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Introduction

In 1958, P.W. Anderson conceived the revolutionary idea that the wave func-

tion of a particle in certain random lattices could become localized. [1] Even

though the original idea of localization was introduced within the context of spin

systems, the subsequent theoretical efforts were mainly concentrated on the local-

ization properties of the electron wave function diffusing into a disordered lattice.

In this context, Anderson’s results meant that for sufficiently strong disorder

the electron wave function at the chemical potential becomes localized, turning

metals into insulators, after him called Anderson insulators. There are by now

plenty of experimental evidences of Anderson’s localization phenomenon in amor-

phous semiconductors, [2] in light-wave experiments, [3, 4] microwaves, [5] sound

waves, [6] and electron gases. [7]

Although the initial Anderson’s motivation was diffusion in spin systems,

which are equivalent to hardcore bosons, [8] most of the interest was focused on

electron localization. The bosonic counterpart had received much less attention

until 1980’s, when experiments revealed the importance of studying the com-

petition between disorder and superfluidity, the so-called dirty boson problem.

Perhaps the earliest relevant experiments were on superfluidity of thin helium

films, 4He adsorbed in porous Vycor glass, granular thin film superconductors

and disordered Josephson arrays. Such experiments motivated a lot of theoreti-

cal work. The phase diagram was conjectured in seminal papers by Fisher et al.

and Giamarchi and Schulz, [9, 10] which, in turn, motivated further numerical as

well as analytical works. The situation with bosons is particularly dramatic, since

the non-interacting limit is pathological due to the statistics of bosons. Indeed,

all bosons with no interaction get localized in the vicinity of a small portion of

space corresponding to the deepest minimum of the random potential, leading to
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a non-thermodynamic phase with infinite density in a finite region of space. This

implies that there is no sensible non-interacting starting point about which to

perturb. In fact, as soon as interaction is switched on, that state can not survive

and the particles are redistributed in space leading to a stable thermodynamic

phase. Therefore, interaction has to be introduced from the very beginning in or-

der to get a sensible theoretical description of the system. In their original paper,

Fisher et al. argued that bosons hopping on a lattice with short-range repulsive

interaction subject to a random bounded potential have three possible ground

states: 1) an incompressible Mott insulator with a density of bosons commensu-

rate with the lattice and a gap for particle-hole excitations, 2) a superfluid state

with off-diagonal long-range order (or quasi-long-range order in one dimension);

and 3) a gapless Bose-glass phase, which is an insulator with exponentially de-

caying superfluid correlations but compressible. Furthermore, it was conjectured

that the localized Bose-glass phase should always intervene between the super-

fluid and Mott insulator. However, subsequent numerical as well as analytical

results were controversial and some supported the initial ideas by Fisher et al.

while some others contradicted it. [11, 12, 13, 14, 15, 16, 17, 18]

Although the problem of disordered bosons has been now extensively studied

during the last 20 years and important aspects of the problem are well clarified,

some open issues remained, like a precise determination of the phase diagram

and a proper characterization and understanding of the emerging phases. Even

though there were some experimental realizations of interacting dirty bosons,

the difficulties in obtaining bosons in a controlled disordered environment left

aside some open issues. Much more recently, with the advent of cold atoms the

discussion of the dirty boson problem have gained renewed interest and become

lively. Unlike in realistic materials, experiments with cold Fermi and Bose atoms

trapped in optical lattices provide a good opportunity to realize simple low-energy

models that have been largely considered in condensed-matter physics with an

almost perfect control of the Hamiltonian parameters by external fields. There-

fore, experimental realizations of lattice models as the Bose and Fermi Hubbard

models, which are believed to capture the essential physics underneath impor-

tant phenomena, such as, for example, superfluidity or the Mott metal-insulator

transition, have been experimentally realized with unprecedented control of the

iv



environment. One of the first successes of these experiments has been the ob-

servation of a superfluid to Mott insulator transition in bosonic atoms trapped

in optical lattices upon varying the relative strengths of interaction and inter-

well tunneling. [19] The possibility of introducing and tuning disorder was then

exploited, through speckles or additional incommensurate lattices, and it also

led to the observation of Anderson localization for weakly interacting Bose gases

in optical lattices. [20, 21] These important achievements progressively opened

the way towards the challenging issue of realizing and studying a Bose-Hubbard

model in the presence of disorder and interaction. [22, 23].

This thesis focuses on the the Bose-Hubbard model in presence of disorder

from a theoretical point of view using numerical simulations mainly based on

quantum Monte Carlo. We consider variational Monte Carlo, [24, 25] using a

variational wave function based on a translational invariant density-density Jas-

trow factor applied to a state where all bosons are condensed at q = 0, and

on top of that we add a one-body local term which accounts for the effect of

the on-site disorder. The flexibility of this variational state makes it possible

to describe superfluid, Bose-glass, and Mott-insulating states. We also consider

Green’s function Monte Carlo, [26, 27] a zero-temperature algorithm that pro-

vides numerically exact results because of the absence of sign problem for this

particular problem. In that method, one starts from a trial (e.g.,variational wave

function) and filters out high-energy components by iterative statistical applica-

tions of the imaginary-time evolution operator. By using these two methods, we

investigate the properties of the Bose-glass phase and the superfluid to insula-

tor transition in several low-dimensional geometries. Particularly, we show that a

proper characterization of the phase diagram on finite disordered clusters requires

the knowledge of probability distributions of physical quantities rather than their

averages. This holds in particular for determining the stability region of the

Bose-glass phase, where the finite compressibility arises due to exponentially rare

regions which make its detection on finite clusters unlikely. However, by deter-

mining the distribution probability of the gap on finite sizes, we show that Bose

glass intervenes between the superfluid and Mott insulator and it is characterized

by a broad distribution of the gap that is peaked at finite energy but extends

down to zero (hence compressible), a shape remarkably reminiscent of preformed
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Hubbard sidebands with the Mott gap completely filled by Lifshitz’s tails. This

result suggests that a similar statistical analysis should be performed also to in-

terpret experiments on cold gases trapped in disordered lattices, limited as they

are to finite sizes. A similar approach is also used to study the ground-state prop-

erties of a system of hardcore bosons on a disordered two-leg ladder. However,

measuring the distribution probability of the gap poses several challenges when

quantitatively comparing experimental data and theoretical results. Particularly,

one relevant experimental issue comes from the inevitable spatial inhomogeneities

induced by the optical trap, which is necessary to confine particles. With that in

mind, we devise a method which in principle should allow the possibility to ex-

tract the value of the Mott gap from energetic measurements of confined systems

only. For the sake of simplicity, we test our idea using an insightful variational

approach based upon the Gutzwiller wave function in one- and two-dimensional

trapped bosonic systems. However, similar results must hold also in fermionic

systems and bosons in any dimension because the superfluid to Mott-insulator

transition occurs in any dimension accompanied by the opening of a gap in the

spectrum, even at the mean-field level.

Overview

This thesis is divided in 5 main chapters:

Chapter 1 In this chapter, the problem of interacting atoms on optical lattices

is introduced, emphasizing that these systems constitute an almost per-

fect realization of simple low-energy models extensively used in condensed

matter physics. The main experimental realizations of the Bose-Hubbard

model are discussed both in the clean and disordered case and we provide

insight on the nature of the phase diagrams of such models based on simple

arguments.

Chapter 2 The variational approach is explained by introducing the Gutzwiller

wave function. The Gutzwiller approach is extended in order to include

spatial correlations by supplementing it with a long-range Jastrow wave

function. We extend the variational approach to study disordered systems
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and explain how to optimize the wave functions by mean of the stochas-

tic reconfiguration technique. Finally, the Green’s Function Monte Carlo

technique is described.

Chapter 3 In this chapter we discuss the emergence of the Bose-glass phase in

low-dimensional lattices by means of the variational and Green’s function

Monte Carlo techniques. We show that a proper characterization of the

phases on finite disordered clusters requires the knowledge of probability

distributions of physical quantities rather than their averages.

Chapter 4 In this chapter we discuss the effect of disorder on the zero-temperature

phase diagram of a two-leg ladder of hardcore bosons using numerical sim-

ulations. We analyze the low-density regime of the phase diagram in pres-

ence of disorder and find an intervening Bose-glass phase between the frozen

Mott insulator with one or zero particles per site and the superfluid phase.

We also discussed the effect of disorder on the rung Mott insulator which

is a gapped phase occurring exactly at half filling. We argue, based on

numerical and single-particle arguments, that this gapped phase is always

surrounded by the Bose glass.

Chapter 5 In this chapter we show that the measurement of the so-called re-

lease energy makes it possible to assess the value of the Mott gap in the

presence of the confinement potential in experiments with cold atoms. We

analyze two types of confinement, the usual harmonic confinement and the

recently introduced off-diagonal confinement in which the kinetic energy of

the particles is varied across the lattice, being maximum at the center of

the lattice and vanishing at its edges, which naturally induces a trapping

of the particles.
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Chapter 1

Ultracold atoms on optical

lattices and the dirty boson

problem

In this chapter, the problem of interacting atoms on optical lattices is introduced,

emphasizing that these systems constitute an almost perfect realization of long-

standing models extensively used in condensed matter and statistical physics. The

way optical lattices are created and how the particles are loaded onto the lattices

are briefly explained. The main experimental realizations of the Bose-Hubbard

model using ultracold atoms are discussed, together with the description of some

of the experimental techniques used to detect the emerging phases of the system.

Furthermore, the way disorder is introduced on top of the clean optical lattice

is described in detail, and its effect on the phase diagram of the Bose-Hubbard

model is discussed from a theoretical perspective based on known arguments.

Finally, we explain recent experimental realizations of bosonic systems in which

disorder plays a crucial role and the physics of the system is captured by the

disordered Bose-Hubbard model.

1.1 Optical lattices

Real solid state materials are incredibly complex. Their main constituents, the

nuclei and electrons, are assembled in an intricate complex way and even though
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1.1 Optical lattices

we do know how they mutually interact, the behavior of the resulting assembly

of particles cannot generally be anticipated. A complicated band structure of

the underlying crystal, Coulomb interaction among electrons, lattice vibrations,

disorder and impurities on the crystal are, in many cases, relevant for a compre-

hensive description of the physics of condensed matter systems. More the rule

than the exception, taking into account all these effects in a theory at once is

yet hardly possible. Not to mention how hard it is to single out which effects

are relevant in a particular physical situation and which are not, especially when

interpreting the outcome of experiments. As a particular example of the complex-

ity of condensed matter systems, we have the high-temperature superconductors.

After more than twenty years of intensive research the origin of high-temperature

superconductivity is still not clear. The subtle interplay between Coulomb inter-

action, spin fluctuations, charge fluctuations, crystal and band structure give rise

to the underlying cooper pairs which are responsible for superconductivity. In

deep connection with the description of phenomena in real materials, several top-

ics and questions are at the interface between condensed matter physics and the

physics of ultracold atoms loaded on optical lattices. Indeed, recent remarkable

advances in the area of ultracold atomic gases have given birth to a field in which

condensed matter physics is studied with atoms and light. It has now opened a

way towards the creation of an artificial crystal of quantum matter, with complete

control over the periodic crystal potential. The shape of the periodic potential,

its depth and the interactions among the particles that have been introduced on

top of the lattices can be changed with a high degree of control and the particles

could be moved around in a very controlled way. [28] An optical lattice provides

precisely that possibility: it is a crystal formed by interfering laser beams, with a

typical dimension about 1000 times larger than that of a conventional crystal but

imperfection-free and no lattice vibrations. The particles in the lattice play the

role of electrons in the solid; they tunnel across lattice sites just as single electrons

tunnel through a real solid. All these things are possible because neutral atoms

can be trapped in the periodic intensity pattern of light created by the coherent

interference of laser beams. The light field of the interference pattern induces an

electric dipole moment in the atoms of the ultracold gas, modifying their energy

via the A.C. Stark shift, also known as the ”light shift”. [29] The induced dipole
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1.1 Optical lattices

moment of the atom, in turn, interacts at the same time with the electric field

which creates a trapping potential Vdip (r):

Vdip (r) = −d.E (r) ∝ α (ω) |E (r) |2 (1.1)

Here α (ω) denotes the polarizability of an atom and I (r) ∝ |E (r) |2 character-

izes the intensity of the laser light field, with E (r) its electric field amplitude

at position r. [29] The electric field will have a certain oscillatory spatial be-

havior such that the intensity mimics the periodic structure of a crystal. The

laser light frequency ω is usually tuned far away from an atomic resonance fre-

quency, such that spontaneous emission effects from resonant excitations can be

neglected and the resulting dipole potential is purely conservative in nature. It

can be attractive for laser light with a frequency ω smaller than the atomic res-

onance frequency ω0, or repulsive for a laser frequency larger than the atomic

resonance frequency. Therefore, depending on the frequency of the light, atoms

are pulled towards either the bright (red detuning) or the dark regions (blue de-

tuning) and are consequently confined in space at the minima of the potential

due to the interference pattern of the lasers. The strength of the confinement is

proportional to the laser’s intensity along its propagation. By using additional

lasers from different directions, two- or even three-dimensional lattice structures

can be constructed, as well as different geometries by varying the angle between

the lasers as in Fig. 1.1 (taken from Ref. [28]). Rectangular, triangular, hexago-

nal and even Kagomé lattices have been explored using interfering lasers. [30, 31]

Introducing the cold atoms onto the optical lattice is carried out by initially

trapping the atoms in a magnetic trap that confines the system, followed by the

lowering of the temperature by evaporative cooling technique. In this technique,

the hottest atoms are selectively removed from the system and the remaining

ones rethermalize via two-body collisions. After that, one slowly ramps up the

lasers to create the periodic lattice potential, and the atoms reorder to adapt

to their new environment. Similarly, the whole lattice can be removed from the

atoms simply by ramping down the lasers, thus liberating the atoms into free

space once more. [28] While in the trapped system without the lattice the cold

gases are dilute and mean-field theory provides a useful framework to study the

role of the interaction between particles, with the optical lattice switched on the

3



1.1 Optical lattices

Figure 1.1: Potential landscapes of optical lattices. a) Laser light creates a re-

pulsive or an attractive potential. b) By allowing two counter-propagating laser

beams to interfere, a sinusoidal standing wave can be formed. c), d), Adding

more laser beams at right angles to the first one creates a two-dimensional (c)

and finally a three-dimensional cubic lattice (d).

4
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1.1 Optical lattices

kinetic energy is heavily quenched and the strongly correlated regime can be ac-

cessed where the effects of interaction are very much enhanced. Therefore, by

combining the optical lattice with magnetically trapped atoms, it is possible to

study a very broad class of many-body systems such as interacting bosons and

fermions in several geometries and dimensions, avoiding difficulties encountered

in real materials or introducing their complicated effects in a highly controlled

way such that a better understanding of complex quantum-mechanical physical

phenomena can be reached.

Feshbach resonance: Independent control of interactions in

ultracold gases

The most direct way of reaching strong interaction regime in dilute, ultracold

gases are Feshbach resonances, which allow to increase the scattering length be-

yond the average interparticle spacing. [32] Quite generally, a Feshbach resonance

in a two-particle collision appears whenever a bound state in a closed channel is

coupled resonantly with the scattering continuum of an open channel. The two

channels may correspond, for example, to different spin configurations for atoms.

The scattered particles are then temporarily captured in the quasibound state,

and the associated long-time delay gives rise to a resonance in the scattering cross

section. [32] For instance, by the simple change of a magnetic field, the interac-

tions between atoms can be controlled over an enormous range. This tunability

arises from the coupling of free unbound atoms to a molecular state in which

the atoms are tightly bound. The closer this molecular level lays with respect

to the energy of two free atoms, the stronger the interaction between them. The

magnetic tuning method is the common way to achieve resonant coupling and

it has found numerous applications. [33] However, Feshbach resonances can be

achieved by optical methods, leading to optical resonances which are similar to

the magnetically tuned ones. A magnetically tuned Feshbach resonance can be

described by a simple expression, introduced in Ref. [34] for the s-wave scattering

length a as a function of the magnetic field B,

a = abg

(

1− ∆

B −B0

)

(1.2)
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1.1 Optical lattices
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Figure 1.2: Scattering length as function of the magnetic field B in a magnetically

tuned Feshbach resonance.

Figure 1.2 shows a plot of this resonance expression. The background scatter-

ing length abg, which is the scattering length associated with interaction potential

of the open channel, represents the off-resonant value. The parameter B0 denotes

the resonance position, where the scattering length diverges (a → ±∞), and the

parameter ∆ is the resonance width. [33]. Note that both abg and a can be pos-

itive or negative such that a wide range of attractive and repulsive interactions

between cold atoms can be considered. Among the most important experiments

triggered by the possibility to tune the interaction by using Feshbach resonances,

we have the realization of a Bose Einstein condensate in a sample of 85Rb, [35]

investigations of the BEC-BCS crossover, [36] and evidence for the existence of

Efimov States that was obtained in an experiment which could not have been

performed without control over the scattering length. [37]

Time of flight experiments

The possibility to image trapped atoms on optical lattices is heavily restricted

because the lattice spacing is of the order of some nanometers, and therefore

the optical resolution of the typical imaging systems is not sufficient to resolve

individual lattice sites. Nevertheless, when all trapping potentials are switched

6
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1.1 Optical lattices

Figure 1.3: Time of flight experiment schematics. A laser images the condensate

after a certain expansion time τ . The registered image is used to determine

whether the trapped system exhibits phase coherence or not.

off, the wave packets confined at each lattice site expand, start to overlap, and

interfere with each other giving rise to an interference pattern of matter waves.

After a certain time of expansion, the condensate has increased its size because

of expansion and it is now large enough such that it can be imaged. If the ef-

fects of interaction between atoms during the expansion of the condensate can

be neglected, the shape of the interference pattern will be proportional to the

momentum distribution of the atoms before the expansion, such that it can pro-

vide crucial information on the quantum-mechanical state of the in-trap particles.

Schematically, a standard time of flight experiment is performed by letting the

atoms expand under the action of gravity. After a certain expansion time τ , the

cloud is shone with a further imaging laser. The “shadow” left by the condensate

is imaged by a charge couple device (CCD), see Fig. 1.3. Perhaps the most im-

portant information from the time of flight experiments is that if the interference

pattern recorded by the CCD exhibits sharp peaks, it implies that the matter

waves feature phase coherence across the lattice in the sense that the phase fluc-

tuations of the matter waves emerging across lattice are correlated. Instead, if

the interference pattern is broad, the spatial correlations across the lattice vanish,

implying the absence of long-range order in the quantum mechanical state of the

atoms in the trap.

