AD optimization improves the energies by 2− 3× 10−4 with respect to FU.
For D = 3 the iPEPS experiences smooth crossover from paramagnet into ordered
phase and for D ≥ 4 the magnetization curves become compatible with continuous
phase transition. Moreover, for D = 5 small values of m ≈ 10−4−10−3 are obtained
even in the paramagnetic phase. Right: Local optima from twenty instances of AD
optimization intialized by a VBS with a small noise, similar to Fig. 4.8. For α < 0.3
AD finds the optimal (leftmost) iPEPS with small magnetizations.

gradients and then solves the first order optimality condition Bipi = −gi to find
the optimal direction pi.

For each value of α we prepare twenty initial VBS with noise and optimize them.
After two hundred AD steps, the optimal iPEPS candidates for each α are taken to
produce the phase diagram, shown in Fig. 5.2. Most importantly, AD gives consistent
results for increasing bond dimension. At D = 3, we obtain magnetization curve
that resembles a smooth crossover. For both D = 4 and D = 5 we get a curve in
agreement with continous transition1. The results for D = 4 obtained by AD and FU
are comparable, but the crucial improvement of AD with respect to FU is the small
magnetization for D = 5 iPEPS in the whole paramagnetic phase. A detailed look at
D = 5 reveals that AD also experiences rough energy landscape in the paramagnetic
phase, shown in Fig. 5.2. However, in contrast to FU, AD consistently finds minima
with lower energy and small magnetization. Hence, we can draw a conlusion that
for AD imposing the correct multiplets is not a necessary condition for obtaining
iPEPS with small magnetization. On the other hand we conjecture that doing so
might still tame the roughness of the energy landscape improving the convergence
properties. This is connected with another issue of a more practical character. The
overall process of FU simulations, even at D = 4, is very tedious. Smoothing out
the magnetization curve requires repeated initialization of FU from states at nearby
values of α. Gradient optimization on the other hand can already provide optimal
iPEPS which form a consistent and smooth magnetization curves with a simpler
protocol as described above.

1more points between 0.2 < α < 0.3 are required to distinguish between weak crossover or
sharp feature as exhibited by the FU data.
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In summary, the gradient based optimization can overcome the issues present
in the unrestricted FU. Imposing the multiplets might still be beneficial, and in
coupled ladders, it is simple to infer them based on the product state of valence
bonds which is adiabatically connected to the α < αc paramagnetic phase. The
same cannot be said for the J1 − J2 model. Both the Néel and the stripe phase are
symmetry-broken phases with no such structure. Moreover, the intermediate phase
has no known origin from which it can be adiabatically evolved. For gapless phases,
such process is not even possible. Therefore, gradient optimization positions itself
as the optimal if not the only tool to study the J1 − J2 model with unrestricted
iPEPS ansatz.

5.3 J1 − J2 model with single-site symmetric iPEPS

To study the phase diagram of frustrated J1 − J2 model we first choose single-site
C4v symmetric iPEPS, enforcing the symmetries of the square lattice in accordance
with the putative spin liquid phase. The Néel order is also supported by this ansatz
through the unitary transformation U acting on the spin index of every on-site ten-
sor belonging to one chosen sublattice of bipartite square lattice (see Eq. A.13 for
details). We optimize this iPEPS with gradient optimization using AD up to bond
dimension D = 6. At each step of the optimization, first the symmetric CTMRG
is performed and then the energy is evaluated as illustrated in Fig. 3.7. The only
adjustment is the reduced density matrix of 2 × 2 region used to evaluate the en-
ergy since it accommodates both the NN and NNN terms making up the J1 − J2
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Figure 5.3: The phase diagram of J1− J2 model with single-site C4v symmetric
iPEPS. Magnetization curves obtained from AD-optimized iPEPS are smooth. In
all cases, the optimal iPEPS show finite magnetization down to J2 = 0.55.
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Hamiltonian. All intermediate tensors produced in course of this process are stored.
Second, the gradient is evaluated by AD and then the on-site tensor is updated ac-
cording to L-BFGS described in the previous section. Finally, the updated tensor is
symmetrized. At each AD step the initial {C, T} environment tensors are initialized
from the on-site tensor itself. The convergence threshold on the difference between
energies in two consecutive CTMRG steps is set to εCTM = 10−8. The necessary
computational effort is significantly smaller than in the case of coupled ladders due
to the relative simplicity of single-site symmetric CTMRG.

For each value of J2, a set of simulations is performed starting from a random
C4v symmetric tensors and a modest value of environment bond dimension χopt.
Typically, we perform less then hundred AD steps in this initial stage. Afterward,
the best candidates are selected for subsequent optimization with increasing value of
χopt. For example, in the final stage of optimization with D = 6 iPEPS at J2 = 0.55,
we performed five hundred gradient steps at χopt = 144 converging the energy with
a precision < 10−5. Once the optimization phase is finished, the observables are
recovered by performing χ-scaling typically up to χ = 2χopt.

We present the resulting phase diagram of J1−J2 model up to J2 = 0.55 obtained
by single-site C4v symmetric iPEPS in Fig. 5.3. First of all, the AD optimization
proves to be robust and leads to a consistent picture of decreasing magnetization
with increasing bond dimension. Overall, all optimal iPEPS show finite magnetiza-
tion decreasing monotonically with the frustration. Only D = 5 data for J2 > 0.5
show a slight change in the curvature of m(J2), while no such behaviour is observed
for D = 6 iPEPS. A set of D = 7 optimizations might shed light on the nature of
this D = 5 anomaly, whether it is a particular finite-D deviation or it is a systematic
feature of odd D iPEPS. If so, it might be a hint of a sharp feature developing in
the D →∞ limit.

Now, we analyze in more detail two particular points, J2 = 0.5 and J2 = 0.55,
where we performed additional optimizations with D = 7 iPEPS up to χopt = 147.
First, we briefly comment on the data for J2 = 0.5, shown in Fig. 5.4. The J2 = 0.5
point is closer to the criticality, where the Néel order disappears according to DMRG
and VMC computations. However, the finite-D scaling points to a ground state
with small yet finite magnetization m(D → ∞) ≈ 0.04, at odds with DMRG and
VMC. It is instructive to compare our results with the U(1)-symmetric FU iPEPS
study. The extrapolated magnetization is consistent with the data from the U(1)
ansatz. Still, with respect to FU the AD optimization improves the energy by a
considerable factor. For D = 7, the AD-optimized iPEPS has an energy e(J2 =
0.5, D = 7) = −0.4964, which puts it well below the FU-optimized D = 7 state with
energy eFU (J2 = 0.5, D = 7) ≈ −0.4959. We perform extrapolations in 1/D of the
energy from the D > 3 data to D → ∞, both linear and power law. The resulting
estimates are e(lin)(J2 = 0.5, D → ∞) = −0.4986(2) and e(pwr)(J2 = 0.5, D →
∞) = −0.4971(2) for linear and power-law fit respectively. Linear extrapolation
gives surprisingly low energy compared to DMRG and VMC. On the other hand,
the power law fit is compatible with VMC extrapolated energy, suggesting that
optimizations for additional values ofD are necessary to reach a definitive conclusion
on the asymptotic behaviour of energy for large D.
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Figure 5.5: Final stage of AD optimization of D = 7 C4v symmetric iPEPS
at J2 = 0.55. Left: Energy as a function of AD steps. Typically, the convergence
of CTMRG below εCTM threshold requires 35 − 40 RG steps. Occasionally, the
energy increases after an AD step (see text). Right: Convergence of magnetization
throughout the optimization.