7
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1.2 Ultracold atoms in optical lattices and the Bose-Hubbard Model

1.2 Ultracold atoms in optical lattices and the

Bose-Hubbard Model

One of the most spectacular experiments with ultracold atoms has been the ob-

servation of a superfluid to Mott insulator transition in bosonic atoms trapped

in optical lattices upon varying the relative strengths of interaction and interwell

tunneling in a three-dimensional (3D) lattice. [19] A conceptually simple model

that describes the physics of such systems is the Bose-Hubbard model, [9, 38]

which describes interacting bosons on a lattice potential. The Hamiltonian in its

second quantized form reads:

H = − t

2

∑

〈i,j〉

b†ibj + h.c. +
∑

i

(

U

2
ni(ni − 1) + (ǫi − µ)ni

)

, (1.3)

where 〈. . . 〉 indicates nearest-neighbor sites, b†i (bi ) creates (destroys) a boson

on site i, and ni = b†ibi is the local density operator. The on-site interaction is

parameterized by U . The strength of the tunneling term in the Hamiltonian is

characterized by the hopping matrix element t between neighbors i, j, whereas

the local ǫi is an energy offset of the ith lattice site. This local energy offset is in

principle a general on-site potential. It could represent the inhomogeneities due to

an external magnetic confinement, a random variable due to disorder, a staggered

potential, combinations of the above mentioned, among other possibilities. µ is

the chemical potential that fixes the total number of particles in the system M . In

the limit of vanishing interactions, where the tunneling is dominating t ≫ U , the

ground state of the Hamiltonian is well described by single-particle wave functions

of M bosons totally spread out over the entire lattice with L sites. Under these

conditions, the many-body ground state for a homogeneous lattice ǫi = 0, is given

by,

| ΦSF 〉U=0 =

(

L
∑

i

b†i

)M

| 0〉. (1.4)

Clearly, in this state all atoms occupy the identical extended Bloch state and it

is prone to superfluidity. On the other hand, when the interactions are dominant

U ≫ t, all the the particles tend to localize due the strong repulsion between

them, in such a way that it is not energetically favorable for the particles to

8



1.2 Ultracold atoms in optical lattices and the Bose-Hubbard Model

Figure 1.4: Pictorial representations of the superfluid (above) and Mott-insulating

(below) phases of bosons on an optical lattice.

wander through the crystal, but stay fixed in space. The many-body ground

state is a perfect Mott insulator, a product of local Fock states for each lattice

site. In this limit, the ground state of the many-body system for a commensurate

filling of n atoms per lattice site in the homogeneous case is given by

|ΦMott〉t=0 =

L
∏

i

(

b†i

)n

|0〉. (1.5)

In this state no phase coherence is prevalent in the system, but perfect corre-

lations in the atom number exist between lattice sites. Furthermore, there is

an energy gap to create a particle-hole excitation of U which makes the system

incompressible. In Fig. 1.4 a pictorial representation of both the superfluid and

the Mott insulating phases is presented, where in the superfluid phase (upper

part) the particles are expected to move across the lattice with associated charge

fluctuations, while in the Mott phase (lower part) the particles are pinned to the

lattice sites with strongly reduced fluctuations. Now, suppose that in the Mott

insulator a small t ≪ U is turned on, such that the particles are allowed to hop

between lattice sites. Then the kinetic energy (∼ t) gained by allowing an extra

particle-hole excitation to hop around the lattice is yet insufficient to overcome

the potential energy cost due to interaction. Therefore, even at finite small t the

Mott insulator survives in a range of values of tunneling, until the system reaches

a certain critical value of the ratio (U/t)c where the energy gained by the tunneling

9
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1.2 Ultracold atoms in optical lattices and the Bose-Hubbard Model

Figure 1.5: Schematic zero temperature phase diagram for the Hubbard Model.

is dominant for which the system will undergo a quantum phase transition from

the Mott-insulating state to the superfluid. This transition is accompanied by a

marked change in the excitation spectrum of the system, where in the superfluid

regime the system becomes gapless. [9] If instead now, by increasing (decreasing)

the chemical potential µ at fixed U/t in the Mott-insulating phase, the system

will eventually reach a point where the kinetic energy gained by adding (remov-

ing) an extra particle (hole) and letting it hop around the system will balance

the associated potential energy cost. Since this extra nonzero density of particles

(holes) is free to wander around the system, those particles (holes) will immedi-

ately Bose condense producing a superfluid state. [9] A sketch of the emerging

phase diagram following the above arguments is presented in Fig. 1.5. The phase

diagram consists of Mott-insulating lobes with integer average density n, and a

finite gap to particle-hole excitations (blue regions) and gapless superfluid regions

which can attain integer and non-integer fillings (white regions).

Superfluid to Mott insulator in experiments

Before the introduction of the important experiments using ultracold atoms loaded

in optical lattices, possible physical realizations of strongly interacting bosonic

systems included short-correlation-length superconductors, granular supercon-

ductors, Josephson arrays, the dynamics of flux lattices in type-II superconduc-

10
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1.2 Ultracold atoms in optical lattices and the Bose-Hubbard Model

tors, and critical behavior of 4He in porous media, magnetic systems in pres-

ence of external magnetic field which possesses interacting bosonic excitations,

among others. [11] The generation of the first Bose-Einstein condensates in the

mid-1990’s boosted the first experiments using optical lattices, mainly used as

mechanism to further cool down the atoms at first. However, experiments with

complex many-body states reached with optical lattices, relevant for simulating

condensed matter systems, started only around 2000, first with Bose-Einstein

condensates in three-dimensional lattices, and later with ultracold Fermi gases.

Following the proposal in Ref. [38], the superfluid to Mott insulator transition was

observed by Greiner et al. [19] loading 87Rb atoms from a Bose-Einstein conden-

sate into a three-dimensional optical lattice potential. The system they studied

was characterized by a low atom occupancy per lattice site of around 1 to 3 atoms,

providing a clear realization of the Bose-Hubbard model. As the lattice potential

depth was increased, the hopping matrix element t decreased and the effect of

the on-site interaction matrix element U increased, bringing the system across

the critical ratio (U/t)c, inducing the superfluid to Mott-insulator transition. In

the experiment, absorption images were taken after suddenly releasing the atoms

from the lattice potential and waited a fixed expansion time τ = 15ms. The

images corresponding to different values of lattice potential depth and are repro-

duced in Fig. 1.6. The experiment confirmed that whenever the strength of the

potential is relatively small, such that the atoms have considerable kinetic energy,

the system is in a superfluid state from which coherent matter waves emerge dur-

ing the expansion, giving rise to sharp peaks in the interference pattern provided

by the absorption images. After increasing the lattice depth, the sharp peaks

in the absorption images disappear which implies that the phase of the wave

function of system across the lattice is not stable, signaling the transition to the

Mott-insulating regime of the system. Further measurements probing the exci-

tation spectrum accompanied the time of flight experiments and they confirmed

the that superfluid to Mott insulator transition is accompanied by the opening

of a gap to particle-hole excitation in the excitation spectrum. Remarkably, the

critical ratio (U/t)c obtained in the experiment is in very good agreement with

theoretical calculations based on the Bose-Hubbard model, [9, 38] which further

indicates that these experiments with ultracold atoms exceptionally realize the

11



1.3 Introducing disorder

Figure 1.6: Absorption images of multiple matter wave interference patterns

across the superfluid to Mott-insulator transition. From a. through h. the

strength of the lattice potential is increased. The time of flight is fixed to

τ = 15ms

Bose-Hubbard model. More recently, a similar scenario was observed also in one

and two dimensions. [39, 40]

1.3 Introducing disorder

It is natural to consider whether the presence of disorder may affect the properties

of ultracold atomic systems. Not to mention old known realizations of strongly

correlated systems where disorder plays a major role, as in the earliest relevant

experiments involving disordered interacting bosons on superfluidity of very thin
4H adsorbed in porous Vycor glass. [41] Motivated by those early experimental

realizations of disordered bosons, attempts to give detailed theoretical explana-

tions of the interplay between disorder and interaction in correlated Bose systems

were successfully introduced by Giamarchi and Schulz and Fisher et al. [9, 10]

In these two seminal works, they have precisely analyzed the effect of disorder

introduced on top of the clean Hubbard model of Eq. (1.3). In this case the

local on-site energy offset was chosen to be a disordered potential described by

random variables ǫi that are uniformly distributed in [−∆,∆] (see Fig. 1.7(a)),

which we will use throughout the whole thesis. It was then conjectured that the

phase diagram of a disordered Bose-Hubbard model is supposed to include three

different phases: When the interaction is strong and the number of bosons is a

12
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1.3 Introducing disorder

Figure 1.7: a. Distribution probability P (ǫ) of the local energy offset. b. Sum-

mary of the properties of the phases of the disordered Bose-Hubbard model. (Eg

denotes the charge gap, while ρs denotes the superfluid stiffness. They will be

carefully defined later in the thesis) While both the Mott insulator and Bose glass

are insulators with vanishing superfluid stiffness, the Bose glass differs from the

Mott insulator because it is compressible and gapless, as opposed to the Mott

insulator which is incompressible and gapped.

multiple of the number of sites, the model should describe a Mott insulator, with

bosons strongly localized in the potential wells of the optical lattice. This phase

is neither superfluid nor compressible. When both interaction and disorder are

weak, a superfluid and compressible phase must exist. These two phases are also

typical of clean systems as it was discussed before in this chapter. In the presence

of disorder, a third phase arises, the so-called Bose glass, which is compressible

and gapless but not superfluid. The properties of the three phases are summa-

rized in Fig. 1.7(b). The appearance of the new Bose glass can be understood

by considering what happens when a disordered Mott insulator is doped with

particles or holes. In a clean system, those extra particles or holes propagating

on top of the background Mott phase condense and form a superfluid flow. How-

ever, if disorder is introduced, those few particles, now encounter a disordered

background potential. Those extra bosons occupy the lowest-lying single particle

states of the random effective potential due to the on-site disorder and the the

(ideally) frozen Mott state. Since the particles or holes are very dilute, they are

effectively non-interacting and the usual Anderson localization arguments show

that the low-energy effective single-particle states must be localized in the deep-

est minima of the underlying potential, just as with fermions but in this case the

effect of Pauli exclusion is played by the strong on-site interaction. The coherent

13
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tunneling of a boson between these wells is suppressed just as in the usual An-

derson localization, hence the absence of superfluidity, in spite of the fact that

displacing a boson from one well to another one may cost no energy, hence a finite

compressibility. Only after sufficient particles or holes have been introduced the

residual random potential gets sufficiently smooth such that the transition to the

superfluid phase takes place. It is harder to rule what happens, however, when the

transition is not driven by number fluctuations but it is dominated by hopping,

i.e., through the tip of the Mott lobe. Through the tip, both particles and holes

are created simultaneously and the gap for producing particle-hole excitations

vanishes. Assuming that those particle-hole pairs become immediately superfluid

implies that they do not get localized by the random environment, which is un-

likely to happen but possible, specially if disorder is weak. Even if the Bose glass

is present, one expects a stronger tendency towards superfluidity because of the

presence of particles and holes and smaller Bose glass region around the tip of

the Mott lobe. Among the possible scenarios for the nature of the phase diagram

of the Bose-Hubbard model with disorder, three of them were the most likely, as

shown in Fig. 1.8. However, based on these single-particle description used for

explaining Anderson localization, it was argued that disorder prevents a direct

superfluid-to-Mott insulator transition, supporting the scenario in Fig. 1.8(a), a

speculation that has been subject to several controversial numerical and analyti-

cal studies. [9, 13, 14, 42, 43, 44, 45, 46]

1.4 Large rare homogeneous patches in disor-

dered systems

The question about whether the Bose glass phase must completely surround the

Mott lobe, or whether, in fact, a direct Mott-superfluid transition might take

place at larger tunneling t, close to the tip, or perhaps only through the tip has

generated much controversy during recent years. Strong arguments have been

presented in Ref. [9, 11, 42] that forbid such a direct transition, but a rigorous

proof remained unclear, while many numerical calculations were performed, some

supporting the idea of a direct transition and some other suggesting a transition

14
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Figure 1.8: Possible scenarios for the phase diagram of disordered interacting

bosons: a. The Bose glass always intervenes between the Mott and superfluid

phases. b. The Bose glass always intervenes between the Mott and superfluid

phases, except at the tip of the Mott lobe. c. Direct transition between the

superfluid and the Mott phase is allowed.

always through the Bose glass. In a recent paper, Pollet et al. [17] gave strong

arguments aimed at proving the absence of a direct quantum phase transition

between a superfluid and a Mott insulator in a bosonic system with generic,

bounded disorder. Their conclusions follow from a general argument which they

named theorem of inclusions, it states that for any transition in a disordered

system, one can always find rare regions of the competing phase on either side of

the transition line. Furthermore, they formalized a theorem which was already

introduced in Ref. [9, 11] (to be referred to as theorem 1) which we now explain.

Theorem 1

Theorem 11 states that if the bound of the disorder ∆ is larger than half of the

energy gap Eg/2 necessary to dope the ideal clean Mott insulator with particles

or holes, then the system is in a compressible state. This theorem immediately

implies that whenever the critical disorder bound ∆c of the superfluid to the

insulating transition is greater than Eg/2, then the transition is to a compressible,

1The name of theorem 1 for this argument has been introduced in Ref. [17]

15

Chapter1/Chapter1Figs/phase_diags.eps


1.4 Large rare homogeneous patches in disordered systems

gapless phase, i.e., to the Bose-glass phase. This theorem by itself does not fix

the transition line, however its importance relies on the possibility to verify by

numerical simulations that the transition between the superfluid to the insulating

phase is to the Bose glass and not to the Mott insulator by computing only

∆c (U) and comparing it to Eg (U) /2, for instance through the calculation of

the superfluid fraction ρs and the clean gap Eg, which are numerically accessible

and do not suffer dramatic size effects. The proof of theorem 1 is based on the

fact that in the infinite system at fixed U/t, one can always find arbitrarily large

“Lifshitz” regions where the chemical potential is nearly homogeneously shifted

downwards or upwards by ∆, as sketched in Fig. 1.9. There is no energy gap1

for particle transfer between such regions, and they can be doped with particles

or holes [9, 11, 17, 42]. Furthermore, this argument implies that whenever the

disorder potential is unbounded, the system will always be gapless, i.e., there

is no longer room for the Mott-insulating state to survive. The appearance of

arbitrarily large but exponentially rare regions can be illustrated, for example,

with a sequence of flips of a fair coin. An infinite sequence of flips will have

arbitrarily long subsequences (the analogous rare regions in which the chemical

potential is nearly constant) that appear to be those of an unfair coin, in which for

instance, the outcome is always heads or tails only. The probability P (k) to find a

subsequence with k trials in which the outcome is always heads is P (k) = (1/2)k,

which is exponentially small. Similarly, with the disordered potential described

by random variables ǫi that are uniformly distributed in [−∆,∆], the probability

P (k, δµ) to find a large subregion of k lattice sites in which the local disordered

potential takes its values within a very small window δµ around a generic constant

value of ε is

P (k, δµ) =

(

δµ

2∆

)k

= e−
k
ξ , (1.6)

which is exponentially small with the size of the subregion k, with the decay

controlled by ξ = 1/ ln
(

2∆
δµ

)

.

1There is still some debate about this point, since in Ref. [46] it has been derived an effective

theory in which they argued that the gap does not couple linearly to the local disorder, which

implies that comparing the disorder bound ∆ and the energy gap Eg makes no sense.

16



1.4 Large rare homogeneous patches in disordered systems

Figure 1.9: Illustrating the proof of theorem 1. Left: By shifting upwards or

downwards the chemical potential by half of the energy gap Eg, the clean system

becomes superfluid, just as it would happen in a hypothetic large rare region.

Right: Sketch of the compressible regions in presence of bounded disorder in the

∆− U plane.
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1.5 Experiments on disordered bosons

Theorem of inclusions

In Ref. [17] Pollet et al. introduced a stronger theorem, called theorem of inclu-

sions which states that in presence of generic, bounded disorder, there exist rare

but arbitrarily large regions of the competing phases across a (generic) transition

line. The meaning of generic disorder is understood in the sense that any partic-

ular realization has a nonzero probability density to occur in a finite volume. By

generic transition it is meant any first- or second-order phase transition with an

onset that is sensitive to all disorder characteristics, like strength, correlations,

standard deviation, higher-order momenta of the distribution of disorder, etc. For

instance, in the superfluid to insulator transition, not only would the vanishing

of the stiffness in a generic transition be sensitive to the disorder bound, but also

to the correlations of the disordered potential, the variance of the distribution,

etc. This theorem immediately implies the absence of a direct superfluid to Mott

insulator quantum phase transition. The reason why this is the case is because if

one of the possible competing phases is gapless (let us say that phase A), then the

competing phase (say phase B) is automatically gapless because it will strictly in-

clude arbitrarily large rare regions which locally look exactly as phase A, which is

gapless. The importance of this theorem relies on the fact that a direct transition

from the superfluid to the Mott insulator is ruled out and consequently a Bose

glass should always intervene between the superfluid and the Mott insulator1. A

detailed sketch of the proof can be found in Ref. [18].

1.5 Experiments on disordered bosons

Due to the high degree of control of the parameters offered by the experiments

on ultracold atoms loaded in optical lattices, the possibility to introduce disorder

in a controlled way has been and it continues to be explored. Those experiments

realize the Bose-Hubbard model in presence of disorder in several limits, ranging

from the strongly correlated phases where interaction and disorder compete to

1Care should be taken when applying the theorem of inclusions to the transition from the

Bose glass to the Mott insulator, where the transition is not generic in the sense described

above. [18]
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1.5 Experiments on disordered bosons

the limit of vanishing interactions in presence of disorder where the physics of

Anderson localization is expected to take place. Apart from the experimental

realizations of the disordered Hubbard model using cold atoms, the possibility to

explore disorder and strong correlations in Bose systems has been investigated

using magnetic systems in presence of a magnetic field. Although the phenomenon

of Bose-Einstein condensation has been mainly observed with bosonic atoms in

liquid Helium and cold gases, the concept is much more general. Analogous states,

where excitations in magnetic insulators can be treated as bosonic particles, have

been explored in presence of disorder. Their localization due to disorder has been

already observed. [47]

Anderson localization of matter waves

It is now recognized that Anderson localization is a phenomenon ubiquitous in

wave physics, as it originates from the interference of waves between multiple-

scattering paths, not only common in quantum mechanics but a very general

wave phenomenon. Experimentally, localization has been reported in spectacular

experiments for light waves, [3, 4] microwaves, [5] sound waves, [6] and electron

gases. [7] Also very recently, experimental observation of localization of matter

waves using ultracold atoms has been carried out by adding disorder to essentially

non-interacting Bose condensates. [20, 21] The non-interacting Bose-Einstein con-

densate is prepared by cooling a cloud of interacting 39K atoms in an optical trap,

and then tuning the s-wave scattering length almost to zero by means of a Fesh-

bach resonance. In the experiment in Ref. [21], they have studied localization of

non-interacting bosons in a one-dimensional lattice perturbed by a second, weak

incommensurate lattice, which constitutes an experimental realization of the non-

interacting Aubry-André model. [48] The Aubry-André model is a single-particle

non-interacting model that exhibits a localization transition in one dimension and

its defined by the Hamiltonian

H = −t
∑

〈i,j〉

b†ibj + h.c.+∆
∑

i

cos (2πβi)ni, (1.7)

where ∆ controls the amplitude of the disordering weak incommensurate lattice

(here ∆ plays the analogous role of the disorder bound in a fully disordered sys-
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1.5 Experiments on disordered bosons

Figure 1.10: On top of the main optical lattice, a second incommensurate dis-

ordering lattice is added. The ratio of the wavelengths of the main lattice to

the disordering one λ2/λ1 should be as close as possible to an irrational number,

which in turn makes the period of the lattice larger and larger resembling a fully

disordered lattice.

tem), and β = λ1/λ2 the ratio between the wavelengths of the main to the weak

lattice. The generated bichromatic potential can display features of a perfectly or-

dered system, when the two wavelengths are commensurate, but also of quasidis-

order when β is irrational. [48] In the latter case, a common choice in the study

of the Aubry-André model is the inverse of the golden ratio, β =
(√

5− 1
)

/2,

for which the model displays a “metal-insulator” phase transition from extended

to localized states at ∆/t = 2, as opposed to a fully disordered model, in which

Anderson localization holds regardless of how small the strength of disorder is. In

Fig. 1.10 the way of creating the bichromatic lattice is sketched, where the lattice

is realized by perturbing a tight primary lattice with a weak secondary lattice

with incommensurate wavelength with respect to the main lattice. It is important

that the ratio of the wavelengths of the primary to the secondary lattice is close

to an irrational number, such that the period of the lattice grows, hence resem-

bling a fully disordered lattice. The clearest evidence of Anderson localization

of the experiment has been obtained through the observation of transport across

the lattice after having switched off the additional harmonic confinement neces-
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1.5 Experiments on disordered bosons

sary to confine the non-interacting condensate. They have detected the spatial

distribution of the atoms at increasing evolution times using absorption imaging,

as reproduced in Fig. 1.11. In a regular ordered lattice the eigenstates of the

potential are extended Bloch states, and the system expands ballistically as the

time passes by. Instead, in the limit of large disorder1 (∆/t > 7) no diffusion is

observed, because in this regime the condensate can be described as the super-

position of several localized eigenstates whose individual extensions are less than

the initial size of the condensate, therefore providing a clear experimental proof

of Anderson localization. The transition occurs at a disorder strength larger than

the expected value of ∆/t = 2 because in the experiment the ratio β is not ex-

actly an irrational number. Nevertheless, it is expected that the closer the ratio

β to an irrational number, the closer the transition point to the expected value

of ∆/t = 2. A second experiment, in which Anderson localization has been ob-

served, was performed introducing disorder through a laser speckle potential. [49]

A laser speckle is the random intensity pattern produced when coherent laser

light is scattered from a rough surface resulting in spatially modulated phase and

amplitude of the electric field. One example of a speckle pattern together with

the schematics of its experimental realization is shown in Fig. 1.12 [50]. In a

fully developed speckle pattern, the sum of the random scattered waves emerging

from the ground glass diffuser results in random real and imaginary components

of the electric field at the focal plane (at distance l from the ground glass) whose

distributions are independent and Gaussian. Consequently the speckle intensity

I follows an exponential law:

P (I) =
1

〈I〉e
−I
〈I〉 (1.8)

where 〈I〉 is the average value of the intensity. This distribution is unbounded

with finite variance and it possesses spatial correlations that depend on the details

of the optical setup used to generate the speckle pattern. Indeed, in Ref. [20] cold

atoms have been loaded in a speckle pattern and another observation of Anderson

localization has been detected. The atomic density profiles have been imaged as

1In this thesis I have used t for the hopping amplitude which is the most common usage

in the condensed matter physics community, however in quantum optics and cold atoms it is

often used the notation J as it has been used in Fig. 1.11 taken from Ref. [21]
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Figure 1.11: In situ absorption images of the Bose-Einstein condensate diffusing

along the quasi-periodic lattice for different values of disorder. For ∆/t > 7

(∆/J > 7 in their notation) the size of the condensate remains at its original

value, reflecting the onset of localization.