We turn to the highly frustrated J2 = 0.55 point. The final stage of optimiza-
tions of D = 7 iPEPS, requiring more than a hundred AD steps, is shown in the
Fig. 5.5. Eventually, we converge the energy to a precision < 2× 10−5. Sometimes,
AD step results in the increase of the energy due to the overestimated step size
β since we opt to not use any strong line-search method1. The complete results

1to minimize the function along the direction p given by L-BFGS the braket method is often
adopted. The minimum of such one-dimensional problem is reliably pinpointed by iteratively shrink-
ing an interval. However, such line-search methods typically involve (many) function evaluations,
which in the case of iPEPS means very costly CTM iterations.
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Figure 5.6: Finite-D scaling of the energy and magnetization from AD-optimized
C4v symmetric iPEPS at J2 = 0.55. Left: Linear extrapolation (green) of energy
is below both DMRG [80] and VMC [82] estimates and it is compatible with the
extrapolation from N -colored RVB iPEPS [86]. Power law extrapolation (blue) is
compatible with the VMC estimate. Right: Linear extrapolation with all points
gives a very small, yet finite magnetization. Using just an odd D iPEPS, which
can host coloured RVB states, the extrapolated value of magnetization is an order
of magnitude smaller.

for J2 = 0.55 together with finite-D scaling are presented in Fig. 5.6. The linear
extrapolation of energy gives e(lin)(J2 = 0.55, D → ∞) = −0.4889(3) while the
power-law extrapolation instead leads to e(pwr)(J2 = 0.55, D → ∞) = −0.4869(5).
Both extrapolations are below the DMRG estimate for the energy in the thermody-
namic limit. Together with VMC, the present results provide evidence that DMRG
is probably overestimating the ground state energy. The most likely reason is that
the DMRG simulations end up trapped in a local minimum at this highly frus-
trated point. An alternative scenario is for the energy of iPEPS as a function of
1/D to rapidly change curvature. Reaching the bond dimension D = 11 might be
sufficient to resolve this question, since for this value of D the expected linear de-
pendence will cross not only DMRG but also the VMC energy estimate. Another
reason for optimizing our ansatz up to D = 11 comes from the SU(2)-symmetric
extended RVBs. Current numerical data [86] for these extended RVBs suggest that
they should become energetically favorable beyond D > 11. Also the magnetization
seems to vanish for large bond dimensions as indicated by the extrapolation from
odd D data. If it is indeed the case, the non-magnetic C4v symmetric iPEPS is at
odds with the tenative VBS phase emerging for J2 & 0.52 as seen by some of the
DMRG and VMC studies.

We close this section by presenting the χ-scaling of the observables at J2 = 0.55,
shown in Fig. 5.7, for optimal iPEPS with D = 5, 6 and 7. The overall behaviour
of energy and magnetization with χ, characterized by modest corrections, suggests
that all the iPEPS considered have finite correlation length, which is expected to
be a generic outcome of unrestricted iPEPS optimization [54].
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Figure 5.7: Scaling of energy and magnetization with the environment dimension
χ at J2 = 0.55. From top to bottom: The case of optimal iPEPS (D,χopt) =
(5, 100), (6, 144), and (7, 147).

5.4 The 2× 1 and 2× 2 unit cells

Finally, we give a glimpse at the simulation of J1−J2 model beyond C4v symmetric
iPEPS. For this model, AD optimization of iPEPS with 2 × 2 unit cell requires
only a slight modification with respect to coupled ladders. To compute the energy
we now have to evaluate contribution also from the next-nearest-neighbor terms.
Therefore, we use four reduced density matrices ρ2×2, one for each non-equivalent
2 × 2 region, instead of eight reduced density matrices for nearest-neighbor bonds
as in the coupled ladders. In the case of 2 × 1 unit cell, there are just two such
non-equivalent 2× 2 regions.

The result for D = 4 case, the smallest bond dimension where the columnar
VBS develops is shown in Fig. 5.8. The complementary data from optimal iPEPS
for both 2×1 and 2×2 unit cells indicate a sharp transition around Jc12 ≈ 0.52 into
columnar VBS. Although the 2×2 iPEPS can host both the Néel ordered phase and
the columnar VBS, the transition from former to latter still appears as first order
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Figure 5.8: AD-optimized D = 4 iPEPS with 2 × 1 and 2 × 2 unit cell. Left:
Magnetization of iPEPS with different unit cells. Around J2 ≈ 0.52 a columnar
VBS order develops and the magnetization drops to vanishing values. Right: Com-
parison of energies with respect to C4v symmetric iPEPS. In accordance with the
magnetization data, the 2× 1 unit cell, which cannot support Néel order, becomes
energetically favourable for J2 & 0.52 and competitive with 2 × 2 iPEPS also
hosting a columnar VBS.

within the D = 4 manifold. As before, we are interested in comparison of our results
with U(1)-symmetric FU simulations [38] since so far it is the only other iPEPS
study addressing this model with general optimization beyond single-site unit cell.
The FU-optimized iPEPS also point to a transition into columnar VBS and estimate
its location as Jc12 ≈ 0.53 by extrapolating the data in D. Still, at J2 = 0.53 and
D = 4 the FU optimization finds finite magnetization m(J2 = 0.53, D = 4) ≈ 0.12.
Instead, the AD optimization locates energetically more optimal iPEPS, which hosts
columnar VBS with vanishing magnetization.

We will address the consequences of these results in the final conclusions as they
also indicate the future directions in which the iPEPS investigation of J1−J2 model
should proceed.
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Conclusions and future perspectives

The AD optimization developed in the course of this work provides a powerful
and flexible way to optimize iPEPS with large unit cells for complicated short-
range Hamiltonians. One of the main outcomes of this work comes in the form of
high-performance open-source library tn-torch [87], which implements production-
ready differentiable CTM algorithms. The simulations can be run on both CPUs and
GPUs out of the box thanks to PyTorch, serving as a fundation on top of which the
iPEPS algorithms are built. The practical simplicity of AD-optimized iPEPS and
the state-of-the-art performance opens up the way to more wide-spread adoption of
two-dimensional tensor network techniques, which are otherwise complex and chal-
lenging to implement and extend. This simplicity becomes apparent, when passing
from nearest-neighbour to next-nearest-neighbour Hamiltonians requires just an in-
troduction of 2×2 reduced density matrix in the final step of the variational energy
computation. As a consequence, the scope of systems that can be addressed by AD
optimization extends beyond the next-nearest-neighbour interaction and they can
be implemented with a minimal effort. There is no need for modification of the CTM
algorithms. Hence, the AD optimization brings iPEPS one step closer to become the
variational method of choice in two dimensions, similar to what DMRG has become
in one dimension.

In the beginning of this work, we set out to answer the question, whether iPEPS
can describe quantum magnets in the vicinity of continous transitions and probe
their highly entangled phases such as spin liquids. The results from AD optimiza-
tion of both frustration-free coupled ladders and frustrated J1 − J2 model make
us optimistic. The variational energies obtained from iPEPS in highly frustrated
regime at J2 = 0.55 set the new reference. There are two key questions that have
to be investigated. First question concerns the behaviour of apparent sharp transi-
tion from Néel phase to columnar VBS with increasing D since among the features
on which both the VMC and the DMRG agree is the continuous nature of Néel
to paramagnet transition. Second question is the ultimate faith of the finite VBS
order in the limit of D →∞. Whether it is a genuine property of the ground state
or but a finite-D effect and the columnar VBS eventually diminishes restoring the
C4v symmetry.

The answer to both questions crucially depends on our ability to optimize iPEPS
with increasingly large bond dimensions. This calls for further algorithmic develop-
ment. In the short term horizon, the extension of AD optimization to iPEPS with
abelian symmetries will decrease both the complexity and memory requirements of
AD algorithm. Second appealing and novel direction is the development of adjoints
for partial SVD and diagonalization algorithms, which would in turn decrease com-
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plexity of projector construction in CTM down to O(χ3D4) and allow us to easily
reach bond dimensions beyond D = 11.

In summary, the pursuit of solution to Dirac’s original question of solving the
many-body problem of condensed matter is still in progress. The presented two-
dimensional iPEPS method, together with future advances, offers a promising an-
swer to models arising from the effective lattice description of strongly-correlated
materials.
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Exact SU(2)-invariant iPEPS

In this Appendix, we present the construction of iPEPS representation of two
paradigmatic SU(2)-invariant states on a square lattice. The spin S = 2 AKLT
state and the short-range RVB state.

A.1 The iPEPS representation of Spin S = 2 AKLT state

In this section, we derive the iPEPS with a bond dimension D = 2 that represents
the spin S = 2 AKLT state. In Sec. 2.2, we introduced iPEPS from the top-down
perspective, that is, as a specific parametrization of the wave function coefficients
motivated by the Area law. Whereas now, we will build the exact iPEPS represen-
tation from the bottoms-up. Starting with a specific, but simple state |AUX〉 living
in the auxiliary space and then projecting it into physical Hilbert space of spin
S = 2 degrees of freedom (DOF). This projection will be defined in terms of the
familiar on-site tensors a. Their action on the |AUX〉 state will induce the iPEPS
representation we are looking for.

As the first step, we associate four auxiliary spins S = 1/2 to each site of the
square lattice. Next, a simple product state is formed by these auxiliary spins. They
are paired in VBs |V B〉ij := |↑i↓j〉 − |↓i↑j〉 across the nearest-neighbor links of the
lattice

|AUX〉 =
∏

i∈A

(
|V B〉i,i+x |V B〉i,i−x |V B〉i,i+y |V B〉i,i−y

)
, (A.1)

where the product runs only over the sublattice-A sites of a square lattice and
the orientation of all singlets is fixed1 as to point into the sublattice-A sites (see
Fig. A.1). Second, we define a projector a acting on the four auxiliary spins associ-
ated with each site. It projects their collective state into the local physical Hilbert
space of spin S = 2, which is also the highest weight irreducible representation
(irrep) formed by their tensors product

a : ⊗4H(S = 1/2)→ H(S = 2). (A.2)

Choosing the spin Sz eigenstate basis both in the auxiliary and the local physical

1 it is not possible to define orientation for singlets on any two-dimensional lattice. It must be
a bipartite lattice. A triangular or kagome lattice is a counter-example.
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Figure A.1: Construction of S = 2 AKLT state on a square lattice. Left: The
product state of oriented VBs (arrows) denoted as |AUX〉 (see text). The orienta-
tion is fixed such that all VBs point into the sublattice-A sites (red circles). Middle:
Apply rotation operators iσy on the auxiliary spins of all sublattice-B sites (blue
circles) transforming the valence bonds into the |EP 〉 states which do not have an
orientation (grey bars). Right: Application of the projectors a. On the sublattice-B
sites, the permutation operator U (blue squares) is applied on the physical index
(black vertical line). The result is a single-site C4v iPEPS representation of the
AKLT state.

space the projector a takes familiar form of rank-5 on-site tensor of iPEPS

a =
∑

suldr

asuldr |s〉 〈uldr| , (A.3)

asuldr = CGC(2, s|1/2, u; 1/2, l; 1/2, d; 1/2, r), (A.4)

where CGC gives the Clebsh-Gordan coefficients of the decomposition of tensor
product of four auxiliary spins into spin S = 2 irrep. The index s runs over Sz

eigenstates of the spin S = 2, while the indices {u, l, d, r} run over the eigenstates
of auxiliary spins associated with the four lattice directions up, left, down, and right.
Tensor a is also C4v symmetric since it is invariant with respect to any permutation
p of the auxiliary indices

asuldr = asp(uldr). (A.5)

The projectors a are applied to |AUX〉 on every site of a square lattice. The
outcome of the projection is the AKLT state

|AKLT (S = 2)〉 =

(∏

i

ai

)
|AUX〉 , (A.6)

where the product runs over all sites i of the square lattice. To represent this state as
iPEPS we have to express its coefficients in the form of Eq. (2.18) as the contraction
of a tensor network.

Let us make the following observation. Take a pair of the projectors a acting on
two sites i and j. Suppose there is a single entangled pair |EP 〉rilj := |↑ri↑lj 〉+|↓ri↓lj 〉
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connecting two auxiliary spins, one from each site. The projection then gives

aiaj |EP 〉rilj =
∑

riljr′il
′
j ...

asiuilidir′i
|si〉 〈uilidir′i| asjuj l′jdjrj

|sj〉 〈ujl′jdjrj | δrilj |ri〉 |lj〉

=
∑

...

(∑

x

asiuilidix
a
sj
ujxdjrj

)
|si〉 |sj〉 〈uilidi| 〈ujrjdj |

=
∑

siuilidi
sjuj ljdj

(
aiaj

)sisj
uilidiujrjdj

|si〉 |sj〉 〈uilidi| 〈ujrjdj | . (A.7)

In the last line we recognize the expression of Eq. (2.20), a result of the contraction
of two tensors by a pair of indices. The indices that are contracted are effectively
specified by the entangled pair |EP 〉. Therefore, we have observed that projecting
an EP is equivalent to a contraction of the projectors by the paired indices.

With this fact in mind, we define a slightly different state |AUX ′〉 in the auxiliary
space. It is given as a product state of EPs, instead of VBs, connecting the auxiliary
spins across the nearest-neighbor links of the lattice

|AUX ′〉 =
∏

i∈A

(
|EP 〉i,i+x |EP 〉i,i−x |EP 〉i,i+y |EP 〉i,i−y

)
, (A.8)

where the product again runs only over the sublattice-A sites. In contrast to the
original |AUX〉 state, the EPs do not have an orientation (see Fig. A.1). Applying
the projectors on every site of |AUX ′〉 state is equivalent to their contraction, which
can be seen by the repeated application of Eq. (A.7). Hence, such a state is an iPEPS
since its coefficients are given by a contracted tensor network formed from the on-
site tensors a. This is the origin of the name Projected entangled-pair state, or PEPS
in short. Therefore, if we can transform the VBs forming the |AUX〉 state into EPs
and then apply the projectors, the result would be an iPEPS representation of the
AKLT state.