Figure 1.12: a) Experimental realization of the speckle pattern. A laser beam of

diameter D′ and wavelength λ is first focussed by a convex lens. The converg-

ing beam of width D is then scattered by a ground glass diffuser. The trans-

verse speckle pattern is observed at the focal plane of the lens. b) Image of

an anisotropic speckle pattern created using cylindrical optics to induce a 1D

random potential.
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Figure 1.13: a. A small BEC is formed in a hybrid trap that is the combination

of a horizontal optical waveguide and a loose magnetic longitudinal trap. b.

When the longitudinal trap is switched off, the BEC starts expanding and then

localizes, as observed by direct imaging of the fluorescence of the atoms irradiated

by a resonant probe. c, d. Density profiles (red) of the localized BEC one second

after release, in linear (c) and semi-log (d) coordinates.

a function of time, and found that weak disorder can stop the expansion which

leads to the formation of a stationary, exponentially localized wave function, a

direct signature of Anderson localization. [20] The density profiles are reproduced

in Fig. 1.13, where the tails of the density distribution have been fitted and found

to be indeed exponential, a clear signature of Anderson localization.

The experiments on the role of interactions and the quest

for a Bose glass

Even more interesting, preliminary experimental results on the interplay between

disorder and interaction have been already carried out. As it has been mentioned

already, apart from superfluid and Mott insulator from the clean system, the

presence of disorder introduces a new phase to the system of interacting bosons,

the so-called Bose glass. In 2007, Fallani and collaborators have provided experi-

mental evidence on the presence of a Bose glass by loading and cooling a sample

of interacting bosonic atoms onto a 1D optical lattice. [51] In their experiment

they have used a bichromatic optical lattice to experimentally realize a disordered

system of ultracold strongly interacting 87Rb bosons. The excitation spectrum
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1.5 Experiments on disordered bosons

Figure 1.14: Layers of magnetic Cu2 (red) and the bridging Cl ions (cyan) in IPA-

CuCl3. Actual asymmetric spin ladders (shaded) are parallel to the a direction.

The ladder rungs are defined by the vector d.

of the system has been measured as function of disorder while keeping track of

the phase coherence properties of the system by means of standard time-of-flight

experiments. In an ordered Mott insulator the excitation energy spectrum is

roughly made of discrete resonance peaks, which essentially represent the energy

required to remove an atom from its well and place it into a neighboring well.

Increasing disorder, it has been observed a broadening of the Mott-insulator res-

onances and the transition to a state with vanishing long-range phase coherence

and a flat density of excitations, which was interpreted as the formation of a

Bose-glass phase.

Magnetic Bose glass

The elementary excitations in antiferromagnets are magnons, quasiparticles with

integer spin and Bose statistics. [52] It is thus natural to wonder whether those

particles undergo Bose Einstein condensation or not and the answer is yes, as it

has been shown in numerous theoretical investigations of quantum antiferromag-

nets (see Ref. [53] and the references therein). The advantages of such bosonic

systems are that they are homogeneous, as opposed to the experiments with cold

atoms where the yet inevitable spatial inhomogeneities due to the magnetic trap

are to be taken into account. Also, the density of bosons can be controlled by
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the magnetic field, which plays the role of a chemical potential and the density

of bosons can be directly measured by measuring the magnetization. Thus, the

compressibility can be measured. The long-range superfluid order corresponds to

an antiferromagnetic order in the XY plane. It can thus directly be measured by

neutron scattering experiments. In a recent experiment a new realization of the

Bose glass has been obtained in Ref. [47] and the results have been interpreted by

just taking advantage of the above mentioned correspondence. The experiment is

based on the antiferromagnetic spin parent compound, a two-leg spin (S = 1/2)

IPA-CuCl3 ladder in a magnetic field. The structure of the disorder-free com-

pound is shown in Fig. 1.14. The most prominent exchange interactions are J1

which is ferromagnetic and J2 which is antiferromagnetic. The ground state of

the system was determined to be a singlet with a spin gap to triplet excitations

and as the magnetic field is increased, bosonic excitations (magnons) are gener-

ated which in the clean case Bose condense. Quenched disorder was introduced

by means of partial chemical substitution of the non-magnetic ions Br− for the

likewise non-magnetic Cl−, with the advantage that this modification does not

directly involve the spin-carrying Cu+2. Simultaneously they have measured the

bulk magnetization and the magnetic Bragg spectroscopy response of the system.

See Fig. 1.15. From their experiment it was observed that in the clean system,

upon application of the magnetic field, the onset of magnetization was always

accompanied by the formation of strong Bragg peaks which signaled long-range

order, meaning that the underlying excitations exhibited Bose-Einstein conden-

sation. After the introduction of disorder, the onset of magnetization was not

immediately accompanied by the appearance of magnetic order which was in-

terpreted as the appearance of the Bose-glass phase, i.e., a compressible but

incoherent phase with absence of spin diffusion. After further increase of the

magnetic field, phase coherence showed up signaling the transition from the Bose

glass to the superfluid.
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Figure 1.15: a. Measurement of the magnetization as function of the applied mag-

netic field. Both the clean (blue curve) and disordered (orange curve) are shown.

b. Magnetic Bragg spectroscopy peak intensity. Both the clean (black curve) and

disordered (green and red curves) are shown. In the disordered case there is a

window of values of the magnetic field H for which the magnetic susceptibility is

finite, though there is no signal of magnetic order, fact that is interpreted a the

appearance of a magnetic Bose glass.
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Chapter 2

The variational approach

We now introduce the variational approach, a powerful tool to study correlated

systems. We start off by introducing one of the simplest variational wave func-

tions, i.e., the Gutzwiller wave function. For bosons, this wave function can

be easily treated without further approximations and a qualitatively correct de-

scription of the superfluid to insulator transition of the Bose-Hubbard model is

obtained. This approach is flexible enough to treat inhomogeneous systems such

as optically or magnetically trapped bosons, as well as disordered lattices. We

then introduced an improved wave function, which generalizes the Gutzwiller

one, based on a long-range Jastrow factor which provides a proper description of

a Mott insulator. We describe how this wave function can be treated within the

variational Monte Carlo scheme, together with its generalization to treat disor-

dered bosons too. Furthermore, the way these wave functions are optimized by

means of the stochastic reconfiguration technique is described. In this way, the

best approximations to the real ground states of the systems are obtained, given

a functional form of the wave function parameterized through a certain number of

variational parameters. Finally, the Green’s Function Monte Carlo technique, a

zero-temperature algorithm that provides numerically exact results, is explained.

In this method one starts from a trial, e.g., variational wave function, and filters

out high-energy components by iterative applications of the imaginary-time evo-

lution operator. The closer the wave function to the ground state of the system

the more efficient the method would perform, hence the importance of finding

accurate variational states describing the ground state.
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2.1 The Gutzwiller wave function for the Bose-

Hubbard model

In all this chapter we will be interested in obtaining approximate and exact

solutions to the Bose-Hubbard Hamiltonian,

Ĥ = −1

2

∑

〈i,j〉

ti,j b̂
†
i b̂j + h.c.+

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i, (2.1)

where 〈. . . 〉 indicates nearest-neighbor sites, b̂†i (b̂i) creates (destroys) a boson on

site i, and n̂i is the local density operator. U is the on-site interaction, ti,j is

the hopping amplitude, and ǫi is a local energy offset due to either an external

trapping potential, disorder or both. Within the Gutzwiller ansatz the ground-

state wave function is approximated as

|ΨG〉 =
∏

i

(

∞
∑

m=0

f i
m|m〉i

)

, (2.2)

where |m〉i is the Fock state with m particles at site i and f i
m are variational

parameters which are to be determined by minimizing the expectation value of the

Hamiltonian in Eq. (2.1). The sum in Eq. (2.2) runs from states with zero particles

up to infinity. However, from a numerical perspective, we have to consider a cutoff

and take only states up to a maximum number of particles (per site) M i
max ≫

〈ΨG|n̂i|ΨG〉 such that the contribution of those states with higher density are

negligible and observables are converged to a certain desired precision. A different

approach to that of the Gutzwiller wave function can be used and it consists in

solving the following mean-field decoupled Hamiltonian: [54, 55]

Ĥmf = −1

2

∑

〈i,j〉

ti,j

(

b̂†iΨj +Ψ∗
i b̂j −Ψ∗

iΨj

)

+ h.c.

+
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

(ǫi − µ) n̂i, (2.3)

where Ψi is the mean-field potential which is self-consistently defined as Ψi =

〈ΨG|b̂i|ΨG〉. The parameter µ is the chemical potential that fixes the number of

bosons and it has been introduced because after the mean-field decoupling the
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Hamiltonian no longer conserves the number of particles. This Hamiltonian is

obtained by a mean-field decoupling of the hopping terms as,

b̂†i b̂j ≃ b̂†iΨj + b̂jΨ
∗
i −Ψ∗

iΨj, (2.4)

where we have neglected the fluctuations around the mean-field Ψi. Note that

this Hamiltonian can now be written as the sum over single site Hamiltonians,

coupled only through the constant terms Ψi. If the system possesses translational

invariance, then all sites are equivalent and one is left with a single-site local

Hamiltonian. The f i
m are related to the ground-state eigenvector components of

the converged solution of the local Hamiltonian in Eq. (2.3). [54] To see that, one

just has to compute the expectation value of the energy of the Gutzwiller state on

the mean-field Hamiltonian in Eq. (2.3) and insert the self consistency condition

Ψi = 〈ΨG|b̂i|ΨG〉. The resulting expectation value is exactly the variational

energy (the expectation value on Eq. (2.1)) of the Gutzwiller state. Therefore,

solving self consistently the mean-field Hamiltonian or minimizing the expectation

value of the many-body Hamiltonian on the Gutzwiller state with respect to

the f i
m’s is completely equivalent. In this thesis, we have mainly used the first

approach based on solving self consistently the mean-field Hamiltonian, although

we have verified that the results are consistent with the second approach in the

simplest case of totally clean Bose-Hubbard model. The technical implementation

of the self-consistent method is as follows:

1. First an initial set of nonzero Ψi’s is given arbitrarily.

2. A set of mean-field Hamiltonians (2.3) is constructed using a local basis

|m〉i for each lattice site i based on the initial guess of Ψi. The basis set is

truncated and only states with a maximum number of bosons of M i
max are

considered.

3. The set of local Hamiltonians is diagonalized. The diagonalization provides

the ground-state of the Hamiltonian with which a new set Ψnew
i can be

computed.
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2.2 The Jastrow wave function and the variational Monte Carlo

4. It is now checked if the Ψnew
i are equal to the previous Ψi. If they are equal

withing a given small precision ǫ then the self consistency has been reached

and the algorithm stops and the ground-state is the optimal.

5. If the new set of Ψnew
i is not equal to the previous one Ψi, then Ψi = Ψnew

i

and the set is taken to step 2 and the process is iteratively repeated until

condition 4 is satisfied.

Once the iterative process has stopped, then the ground state of the mean-field

Hamiltonian (or the optimized variational wave function) is used to compute

all sort of correlation functions like average local density, condensate fraction,

energy, local density fluctuation, etc. In Fig. 2.1 it is presented the evolution of

the energy as function of the iteration step k of self-consistency procedure, as well

as the convergence of the Ψ for a single site mean-field Hamiltonian. The input

of the calculation is U/t = 7.0 with chemical potential µ = 2.0 and an initial

guess for Ψ = 1.0. A large basis cutoff is set to Mmax = 40 in order to obtain

well converged results. Results are also presented for U/t = 7.0 with initial guess

of Ψ = 0.1 and chemical potential fixed to µ = 1.0 For the case of U/t = 7.0 and

µ = 2.0 the system is in the Mott-insulating phase with vanishing Ψ = 0.0 and

for the µ = 1.0 the system is in the superfluid state with finite value of Ψ.

2.2 The Jastrow wave function and the varia-

tional Monte Carlo

Even though the Gutzwiller wave function introduced in the preceding section de-

scribes well, at least qualitatively, the superfluid to Mott-insulator transition, the

description of the Mott insulator is rather poor. This wave function completely

removes charge fluctuations which are natural to real Mott insulators, removing

completely on-site occupancies different from the average one. A step forward

has been recently accomplished, where it has been shown that a Gutzwiller wave

function supplemented by a long-range Jastrow factor offers a very accurate de-

scription of a Mott insulator. [56] In the clean bosonic case, a good description of
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Figure 2.1: Convergence of the iterative procedure. Left: µ = 2.0 which converges

to a Mott insulator. Right: µ = 1.0 which converges to the superfluid regime.

the physics behind the Mott transition is obtained by applying a density-density

Jastrow factor to a state where all bosons are condensed at q = 0, i.e.,

|Ψclean〉 = exp

(

∑

i,j

vi,jn̂in̂j

)

|SF 〉 (2.5)

where |SF 〉 =
(

∑

i b̂
†
i

)M

|0〉 is the non-interacting Bose condensate ofM particles,

n̂i is the on-site density operator, and vi,j are translationally invariant parameters

that are determined by minimizing the variational energy. This wave function

contains both ingredients, a superfluid part that dominates when the kinetic

energy of the particles is large and a term which introduces correlation effects

due to interaction, while keeping the charge fluctuations. It has been shown that

the introduction of the long-range Jastrow term properly describes the superfluid

and the Mott insulating phases in one, two and three dimensions. [56] In the

presence of disorder, we just add to Eq. (2.5) a site-dependent one-body Jastrow
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2.2 The Jastrow wave function and the variational Monte Carlo

factor

|Ψ〉 = exp

(

∑

i

gin̂i

)

|Ψclean〉 (2.6)

where gi’s are L additional variational parameters. This wave function becomes

the exact ground state for U = 0 and finite ∆ if vi,j = 0 and gi = lnαi with

αi being the amplitude at site i of the lowest-energy single-particle eigenstate

of the non-interacting Hamiltonian. A similar wave function has been recently

used to describe the fermionic Hubbard model in the presence of disorder. [57]

The flexibility of this variational state makes it possible to describe equally well

superfluid, Bose-glass, and Mott-insulating states. We have chosen the two-body

Jastrow factor to be translational invariant, even in the disordered case, where

the translational invariance is lost. In principle, the two-body Jastrow could be

defined for each pair of sites, which would lead to a number of Jastrow param-

eters vi,j of the order of L2, as opposed to a translational invariant one, where

the number grows linearly with L. However, the reason why the Jastrow factor

is important relies on the fact that it correctly describes the natural charge fluc-

tuations of the Mott-insulating phase. Therefore, even though the Hamiltonian

of the system in presence of disorder is not translational invariant, in the Mott

phase the inhomogeneities are heavily suppressed due to the strong repulsion be-

tween particles and the ground state translational invariance is almost recovered,

specially for large values of interaction.

Although the definition of the long-range Jastrow is quite simple, its treat-

ment is rather involved because, contrary to what happens with the Gutzwiller

wave function, this correlated wave function cannot be factorized into on-site

independent terms. Evaluating correlation functions involves the calculation of

multi-dimensional integrals that cannot be handled analytically or in numerically

exact way. One has to rely on approximate methods; particularly we concentrate

on the variational Monte Carlo method that allows us to evaluate, by means of a

stochastic sampling, integrals over a multidimensional space.
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2.2 The Jastrow wave function and the variational Monte Carlo

The variational Monte Carlo

The key ingredient of the variational Monte Carlo (VMC) approach is the prop-

erty of any quantum system, that the expectation value of an Hamiltonian H

over any trial wave function |Ψ〉 , gives an upper bound to the exact ground-state

energy E0,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0 (2.7)

This can be easily seen by inserting the complete set of eigenfunctions |Φi〉 of H
with energies Ei,

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑

i

Ei

|〈Φi|Ψ〉|2
〈Ψ|Ψ〉 = E0 +

∑

i

(Ei −E0)
|〈Φi|Ψ〉|2
〈Ψ|Ψ〉 ≥ E0 (2.8)

Therefore, this important property allows us to define a route to obtain the best

wave function by finding the one with the smallest energy. Perhaps the greatest

difficulty with this approach is that the evaluation of the energy in Eq. (2.7)

is that when dealing with many-body systems, the Hilbert space of the system

grows exponentially with the spatial size. Since we are mainly interested in the

thermodynamic limit of the system, the Hilbert space is enormous, and a direct

calculation, although straightforward, becomes prohibitely expensive. Therefore,

on larger sizes the most efficient way to compute observables, depending on a large

number of variables, is to use the Monte Carlo approach. In order to show how

a statistical approach can be used to calculate expectation values like Eq. (2.7),

we introduce a complete set of states |x〉 on which correlated wave functions can

be easily calculated:

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑

x,x′ Ψ∗ (x)Hx,x′Ψ (x′)
∑

x |Ψ (x) |2 (2.9)

where Ψ (x) = 〈x|Ψ〉 and Hx,x′ = 〈x|H|x′〉. As the basis set we choose |x〉 to

be real space bosonic configurations. Given the total number of bosons M , a

configuration will be a list of L sites with its corresponding occupation of bosons

ni. A site i can contain a number of particles ni in the interval [0,M ]. The

configuration will therefore be |x〉 = |n1, n2, ..., nL−1, nL〉, such that
∑

i ni = M ,
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2.2 The Jastrow wave function and the variational Monte Carlo

i.e, the total number of bosons remains fixed. Let us now introduce the so called

local energy Ex as

Ex =
∑

x′

Hx,x′

Ψ (x′)

Ψ (x)
(2.10)

Eq. (2.9) can then be written in terms of the local energy as,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑

x |Ψ (x) |2Ex
∑

x′ |Ψ (x′) |2 (2.11)

Since most realistic Hamiltonians are very sparse, the number of configurations

|x′〉 connected to |x〉 is relatively small and it does not grow exponentially with

the size of the system. Therefore the local energy in Eq. (2.10) can be computed

quite efficiently. Moreover, the local energy Ex depends crucially on the choice

of the wave function |Ψ〉. In particular, if |Ψ〉 is the exact ground state of H

with eigenvalue E0, the local energy does not depend on |x〉 , namely Ex = E0

with no fluctuations, this is the so-called zero variance property. The evaluation

of the total energy E can be done by generating a sample X of N configurations,

according to the probability distribution

p (x) =
|Ψ (x)|2

∑

x′ |Ψ (x′)|2
(2.12)

By taking the average over such sample X , we can estimate the value of the

energy by averaging the local energy,

Ē ≃ 1

N

∑

x∈X

Ex (2.13)

The simplest method to generate a set of configurations according to the probabil-

ity distribution p (x) is the Metropolis algorithm, [58] which tells us that starting

from a configuration |x〉, a new configuration |x′〉 is accepted if a random number

η, between 0 and 1, satisfies the condition

η <
p (x′)

p (x)
=

∣

∣

∣

∣

Ψ (x′)

Ψ (x)

∣

∣

∣

∣

2

(2.14)

otherwise the new configuration is kept equal to the old one |x′〉 = |x〉. The

central limit theorem ensures that,

lim
N→∞

Ē = E (2.15)
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2.2 The Jastrow wave function and the variational Monte Carlo

Since the true expectation value is reached exactly only if we take an infinitely

large sample X , there will always be an error associated to the estimation given

by Ē which is due to the finite sampling. This error can be estimated from the

variance of Ē. First, the variance of the random variable Ex is exactly equal to

the quantum variance of the Hamiltonian on the variational state,

σ2 (E) =
〈Ψ| (H− E)2 |Ψ〉

〈Ψ|Ψ〉 = var (Ex) (2.16)

One can show that the statistical error scales as the square root of the inverse

length N of the Markov chain, namely that the variance of Ē

σ2
(

Ē
)

≃ τ

N
σ2 (E) (2.17)

where τ is the autocorrelation time, i.e., the number of steps of the Markov chain

which separate two statistically independent configurations. The autocorrelation

time arises because in practice, given a configuration |x〉, a new configuration is

proposed by moving a single boson from site j to site i among all possible M

bosons. Therefore the new configuration |x′〉 will be very similar to the previous

one, and hence the measurements of the local observables at configuration |x′〉 will
be correlated with respect to the ones measured at |x〉. This leads to an subesti-

mation of the error bars on the observables we will be interested in. In order to

decorrelated the measurements we have used two strategies. First, measurements

are only taken after a certain number w of moves have been tried. w should be of

the order of the size of the system L for the configuration |x′〉 to look different to

the one of the previous measurement |x〉. Second, we have used the so-called bin

technique. In this technique we divide up a long Markov chain with N steps into

several K segments (bins), each of length M = N/K. The average is then taken

on each bin, and the error is estimated using the M averaged measurements. M

should be large enough compared to the autocorrelation time, i.e., M ≫ τ , such

that the measurements performed on each bin are completely uncorrelated. A

detailed description of the bin technique can be found in Ref. [59]. Therefore,

for large enough samplings, the average quantities calculated with the Metropolis

algorithm give reliable estimates of the true expectation values of the system, as

the error goes to zero when increasing the sampling. By the Variational Monte
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2.3 The stochastic reconfiguration method

Carlo, other static correlation functions can be computed in a similar way to the

energy

〈O〉 = 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 =

∑

x |Ψ (x) |2Ox
∑

x′ |Ψ (x′) |2 . (2.18)

The local value of the operator is Ox given by

Ox =
∑

x′

Ôx,x′

Ψ (x′)

Ψ (x)
(2.19)

with Ôx,x′ = 〈x|Ô|x′〉. Finally, just as with the energy, the expectation value 〈O〉
of any operator Ô reduces to average over the values assumed by Ox along the N

steps of the Markov chain:

Ō ≃ 1

N

∑

x∈X

Ox (2.20)

2.3 The stochastic reconfiguration method

In the previous section, a variational wave function aimed at describing the prop-

erties of the disordered Hubbard model has been introduced. This wave function

is parameterized through a set of variational parameters α = {αk}, k = 1, .., p

appearing in the two-body Jastrow factor and the one-body local on-site term.

These set of parameters have to be optimized in such a way that the trial state

is a close as possible to the real ground state, using the variational principle pre-

viously introduced, i.e., by minimizing the expectation value of the Hamiltonian

on the trial state as function of the set of parameters α. In the following we show

how to optimize the variational wave function minimizing the energy through the

stochastic reconfiguration algorithm, introduced in Ref. [60]. First of all let us

introduce the notation |Ψ (α)〉 for a generic variational wave function parameter-

ized through a set α of p variational parameters. Let |Ψ (α0)〉 be the initial wave
function depending on the initial set of parameters α0. We now consider a small

variation of the parameters αk = α0
k + δαk. Then we can Taylor expand the wave

function around α0
k, keeping only the linear terms on δαk,

|Ψ (α)〉 = |Ψ
(

α0
)

〉+
p
∑

k=1

δαk

∂

∂αk

|Ψ
(

α0
)

〉+ O
(

δα2
k

)

(2.21)
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We define a diagonal operator Ôk, such that

Ôk|Ψ (α)〉 = ∂

∂αk

|Ψ (α)〉. (2.22)

It follows from its definition that,

Ôk (x) =
∂ ln〈x|Ψ (α)〉

∂αk

. (2.23)

We can now write |Ψ (α)〉 as

|Ψ (α)〉 =
p
∑

k=0

δαkÔk|Ψ
(

α0
)

〉+ O
(

δα2
k

)

, (2.24)

where we have defined Ô0 = 1 to be the identity operator and δα0 = 1. However,

the normalization of |Ψ (α)〉 will naturally lead to δα0 6= 1. In this case, the

variation of the parameters will be rescaled as,

δαk → δαk/δα0. (2.25)

It is important to notice that Eq. (2.24) can be read as the expansion of |Ψ (α)〉
on the subspace spanned by the vectors {|Ψ (α0)〉, Ôk|Ψ (α0)〉} with k = 1, ..., p,

namely the subspace defined by the variational parameters. Now the key point

is to determine the new parameters so to have a lower variational energy. The

stochastic reconfiguration algorithm is based on the projection method idea: the

exact ground state can be filtered out by iteratively applying the Hamiltonian to

the trial wave function. In particular, we can apply one step of the power method

starting from |Ψ (α0)〉

|Ψ′ (α)〉 = (Λ−H) |Ψ
(

α0
)

〉, (2.26)

where Λ is a large positive constant which ensures convergence to the ground

state. The equations for determining the new parameters can be found by im-

posing that |Ψ′ (α)〉 coincides with |Ψ (α0)〉 within the subspace spanned by the

vectors Ôk|Ψ (α0)〉} with k = 1, ..., p. Then by combining Eq. (2.26) and (2.24)

and projecting the results on the kth component of that subspace, we obtain

〈Ψ
(

α0
)

|Ôk (Λ−H) |Ψ
(

α0
)

〉 =
p
∑

k′=0

δαk′〈Ψ
(

α0
)

|ÔkÔk′ |Ψ
(

α0
)

〉 (2.27)
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Thus we found a system of (p+1) linear equations that can be solved to calculate

the parameters δαk. From the k = 0 term of Eq. (2.27) , a relation for δα0 is

obtained

δα0 = Λ−E −
p
∑

k=1

δαk〈Ψ
(

α0
)

|Ôk|Ψ
(

α0
)

〉 (2.28)

that inserted in Eq. (2.27) for k 6= 0 returns

〈H〉〈Ôk〉 − 〈HÔk〉 =
∑

k′

(

〈Ôk′Ôk〉 − 〈Ôk′〉〈Ôk〉
)

δαk′ (2.29)

where 〈...〉 indicates the average over |Ψ (α0)〉 . We recognize the first part of

Eq. (2.29) to be the generalized forces

fk = −1

2

∂E

∂αk

= 〈H〉〈Ôk〉 − 〈HÔk〉 (2.30)

and we define the positive definite p× p matrix

sl,k = 〈ÔlÔk〉 − 〈Ôl〉〈Ôk〉 (2.31)

By using these new definitions, Eq. (2.29) can be written in a compact form

∑

l

δαlsl,k = fk (2.32)

Finally, the parameters variations δαk obtained through Eq. (2.32) can be rescaled

by an acceleration constant δt, i.e., δαk → δαk/δt. Thus, the change on the

variational parameters within the stochastic reconfiguration algorithm becomes

δαk = δt
∑

l

s−1
k,lf

k. (2.33)

From this relation we observe that the role of the acceleration δt is to control the

extension of the optimization steps. The positive definiteness of the matrix sk,l

ensures that the algorithm converges. In fact the energy variation corresponding

to a small change in the parameters is:

∆E = −δt

p
∑

k=1

p
∑

l=1

s−1
k,lf

kf l + O
(

δt2
)

(2.34)
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which is always negative for small enough δt, unless the minimum condition of

fk = 0 is reached. It is important to notice that the stochastic reconfiguration

method is very similar to the simpler steepest descent method. In fact substitut-

ing sk,l with the identity δk,l in Eq. (2.33) defines the steepest descent algorithm

δαk = fkδt (2.35)

The fundamental difference between the stochastic reconfiguration minimization

and the steepest descent method is the definition of the distance ∆α between a

new set of parameters {αk} and the previous one. The distance ∆α is crucial for

the stability of the optimization method: in fact in these iterative methods the

new parameters have to be chosen close enough to the old ones in terms of the

prescribed distance. Within the stochastic reconfiguration scheme ∆α is chosen

to be the square distance between the wave functions before and after the change

of parameters within the physics Hilbert space, yielding

∆α =
∑

l,k

sl,j (α
′
k − αk) (α

′
l − αl) , (2.36)

while in the steepest descent algorithm the distance is defined by the Cartesian

metric in the parameter space

∆α =
∑

k

|α′
k − αk|2 . (2.37)

The advantage of the stochastic reconfiguration method compared with the steep-

est descent is then clear because sometimes a small change of the variational pa-

rameters corresponds to a large change of the wave function, and the stochastic

reconfiguration takes into account this effect as it is clear from the definition of

the distance ∆α. We now briefly describe how all these things are put together

in order to optimize a general wave function with any number of parameters.

Optimization algorithm

The idea of the optimization algorithm proceeds as follows.

1. Provided a functional form of the wave function, an initial set of variational

parameters α0
k is inserted.
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Figure 2.2: Convergence of the iterative application of the stochastic reconfigura-

tion procedure. Left: Convergence of the energy as function of the iteration step

k. Right: Convergence of the on-site Gutzwiller variational parameter v0.

2. By means of the variational Monte Carlo, the forces fk as well as the overlap

matrix sl,k are computed.

3. With those quantities at hand, the change δαk is computed and the param-

eters are updated as α′
k = αk + δtδαk.

4. The convergence of the parameters is verified by checking that both the en-

ergy and the parameters themselves are no longer changed within the natu-

ral fluctuations of the Monte Carlo procedure, i.e., the parameters fluctuate

around their converged mean value.

5. If the convergence has been reached the algorithm stops. If not, then the

new parameters α′
k are inserted in step 2 iteratively until convergence is

reached.

After the algorithm has reached convergence, we perform several iterations in

that regime; in this way, the variational parameters can be determined more

accurately by averaging them over all these iterations and by evaluating also the

corresponding statistical error bars. In Fig. 2.2 it is shown how the convergence
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2.4 The Green’s function Monte Carlo method

of the energy and one of the variational parameters corresponding to the on-site

Gutzwiller parameter v0 is reached. The stochastic reconfiguration method is

applied to the Bose Hubbard model in a one-dimensional lattice with L = 10

and U/t = 2.0, with a translationally invariant Jastrow wave function with 5

parameters. In the figure we have plotted only one variational parameter, but all

parameters are likewise converged.

2.4 The Green’s function Monte Carlo method

The Green’s Function Monte Carlo approach [61, 62] is based on a stochastic im-

plementation of the power method technique that allows, in principle, to extract

the actual ground state |ΨGS〉 of a given Hamiltonian H, from any starting wave

function |Ψ0〉 , provided that 〈Ψ0|ΨGS〉 6= 0:

|ΨGS〉 = lim
n→∞

(Λ−H)n |Ψ〉. (2.38)

On large sizes it is not possible to evaluate exactly this recursive equation, be-

cause, after few steps, the application of (Λ−H) generates transitions to a very

large number of different states, implying a huge amount of memory occupation.

Therefore, we define a stochastic approach, in the sense that the wave function

〈x| (Λ−H)n |Ψ〉 (2.39)

is evaluated in a stochastic way. To this purpose, we define the so-called walker,

which corresponds, at each iteration n of the Markov chain, to a configuration |xn〉
with an associated weight ωn associated to the amplitude of the wave function

at configuration |xn〉. The goal of the Green’s function Monte Carlo approach

is to define a Markov process, yielding, after a large number n of iterations, a

probability distribution Pn (xn, ωn) for the walker
1, which determines the ground-

state wave function |ΨGS〉. To be specific, in the most simple formulation we

would require:
∫

dωωnPn (xn, ωn) = 〈x|Ψn〉, (2.40)

1From now on, we will indicate the configuration |x〉 simply as x
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2.4 The Green’s function Monte Carlo method

i.e., the amplitude of the wave function |Ψn〉 at xn is obtained by integrating, over

all the weights ωn, the probability Pn (xn, ωn). In order to construct a Markov

chain for solving the ground state of the Hamiltonian H, it is necessary to assume

that all the matrix elements of the so-called Green’s function

Gx′,x = 〈x′|Λ−H|x〉, (2.41)

are positive definite, so that they may have a meaning of probability. For the

diagonal element Gx′,x there is no problem: we can always satisfy this assumption

by taking a sufficiently large shift Λ. However, the requirement of positiveness

is indeed important, and not trivial, for the non-diagonal elements of G, and

is fulfilled only by particular Hamiltonians, like the Bose-Hubbard model, and

generally for bosonic Hamiltonians without frustration. If it is not fulfilled, i.e.,

if Gx′,x < 0 for some pairs (x′, x), we say that we are in presence of the so-called

sign problem. Once positiveness is assumed to hold, we can divide up the Green’s

function into the product of two factors: a stochastic matrix px′,x (by definition, a

matrix with all positive elements and with the normalization condition
∑

x′ px′,x =

1 ) times a scale factor bx. Indeed, if we define bx =
∑

x′ Gx′,x to be such a scale

factor, then px′,x = Gx′,x/bx is trivially positive and column normalized, and is

therefore the stochastic matrix we are looking for. Now we are able to define

a Markov process that leads to the condition in Eq. (2.40) after a large enough

number of iterations. Indeed, given (xn, ωn) we can generate xn+1 with probability

pxn+1,xn
, and update the weight according to ωn+1 = ωnbxn. This Markov process

can be very easily implemented for generic correlated Hamiltonians on a lattice,

since the number of non-zero entries in the stochastic matrix pxn+1,xn
, for given

xn, is small, and typically growing only as the number of lattice sites L. Now,

it is immediate to verify that the conditional probability K of the new walker

(xn+1, ωn+1), given the old one at (xn, ωn), is simply:

K (xn+1, ωn+1|xn, ωn) = pxn+1,xn
δ (ωn+1 − bxωn) (2.42)

Thus, the Master equation corresponding to the probability density Pn (xn, ωn)

is given by

Pn+1 (xn+1, ωn+1) =
∑

x

∫

dωK (xn+1, ωn+1|xn, ωn)Pn (xn, ωn) (2.43)
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2.4 The Green’s function Monte Carlo method

Finally, given Eq. (2.43), it can be proved, by means of the induction principle,

that the following relation holds:

ΨGS (x) = lim
n→∞

〈ωnδx,xn
〉 = lim

n→∞

∫

dωωnPn (xn, ωn) (2.44)

Now, within this formalism, we can compute the ground-state energy, by averag-

ing the random variable e(x) =
∑

x′ Hx′,x = Λ− bx. In fact:

〈ωne(xn)〉
〈ωne(xn)〉

=

∑

xn

∫

dωnωne(xn)Pn (xn, ωn)
∑

xn

∫

dωnωnPn (xn, ωn)
=

∑

xn
e(xn)Ψn(xn)

∑

xn
Ψn(xn)

(2.45)

which, in the limit n → ∞ tends to the ground state energy. However, in

Eq. (2.45), the calculation of the energy, with the above described Green’s func-

tion technique, will not satisfy the zero variance property, which holds instead

for the variational Monte Carlo we introduced before. [59] In fact, the random

quantity e(x), defined above, does not depend on any variational guess |Ψg〉 and,
therefore, its statistical fluctuations cannot be reduced by a better wave function

|Ψg〉, as it is possible in the variational Monte Carlo case.

2.4.1 Importance Sampling

It is possible to recover this important property of the variational Monte Carlo,

by a slight modification of the iteration technique. To this purpose, it is enough

to consider the so-called importance sampling Green’s function:

Ḡx′,x = Ψg (x
′)Gx′,x/Ψg (x) . (2.46)

The spectrum of the new operators H̄ (Ḡ) is unchanged, however the eigenvector

is transformed. To see this, let us just write the matrix product of the Hamiltonian

Hx,x′ and one generic eigenstate Ψk (x) with eigenvalue Ek,

Ψk (x)Ek =
∑

x′

Hx,x′Ψk (x
′) (2.47)

The important sampled problem will have eigenvectors which are different from

the ones of the initial problem, the transformed problem now looks like

Ψg (x) Ψk (x)Ek =
∑

x′

H̄x,x′Ψg (x
′)Ψk (x

′) . (2.48)
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2.4 The Green’s function Monte Carlo method

Nevertheless, it is clear that the eigenvalues remain unchanged. Whenever Ḡx′,x ≥
0 for every (x′, x) we can decompose it in the following manner, to define a Markov

chain similar to the one we already introduced:

px′,x = Ḡx′,x/bx (2.49)

bx =
∑

x′

Ḡx′,x = Λ−
∑

x′ Ψg(x
′)Hx′,x

Ψg(x)
= Λ− Ex (2.50)

where Ex is the local energy, already defined in Eq. (2.10). Now, if the trial

wave function |Ψg〉 used in the importance sampling procedure coincides with the

correct ground-state wave function, i.e., |Ψg〉 = |ΨGS〉, consequently Ex = EGS

is a constant for every x, and statistical fluctuations vanish exactly. All the

previous derivations can be repeated also in this case with importance sampling,

the difference being only appropriate factors depending on |Ψg〉. We thus obtain

for instance

〈ωnδx,xn
〉 = Ψg(x)Ψn(x) (2.51)

EGS = lim
n→∞

〈ωnEx〉
〈ωn〉

= lim
n→∞

〈Ψg|H (Λ−H) |Ψ0〉
〈Ψg| (Λ−H) |Ψ0〉

(2.52)

Since the convergence of the above limit is exponentially fast in n (at least for any

finite size lattice, where a finite gap to the first excitation exists), it is enough to

stop the iteration to a reasonably small finite n = l. Then, instead of repeating

the Markov chain several times up to n = l, to accumulate statistics, it is clearly

more convenient to average over a long Markov chain with N ≫ l, where N is

the total number of iterations, and considering the corresponding estimates in

Eq. (2.52):

EGS ≃
∑N

n>n0
Ql

nExn
∑N

n>n0
Ql

n

(2.53)

where n0 is the number of iterations required for the statistical equilibration of

the Markov process and the weighting factors Ql
n are given by:

Ql
n =

l
∏

i=1

bxn−i
. (2.54)

So, at each discrete time n − l we can take an equilibrated configuration, and

consider l iterations of the Markov process with initial condition ωn−l = 1, leading,

after l iterations, to a final weight ωl = Ql
n , at time n.

44



2.4 The Green’s function Monte Carlo method

2.4.2 Forward walking technique

Besides energy, Green’s function Monte Carlo can be also used efficiently to com-

pute expectation values of local operators Ô, i.e., operators which are diagonal

on all the elements of the configuration basis |x〉,

Ô|x〉 = O(x)|x〉 (2.55)

where O(x) is the eigenvalue corresponding to the configuration |x〉, which coin-

cides with its local value Ox just because the operator is diagonal. By using the

Green’s function Monte Carlo, the configurations of the walkers are distributed

according to Ψg(x)ΨGS(x), however, in order to compute

〈Ô〉 = 〈ΨGS|Ô|ΨGS〉
〈ΨGS|ΨGS〉

(2.56)

further work is required. In contrast with what happens for energy, we cannot

write the equality

〈Ô〉 = lim
b→∞

〈ωnOxn
〉

〈ωn〉
=

〈Ψg|Ô|ΨGS〉
〈Ψg|ΨGS〉

(2.57)

because the ground state is not an eigenstate of the operator Ô. In fact, the

quantity 〈Ô〉MA = 〈Ψg|Ô|ΨGS〉
〈Ψg |ΨGS〉

, called mixed average, is equal to 〈Ô〉 only if the

ground state is an eigenstate of Ô, as it happens with the energy. In order to

compute the mean value of a generic local operator Ô over the ground state, we

introduce the so-called forward walking technique, for which we filter the ground

state on both sides of the operator as follows,

〈Ô〉 = lim
l,m→∞

〈Ψg|(Λ−H)mÔ(Λ−H)l|Ψ0〉
〈Ψg|(Λ−H)m+lΨ0〉

(2.58)

From a statistical point of view, Eq. (2.58) amounts to sample a configuration x

after l steps, then measure the quantity Ox, and finally let the walker propagate

forward for further m steps. In order to evaluate the stochastic average, an

approach similar to that done for the energy is possible. In this case we have:

〈Ô〉 =
∑

n>n0
Oxn−m

Ql,m
n

∑

n>n0
Ql,m

n

(2.59)
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2.4 The Green’s function Monte Carlo method

where the new weight Ql,m
n is given by

Ql,m
n =

l+m
∏

i=1

bxn−i
. (2.60)

The n0 is the number of iterations required for the statistical equilibration of the

Markov process and also we have assumed that the weight ωn−(m+l)−1 = 1. The

exponents l and m should be large enough in order to filter out the high energy

components on both sides of the operator Ô in Eq. (2.58).