Observe that applying a rotation iσy on the second index of a VB gives EP

(iσy) |↑〉 = − |↓〉 ; (iσy) |↓〉 = |↑〉 , (A.9)

(iσy)j |V B〉ij = (iσy)j(|↑i↓j〉 − |↓i↑j〉) = |↑i↑j〉+ |↓i↓j〉 = |EP 〉ij . (A.10)

Hence, using an identity 1 = (−iσy)(iσy), we act with the rotation iσy on every VB
in the |AUX〉 state, such that it always rotates the auxiliary spin on the B-sublattice

1 |AUX〉 =
∏

i∈A

(
(−iσy)i+x |EP 〉i,i+x (−iσy)i−x |EP 〉i,i−x

(−iσy)i+y |EP 〉i,i+y (−iσy)i−y |EP 〉i,i−y
)
. (A.11)

The last but important detail is the realization that the joint action of four such
rotation operators iσy transforms the projector a on every B-sublattice site in a
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simple way. Their action is equivalent to a unitary U acting on the physical spin
S = 2 instead

(iσy)uu′(iσ
y)ll′(iσ

y)dd′(iσ
y)rr′a

s
u′l′d′r′ = Uss′a

s′

uldr, (A.12)

Ui,dim(S)+1−i := (−)i. (A.13)

Therefore, making the use of the unitary U , we can finally give the iPEPS repre-
sentation of the AKLT spin S = 2 state1 on a square lattice

|AKLT (S = 2)〉 =
∑

{si}

(∏

i∈B
U i

)
Traux

(∏

i

asi

)
|{si}〉 . (A.14)

The state is defined using only a single C4v symmetric on-site tensor a with the bond
dimension D = 2, which is the dimension of space of auxiliary spin S = 1/2. We also
illustrate the main steps of the construction in Fig. A.1, notice the unitaries U acting
on every B-sublattice site. Finally, we make in important remark: the presence of
the unitaries is irrelevant for the CTMRG. They cancel each other site-by-site when
the double-layer network is formed.

A.2 The Parent Hamiltonian of spin S = 2 AKLT state

The parent Hamiltonian of AKLT is physical since it is composed just from the
local interactions. Each term is a projector from a pair of nearest-neighbor S = 2
spins into S = 4 irrep

HAKLT (S=2) =
∑

〈ij〉
Pij(S = 4|S = 2;S = 2), (A.15)

Pij = N(S2
ij − 0)(S2

ij − 1× 2)(S2
ij − 2× 3)(S2

ij − 3× 4). (A.16)

Defining Sij = Si+Sj , the Pij in the second equation annihilates all two spin S = 2
states that do not overlap with the spin S = 4 irrep1. The normalization coefficient
is fixed such that P 2

ij = Pij , a necessary condition for Pij being a projector. Expand-
ing the Sij , we can write the Hamiltonian in the terms of more familiar spin-spin
interaction

HAKLT (S=2) =
∑

〈ij〉

1

14

(
Si.Sj +

7

10
(Si.Sj)

2 +
7

45
(Si.Sj)

3 +
1

90
(Si.Sj)

4

)
. (A.17)

1analogous procedure leads to other states from the AKLT family in one dimension or on the
bipartite lattices in two and higher dimensions. The physical spin is given by the maximal irrep
of the tensor product of z auxilliary spin S = 1/2 associated to each site, where z is the lattice
coordination.

1SU(2) irreps of spin S satisfy the relation for the total spin S2 = S(S + 1).
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From this form it is clear that the Hamiltonian is SU(2)-invariant. It annihilates
the AKLT state since between any two nearest-neighbors there is always a singlet
at the virtual level and as a corollary the remaining auxiliary spins cannot conspire
to form a state from S = 4 irrep. Moreover, the Hamiltonian is a sum of positive
semi-definite operators, projectors Pij . As such, it is also positive semi-definite and
hence its lowest eigenvalue is zero, which puts the AKLT state into its ground state
manifold.

A.3 The iPEPS representation of short-range RVB

The main motive behind the construction is analogous to the case of AKLT state,
given in Sec. A.1. First, we define the auxiliary space. Each site of the square lattice
is decorated with four auxiliary degrees of freedom. Each of them lives in the Hilbert
space of dimension three, composed from the auxiliary spins S = 1/2 and spin S = 0
as the direct sum Haux := H(S = 0) ⊕ H(S = 1/2). The projector a acts on the
virtual space built up from the four auxiliary spins attached to each site, which
hosts a physical spin S = 1/2. Specifying the basis in the Haux as {|0〉 , |↑〉 , |↓〉},
the projector a is defined to be

a : ⊗4Haux → H(S = 1/2), (A.18)

a = |↑〉 (〈↑ 000|+ 〈0 ↑ 00|+ 〈00 ↑ 0|+ 〈000 ↑|)
+ |↓〉 (〈↓ 000|+ 〈0 ↓ 00|+ 〈00 ↓ 0|+ 〈000 ↓|). (A.19)

To understand its action, we define an entangled pair |EP1+2〉ij between two spaces
Hauxi and Hauxj

|EP1+2〉ij = |0〉i |0〉j + |↑〉i |↑〉j + |↓〉i |↓〉j . (A.20)

The action of a pair of projectors a on the |EP1+2〉 state linking two auxiliary spaces
is equivalent to the contraction of the corresponding tensors, see Eq. (A.7). The
result can be seen as being composed from two distinct terms which are interpreted
as follows: First, an |EP 〉 = |↑↑〉+ |↓↓〉 formed from the physical spins with all other
auxiliary spins set to state 〈0|, and second, the pair of projectors restricted to the
reduced auxiliary spaces ⊗3Hauxi and ⊗3Hauxj

aiaj |EP2+1〉ij = (|↑〉i |↑〉j + |↓〉 |↓〉j) 〈000|i 〈000|j +

+[|↑〉 (〈↑ 00|+ 〈0 ↑ 0|+ 〈00 ↑|) + |↓〉 (〈↓ 00|+ 〈0 ↓ 0|+ 〈00 ↓|)]i
⊗[|↑〉 (〈↑ 00|+ 〈0 ↑ 0|+ 〈00 ↑|) + |↓〉 (〈↓ 00|+ 〈0 ↓ 0|+ 〈00 ↓|)]j . (A.21)

The diagrammatic representation, shown in Fig. A.2, leads to a simple interpretation
of the above equation. Either an |EP 〉 state between the physical spins is created
and no other pair can be formed with them, or no pair is formed between the sites.
As a corollary, there can be at most single |EP 〉 state per physical site. To built an
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Figure A.2: Two projectors act on the |EP1+2〉 in the auxiliary space (grey bar).
The result is the |EP 〉 between the physical spins (white bar) and two projectors
with linked indices fixed to the value zero (|0〉).

Figure A.3: Successive application of the projectors on the |AUX〉 state (see
text), starting from the bond 1 and continuing with the bonds 2 and 3. The result
is a superposition of all possible |EP 〉 coverings over the bonds 1, 2 and 3.

iPEPS representation, we define |AUX〉 as a product state of |EP1+2〉 states linking
all nearest-neighbor pairs 〈ij〉 of auxiliary spaces on a square lattice

|AUX〉 =
∏

〈ij〉
|EP1+2〉ij . (A.22)

Then, we apply projectors a on every site. Their action can be understood through
the inductive use of the relation given in Fig. A.2. This process produces a super-
position of all possible EP coverings on a square lattice with equal weights (see
Fig. A.3). Afterward, to turn EPs into VBs, it is enough to introduce the rotations
iσy on the auxiliary spaces of every sublattice-B site as in the case of AKLT. They
act only on the H(S = 1/2) part of the Hilbert space Haux. Their joint action is
again expressed through the unitary U (see Eq. A.12) acting on the physical spins
of the sublattice-B sites. This concludes the construction of C4v symmetric iPEPS
representation

|srRV B〉 =
∑

{si}

(∏

i∈B
U i

)
Traux

(∏

i

asi

)
|{si}〉 (A.23)

of the srRVB state with bond dimension D = 3.
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The core iPEPS algorithms and the details of their
numerical implementation

This appendix lists the essential iPEPS algorithms used throughout this work in a
form directly amenable to numerical implementation. We also discuss their details,
which are crucial for the stability and the robustness of the implementation. If pos-
sible, we comment on the ways certain parts of these algorithms can be accelerated
by utilizing the cutting-edge methods in the domain of numerical linear algebra.

B.1 CTMRG for single-site C4v symmetric iPEPS

We give the complete CTMRG algorithm in the table Alg. 1. There are two im-
portant details concerning the numerical implementation. First, it is numerically
favorable to diagonalize just a single C̃ instead of ρ̃ = C̃4. The resulting projector
is identical. Second, the environment tensors have to be normalized after every RG
step since their overall magnitude grows, for example, by the norm or by the largest
element. Ultimately, there are some points which need to be addressed to complete

Algorithm 1 Compute rank-χ fixed point environment tensors {C, T} for iPEPS
with the symmetric double-layer tensor A with auxiliary dimension D2. Complexity:
O(χ3D6)

Require: A, initial {C, T}
while {C, T} not converged do
C̃ ← CTTA
U, S ← Diagonalization(C̃)
P ← truncate U to χ columns
C ← P †C̃P
T ← P †TAP
C, T ← normalize C, T

end while
return {C, T}

the introduction of the CTMRG and its application to contract the double-layer
network of iPEPS.

• Initial {C, T}. The choice of the initial tensors is in principle arbitrary. Common
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choices are random tensors or one can use the on-site tensor a of the iPEPS
itself. For example, by the contractions C(uū)(ll̄) = asuldra

∗
sūl̄dr

and T(uū)(ll̄)(dd̄) =
asuldra

∗
sūl̄d̄r

(the remaining index pairs are then fused into individual indices,

each with the dimension d = D2). It is possible that for a certain iPEPS the
fixed point environment tensors as well as the observables might depend on the
initial {C, T}. In such cases, a more detailed analysis has to be carried out by
varying the initial tensors.

• Convergence criterion. Whether or not {C, T} are converged can be assessed by
several figures of merit. For example, a reasonable choice could be (but is not
limited to) one of the following quantities: Difference between the spectra of C
in two consecutive iterations, difference between the one-site density matrices in
two consecutive iterations, or difference between particular observables such as
energy.

• Diagonalization of C̃. To obtain the projector P , we need only the leading χ
eigenvectors of C̃. This allows exploiting approximate diagonalization methods
such as the Lanczos algorithm and compute just the leading χ eigenvectors. In
doing so, the overall complexity of the algorithm can be reduced to O(χ3D4)
which is a significant improvement. For example, taking an iPEPS with bond
dimension D = 5 we can expect a speed-up close to a factor ≈ 25.

B.2 Directional CTM for single-site iPEPS

The complete single-site directional CTM algorithm is listed in the table Alg. 2.
The algorithm assumes an existence of a function getRR̄(θ,E). Given a direction
θ of the directional move, getRR̄(θ,E) contracts the two parts of the enlarged
network built from the current environment tensors E = {C1, . . . , C4, T1, . . . , T4}
into the matrices Rθ and R̄θ (see Fig. 2.21). As can be seen from the comparison
with the CTMRG for C4v symmetric iPEPS (see Sec. B.1), the final algorithm is
more complicated. Each move involves an SVD of a matrix RθR̄θ of size χD2×χD2,
which sets the overall complexity to O(χ3D6). Although, the complexity scales with
χ and D as in the symmetric case, the prefactor is significantly higher. Contrary
to the symmetric case, it now takes four directional moves to effectively grow the
system by the equivalent of a single layer of sites, which makes the directional CTM
slower by at least a factor of four. Moreover, within each move, the matrices Rθ
and R̄θ have to be constructed and then multiplied to form RθR̄θ. Despite being a
highly parallelizable task, composed just from several matrix multiplications, all of
these operations scale as χ3D6 adding up to the overall prefactor.

Let us comment on some of the technical details of the single-site directional
CTM. The initial choice of the tensors E and the convergence criteria raised for the
symmetric CTMRG pertain to the directional CTM as well. Besides those, there
are several new important considerations:
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Algorithm 2 Compute rank-χ fixed point environment E =
{C1, C2, C3, C4, T1, T2, T3, T4} for iPEPS with the double-layer tensor A with
auxiliary dimension D2. Complexity: O(χ3D6).

Require: A, getRR̄(θ,E), initial E
m+ ← map{1→ 2, 2→ 3, 3→ 4, 4→ 1}
m− ← map{1→ 4, 2→ 1, 3→ 2, 4→ 3}
while E not converged do

for θ = 1 to 4 do
R, R̄← getRR̄(θ,E)
Ũ , S̃, Ṽ ← SVD(RR̄)
U ← Ũ:,χ, S ← S̃χ, V ← Ṽ:,χ

P ← RU †S−1/2

P̄ ← R̄V S−1/2

Cm+(θ) ← Cm+(θ)Tm+(θ)P̄
Tθ ← PTθAP̄
Cθ ← CθTm−(θ)P̄
Cm+(θ), Tθ, Cθ ← normalize Cm+(θ), Tθ, Cθ

end for
end while
return E

• Projectors. The biorthonormal projectors Pθ, P̄θ are constructed with respect to
two opposite cuts of a system split in half. For example, for the “left” move
(θ = 4) the pair of cuts Q̃2 and Q̃4, or for the “up” move (θ = 1) the pair
of cuts Q̃1 and Q̃3. For an iPEPS with only a slight breaking of the rotational
symmetry this choice is balanced in the sense of both halves (matrices) Rθ, R̄θ
having roughly the same magnitude. Ideally, when truncating the indices along
the selected cut, we would like to maintain biorthonormality to the best possible
degree with respect to all other cuts.