2.4.3 Many walkers formulation

All the previously described procedures are, in principle, free from any approx-

imation and they give exact results within the statistical errors (so long as the

condition Ḡx′,x ≥ 0 holds). Unfortunately, the weight Ql,m
n grows exponentially

with the increment of l + m, implying a divergent variance in the energy aver-

age. Indeed, Ql,m
n is a product of l +m different factors and it can assume very

large or very small values. This problem has a simple solution by considering

the Green’s Function Monte Carlo technique with many walkers and by intro-

ducing a reconfiguration scheme, which enables to drop out the irrelevant walkers

with small weights. Calandra and Sorella [61] have introduced a reconfiguration

scheme working at fixed number of walkers, in a way that allows us to control

the bias due to the finite walker population. We consider M walkers and label

the corresponding configurations and weights with a couple of vectors (x,ω) ,

with each component (xi, ωi), i = 1, ...,M corresponding to the i-th walker. It is

then easy to generalize the Master equation of Eq. (2.43) to many independent

walkers. If the evolution of the distribution probability P is done without further

restrictions, each walker is uncorrelated from any other one, and we have:

Pn(x1, ..., xM , ω1, ..., ωM) = Pn(x1, ω1)...Pn(xM , ωM) (2.61)

Similarly to the previous case (2.52), we can define the state evolved at iteration

n with the Green’s function Ḡ:

Ψn(x)Ψg(x) = 〈 1

M

M
∑

i=1

ωiδx,xi
〉 =

∫

[dω]
∑

x

∑

i ωiδx,xi

M
Pn(x,ω) (2.62)
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2.4 The Green’s function Monte Carlo method

where the symbol [dω] indicates the M dimensional integral over the ωi vari-

ables. Since we are interested in the state |Ψn〉, we can define a reconfigura-

tion process (that is the process of removing the most irrelevant walkers) that

changes the probability distribution Pn without changing the statistical average

〈 1
M

∑M

i=1 ωiδx,xi
〉, that is relevant in the calculation of |Ψn〉. This can be obtained

by a particular Markov process applied to the configuration (x,ω), which leads

to a new set of walkers (x′,ω′). Each new walker (x′
j , ω

′
j), with j = 1, ...,M ,

will have the same weight ω′
j = ω̄ = 1

M

∑M
j ωj and an arbitrary configuration

x′
j , among the M possible old configurations xk , k = 1, ...,M , chosen with a

probability pk proportional to the weight of that configuration, pk = ωk∑
j ωj

. It is

clear that, after this reconfiguration, the new set of M walkers have by definition

the same weights ω̄, and most of the irrelevant walkers with small weights have

dropped out. It is also easy to derive the Master equation corresponding to this

reconfiguration Markov process:

P ′
n(x

′,ω′) =
∑

x

∫

[dω]K(x′,ω′|x,ω)Pn(x,ω), (2.63)

where the kernel K is given by

K(x′,ω′|x,ω) =
M
∏

j=1

(
∑

i ωiδx′
j ,xi

∑

i ωi

)

δ

(

ω′
j −

1

M

M
∑

i

ωi

)

(2.64)

Let us note that K is simple, in this case, because all the new walkers are inde-

pendent from each other, and K factorizes for each of them. By iterating this

process the weights of all the walkers are kept approximately equal during the

simulation. This property yields a considerable reduction of the statistical errors,

as the variance of the average weight is reduced by a factor of
√
M . This allows

therefore a more stable propagation even for large l.

Forward walking technique with many walkers

Similarly to what happens in the forward walking technique for a single walker,

this technique amounts to sample a set of configurations xj , with j = 1, ...,M

after having propagated them l steps. Then we measure Oj
x for each walker and
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2.4 The Green’s function Monte Carlo method

finally let them propagate forward for further m steps. In order to evaluate the

stochastic average, we have:

〈Ô〉 =
∑

n>n0
Ôxn−m

Q̂l,m
n

∑

n>n0
Ql,m

n

(2.65)

The value of the quantity Ôxn−m
has to be carefully explained. In practice, the

local value of the operator at step m − n, Oj
xn−m

is measured for all walkers

j = 1, ...,M . m steps further (now at step n), due to the reconfiguration to keep

the walker population stable, some walkers have disappeared and some others

have survived. In the average quantity Ôxn−m
we have to take into account

only the value of those walkers that survived after the m reconfiguration steps.

Therefore, we have to bookkeep only the values that survive. To do that, we

simply replace recursively for m steps and for each walker j, Oj
xk+1

= O
Fk(j)
xk , for

k = n − m,n − m + 1, ..., n. The function Fk(j) describes the reconfiguration

scheme at each step k in the Markov chain: The walker with index j after the

reconfiguration will assume the configuration with index Fk(j) before it. This

function has to be stored for each step in the Markov chain. The average is then

computed, after the m steps reconfiguration as

Ôxn−m
=

∑M

j=1O
j
xn−m

bjxn
∑M

j=1 b
j
xn

, (2.66)

taking into account only those values of Oj
xn−m

that survived the reconfiguration

with their corresponding weights at step n. Finally we specify the weight in

Eq. (2.65)

Q̂l,m
n =

l+m
∏

i=1

b̂xn−i
, (2.67)

where b̂xn−i
= 1

M

∑M

j=1 b
j
xn−i

.

2.4.4 The superfluid stiffness

We now consider the measurement of the superfluid stiffness. In analogy to what

has been done by Pollock and Ceperley at finite temperature, [63] this quantity
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2.4 The Green’s function Monte Carlo method

can be also calculated directly at zero temperature by using the Green’s function

Monte Carlo and the winding numbers:

ρs = lim
τ→∞

〈ΨGS|| ~W (τ)|2|ΨGS〉
dLτ

(2.68)

where d is the dimension, L is the volume of the system, τ is the imaginary diffu-

sion time. ~W (τ) =
∑

i[~ri(τ)− ~ri(0)]. The vector ~ri(τ) is the position of the i-th

particle after evolving it for a imaginary diffusion time τ from the initial position

~ri(0). The diffusion process must be done without considering periodic boundary

conditions, namely, by increasing or decreasing the values of the coordinates of a

particle that crosses the boundaries of the cluster. By doing that, the operator

~W (τ) describes the net number of times the paths of the total number of parti-

cles have wound around the periodic cell of the simulations by tracing the path

of the particles from time 0 to τ . Pictorially, the superfluid stiffness measures

how the particles diffuse in imaginary time. If the superfluid stiffness is finite, the

particles flow and the ground state is extended, if it is zero it means that they

do not spread over the whole lattice and localize in a certain volume.
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Chapter 3

The Bose-glass phase in

low-dimensional lattices

In this Chapter we discuss the emergence of the Bose-glass phase in low-dimensional

lattices by means of the variational and Green’s function Monte Carlo techniques.

We show that a proper characterization of the phase diagram on finite disordered

clusters requires the knowledge of probability distributions of physical quantities

rather than their averages. This holds in particular for determining the stability

region of the Bose-glass phase, the compressible but not superfluid phase that

exists whenever disorder is present. The analysis of the distribution of the gap

is carried out in detail for several lattices which we use to study the evolution of

Bose-glass phase by going from one dimension to two dimensions. This evolution

is tracked by performing numerical simulations in one dimension, two-leg lad-

der, three-leg ladder and finally in a true two-dimensional lattice. These results

suggest that a similar statistical analysis could be performed also to interpret ex-

periments on cold gases trapped in disordered lattices, limited as they are to finite

sizes. Finally, we study a simple system of non-interacting spinless fermions with

a staggered potential immersed in a disordered on-site potential for which large

size systems can be reached. The results suggest that the expected critical points

of phase transitions which are driven by exponentially rare regions are expected

to be visible on very large scales. Nevertheless, the competing phases are numer-

ically observed and they are, therefore, expected to be observed in experiments

on finite lattices as for instance with ultracold atoms.
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3.1 The Bose-glass phase

3.1 The Bose-glass phase

As it was discussed in chapter 1, the phase diagram of a disordered Bose-Hubbard

model is supposed to include three different phases. [9, 10] When the interaction

is strong and the number of bosons is a multiple of the number of sites, the

model should describe a Mott insulator, with bosons localized in the potential

wells of the optical lattice. This phase is not superfluid nor compressible. When

both interaction and disorder are weak, a superfluid and compressible phase must

exist. In the presence of disorder a third phase arises: the Bose glass, which is

compressible but not superfluid. [9] Indeed, when disorder is very strong, bosons

localize in the deepest potential wells, which are randomly distributed. The

coherent tunneling of a boson between these wells is suppressed just as in the

usual Anderson localization, hence the absence of superfluidity, in spite of the

fact that displacing a boson from one well to another one may cost no energy,

hence a finite compressibility. Based on the same single-particle description used

for explaining Anderson localization, it was argued that disorder prevents a direct

superfluid to Mott insulator transition, [9] a speculation that has been subject to

several theoretical studies. [11, 12, 13, 14, 15, 16, 17, 18]

A simple way to justify the validity of the single-particle arguments is to

imagine that the few carriers, which are released upon doping a Mott insulator,

effectively behave as bosons at low density. In this case the single-particle Ander-

son localization scenario is likely to be applicable since the few interacting bosons

occupy strongly localized states in the Lifshitz’s tails. The implicit assumption is

that the Mott-Hubbard side bands survive in the presence of disorder and develop

Lifshitz’s tails that fill the Mott-Hubbard gap. This scenario is quite appealing

hence worth to be investigated theoretically. However, a direct comparison of

theory with experiments has to face the problem that experiments on cold gases

are unavoidably limited to finite systems with hundreds of sites and finite number

of disorder realizations. Therefore, objects like Lifshitz’s tails, which arise from

rare disorder configurations, might not be easily accessible. This fact demands

an effort to identify salient features of the Bose glass that may distinguish the

latter from a superfluid or a Mott insulator already on finite systems. This is

actually the scope of this chapter. Specifically, we are going to show that the
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statistical distribution of the energy gaps extracted by a numerical simulation of

finite size systems is a significant property that can discriminate among different

phases. [64] The numerical simulations have been carried out for a single chain, a

two- and three-leg ladder system and finally for a genuine two-dimensional lattice.

The ladder systems are of interest because they can be experimentally realized,

not only in optical lattices but also in magnetic materials, as mentioned in chap-

ter 1 where a very recent neutron scattering data reported the evidence of the

spin-analogous of a Bose-glass phase in a spin-ladder compound in which disor-

der was induced by random chemical substitution. [47] Finally, in this chapter

we shall also briefly discuss how the probability distribution of the energy gaps

could be experimentally accessed.

3.2 Model

As it was discussed in the introductory chapter, the simplest Hamiltonian that

contains the basic ingredients of strong correlations and disorder is

H = − t

2

∑

〈i,j〉

b†ibj + h.c.+
∑

i

(

U

2
ni(ni − 1) + ǫini

)

, (3.1)

where 〈. . . 〉 indicates nearest-neighbor sites, b†i (bi ) creates (destroys) a boson

on site i, and ni = b†ibi is the local density operator. The on-site interaction

is parameterized by U , whereas the local disordered potential is described by

random variables ǫi that are uniformly distributed in [−∆,∆]. Here, we consider

bosons on a one-dimensional (1D) chain, N -leg ladders, and a two-dimensional

(2D) square lattice, and study model of Eq. (3.1) by Green’s function Monte Carlo

with a fixed number M of bosons on L sites, n = M/L being the average density.

Here the chemical potential µ has not been considered since the algorithm works

in the canonical ensemble, such that it does not play any role in our simulations.

We recall that the Green’s function Monte Carlo is a zero-temperature algorithm

that provides numerically exact results because the off-diagonal elements of the

Hamiltonian in Eq. (3.1) are all negative, implying the absence of sign problem.

One starts from a trial, e.g., variational wave function and filters out high-energy

components by iterative applications of the imaginary-time evolution operator. In
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order to improve the numerical efficiency, it is important to consider an accurate

starting wave function. In the clean case, it has been recently shown [56] that

good accuracy can be achieved by applying a density-density Jastrow factor to a

state where all bosons are condensed at q = 0, i.e.,

| Ψclean〉 = exp

(

∑

i,j

vi,jninj

)

| SF 〉 (3.2)

where | SF 〉 =
(

∑

i b
†
i

)M

| 0〉 is the non-interacting Bose condensate of M

particles, ni is the on-site density operator, and vi,j are translationally invariant

parameters that are determined by minimizing the variational energy. In the

presence of disorder, we just add to Eq. (3.2) a site-dependent one-body Jastrow

factor

| Ψ〉 = exp

(

∑

i

gini

)

| Ψclean〉 (3.3)

where gi’s are L additional variational parameters. This wave function becomes

the exact ground state for U = 0 and for any ∆ taking vi,j = 0 and gi = lnαi with

αi being the amplitude at site i of the lowest-energy single-particle eigenstate of

the non-interacting Hamiltonian. In order to find the wave function in this limit

it is enough to diagonalize the single-particle Hamiltonian written in the real

basis set,

H = − t

2

∑

〈i,j〉

b†ibj + h.c. +
∑

i

ǫini. (3.4)

The single-particle ground state is given by αi and the many-body state is con-

structed by a condensate of M particles on that state,

|Ψ〉 =
(

L
∑

i=1

αib
†
i

)M

|0〉, (3.5)

which in turn can be written by expanding the sum as

|Ψ〉 =
∑

k1+k2+...+kL=M

(

M

k1, k2, ..., kL

)

αk1
1 αk2

2 ...αkL
L

√

k1!
√

k2!...
√

kL!|k1, k2, ..., kL〉,

(3.6)

where
(

M

k1,k2,...,kL

)

= M !
k1!k2!...kL!

are the multinomial coefficients and the summation

is taken over all sequences of nonnegative integer indices k1 through kL such the

53



3.3 Results

sum of all ki’s is M . It is now clear that if we apply the operator e
∑L

i gini to

the perfect superfluid state, we recover the wave function in Eq. (3.6) with gi =

lnαi. A similar wave function to the one described in Eq. (3.3) has been recently

used to describe the fermionic Hubbard model in the presence of disorder.[57]

The flexibility of this variational state makes it possible to describe equally well

superfluid, Bose glass, and Mott-insulating states.

3.3 Results

Let us start by analyzing the case of finite on-site interactions U/t and consider the

case with n = 1. The Bose-Hubbard model has been extensively studied in recent

years, [11, 12, 13, 14, 15, 16, 17, 18] with special focus on the question whether

a direct superfluid to Mott insulator transition does exist or not. This issue

has been finally solved only recently. The solution is based on the observation

that, if the disorder strength ∆ is larger than half of the energy gap of the clean

Mott insulator Eclean
g , then the ground state must be compressible, otherwise

is incompressible. [17, 18, 42] Therefore, the independent measurements of the

superfluid stiffness ρs at finite ∆ and of the clean Mott gap Eclean
g allow a precise

determination of the phase boundaries between different phases and demonstrate

unambiguously the existence of a Bose glass in between the superfluid and Mott

phases as it was assumed in the introductory part of this thesis. [17, 18] The

above prescription is very effective in a numerical simulation since both ρs with

disorder and Eclean
g without disorder can be determined quite accurately. On the

other hand, it would be desirable to have simple instruments to establish directly

the nature of the phase of a given system in a realistic finite-size experimental

setup. In a clean system, this program can be accomplished by measuring the

gap, conventionally defined by Eg = µ+−µ−, where µ+ = EM+1−EM and µ− =

EM −EM−1 (EM being the ground-state energy with M particles). In disordered

systems, the Mott gap can be overcome by transferring particles between two

regions with almost flat disorder shifting the local chemical potential upward and

downward, respectively. These regions may be far apart in space and represent

rare fluctuations (Lifshitz’s tail regions). Therefore, it is quite likely that the
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Figure 3.1: Sketch of the construction of the distribution of the gap P (Eg) by con-

sidering the energy cost of the transfer of particles between different realizations

of disorder of clusters α and β.

conventional definition of the gap,

Ēg = 1/N
∑

α=1,...,N

(

µ+
α − µ−

α

)

, (3.7)

where α denote the disorder realizations, will miss the Lifshitz’s tails for any

accessible number of disorder realizations N. This fact gives rise to a finite gap,

even when the actual infinite system would be compressible. To circumvent such a

difficulty, it is useful to imagine that a large system is made by several subsystems,

each represented by the L-site cluster under investigation, and construct the gap

by using µ+ and µ− from different disorder realizations, as depicted in Fig. 3.1,

where the gap is analyzed by considering the processes of taking one particle from

region α to region β and vice versa, for all pair of the realizations among the total

set of N. In other words, one could define an alternative estimate of the gap as

Emin
g = minα,β | µ+

α − µ−
β |, (3.8)

with all the disorder realizations α and β. In the limit of very large systems

where boundary effects become negligible, Emin
g must eventually coincide with

Ēg. This is because as the size of the system gets larger and larger, the values of

µ+
α and µ−

β start to become more and more similar and independet of the choice
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of the realizations, which implies that the distributions of the gap slowly shrink

to the value of the gap in the infinite system. In finite systems the two estimates

differ, nevertheless we believe that Emin
g is more representative since it aims at

capturing the phenomenon underneath the Lifshitz’s tails, as we are going to

show numerically. Besides Emin
g , one can determine the full gap distribution,

P (Eg) =
∑

αβ

δ
(

Eg − µ+
α + µ−

β

)

, (3.9)

which we will show has remarkable properties. We mention that, by our defini-

tion, P (Eg < 0) could well be finite on finite systems, although it must vanish

in the thermodynamic limit where P (Eg) becomes peaked at a single positive

(or vanishing) value, i.e., the actual gap. Experimental estimates for the gap

have been so far obtained in ultra-cold atomic systems mainly in two ways: one

consists in applying a gradient potential that compensates the Mott energy gap

and allows tunneling between neighboring sites; [19] the other method exploits

a sinusoidal modulation of the main lattice height for stimulating resonant pro-

duction of excitations. [39, 51] Further theoretical suggestions aimed at detecting

the presence of a Mott gap include trap squeezing, in which the strength of the

trap is varied after which measurements of the effect of the change of the chem-

ical potential due to the change of the trapping are quantified. [65] Also, the

energetics of the formation of Mott domains has been investigated in connection

with time-of-flight experiments. [66] From our perspective, in experiments with

ultra-cold atoms, both Emin
g and P (Eg) could be accessed by measuring separately

µ+ and µ− for different disorder realizations. For instance, one could measure

the energy releases Erel
M of falling atoms when the trap is turned off with the

reference number of particles M and with numbers M ± M ′. For M ′ ≪ M ,

indeed Erel
M+M ′ − Erel

M ≃ M ′µ+ and Erel
M − Erel

M−M ′ ≃ M ′µ−. In chapter 5 we will

discuss how to obtain measurements of the gap in an experimental situation by

considering the presence of inhomogeneities due to the confinement, natural to

most experiments using cold atoms.

Let us start from the 1D case, whose zero-temperature phase diagram has

been worked out by Density-Matrix Renormalization Group (DMRG). [67] Their

main results on the phase diagram of the disordered Bose-Hubbard model are
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Figure 3.2: Superfluid stiffness ρs of the 1D Bose-Hubbard model as a function of

U/t, the number of sites is L = 60; in the inset, the size scaling of ρs is reported.

Lower panel: the average and the minimum gap are shown as a function of U/t.