Last important remark on the projector construction is related to the inverse
of the square root of the singular values. This step requires an introduction of
some cutoff scale εSV D ensuring the stability of the algorithm. Typically, we set
εSV D ≈ 10−8, square root of machine precision.

• SVD. Since the matrices {Q̃1, . . . , Q̃4} are no longer symmetric, to compute their
low-rank approximations SVD has to be used. Analogously to the symmetric
CTM, only the leading χ singular pairs are used in the construction of the
projectors which allows exploiting truncated SVD methods such as randomized
SVD [59], Arnoldi method [60] or Lanczos bidiagonalization [89]. Employing one
of these algorithms instead of the full rank SVD reduces the complexity by a
substantial factor of D2 down to O(χ3D4).

• Sequence of directional moves. The sequence in which the directional moves are
executed is arbitrary. Moreover, it might be desirable to perform a different num-
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ber of horizontal than vertical directional moves within the CTM. If the system
is highly anisotropic, having significantly different correlation lengths along ver-
tical and horizontal directions, such a choice might speed up the convergence to
the fixed point.

B.3 Directional CTM for iPEPS with unit cells

The preliminary point, before the CTM algorithm is formulated, is the implemen-
tation of iPEPS with a unit cell containing more than one on-site tensor. At the
level of the unit cell, we specify a map a = {(0, 0) → a0, (1, 0) → a1, . . .} from the
coordinates within the unit cell to a unique on-site tensor. To describe how the unit
cells are laid out on the square lattice, we define a tiling function ar. It assigns an
on-site tensor to each vertex r = (x, y) by mapping it back to the unit cell as (x′, y′)
and then picking the appropriate tensor

a : r→ a, (B.1)

ar = a(x′(r), y′(r)). (B.2)

Such a definition is very flexible and allows for iPEPS with tilings going beyond the
simple periodic boundary conditions. We give three different examples of the map
a, which lead to the various tilings of the square lattice introduced earlier in the
Fig. 2.4. They are 2× 1 and 2× 2 unit cells with PBC and a bipartite iPEPS built
with 2× 1 unit cell.

2× 1 bipartite 2× 2

a = {(0, 0)→ a, (1, 0)→ b} a = {(0, 0)→ a, (1, 0)→ b} a = {(0, 0)→ a, (1, 0)→ b,

(0, 1)→ c, (1, 1)→ d}

x′ = x mod 2 x′ = x mod 2 x′ = x mod 2

y′ = 0 y′ = |y| y′ = y mod 2

ar = a(x′, y′) ar = a((x′ + y′) mod 2, 0) ar = a(x′, y′)

It is assumed that the modulo operation takes the sign of the argument
sign(x mod y) = sign(x). These three examples are the natural candidates for the
ground states of nearest- and next-nearest neighbor spin models. In summary, the
whole iPEPS ansatz is specified by a unit cell map a together with a tiling function
ar as |iPEPS〉 ⇔ (a, ar).

The directional CTM algorithm assumes an existence of two auxiliary functions.
First, function Ar simply returns a double-layer tensor given a site r. The second
function, getRR̄(r, θ, E), is familiar from the previous section but now with an addi-
tional positional dependence. Given the site r and the direction θ of the directional
move, it contracts the two parts of the enlarged network, built from the current
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environment tensors {Er}, into the matrices Rr
θ and R̄r

θ (see Fig. 2.24). The com-
plete algorithm is listed in table Alg. 3. Within every directional move, the inner
loop runs over all non-equivalent sites r given in the unit cell map a. First, all the
projectors are constructed and accumulated in two maps P and P̄ , indexed by the
position r. Afterward, the absorption and the truncation is performed.

Algorithm 3 Compute rank-χ fixed point environment E = {Er} for iPEPS
specified as (a, ar) with N unique tensors of bond dimension D within the unit cell.
Complexity: O(Nχ3d3).

Require: Ar, getRR̄(r, θ, E), initial E
m+ ← map{1→ 2, 2→ 3, 3→ 4, 4→ 1}
m− ← map{1→ 4, 2→ 1, 3→ 2, 4→ 3}
δr← map{1→ x, 2→ y, 3→ −x, 4→ −y}
∆← map{1→ y, 2→ −x, 3→ −y, 4→ x}
while Er not converged do

for θ = 1 to 4 do
for r in a do
R, R̄← getRR̄(r, θ, E)
Ũ , S̃, Ṽ ← SVD(RR̄)
U ← Ũ:,χ, S ← S̃χ, V ← Ṽ:,χ

P (r)← RU †S−1/2

P̄ (r)← R̄V S−1/2

end for
for r in a do
C

r+δr(θ)
m+(θ) ← C

r+δr(θ)+∆(θ)
m+(θ) T

r+δr(θ)
m+(θ) P̄ (r + δr(θ))

T r
θ ← P (r + δr(θ))T

r+∆(θ)
θ ArP̄ (r)

C
r−δr(θ)
θ ← C

r−δr(θ)+∆(θ)
θ T

r−δr(θ)
m−(θ) P̄ (r)

C
r+δr(θ)
m+(θ) , T r

θ , C
r−δr(θ)
θ ← normalize C

r+δr(θ)
m+(θ) , T r

θ , C
r−δr(θ)
θ

end for
end for

end while
return E

All the remarks raised for the previous CTM algorithms are relevant for the
CTM extended to unit cells. The complexity scales linearly with the size of the unit
cell, which is quite favorable. Still, due to the certain level of independence, there
is a room for speeding up its execution

• Inner loop over non-equivalent sites. In general, all pairs of projectors needed
during the execution of a single directional move are constructed independently
in the first inner loop over r. Afterward, in the second inner loop, the truncation
of the enlarged environment tensors is done, again independently for different
r. Therefore, both inner loops can be parallelized, offering a significant speedup
for large unit cells.
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B.4 Simple Update: two-site and three-site gates

First, we give a detailed account on the solution of single SU step for two-site
bipartite iPEPS evolved under the translationally invariant NN Hamiltonian. It
amounts to minimizing the distance fSU , given in Fig. 3.4. Within each step, only
a single weight out of four is updated, depending on the bond where the gate u
acts. Important preliminary step is to pass from on-site tensors to reduced tensors
before doing the SVD. Doing so decreases the complexity of the SU to O(D3) from
O(D9) and makes the two-site SU extremely fast. The whole process is described in
Fig. B.1. Since the last step leading to the new updated on-site tensors requires the
inverse of weights, care should be taken, e.g. by imposing a cutoff on the inverted
weights.

The complete SU iteration consists of SU steps applied to all bonds within the
unit cell. For the case considered here, that is, two-site bipartite iPEPS evolved
by two-site gates it could be either four SU updates per iteration or eight updates

Figure B.1: Single SU step in detail. First, the on-site tensors Γa,Γb are con-
tracted with the weights and the reduced tensors Ra, Rb are formed from their
QR decomposition. Second, the reduced tensors are contracted with the weight λ1

and the gate u. The resulting tensor, interpreted as a matrix, is decomposed by
the SVD and truncated to rank D. The first D left and right singular vectors are
taken to be the new reduced tensors R′a and R′b respectively. The leading D sin-
gular values are normalized such that the dominant singular value is set to unity.