The result obtained from theorem I is also presented with a black arrow around

U/t ∼ 6.9

shown in Fig. 3.3. At finite values of ∆, the on-site interaction U turns the Bose

glass into a superfluid, which remains stable up to U = Uc1, where ρs vanishes.

However, the system remains gapless for Uc1 < U < Uc2, indicating the presence

of a Bose-glass phase. At U = Uc2 the system turns into an incompressible Mott

insulator. For ∆/t = 2, we have that Uc1/t ≃ 3.7 as reported in Fig. 3.2. If we

use Ēg as estimator of the actual gap, we find that the Bose glass survives up

to Uc2/t ≃ 5, not far from the DMRG estimate, [67] but smaller than the value

predicted by the condition ∆ = Eclean
g /2, which would lead to Uc2/t ≃ 6.9. As

discussed before, this discrepancy arises by the inability to catch rare disorder

configurations, which could be overcome by analyzing the minimum gap Emin
g and

the full distribution probability P (Eg). Indeed, when using Emin
g as a detector

of gapless excitations, we obtain an estimate of Uc2/t ≃ 6.2 (see Fig. 3.4), much

closer to the value Uc2/t ≃ 6.9. As far as P (Eg) is concerned, we note that it

behaves quite differently in the three different phase, see Fig. 3.5. As long as

the phase is superfluid, P (Eg) is peaked at Eg = 0. In the Bose glass, P (Eg) is

instead peaked at a finite Eg > 0, yet P (0) stays finite. In the Mott insulator,
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Figure 3.3: Phase diagram obtained by DMRG. Our results for ∆ = 2(orange

sticks) for Uc1 and Uc2 obtained through the evaluation of Ēg are shown for

comparison and they are in good agreement with those of the DMRG. The region

highlighted inside the box corresponds to the Bose-glass phase

P (Eg) remains peaked at a positive Eg but P (0) = 0. This suggests that P (Eg)

could be an efficient tool for discriminating between the different phases.

It is also important to investigate the evolution of the distribution probability

P (Eg) as function of the size of the system. It was already stated that in the

limit of very large systems where boundary effects become negligible, Emin
g must

eventually coincide with Ēg. Indeed, what we observe is that as the size of the

system is increased, the width of the distribution is decreased confirming this

scenario, as it is shown in Fig. 3.6. Eventually, the distribution should become

sharply peaked and centered at the value of the gap in the infinite system, such

that both Ēg and Emin
g will tend to the same value. It is also clear that the average

gap obtained from the distribution decreases as the size of the system is increased.

In turn it means that the system has more chance to find regions for which the

transfer of a particle from a place to the other cost less and less energy, hence

decreasing the value of the gap that the system can attain and thus enlarging

the stability of the Bose-glass phase. These observations are particularly clear in

Fig. 3.6 for U/t = 4.25, which corresponds to a Bose glass in which for L = 30
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Figure 3.4: Size scaling of the critical Uc2/t obtained from Emin
g for the 1D case.

The results by theorem 1 and by the average gap are also presented for compar-

ison.

the average gap is finite but P (0) is also finite. Instead as the system is enlarged

to L = 60 the distribution shrinks and it is shifted, such that the mean value of

the gap now approaches zero, as it should be in the Bose glass. Similarly, in the

case of U/t = 8 and U/t = 3, the distribution is shifted and shrunk. The fact

that the distributions are always shifted such that the gap is always smaller with

the increase of the size is important to interpret the results. This means that,

even though the simulations are carried in small lattices and the critical points

expected from the rare region physics are hardly seen, the stability of the Bose

glass is always increased with the increase of the size.

Let us now analyze the evolution of the phase diagram when the 2D limit is

approached by increasing the number of legs. Moving from D = 1 to D = 2, the

stability region of the Bose glass is expected to shrink, [9] making its observation

in experiments more and more difficult. In Fig. 3.7, we report our results for

two- and three-leg ladders, and for comparison, also the 2D limit (evaluated for

a rather small 12× 12 cluster). In this case, we take ∆/t = 5, in order to have a

larger Bose-glass region in between the superfluid and the Mott phases. In 1D,

for such large disorder strength no superfluidity is found at all. By increasing the

number of legs, we rapidly converge to the 2D results: this fact is particularly

clear from the data on the gap. Both the results on the minimum gap and the ones
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Figure 3.7: Superfluid stiffness ρs (solid lines on the left) and Emin
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on the right) for different clusters. Two-leg (with 2×40 sites) and three-leg (with

3× 50) ladders are shown; the 2D case with a 12× 12 cluster is also reported for

comparison. In all cases the disorder strength is ∆/t = 5.

that come from ∆ = Eclean
g /2 shows that the critical U for the Mott transition is

almost the same for three legs and 2D. Also the superfluid stiffness ρs seems to

rapidly converge from below to the 2D limit. We also find that the behavior of

P (Eg) is qualitatively similar to what found in 1D, confirming that it can actually

discriminate among the different phases (see Fig. 3.8). We mention that, should

we use as estimator of the gap Ēg, we would have concluded that the Bose glass

never exists in 2D and that a direct superfluid to Mott insulator transition occurs.

The use of Emin
g instead demonstrates that the Bose glass does exist also in 2D

and always intrudes between the superfluid and the Mott insulator, although its

size is strongly reduced. One could argue that the stability of the Bose glass in

2D is not yet clear since the region we found is small, however this region can

only get larger with the increase of the system, as the stiffness would get reduced

with the enlargement of the cluster. Furthermore, the Bose glass would also be

enlarged as it was demonstrated in 1D, because the gap also tends to be smaller

as the system gets larger. In realistic experimental setups, a two-leg ladder can be

realized through a double well potential along a direction (say, x), [68] a potential

creating a cigar geometry in the z-axis, and finally a periodic potential along z.

Similar values of inter- and intra-chain hopping parameter may be achieved by

an appropriate tuning of the lattice spacings and height of barriers. Similarly, a
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Figure 3.8: Distribution of the gap for the three-leg ladder 3 × 50 (upper raw)

and 2D 12× 12 (lower raw) for different values of U/t. In all cases, the disorder

strength is ∆/t = 5

three-leg ladder could also be constructed by considering a three well potential

plus a cigar geometry along z-axis.

We now study concentrate our attention to other quantities which are rel-

evant for experiments. Let us start with the local density which has been re-

cently gained attention from experimentalists. Several related experiments have

attempted to perform in-situ imaging of ultracold atomic gases in which they

have reported single-atom resolution images of the atomic cloud. Among the

most remarkable experiments we have in-situ observation of the Mott-insulating

domains, [69] probe of the superfluid-to-Mott-Insulator transition at the single-

atom level, [70] and also single-atom-resolved fluorescence imaging of the Mott

insulator. [71] Those experiments share one characteristic and it is the fact that

they all attempt to directly observe the local density and local charge fluctua-

tions. We now explore what happens to the density profile in disordered systems.

In Fig. 3.9, we report the density profile for a given disorder configuration on the

2× 40 ladder. As soon as the on-site interaction is finite, particles become rather

delocalized and many sites of the lattice acquire a finite boson density. There are

large fluctuations in the local density with ni ranging from ≃ 0 to nmax
i ≃ 4. Al-

though there is a number of sites with very small density, the superfluid stiffness

is finite (e.g., ρs = 0.015(2) for U/t = 1). We notice that, although the disorder

is uncorrelated from site to site, there is a strong density correlation between
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the two legs. By increasing further U/t, the density becomes more and more

homogeneous (for U/t = 5, nmax
i ≃ 2, still with rather large fluctuations). ρs has

a maximum U/t ≃ 5 and then is suppressed (e.g., ρs = 0.0015(5) at U/t = 11).

However, as far as the local density is concerned, we do not observe a drastic

modification between the superfluid (e.g., U/t . 9) and the Bose glass (e.g.,

U/t & 9), even though fluctuations looks considerably suppressed for U/t = 11,

see Fig. 3.9. Eventually, for U/t & 12 the incompressible Mott phase is reached,

with very small density fluctuations (ni ≃ 1), which are not very different from

the ones observed in the Bose glass close to the transition. From the analysis

of the local density, we get no sharp features for which to distinguish between

phase, except for the Mott insulator in which the density distribution is quite

homogeneous. A remarkable result is that it is possible to attain superfluidity in

a rather disordered density landscape. This means that the notion of localization

can not be quantified using estimators related to the local density fluctuations

of the ground state of a system. The fact that a rather inhomogeneous phase

can attain superfluidity, implies that one has to go beyond local density measure-

ments in order to discriminate between a localized state and a delocalized one.

We now discuss the results for the momentum distribution nk = 〈b†kbk〉, ob-
tained by a variational technique outlined in Ref. [56]. This measurement is

relevant for experiments, as it is the main tool used to determine whether phase

coherence is prevalent along the lattice or not. The momentum distribution serves

as a detector of the superfluid state, as the presence of phase coherence is gen-

erally associated with superfluidity. This quantity can be accessed by measuring

the density distribution of the expanded cloud after having switched off all con-

fining potentials as it was explained in chapter 1. In Fig. 3.10, we show the results

for a 2× 40 ladder and different values of U/t (we also report the results for the

variational gap). Since, this is an almost 1D system, no condensation fraction is

expected (i.e., n0/L → 0 in the thermodynamic limit). However, the superfluid

phase is characterized by quasi-long-range order with a cusp in nk and a logarith-

mic divergent n0, i.e, a large contrast in the interference pattern produced by the

interfering cloud. On the other hand, both the Bose-glass and the Mott phases

have a smooth momentum distribution, with n0 → const in the thermodynamic
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Figure 3.9: Local density for one disorder realization of the 2×40 ladder. Darker

(brighter) spots indicate lower (higher) densities. The values of the stiffness ρs

for the same disorder realization are also reported.

limit, i.e, a low contrasted interference pattern. See also Fig. 3.11 for a detailed

profile of the momentum distribution along the kx axis. The difference between

the Bose glass and the Mott insulator comes from the measurement of the min-

imum gap, where in the Bose glass vanishes, whereas in the Mott insulator it

is finite. Remarkably, the superfluid, the Bose glass and the Mott insulator are

correctly described with our simple variational ansatz in Eq. (3.3).

3.4 Disordered spinless fermions in a staggered

ionic potential

Let us briefly turn our attention to a very simple but illustrative system that can

be treated exactly using numerical exact diagonalization, reaching fairly large

system sizes. The system under consideration is that of non-interacting one-

dimensional spinless fermions in a staggered ionic potential to which an additional
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disorder term has been added. The Hamiltonian of the system is,

H = −t
∑

<i,j>

(

c†icj + h.c
)

+
m

2

∑

i

ni (−1)i +
∑

i

(ǫi − µ)ni (3.10)

where 〈. . . 〉 indicates nearest-neighbor sites, c†i (ci ) creates (destroys) a spinless

fermion on site i, and ni = c†ici is the local density operator. The strength of the

on-site staggered potential is parameterized by m, whereas the local disordered

potential is described by random variables ǫi that are uniformly distributed in

[−∆,∆]. The chemical potential µ fixes the total number of particles M . Exactly

at half filling, the ground state of the clean case ∆/t = 0 and finite m corresponds

to an incompressible band insulator with an energy gap of exactly equal to m,

whereas at arbitrary filling the system is metallic. The clean Hamiltonian can

be diagonalized by a Fourier transform and the emerging spectrum is shown in

Fig. 3.12 for m = 2. Similarly to what happens to a gapped Mott insulator in

presence of disorder, one could wonder what is the effect of disorder on the band

gap of this simple system. For small disorder ∆ ≪ m, we expect the system to

be again a band insulator, whereas for ∆ ≫ m the disorder dominates and the

usual Anderson localization takes place. For the situation in which ∆ and m are

of the same order of magnitude, a phase transition from the band insulator to

the Anderson localized phase is expected. Indeed, the situation is very similar

to the case of disordered interacting bosons and arguments like theorem 1 should

also hold in this case. In the infinite system of spinless fermions one can find

exponentially rare regions in which the local disorder is homogeneously shifted

upwards or downwards by ∆. Suppose there is a large rare region of l sites where

the disorder potential is roughly the same on all sites and equal to ∆. In this

region both lower and upper bands are rigidly shifted upwards. Similarly, one

could find a region of size l′ in which the disorder potential is equal to −∆ on

all sites, i.e., both lower and upper bands are rigidly shifted downwards. If the

disorder bound is as large as half of the band gap m, then the top of the lower

band in the l-site region is higher than the bottom of the upper band in the l′-

site region, and the gap will be zero. This means that one electron can be moved

from one region to the other at no energy cost, exactly like in the argument

for interacting bosons. Even though the expected size effects will be enormous,
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Figure 3.12: Left: Spectrum of the system of non-interacting spinless fermions

for the clean case ∆/t = 0 and m = 2.0. The system possess an energy gap of

m at qx = π/2. Right: The average excitation gap Ēg at half filling in presence

of disorder as function of ∆/t. The size of the system has been set to L = 1200

sites.

performing direct exact calculations on finite clusters of this system of spinless

fermions is important because it could provide an idea of the experimental length

scales at which the physics of rare regions would emerge. In fact, in Fig. 3.12

we report the average excitation gap Ēg at half filling in presence of disorder as

function of ∆/t for a lattice of L = 1200 sites. We emphasize that experiments

with ultracold atoms loaded on optical lattices can be realized with number of

sites and particles of the order of 102 ∼ 105 in arrays of decoupled 1D tubes. Our

finite size calculations could then be used as benchmark to analyze the outcome

of experiments, either with free fermions or bosons in the limit of very large

values of interaction U/t → ∞ where spinless fermions are equivalent to hardcore

bosons. [72] The transition to the Anderson-localized phase is observed around

∆c/t ≃ 1.7 in contrast to what is expected from theorem 1, ∆c/t = 1, i.e., half of

the gap m/2 of the clean system. In Fig. 3.13 we also present the results of the

distribution of the gap P (Eg) under the similar conditions ∆/t = 1 and m = 2,

sampled from a calculation using 106 realizations of disorder in a small lattice

L = 100. Again, the system is expected to be gapless, however the tails of the

distribution are always very far from vanishing values such that the gap remains

always finite. For the L = 1200 cluster, the value of the gap at ∆/t = 1 is about
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Ēg ≃ 0.731 while for L = 5000, Ēg ≃ 0.593, thus decreasing very slowly with

the increase of the size. Additionally, the results on the density of states (DOS)

of the system are depicted in Fig. 3.13. With respect to the density of states of

the clean system, the energy gap around zero energy in presence of disorder is

clearly reduced and it is filled with states coming from particles that are strongly

localized in the Lifshitz’s tails that arise from the rare regions, just as in the usual

Anderson localization where the density of states gets enlarged by the presence

of such tails. [73] However, finding to which extent those tails are filling the

density of states by numerical calculations is hard, as those exponentially rare

regions are not captured by our simulations limited to a finite size and finite

number of realizations which in principle should be exponentially large to be able

to detect their effect. In summary, what all these results on spinless fermions

together with our previous simulations on disordered bosons suggests, is that the

criticality arising from the physics of rare regions is expected on very large scales,

such that its observation is severely restricted to astronomically large systems

that can perhaps only be reached in real materials. Nevertheless, the observation

and characterization of the emerging phases is possible and it should in principle

be experimentally accessible with ultracold atoms.

3.5 Conclusions

In this part of the thesis it has been presented a detailed study of the ground-state

properties of the disordered Bose-Hubbard model in low-dimensional lattices, rel-

evant for on-going experiments with cold atomic gases trapped in optical lattices.

We have determined the distribution probability of the gap on finite sizes and

shown that it contains useful information. In particular, we have found that the

Bose-glass is characterized by a broad distribution of the gap that is peaked at

finite energy but extends down to zero, a shape remarkably reminiscent of pre-

formed Hubbard sidebands with the Mott gap completely filled by Lifshitz’s tails.

The Mott transition occurs when these tails terminate at finite energy. On the

contrary, the gap distribution in the superfluid phase turns out to be strongly

peaked at zero energy. These results suggest a simple and efficient way to dis-

criminate between different phases in experiments, which, being performed on
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Figure 3.13: Left panel: Distribution probability P (Eg) for a system of spinless

fermions at half filling with ∆/t = 1.0 and m = 2.0. Right panel: Density of

states for the clean (solid lines) and disordered system (green bars). Both figures

are constructed from 106 configurations of disorder on a cluster L = 100 sites

finite systems, suffer from the same size limitations as our simulations. We have

also investigated the disordered Bose-Hubbard model on N -leg ladder systems,

emphasizing that these geometries could be quite useful to study the evolution

from one to two spatial dimensions. Experiments with both cold atomic gases

and magnetic systems are becoming now possible on ladders and our calculations

represent an important benchmark in this direction.
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Chapter 4

The onset of superfluidity of

hardcore bosons in disordered

ladders

In this chapter we discuss the effect of disorder on the zero-temperature phase

diagram of a two-leg ladder of hardcore bosons using numerical simulations based

on the Green’s function Monte Carlo. We first review some important aspects of

the clean system which are relevant for the understanding of the disordered case.

Then the effect of the interchain hopping is analyzed followed by the study of

the low-density regime of the phase diagram in presence of disorder. We find an

intervening Bose-glass phase between the frozen Mott insulator with zero (or one)

bosons per site and the superfluid phase. This superfluid phase is stabilized by the

hopping between the otherwise insulating bosonic chains. We also investigate the

effect of disorder exactly at half filling, where for small values of disorder, there is

a commensurate phase with a gap to all excitations, which is eventually destroyed

for larger values of disorder. We argue that this phase is always surrounded by

the so-called Bose glass and a direct transition from the superfluid is found only

in the clean system. Finally, a phase diagram based on our numerical evidence is

suggested.
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4.1 Hardcore bosons in presence of disorder in

low dimensions

Low temperature one-dimensional interacting Bose systems are fascinating and

fundamentally different from their higher dimensional counterparts. This is not a

purely abstract problem since there are remarkable realizations of low-dimensional

Bose systems. In fact, among the first experimental realizations of one-dimensional

Bose systems we have Josephson junction arrays [74] and, more recently, ultracold

bosons loaded in one-dimensional traps where the transition from the superfluid

to Mott insulator has been already observed. [39] Other remarkable examples

are the case of strongly correlated hardcore bosons with [75] and without [76] the

optical lattice along one-dimensional tubes. In such examples, the repulsive inter-

actions between bosonic particles confined to one dimension dominate the physics

of the system. The bosons are prevented from occupying the same position in

space due to the strong interaction between the particles. The strong interac-

tion resembles the Pauli exclusion principle of fermions, which in one dimension

causes the system to have some analogous properties which are fermionic in na-

ture. In fact, using the Jordan-Wigner transformation, [72] hardcore bosons in

one-dimensional lattices can be mapped onto one-dimensional spinless fermions,

which in many cases makes it possible to obtain exact solutions for the ground

state and dynamics of strongly interacting Bose systems. [77] After the Jordan-

Wigner transformation, some observables have the same expectation values irre-

spective of whether working with spinless fermions or hardcore bosons. This is

the case for the energy and the density, for instance. For other quantities like

the density matrix and the momentum distribution, this correspondence is not

valid and phase factors have to be taken into account. It was realized that these

remarkable features of one-dimensional hardcore bosons get drastically modified

when these bosonic chains are coupled together leading to the so-called ladder

systems. [78, 79] Bosonic ladders are interesting because they allow the possibility

to track the evolution of properties of the system as the dimensionality is changed

from one to two dimensions. Ladders possess essentially a one-dimensional char-

acter, thus no long-range order is allowed, while sharing two-dimensional proper-

ties because that system contains tunneling between the chains, making it possi-
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ble to study phenomena usually found in higher-dimensional systems. This fact

is particularly evident in presence of disorder. In a one-dimensional chain with

only nearest neighbor hopping, Anderson localization is expected for a system of

hardcore bosons (or spinless fermions) for any value of the disorder and densities.