They form the new weight λ
(1)
1 . The third and the last step is to reconstruct the

new on-site tensors Γ
(1)
a and Γ

(1)
b by contracting the new reduced tensors with their

original “Q” parts and the inverses of the weights. This concludes the single SU

step, ending up with the updated Γ
(1)
a , Γ

(1)
b , and λ

(1)
1 .
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Figure B.2: Single SU step with three-site gate u. Top left: iPEPS with 2×2 unit
cell hosting four unique on-site tensors. Top right: distance fSU to be minimized
by the SU. Steps (I.-III.): First, the on-site tensors Γa, Γb, and Γc are contracted
with the weights and the reduced tensors Ra, Rb, and Rc are formed by their QR
decomposition. Second, the reduced tensors are contracted with the weights λ2,
λ6 and the gate u. The resulting tensor, interpreted as a matrix, is decomposed
by the SVD and truncated to rank D. The first D left and right singular vectors
are taken to form the new reduced tensor R′b and a tensor V respectively. The
leading D singular values are normalized such that the dominant singular value is

set to unity and they form the new weight λ
(1)
2 . Tensors V and λ

(1)
2 are contracted

into a matrix Θ. Second truncated SVD, this time of Θ, gives tensor U and the
new reduced tensor R′c assembled from the first D left and right singular vectors.

The first D singular values form the new weight λ
(1)
6 after normalization. The last

new reduced tensor R′a is obtained from the tensor U and (λ
(1)
2 )−1, coming from

the restored weight. Finally, the updated on-site tensors Γ
(1)
a , Γ

(1)
b , and Γ

(1)
c are

built by contracting the new reduced tensors with their original “Q” parts and the
inverses of the weights.

depending on which Trotter decomposition1 is used [see Eq. (3.5)]. Finally, the
optimization is done by repeating the SU iterations until convergence. The difference

1in principle the order in which the individual gates are applied might influence the optimiza-
tion. However, there are no known examples where different order leads to non-negligible differences.
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between the weights in the consecutive iterations is often used to establish if the
imaginary-time evolution by SU converged.

Importantly, SU was extended to next-nearest neighbor interaction by Corboz
[33]. The gates u, which make up the Trotter-decomposed time evolution operator of
such Hamiltonians, are acting on three sites. Nevertheless, the overall procedure of
the SU step is similar to the two-site gate case, with the crucial difference being the
recovery of the updated reduced tensors by the series of SVDs. Taking as an example
a 2× 2 iPEPS with four tensor in the unit cell, we describe a complete step of SU
for three-site gate in Fig. B.2. The complexity of the update is O(D6), dominated
by the construction of the reduced tensors. Each such SU step updates three on-site
tensors and two of the eight distinct weights {λ1, . . . , λ8}. The complete iteration
of SU now consists of sixteen or thirty-two individual SU steps depending on the
Trotter decomposition. The number sixteen is given by all the possible ways the
gate u can act within the 2× 2 unit cell of the iPEPS.

B.5 Full Update: three-site gate

In the main text, the outline of the FU optimization was described. Here, we focus
on the concrete step which is the minimization of the approximate distance fFU
from Eq. (3.19). We will demonstrate the solution in the case of three-site Trotter
gate u applied to iPEPS with 2 × 2 unit cell containing four tensors. An example
relevant for the systems with NNN interactions such as the J1 − J2 model. The
simplification to two-site FU is straightforward.

The impurity problem defined by the fFU can be solved efficiently since the envi-
ronment of the 2×2 region where the gate u acts is constant. We take this L-shaped
gate to act on the three on-site tensors {a, b, c}, with the tensor a being in between
the other two (see Fig. ??). For other fifteen relative positions of the gate u within
the unit cell the procedure is analogous. The fFU is minimized only with respect to
the tensors {ã, b̃, c̃}, which are supposed to replace the three tensors affected by the
gate u. Although there is no unique way to find them the different recipes in the
literature often use the Alternating-least squares (ALS) approach. Here, we follow
the proposal by Haghshenas [38]. Alternatively one can use a different procedure
based on the four isometries between the tensors {a, b, c} [37].

The tensors {ã, b̃, c̃} are initialized by the current on-site tensors {a, b, c}, which
is a sound choice since for the small time step ε the gate u is very close to iden-
tity. Similar to the SU, it is favorable to pass to the reduced tensors by the QR
decomposition

Initialization: a = Qara; b = Qbrb; c = Qcrc,

ã = Qar̃a; r̃a = ra,

b̃ = Qbr̃b; r̃b = rb,

c̃ = Qcr̃c; r̃c = rc.

(B.3)
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Figure B.3: Minimization of the distance fFU within a single FU step of the
imaginary-time evolution of 2 × 2 iPEPS under the action of NNN Hamiltonian.
Starting from the top, the double-layer networks of the norm and the overlap in
Eq. (3.19) are approximated using the rank-χ environment defined for iPEPS with

the tensors {a, b, c, d}. We consider only the terms with the conjugates {r̃†a, r̃†b , r̃†c}.
All but the reduced tensors and the gate u are contracted into effective environment
E3 (see text). An instance of the linear system produced by the ALS in terms of
constant tensors: The symmetrized environment ES3 , tensor KS containing the
gate u, and the fixed reduced tensors. This linear system is solved for r̃†a.

All the orthonormal bases {Qa, Qb, Qc} are taken do be constant and only the
reduced tensors {r̃a, r̃b, r̃c} will be optimized. The orthonormal bases, the fourth
on-site tensor d, d†, and the environment E2×2 are contracted together into a single
tensor E3

E3 := Tr(E2×2d
†Q†aQ

†
bQ
†
cdQaQbQc), (B.4)

which defines the effective environment for the reduced tensors, see Fig. B.3. Both
the norm and the overlap figuring in the fFU can be expressed through the tensor
E3, the gate u, and the reduced tensors. In fact, the E3 can be interpreted as
a reduced density matrix and as such it has to be symmetric and non-negative.
However, since the CTM provides only approximate environment tensors, the above
properties might not be exactly satisfied. Therefore, the E3 is symmetrized and only
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its non-negative part is considered

UDU † = diagonalize

(
1

2
(E3 + E†3)

)
, (B.5)

ES3 := UD+U †, (B.6)

where D+ contains only non-negative eigenvalues. Not doing so might lead to in-
stabilities later in the ALS. Using the amended environment ES3 , the gate u and
the reduced tensors {ra, rb, rc} in the overlap are contracted into a single tensor KS

(see Fig. B.3). The distance fFU can now be given in a convenient form, ready for
the ALS

fFU (r̃a, r̃b, r̃c) = r̃†ar̃
†
b r̃
†
cE

S
3 r̃ar̃br̃c − r̃†ar̃†b r̃†cKS −KS r̃ar̃br̃c + const. (B.7)

With the preliminary part done, the ALS process starts. It minimizes the distance
one reduced tensor at the time. At each iteration a derivative of fFU with respect
to a single reduced tensor, say r̃†a, out of {r̃†a, r̃†b , r̃

†
c} is taken while the other reduced

tensors are fixed

∂r̃†afFU = r̃†b r̃
†
cE

S
3 r̃ar̃br̃c − r̃†b r̃†cKS = Mr̃a − Y !