Instead if we consider hardcore bosons in a two-leg ladder a superfluid phase is

expected to be stabilized by the interchain hopping. [78] In addition, the study of

ladder systems of hardcore bosons is expected to be relevant for experiments as

they can be realized with optical lattices. [80, 81] In realistic experimental setup,

to design, e.g., a two-leg ladder one can realize a double-well potential along a

direction (say, x) like in Ref. [82], and a potential creating a cigar geometry in

the z-axis. Therefore, by superimposing a further periodic potential along z, one

realizes a two-leg Bose-Hubbard model. By carefully playing with the distance

between tubes the height of the barrier between the two legs, one could tune

the hopping rate between the legs. Likewise, the intrachain hopping rate can be

tuned by appropriately setting the strength of the periodic potential along the

z direction. Superimposing a disordering lattice or introducing a speckle poten-

tial on top of the above mentioned ladder in order to consider disorder ladders is

then straightforward. Additionally, bosonic ladder systems are of interest because

they are experimentally realized also in magnetic materials. [53] For instance, the

disorder-free compound IPA-CuCl3 has been found to be a prototypical S = 1/2

antiferromagnetic spin ladder material which can thought as a system of interact-

ing hardcore bosons. [47] Furthermore, the disordered counterpart was created by

means of random chemical substitution of the clean parent compound IPA-CuCl3

and by using neutron scattering experiments, the evidence of the spin-analogous

of a Bose-glass phase was found. [47]

In this chapter we concentrate our attention precisely to the system of hard-

core bosons loaded on a two-leg ladder in presence of bounded on-site disorder.

We attempt to draw a phase diagram based on simple arguments supported with

numerical simulations using the Green’s function Monte Carlo. Particularly, the

effect of disorder in presence of a variable interchain hopping is addressed for

several densities, where apart from the localized Bose-glass phase, we expect a

stable superfluid phase not present in single chains. We are going to show that the

gapped phase occurring at half filling in the clean system is destroyed by a large
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Figure 4.1: Two-leg ladder geometry. The label η = 1, 2 denotes the leg label

and the matrix elements t and t′ are the hopping amplitudes along and between

the chains, respectively.

enough disorder amplitude and present numerical simulations to test arguments

supporting the existence of a Bose glass that completely surrounds the gapped

phase. [83]

4.2 Model and results

We will consider a system of hardcore bosons on a L = 2 × Lx lattice. The

Hamiltonian is given by

H = −t
∑

i,η=1,2

(

b†i,ηbi+1,η + h.c.
)

− t′
∑

i

(

b†i,1bi,2 + h.c.
)

+
∑

i,η

ǫi,ηni,η, (4.1)

where b†i,η creates a hardcore boson at rung i on the chain η = 1, 2. The matrix

elements t and t′ are the hopping amplitudes along and between the chains re-

spectively. The the local disordered potential is described by random variables

ǫi,η that are uniformly distributed in [−∆,∆]. The lattice geometry is depicted

in Fig. 4.1. We study the Hamiltonian of Eq. (4.1) by Green’s function Monte

Carlo with a fixed number M of bosons on L sites, n = M/L being the average

density.
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Figure 4.2: Upper panel: Superfluid stiffness as function of t′/t and different

lattice sizes and fixed n = 0.5. Lower panel: Superfluid stiffness as function of

the density n at fixed t′/t = 2 on a lattice with Lx = 50

Figure 4.3: a. Phase diagram of hardcore bosons on a two-leg ladder as function

of t′/t and density n. b. Same as in a. but for non-interacting spinless fermions.

The rung Mott insulator is denoted as (RMI), superfluid as (SF) and a band

insulator as (BI).
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4.2 Model and results

4.2.1 The clean case

Let us discuss the clean case, where ǫi,η = 0, in two extreme limits. First, we

consider the limit t′ = 0, i.e., two uncoupled one-dimensional chains. In this

situation the ground state is a superfluid with quasi-long-range order for any

density 0 < n < 1. [84] At densities n = 0, 1 there will always be a totally

frozen Mott insulator due to the infinite repulsion which completely suppresses

the charge fluctuations. Instead, when t′/t ≫ 1 we expect differences depending

on the filling. Exactly at half filling n = 1/2, i.e., one hardcore boson per rung,

each boson goes into a zero y-momentum state. This means that the ground state

can be approximately written as a independent product of single-particle rung

states as

|Ψ0〉 ≃
Lx
∏

i

|Ψi〉 (4.2)

where |Ψi〉 = 1/
√
2(b†i,1 + b†i,2)|0〉. This situation is expected because it is ener-

getically favorable to have an independent boson per rung delocalized along the

y-axis gaining an amount of energy t′ by hopping along the rungs back and forth.

The system is in the so-called rung Mott insulator with a unique ground state

and a gap to all excitations. [85] From these observations, at half filling there

will be a phase transition between the superfluid and rung-Mott phase as func-

tion of the ratio t′/t. The critical value of the interchain hopping for this phase

transition is argued to be (t′/t)c = 0, namely that any small interchain hopping

is relevant and opens up a gap in the spectrum. Moreover, this transition is of

the Kosterlitz-Thouless type and thus the gap opens up very slowly, such that

its observation with numerical simulations on finite size clusters is restricted to

rather large systems. In Fig. 4.2 the values of the superfluid stiffness obtained

by the Green’s function Monte Carlo for hardcore bosons as function of t′/t for

several sizes Lx = 25, 50, and 100 is presented. Our data on finite clusters suffer

the difficulties inherent to a Kosterlitz-Thouless transition: Although a sizeable

reduction is seen as t′/t is increased, the stiffness remains quite large even for sys-

tems as large as Lx = 100. We expect that, as the size of the system is increased,

the stiffness will not saturate for any value of t′/t and it will eventually vanish.

The correlation length, although huge, is finite and the system insulating. Now,
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Figure 4.4: Superfluid stiffness ρs as a function of t′/t for different ∆/t on a

two-leg ladder with L = 2× 50 sites. The density has been fixed to n = 0.4

if we add or remove to that state a few carriers they will form a superfluid on top

of the frozen state with one hardcore boson per rung. Thus, at any other filling

0 < n < 1/2 and 1/2 < n < 1 the system will always be superfluid as can be seen

in Fig. 4.2 where the superfluid stiffness as function of the density n is shown

for fixed t′/t = 2. The superfluid stiffness starts to grow at low density, then it

reaches a maximum to finally go down until it exactly vanishes at n = 0.5 at the

rung Mott insulator. On the other hand, for non-interacting spinless fermions

at half filling on the same ladder geometry, a correspondent phase transition is

expected at a finite (t′/t)c = 2 where a gap opens up. In this case the transi-

tion is from the metallic phase to a band insulator. The clean phase diagrams for

hardcore bosons and spinless fermions on a two-leg ladder are sketched in Fig. 4.3

for comparison.

4.2.2 Introduction of disorder

Now we turn our attention to the disordered system. First of all, the effect of

varying the coupling t′ on the otherwise insulating disordered decoupled chains

in Fig. 4.4 is investigated. For any value of disorder, an arbitrarily small t′/t

does not drive the system superfluid and the system remains in the Bose-glass
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4.2 Model and results

phase. A further increase of the ratio t′/t drives the system from the Bose glass

to the superfluid. However, for small disorder, the correlation length of the tiny

Bose glass at small t′/t and high density is expected to be very large, such that

our finite size simulations fail to see the small Bose glass region. This effect is

also observed in Fig. 4.4. Rapidly as a small t′ is introduced a large superfluid

response is obtained for small disorder. We see from our simulations that, by

a further increase of the interchain hopping the superfluid stiffness reaches a

maximum and then it decays. This means that, given a fixed disorder strength,

there is an optimal value of t′ for which the system attains the highest superfluid

response. If t′ is increased further, the effect of localization is enhanced and

the superfluidity is reduced. Finally, as the disorder is increased, the superfluid

stiffness is decreased, until a large value of disorder is reached for which the

system cannot attain superfluidity anymore and remains localized for any value

of t′.

Low-density phase diagram

Let us consider the low-density regime of the phase diagram at fixed interchain

hopping as function of the density and disorder. Fig. 4.5 shows the low-density

phase diagram and as well as numerical calculations of the superfluid stiffness

as function of disorder for several values of density and fixed t′/t = 1. We also

present the transition line corresponding to a larger interchain hopping t′/t = 2

which lies slightly below the line corresponding to t′/t = 1. It is found that for any

finite disorder ∆/t, the low-density phase is a Bose glass that turns superfluid

above a critical density. The trivial Mott insulator with zero (or one) bosons

per site is therefore separated from the superfluid phase by a Bose glass. We

emphasize that the existence of a superfluid phase for hardcore bosons in a two-

leg ladder is per se remarkable. Indeed, in a single chain with nearest-neighbor

hopping, hardcore bosons are equivalent to spinless fermions, which Anderson

localize for any density and in any dimension D ≤ 2. Already in a two-leg

ladder, hardcore bosons start to behave differently from spinless fermions. While

the latter ones remain always localized, the former ones show a superfluid phase

stabilized by the interchain hopping. The idea is that in a strictly one-dimensional
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Figure 4.5: Upper panel: superfluid stiffness ρs as a function of the disorder

strength ∆/t for different n and t′ = 1. Lower panel: low-density phase diagram

of the hard-core bosonic model for t′/t = 1 and t′/t = 2. Calculations have been

done on a 2× 50 ladder system.

geometry with only nearest neighbor hopping, the statistics of the particles does

not matter and hardcore bosons are equivalent to fermions. However, whenever

a non-strictly one-dimensional path is allowed by the Hamiltonian dynamics, as

in the two-leg ladder, bosons can form a superfluid, even in presence of disorder.

We just mention that the same behavior holds also on a single chain with longer-

range hopping. Superfluidity on a system of coupled disordered chains of strongly

interacting bosons have been predicted using bosonization and renormalization-

group techniques. [78] This scenario can be understood in very simple terms as

follows. In a disordered lattice in any dimension D ≤ 2, at very low fillings, the

statistics of the particles does not matter so much and hardcore bosons, as free

fermions, localize due to disorder giving rise to the Bose glass. This is because

the length over which the single-particle wave function extends is short enough in

such a way that the wave functions of two single particles never overlap. As soon

as the filling is increased, the particles get closer to each other and the single-

particle wave functions begin to overlap and the statistics of the particles starts

to play a role. If the particles are fermions they will still be localized, whereas
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bosons may stabilize a superfluid, as confirmed by our numerical simulations. In

the regime of values of interchain hopping we have studied, the effect of a larger

t′/t = 2 in the low-density phase diagram is to slightly reduce the superfluid

response of the system, as can be also seen in Fig. 4.5. We mention that the

linear character of the transition line from the Bose glass to the superfluid is not

altered.

Furthermore, we examine the same low-density transition from the Bose glass

to the superfluid driven by density at fixed ∆/t = 2. In Fig. 4.6 we present the

results of the superfluid stiffness ρs as as function of the density n. As before,

we found that superfluidity takes place for large enough density. We point out

that our simulations have been performed on finite clusters and finite size effects

are naturally expected, implying that the superfluid regions in the actual infinite

size phase diagram could be slightly reduced. For comparison we have studied

the case of spinless fermions for which we have calculated the Drude weight D on

exactly the same lattice geometry, disorder strength and densities. In the case

of spinless fermions no transition is found and the ground state is localized as

confirmed in Fig. 4.6.

Half-filled case

Concerning the phase diagram at higher densities, we now consider the half-filled

case n = 0.5, where in absence of disorder the system is gapped. The expectation

is that the presence of disorder tends to reduce the gap until a certain critical

value of ∆/t will completely make it vanish, as we show in Fig. 4.7 where we

have calculated the distribution probability of the gap P (Eg) for several values

of ∆/t. Already for ∆/t = 2 the probability to find zero gap is finite, such that

the gap of the infinite system is zero and the system is in the Bose glass. Similar

arguments were carefully explained in chapter 3 in relation to the distribution

probability of the gap and the presence of compressible regions in an infinite

system. Furthermore, we can make use of the so-called theorem 1 in this case

and related the gap of the clean system to that of the disordered one. In the

clean case at half filling, for t′/t ≫ 1 the gap Eg ∼ 2t′. If we apply disorder

and use the theorem 1 in this situation, we expect the rung Mott gap to vanish
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Figure 4.7: Distribution P (Eg) of the gap as function of disorder strength and

fixed density n = 0.5 and t′/t = 2 on a two-leg ladder with Lx = 50 sites. The

clean gap is shown for comparison in the upper-left box as a blue bar.
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Figure 4.8: Superfluid stiffness ρs as a function of the density and several values

of ∆/t and fixed t′/t = 2. The clean stiffness is also shown for comparison.

around a critical value of disorder ∆c ∼ t′. The theorem should hold exactly only

in the infinite system and large size effects are expected, such that the transition

from the gapped to the compressible phase in a finite system will take place for

a larger ∆c, as it was the case in our finite size simulations of P (Eg). This fact

sets a lower bound for the observation of transition given by the critical ∆c ∼ t′

predicted by theorem 1.

Transition from the superfluid to the gapped phase

Related to the gapped phase at half filling, we address the question of whether

transition to the rung Mott insulator as the density approaches n → 0.5 is through

the Bose glass or directly from the superfluid. If we dope the gapped state with

particles or holes in presence of disorder, those few carriers on top of the rung-

Mott phase will see a disordered background. Therefore, standard Anderson

localization arguments apply and the system remains insulating by localizing

those few carriers on the Lifshitz’s tails that fill the rung-Mott gap. By further

increase of the density, a superfluid is eventually formed. This simple single-

particle argument implies the presence of an intervening Bose glass between the

rung-Mott phase and the superfluid. We proceed to test this simple argument
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Figure 4.9: Left panel: The superfluid stiffness ρs as function of the disorder

bound for several densities close to half filling and fixed Lx = 50 and t′/t = 10.

Right panel: The corresponding phase diagram in the vicinity of the rung-Mott

phase.

quantitatively in two cases, t′/t = 2 and t′/t = 10. Let us examine the behavior

of the superfluid stiffness for densities close to n = 0.5 and t′/t = 2 as shown

in Fig. 4.8. Our data is consistent with a transition driven by density from

the superfluid phase through the Bose glass to finally end up with the rung Mott

insulator. For instance, from the data for ∆/t = 1, the superfluid stiffness appears

to vanish just before n = 0.5, however the region in which the Bose glass takes

place is very small. For ∆/t = 2 the rung Mott insulator has already been wiped

out by the effect of disorder as it was previously shown in Fig. 4.7.

If a larger t′/t is considered, the localization due to disorder is expected to

be greatly enhanced, thus, enlarging the Bose glass regions. This fact enables

us to provide further evidence in favor of an intervening Bose glass in between

the rung Mott and the superfluid as follows. We have performed simulations

with a rather large t′/t = 10 which are presented in Fig. 4.9 where we show the

superfluid stiffness as function of the disorder bound for several densities close

to half filling. From these simulations we can see that as the density approaches
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Figure 4.10: Generic phase diagram in the ∆/t− n plane in presence of disorder.

The red lines denotes the rung Mott insulator.

n = 0.5, the critical disorder ∆c/t for the transition to the Bose glass gets smaller

which leaves room for a large Bose glass in between the superfluid and the rung

Mott insulator. We observe that the exact value of the clean gap computed

numerically on a finite Lx = 50 lattice with t′/t = 10 is equal to Eg ≃ 17.31,

such that according to theorem 1 we expect the transition from the gapped to the

compressible phase to occur at least for value of disorder ∆c = 8.65. Therefore,

we are confident that the system is gapped for disorder amplitudes ∆ . 8.65.

From this last observation about the disordered gap Eg and from the calculations

of the superfluid stiffness we can draw the phase diagram for densities close to

the rung-Mott phase as presented in the right panel of Fig. 4.9.

By putting all our numerical evidence together we now attempt to draw a

generic phase diagram for the two-leg ladder system of hardcore bosons in pres-

ence of bounded disorder which we depict in Fig. 4.10. Generally speaking, a

large enough t′ tends to reduce the superfluid response of the system while en-

hancing the rung Mott phase against disorder such that for larger t′ the rung

Mott insulator survives up to a larger value of disorder.
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4.3 Conclusions

We have studied the effect of bounded disorder on the phase diagram of a two-

leg ladder of hardcore bosons as function of density and interchain hopping. We

found that at low filling the frozen Mott insulator with zero (or one) boson per site

is separated from the superfluid phase by a compressible localized insulator, i.e.,

the Bose glass. This in clear agreement with the arguments presented in Ref. [9]

which suggested, based on single-particle arguments, that a direct transition from

the superfluid to the Mott insulator in presence of disorder is unlikely to happen

and that a Bose glass should intervene between them. We have also verified

numerically that disorder tends to destroy the gap present on the clean version

of the rung Mott insulator, which is a sort of Mott insulator happening exactly

at half filling n = 1/2, i.e., one hardcore boson per rung, for which each boson

goes into a zero y-momentum state with a gap to all excitations. We have also

argued that this phase is always surrounded by the Bose glass, such that a direct

transition from the superfliud is forbidden in presence of disorder. This result is

also in agreement with the the theorem of inclusions introduced in Ref. [17, 18]

and explained in chapter 1. This theorem states that in presence of generic,

bounded disorder, there exist rare but arbitrarily large regions of the competing

phases across a (generic) transition line which, in turn, implies that a transition

from the superfluid to gapped phase is not possible.
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Chapter 5

Extracting the Mott gap from

energy measurements in trapped

atomic gases

In this chapter we show that the measurement of the so-called release energy,

which can be addressed experimentally, makes it possible to assess the value of

the Mott gap in the presence of the confinement potential that is unavoidable

in real experiments with ultracold atomic gases. Indeed, the curve of the release

energy as a function of the total number of particles shows kinks that are directly

related to the existence of excitation gaps associated to the formation of Mott-

insulating regions within the trapped system. This observation is introduced

and discussed in analogy to what happens to a uniform system where the total

energy curve as function of the density of particles exhibits kinks whenever the

interaction strength is large enough and the density is fixed to an integer value.

Calculations are presented within the Gutzwiller approach, but the final results

go beyond this simple approximation and represent a genuine feature of the real

system. We analyze two types of confinement, the usual harmonic confinement

and the recently introduced off-diagonal confinement in which the kinetic energy

of the particles is varied across the lattice, being maximum at the center of the

trap and zero at the borders. In the case of harmonic confinement, the Mott gaps

may be renormalized with respect to the uniform case. On the other hand, in the
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case of the off-diagonal confinement, our results show good agreement with the

homogeneous case.

5.1 The formation of a Mott insulator in exper-

iments with cold atoms

As it was mentioned in the introduction of this thesis, it has been established that

ultra-cold Bose and Fermi gases trapped in optical lattices provide experimental

realizations of long-standing lattice models widely considered in condensed mat-

ter physics and statistical mechanics, such as the Bose and Fermi Hubbard mod-

els. [28, 86] Experimental realizations of those models have been already explored

successfully, both for bosons and fermions. Although certain experimental real-

izations of the Hubbard model have been successfully realized, several challenges

arise when quantitatively comparing experimental data and theoretical results.

One of the most important problems is due to inevitable spatial inhomogeneities

induced by the optical trap, which is necessary to confine particles. [38, 87, 88]

Further complications are connected to determine temperature effects present

in experiments, [89] and also to the limited available tools for the experimental

characterization of the phases. Here, we would like to focus our attention on the

possibility to make quantitative estimations of the Mott gap Eg from relatively

simple quantities that are accessible in experiments. In chapter 3 it was shown

that the statistical distribution of the energy gaps in a disordered system ex-

tracted by a numerical simulation of finite size systems is a significant property

that can discriminate among different phases, thus it might be of importance to

devise a way to detect such quantities in experiments with cold atoms. [64] In pres-

ence of the optical trap, it is usually not possible to have a Mott-insulating phase

throughout the whole lattice and compressible regions intrude the system. This

fact has been widely discussed both experimentally and theoretically and shows

up through the typical “wedding-cake” profile of density. [19, 38, 87, 88, 90, 91]

Therefore, the system always possesses regions that are locally compressible and

a precise determination of the Mott gap is subtler than in the homogeneous case.

Some preliminary attempts to measure the excitation spectrum of interacting
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bosons have been performed by using Bragg spectroscopy. [39] Other approaches

to characterize the appearance of Mott-insulating regions from experimentally

accessible quantities have been also proposed. [65, 66] Here, we would like to pro-

pose an alternative approach that is based upon energy measurements only and

could give important insights into the actual value of the gap.

For an infinite and homogeneous system, the excitation gap Eg can be calcu-

lated from the knowledge of the total energy for different particle numbers, namely

Eg = µ+ − µ−, where µ± = ±(EN±1 − EN), EN being the ground-state energy

with N particles. The Mott gap Eg is finite whenever µ+ 6= µ− and, therefore, it

introduces a discontinuity in the first derivative of the energy with respect to the

density. In a real experiment, it is not possible to consider adding or removing

a single particle from a system with N particles in order to compute the energy

gap. However, similar results may be obtained taking µ± = ±(EN±M −EN ), with

M ≪ N , which could be considered in experiments.

In this chapter, we will show that the existence of incompressible Mott regions

and the values of the corresponding gaps can be obtained from so-called release

energy Erel, which may be easily measured experimentally. [92] Indeed, Erel is

obtained by integrating the momentum distribution of the atoms after having

switched off the confinement and let the atoms expand freely in a standard time-

of-flight experiment. The release energy is given by the sum of the kinetic and

interaction energies just before switching off the trap [92]

Erel = Ekin + Eint. (5.1)

We notice that it would be much more difficult to extract the total energy,

Etot = Ekin + Eint + Epot, (5.2)

that also includes the potential term due to the trap, since this would require

the knowledge of the density profile in the presence of the trap, which is harder

to reconstruct. Specifically, we address two types of confinements i) the usual

harmonic confinement and ii) a recently proposed off-diagonal confinement, [93]

In such a confinement, the strength of the hopping parameter is varied across the

lattice, being maximum at the center of the lattice and vanishing at its edges,

which naturally induces a trapping of the particles.
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We consider the bosonic case in one and two dimensions and use an insightful

variational approach based upon the Gutzwiller wave function. [94, 95] However,

similar results must hold also in fermionic systems. We find that the presence of

Mott regions in the system is signaled by discontinuities in the derivative of the

release-energy curve with respect to the total number of the bosons, reminiscent

of the presence of a gap in infinite homogeneous system. In the case of harmonic

confinement, the measured gap may be substantially smaller than the one of the

uniform system, whereas a much closer agreement is achieved by considering the

off-diagonal confinement. [96]

5.2 Model and Method

Our starting point is the Bose-Hubbard model which describes interacting bosons

on a lattice: [38]

Ĥ = −1

2

∑

〈i,j〉

ti,j b̂
†
i b̂j + h.c.+

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i, (5.3)

where 〈. . . 〉 indicates nearest-neighbor sites, b̂†i (b̂i) creates (destroys) a boson on

site i, and n̂i is the local density operator. U is the on-site interaction, ti,j is the

hopping amplitude, and ǫi is a local energy offset due to an external trapping

potential.

To study this model and describe its ground-state properties we use a mean-

field approximation based on the Gutzwiller ansatz. [94, 95] This simple approach

is able to capture important features of the true ground state and provides a cor-

rect description of local quantities, such as the local density or the total energy,

even in presence of spatial inhomogeneities. [38, 91, 94, 95] More involved wave

functions with a long-range Jastrow factor, [56] or numerically exact calcula-

tions [16] may be considered, but a much larger computational effort would be

required. Instead, here we are just interested in showing that the Mott gap can

be extracted from the behavior of the release energy as a function of the total

number of particles.
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Within the Gutzwiller ansatz the ground-state wave function is approximated

as

|ΨG〉 =
∏

i

(

∞
∑

m=0

f i
m|m〉i

)

, (5.4)

where |m〉i is the Fock state with m particles at site i and f i
m are variational

parameters which are to be determined by minimizing the expectation value of

the Hamiltonian in Eq. (5.3). The sum in Eq. (5.4) runs from states with zero

particles up to infinity, however, from a numerical point of view, we have to

consider a cutoff and take only states up to a maximum number of particles (per

site) M i
max ≫ 〈ΨG|n̂i|ΨG〉 such that the contribution of those states with higher

density are negligible and observables are converged to a certain desired precision.

Equivalently, the Gutzwiller wave function can be introduced as the ground state

of the following mean-field Hamiltonian: [54, 55]

Ĥmf = −1

2

∑

〈i,j〉

ti,j

(

b̂†iΨj +Ψ∗
i b̂j −Ψ∗

iΨj

)

+ h.c.

+
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

(ǫi − µ) n̂i, (5.5)

where Ψi is the mean-field potential which is self-consistently defined as Ψi =

〈ΨG|b̂i|ΨG〉; it can be shown that f i
m is related to the ground-state eigenvector

components of the converged solution of the local Hamiltonian (5.5). [54] The

parameter µ is the chemical potential that fixes the number of bosons. A careful

description on the implementation of the method is provided in chapter 2 .

For the sake of simplicity and to simplify the presentation of the results, we

first consider the one-dimensional (1D) case, which is the limiting case where a

collection of non-interacting tubes is created. Finally, we also report some results

for two dimensions (2D). We would like to stress that the results are valid in any

dimension, since the Mott transition is always accompanied by the opening of

a gap in the spectrum, thus also at the mean-field level. An almost 1D model

may be easily generated by using different lasers in the three different spatial

directions and has been experimentally considered. [39, 51] We mention that in

1D, within the Gutzwiller approach, the compressible phase has inevitably a finite

condensate fraction. However, even in 1D this approach does correctly tell us that
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a gap opens up whenever the Mott transition takes place, i.e., this fact does not

have relevant qualitative differences on the estimation of the excitation gap with

respect to an unbiased calculation. Therefore, we are confident that this approach

is qualitatively correct for the quantities we are interested in.

We consider a lattice with a harmonic potential of the form ǫi = V0r
2
i , where

ri is the distance of site i from the center of the lattice. In this case, the hopping

amplitude is kept constant for all lattice sites ti,j = t. In addition, we also

analyze the case of off-diagonal confinement only in the one-dimensional case in

which ǫi = 0 and ti,i+1 = 4t × i × (L − i)/L2, where L is the total number of

sites. In both cases, we evaluate local quantities which allow us to determine

whether a certain region across the lattice is in a compressible or incompressible

state, as well as the release-energy of the system. In particular, we will show,

besides the release-energy, the local density ni = 〈ΨG|n̂i|ΨG〉 and its fluctuations

∆i = 〈ΨG|n̂2
i |ΨG〉 − n2

i .

5.3 Results

Before showing the results for the confined system, which is relevant for experi-

ments, let us briefly discuss the homogeneous case, with ǫi = 0 and ti,j = t. In

this case, a superfluid-Mott transition takes place at integer fillings whenever the

on-site interaction U is large enough. On the other hand, for any non-integer

fillings the ground state is always superfluid and, therefore, compressible. In

Fig. 5.1, we report the energy curve as a function of the density n. Within the

Gutzwiller approximation the values of the critical interaction may be determined

analytically, i.e., Uc/t = D(
√
n+

√
n + 1)2, where n is an integer. [95] Whenever

U < Uc, the energy curve is smooth with a positive curvature, implying a finite

compressibility and a vanishing gap. On the contrary, for U > Uc, there is a clear

discontinuity in the curve at integer fillings (the behavior in the vicinity of n = 1

is reported in Fig. 5.1), signaling the presence of the Mott gap. The latter one

can be estimated by considering the change of the slope close to the discontinuity.

Let us consider a harmonic confinement with V0/t = 0.01. In Figs. 5.2 and 5.3,

we present the results for the release energy as function of the total number of

bosons, as well as the local quantities ni and ∆i across the lattice sites. For
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Figure 5.1: Energy per site versus density in the case of the homogeneous model

for different values of U/t.

the case with U/t = 4 (see Fig. 5.2) there are no insulating phases, no matter

what the number of bosons is. The density profile is smooth, with a broad

maximum at the center of the trap. In this case, all regions of the lattice are

(locally) compressible and, therefore, the ground state is always gapless and both

the energy and the release energy curves are smooth. This is not the case for

U/t = 15 (see Fig. 5.3), where insulating regions are expected. Indeed, what

is found is the usual “wedding-cake” structure in the local density: the Mott

regions with integer ni and vanishing ∆i are surrounded by compressible regions

which are locally gapless. We emphasize that the vanishing of ∆i is consequence

of the Gutzwiller approach; in a more accurate description of a Mott insulator,

this quantity is indeed finite, though it is strongly reduced with respect to its

value in the superfluid regions. Here, the release-energy curve in Fig. 5.3 clearly

exhibits discontinuities that are reminiscent of the presence of a Mott gap. A

discontinuity in the derivative of the energy curve takes place whenever a new

compressible region appears at the center of the trap, on top of the underlying

Mott phase, see Fig. 5.3. The presence of such discontinuities allows us to define

an energy gap for the confined system exactly as in the homogeneous system,

namely Erel
g = µ+

rel − µ−
rel, where µ±

rel = ±(Erel
N±1 − Erel

N ) (Erel
N being the release
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Figure 5.2: Results for the 1D Bose-Hubbard model with U/t = 4 and V0/t =

0.01. Upper panel: Release energy. Middle Panel: local density ni across the

lattice sites. Lower Panel: local density fluctuations ∆i across the lattice sites.

All quantities are shown as a function of the total number of bosons N .
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Figure 5.3: The same as in Fig. 5.2 for U/t = 15.
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Figure 5.4: Results for the 1D Bose-Hubbard model. Upper panels: first Mott

gap obtained from the release energy as function of U/t for V0/t = 0.01, for

comparison the homogeneous case is also reported (left); release-energy curves

for different U/t and V0/t = 0.01 (right). Lower Panel: first Mott gap as function

of V0/t for U/t = 15.

energy with N particles). For the case shown in Fig. 5.3 (i.e., for V0/t = 0.01 and

U/t = 15), we obtain that the first Mott gap is Erel
g /t ≃ 7.2, to be compared with

the Mott gap with n = 1 of the homogeneous case that gives Eg/t ≃ 11.8. The

reduction of the measured gap comes from the fact that the release energy in the

presence of the trap contains not only the information about the local creation of

the new compressible region at the center of the trap, but also about all other sites

of the lattice, which do not undergo the Mott transition. Therefore, the effect is

spatially averaged over regions that are locally compressible and incompressible.

Nevertheless, the effect that originates from the central sites is visible and provides

an estimate of the gap associated with such a transition. A summary of the results

is reported in Fig. 5.4, where we show Erel
g (for the first Mott gap) as a function

of U/t for V0/t = 0.01 and as a function of V0/t for U/t = 15. We find that, when

the harmonic trap is increased, the Mott gap saturates to Erel
g /t ≃ 10.6, which is

closer to the value of the homogeneous system. The initial depletion of the Mott

gap as a function of V0 is due to the presence of (large) regions of compressible

sites close to the boundaries of the system; by further increasing V0, these regions
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Figure 5.5: Results for the 2D Bose-Hubbard model with V0/t = 0.01. Local

density fluctuations ∆i across the lattice before (upper panels) and after (lower

panels) the kink in the release energy for U/t = 20.

shrink and the gap eventually tends to approach the value of the uniform case.

We now turn our attention to the results on the 2D case. In Fig. 5.5 we show

plots of the density fluctuations across the bidimensional lattice for U/t = 20.

Just as it happens in one dimension, the system exhibits the wedding-cake struc-

ture of the density of coexisting superfluid and Mott-insulating regions. When

the number of particles is increased, a new superfluid region emerges at the center

of the trap between the system with N = 4822 and the one with N = 4980. In

Fig. 5.6, for U/t = 20, it is apparent that the appearance of the new superfluid

region is accompanied with a kink in the release-energy curve. Therefore, similar

conclusions to those in one dimension are obtained, confirming the appearance

of kinks in 2D where the Gutzwiller mean-field approach is more reliable. Before

moving to the off-diagonal confinement, we want to stress that the system with

diagonal confinement we are dealing with is a system in which compressible and

incompressible regions coexist. Therefore, the meaning of the measurement of

gap we have performed has to be clarified. Indeed, the real gap of the overall

confined system will be zero, as the global compressibility of the composed system
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Figure 5.8: The same as in Fig. 5.3 but for an off-diagonal confinement. The

number of sites is L = 200 and n = N/L is the density.

is always finite. [65, 87] The idea is that in a confined system there will be always

regions which are locally superfluid, making the overall system gapless. The total

energy, as opposed to the release energy, gives a completely smooth curve with

positive curvature (hence a vanishing real gap and finite compressibility). The

total energy curve is shown in Fig. 5.7 which confirms that the total energy is

completely smooth even if the system contains regions which are locally Mott

insulating. Therefore, even though we know a priori that the overall system is

gapless, our approach makes it is possible to provide an estimate the gap of the

local Mott insulators emerging within the system which is in good agreement

and behaves like the gap of the homogeneous system. Furthermore, the effect of

the discontinuities on the derivatives of the release energy signals the presence of

Mott insulating regions, so it serves as a simple detector of their presence.

Finally, let us analyze the case of off-diagonal confinement in 1D, recently

proposed by Rousseau and collaborators. [93] In the experimental setup, the

release-energy measurement corresponds to the actual total energy of the trapped

system, since in this case there is no potential energy because the trapping is

induced by reducing the kinetic energy of the bosons as the borders of the system
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are approached. In Fig. 5.8, we present the results for the 1D system with U/t =

15. We observe that the kinks in the energy curve occur exactly at values of

the total number of bosons N which are commensurate with L, i.e., for integer

densities n = N/L, as in a homogeneous case. The advantage of this kind of

confinement is that it is possible to have a Mott-insulating phase throughout the

whole lattice, as discussed in Ref. [93]. By using the energy curve, we find that the

value of the gap at n = 1 is Erel
g /t ≃ 11.9, remarkably close to the corresponding

value in the homogeneous system (Eg/t ≃ 11.8) but slightly larger. This is mainly

due to the fact that regions towards the border of the lattice are effectively in

a deeper Mott phase due to their reduced kinetic energy. Away from integer

densities, the system shows coexistence of compressible and incompressible states

as in the harmonic confinement, with compressible sites always at the center of

the trap and Mott sites on the borders, again due to the reduced kinetic energy

there. It is clear that in the off-diagonal confinement the renormalization of the

gap is significantly less pronounced because the whole system can attain a Mott-

insulating phase, such that the physical situation is closer to that of the infinite

case where the kink comes from the addition of particles to a fully homogeneous

Mott phase.

5.4 Conclusion

In this chapter we have proposed a method to estimate the value of the Mott gap

in presence of the confinement potential that is present in experiments with ul-

tracold gases. Even though confined systems are generally expected to be gapless

because of the coexistence of superfluid and Mott-insulating phases, the presence

of Mott regions are revealed by the kinks present in the derivative of the release-

energy curve. On the contrary, the total energy is completely smooth and has

positive curvature even if the system possesses regions that are Mott insulating.

In principle, in order to perform such energy measurements, no further experi-

mental developments are required. All the information required to compute the

release energy can be extracted from the well established time-of-flight experi-

ments. In relation to the disordered system discussed in chapter 3, this method

could be applied to determine the distributions of the charge gap that contain
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useful information about the structure of the phases of the disordered system in

presence of the confinement potential.
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Chapter 6

Conclusions and perspectives

In this thesis we have studied the Bose-Hubbard model in presence of disorder

by using numerical simulations based on variational and Green’s function Monte

Carlo. The Bose-Hubbard model with disorder is relevant for the description of

systems including ultracold atoms in disordered optical lattices, short-correlation-

length superconductors, granular superconductors, Josephson arrays, the dynam-

ics of flux lattices in type-II superconductors, critical behavior of 4He in porous

media, and magnetic systems with random chemical substitution in presence of

external magnetic field, among many others. All those systems exhibit a super-

fluid to insulator transition driven by disorder like the one studied in this thesis.

We have discussed the emergence of the Bose-glass phase in disordered bosonic

systems and shown that a proper characterization of the emerging phases on finite

disordered clusters requires the knowledge of probability distributions of physical

quantities rather than their averages. This holds in particular for determining the

stability region of the Bose-glass phase, where we have calculated the distribution

probability of the gap. We have found that on finite clusters, the Bose glass is

characterized by a broad distribution of the gap that is peaked at finite energy

but extends down to zero, a shape remarkably reminiscent of preformed Hubbard

sidebands with the Mott gap completely filled by Lifshitz’s tails. The Mott tran-

sition occurs when these tails terminate at finite energy. On the contrary, the

gap distribution in the superfluid phase turns out to be strongly peaked at zero

energy. These results are particularly appealing for experiments with ultracold

atoms, limited as they are to finite lattice sizes, where a similar statistical anal-
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ysis of the gap distribution could be performed. The disordered Bose-Hubbard

model on N -leg ladder systems has been investigated, emphasizing that these

geometries could be quite useful to study the evolution from one to two spatial

dimensions. We found that the intervening Bose glass is shrunk as we go from

one dimension to two dimensions. We expect this strong tendency to continue

as the dimensionality of the system is increased further until infinite dimension.

Indeed, in the infinite dimension (mean-field) limit, the Bose glass is unstable to-

wards superfluidity for any arbitrarily weak hopping and a direct transition from

the superfluid to the Mott insulator takes place. [9] We have also considered the

effect of disorder on a two-leg ladder as function of density and interchain hop-

ping in the limit of infinite interaction strength, i.e., a ladder of hardcore bosons.

We have found a superfluid phase stable with respect to Anderson localization,

as opposed to the decoupled chains which Anderson localize by any amount of

disorder. This superfluid phase is stabilized by the hopping between otherwise

insulating chains. We have investigated the low-density phase diagram and found

that the frozen Mott insulator with zero (or one) boson per site is separated from

the superfluid phase by the Bose glass. We have also verified that disorder tends

to destroy the gap of the clean version of the rung Mott insulator, which is a

kind of gapped Mott insulator at exactly half filling n = 1/2, i.e., one hardcore

boson per rung. We have argued that this phase is always surrounded by the Bose

glass, such that a direct transition from the superfliud is forbidden in presence of

disorder.

In connection with the experimental determination of the distribution prob-

ability of the gap, we have proposed a method to perform such measurements in

presence of the unavoidable confinement potential of experiments with ultracold

atoms. We have shown that the measurement of the so-called release energy,

which can be addressed experimentally, makes it possible to assess the value of

the Mott gap. We found that the curve of the release energy as a function of the

total number of particles shows kinks in the first derivative that are related to

the excitation gaps associated to the formation of Mott-insulating regions within

the system. The presence of kinks is remarkable because, even though confined

systems are generally gapless, the presence of Mott regions are revealed through

them. In principle, no further experimental developments are required in order
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to perform such measurements and all the information required to compute the

release energy can be extracted from the well established time-of-flight experi-

ments.

We have successfully described the disordered Bose-Hubbard model in low-

dimensional lattices. We have not studied the effect of the trapping potential

on the disordered system. That constitutes a possible direction of research to

which we could aim, as that understanding is relevant for a direct comparison

with experiments. Including the effect of temperature would allow us to get

closer to experiments as well as to study numerically some recently conjectured

finite temperature phase transitions of disordered interacting bosons in one di-

mension. [97] It is also important for the studies of ultracold bosons where recent

experiments have demonstrated Anderson localization and further experiments in

denser clouds where the interplay between disorder and interaction plays a major

role are underway. [23] Furthermore, the study of the dynamics of expansion of

interacting disordered systems is important as this test is nowadays being used

for detecting localized phases experimentally. In order to study the dynamics of

such systems, a real-time approach based on a variational wave function could

be devised as a straightforward (and powerful) generalization of the variational

method used in this thesis. This will allow the possibility to study the real-time

dynamics of a great variety of complex systems.

101



Acknowledgements

I would like to take this opportunity to thank the many people who

have helped and encouraged me during the completion of my PhD

studies. First and foremost, I would like to thank my supervisors

Dr. Federico Becca and Prof. Michele Fabrizio for their guidance and

encouragement. I thank Federico for his patience, great deal of care,

and positive criticisms. I want also to thank Andrea Trombettoni,

I benefited from a lot of discussions with him. To Professors Erio

Tosatti, Giuseppe Santoro and Sandro Sorella my gratitude for their

useful discussions and care. Special thanks to Maria Elisabetta Pez-

zoli, she helped me a lot at the beginning of my studies. To Giuseppe

Carleo my gratitude for these years of discussions about physics and

other less important matters, his generosity has no boundaries. I

would like to thank the many great friends I made during these years,

not at least being: Yanier Crespo, Marco Schirò, Lorenzo Paulatto,
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