= 0, (B.8)

which defines a linear system in terms of the coefficient matrix M and the right hand
side Y . The solution of this system gives the new reduced tensor r̃†a that decreases
the distance. The tensor should be normalized, for example, by rescaling it with the
inverse magnitude of its largest element. This process is repeated alternating the
reduced tensors until the fFU converges. Typically, the convergence is established
by the difference of distances fFU between ALS iterations reaching a threshold εf .
At last, using the converged reduced tensors, the new on-site tensors {ã, b̃, c̃} are
recovered and the minimization of the distance fFU is done.

The linear systems of Eq. (B.8) tend to be very badly conditioned1. While for
two-site gates a certain form of gauge fixing can improve the conditioning [39, 90],
it cannot be easily extended to three-site gates. A robust solution is provided by the
pseudoinverse with a cutoff εALS . The complexity of the ALS then becomes O(D12),
dominated by the SVD that computes the pseudoinverse. Other iterative methods,
such as conjugate gradient, might be used as well. However, the caution must be
taken due to the bad conditioning of the matrix M .

1negative eigenvalues of the M , coming from the unsymmetrized environment E3 make the
system ill-defined. Taking the symmetrized environment ES

3 still leaves the directions associated
with the vanishing eigenvalues free. Hence, the M often does not define a unique solution.
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Analysis of the Transfer matrices

Static correlation functions are important probes of the quantum state. In this
appendix we describe a specific form taken by all the two-point correlation functions
of iPEPS. Taking a state |ψ〉, the two-point correlation function between operators
O1 and O2 inserted at points x and y respectively reads

f(x,y)O1O2
:= 〈O1(x)O2(y)〉 = 〈ψ|O1(x)O2(y) |ψ〉 . (C.1)

The long distance behavior of the correlation function and its connected part con-
tains information about the phase of the system. The connected part of the corre-
lation function is defined as

fC(x,y)O1O2
:= 〈O1(x)O2(y)〉 − 〈O1(x)〉〈O2(y)〉. (C.2)

In the rest of the appendix, we will restrict the discussion to single-site C4v sym-
metric iPEPS, hence the correlation functions will depend only on the distance
r = |x− y|.

C.1 Two-point correlation functions of iPEPS

The algebraic form of fO1O2
(r) is constrained to a be a sum of exponential decays.

This fact becomes apparent by considering a transfer matrix T, which naturally ap-
pears in the diagram representing the generic two-point correlation function, shown
in Fig. C.1. Defining a transfer matrix T as a contraction of all tensors on the rung
of the network, we can express the correlation function as

f(r)O1O2
= 〈L(O1)|Tr−1 |R(O2)〉 , (C.3)

where the vectors 〈L(O1)| , |R(O2)〉 denote the left and the right boundaries of the
network in Fig. C.1 and they also contain the operators O1, O2. In the rest, we
will use just a short-hand notation 〈L| , |R〉. The transfer matrix T, not necessarily
symmetric, can be diagonalized as

T =
∑

i

|li〉λi 〈ri| , (C.4)

with |li〉 and 〈ri| being left and right eigenvectors respectively, satisfying the or-
thonormality relation 〈li|rj〉 = δij . Assuming that the leading and the subleading

105



106 Thesis

Figure C.1: The environment of two sites separated by a distance r−1. Inserting
the on-site tensors with operators O1 and O2 respectively and contracting the
network gives the value of the their correlation function f(r)O1O2

. The network
can be seen as one-dimensional ladder with r + 1 rungs, composed of the left and
right boundary vectors 〈L(.)|, |R(.)〉, and r − 1 transfer matrices T.

eigenvalues are not degenerate, we can rescale the eigenvalues such that λ0 is unity.
Using the eigendecomposition of the transfer matrix the correlation function sim-
plifies to

f(r)O1O2
=
∑

i

λr−1
i 〈L|li〉 〈ri|R〉 = 〈L|l0〉 〈r0|R〉+

∑

i>0

λr−1
i 〈L|li〉 〈ri|R〉 . (C.5)

Leading eigenvectors |l0〉 and 〈r0| of the transfer matrix are equivalent to the left and
right boundary 〈L(1)| , |R(1)〉 with the identity operator inserted. Therefore, the
first term in the above expression is simply the disconnected part of the correlation
function. Hence, the general form of the connected correlation function is the sum
of terms decaying exponentially fast with the distance

fC(r)O1O2
=
∑

i>0

λr−1
i 〈L|li〉 〈ri|R〉 . (C.6)

The above form of the connected correlation function can be used to directly
extract the correlation length(s) of the iPEPS. By equating the fC(r) with an
exponential decay exp(−r/ξ) and taking a large distance limit, we recover ξ as

r � 1 : exp(−r/ξ) = |λ1|r ⇒ ξ = −1/log|λ1|. (C.7)

The correlation length ξ obtained this way is the largest correlation length in the sys-
tem. For some operators O1 (O2) the so-called form factor 〈L(O1)|l1〉 (〈r1|R(O2)〉)
might vanish. In such case, the eigenvalue λi for the first non-vanishing set of form-
factors sets the correlation length ξi = −1/log|λi| that governs the decay of the
corresponding f(r)C . A good example is given by the srRVB state, analyzed in
Sec. 2.5, where the dimer-dimer correlations decay substantially slower than the
spin-spin correlations.

The environment tensors {T}, that make up the transfer matrix T, are only
approximate. The eigenvalues {λ} thus depend on the environment bond dimension
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χ. This fact has two consequences. First, the finite value of χ induces an effective
length scale ξχ beyond which all the correlation functions decay exponentially. In
effect, even the exact iPEPS with power-law correlations, such as srRVB, will appear
to have a finite correlation length. In such cases, the functional form of the connected
correlation function can be modeled with the Ornstein-Zernike formula

fC(r) ∝ r−ηexp(−r/ξχ). (C.8)

Second, similarly to other observables, to estimate the value of the correlation
length(s) in the thermodynamic limit one has to perform their scaling with χ. How-
ever, the correlation length tends to converge very slowly with χ and the CTM
becomes costly since it scales as O(χ3) (for a fixed bond dimension D of iPEPS).
Recently, an improved extrapolation method of the correlation length with χ was
developed [91]. It is based on the scaling of the gaps between the eigenvalues {λ}
with the environment dimension χ.

Finally, we remark that the above discussion can be extended to iPEPS with
unit cells. One has both the horizontal and the vertical transfer matrices {T} given
by a product of all rungs spanning the unit cell along those directions.
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Verstraete, “Time-Dependent Variational Principle for Quantum Lattices”,
Phys. Rev. Lett. 107, 070601 (2011) 10.1103/PhysRevLett.107.070601.
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