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Introduction
Advancing Numerical Methods for Strong Correlations

Strongly interacting quantum systems constitute physical prototypes in which unexpected
macroscopic phenomena emerge. These phenomena stem from many particles experiencing
very well known interactions—mainly of electrostatic nature—and influenced by quanto-
mechanical correlations. Noticeable behaviors largely due to quantum correlations are the
high-temperature superconductivity in cuprates,[13] and the emergence of unconventional
localized magnetic moments in fermionic systems.[3] The study of the physical mechanisms
inducing such unconventional properties is a fundamental task of both theoretical and tech-
nological importance. The discovery and the engineering of new materials is indeed bound to
a mature understanding and control of the effects of correlations.

Much of the dedicated theoretical analysis concerns the search for some universal, system-
independent, macroscopic traits and their rationalization in terms of minimal models. An ex-
ample of this process is the study of the quantum phases of theHubbardmodel—the archetypal
model for correlations, believed to describe the impressive phenomenon of high-Tc supercon-
ductivity. [4] Despite the microscopic simplicity of these models, a complete characterization of
their properties is a challenging program to be pursued. The elusive manifestations of strong
correlations are indeed poorly described or even completely missed by approximate theoret-
ical approaches and specifically devised treatments have to be envisaged. In the last years,
advances in this direction have been twofold, both in the experimental and in the numerical
simulation of correlated models.

On the experimental side, the impressive advances in the manipulation of cold atoms are
allowing for a controlled study of the effects of quantum correlations. The possibility to artifi-
cially engineer the prototypical models for correlations and the ability to probe their properties
is indeed giving a new momentum to the clarification of long-debated problems in condensed-
matter physics and fundamental questions on quantum coherence. [21]

On the theoretical side, the numerical simulation of quantum many-body systems is ben-
efiting from a continuous progress in both the algorithmic methods and the computational
resources available. Its traditional role as an essential tool in the research on quantum corre-
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lations has therefore been consolidated. However, the very mathematical foundations of quan-
tum Mechanics still pose serious restrictions on the current possibility to treat, without ap-
proximations, many relevant problems. Whereas exact ground-state properties of bosons can
be accurately studied in any dimensionality, exact ground-state properties of fermions in more
than one dimension are currently out of the scope of existing methods. Serious limitations ex-
ist also in the study of excited-states and dynamical properties of correlated models. These
methodological issues constitute, for many respects, the major unsolved problems in modern
quantum computational physics and hinder a complete understanding of the physics of strong
correlations.

A large part of this Thesis is dedicated to the introduction and extension of suitable numer-
ical methodologies aimed to these traditionally hard problems. In particular, we focus on the
development of novel quantumMonte Carlo methods and their application to models of strong
correlations. The resulting schemes we introduce provide reliable and accurate answers to spe-
cific problems which have been previously biased by the nature of the approximate approaches
adopted.

QuantumMonte Carlo methods are amongst the few available methods able to treat without
approximations a large class of quantum systems. In particular, the existence of a deep connec-
tion between quantummechanics and classical stochastic mechanics allows to map (and solve)
a complex quantum problem of bosons into a corresponding classical stochastic problem. The
application of QuantumMonte Carlo methods to bosonic problems at the equilibrium is there-
fore a well consolidated achievement of modern computational physics. [36, 54] However, nu-
merous problems have to be faced when trying to extend these methodologies to other relevant
systems. In particular, unveiling excited states properties of strongly correlated materials is
a task of prime importance in which suitable computational schemes should succeed. Excited
state properties are greatly relevant both to make a contact with experimental measurements
and for the advancement of a general theoretical understanding of high energy processes.

In this Thesis we show how experimentally relevant spectral features can be extracted from
the imaginary-time dynamics of a quantum system. This program is pursued by means of both
a novel quantumMonte Carlo method for systems with discrete spatial degrees of freedom and
a combination of other existing techniques. As applications of these ideas, we have studied the
density excitations of Helium crystals at zero-temperature[33] thus obtaining, for the first time
ab-initio, complete phonon dispersions in excellent agreement with experimental results. Our
study of the surprising phenomenon of Bose-Einstein condensation in quantum glasses [35]
constitutes a further physically relevant application of the imaginary-time dynamics. In the
latter case, we have introduced and validated a theoretical mechanism for the existence of a
super-glass phase. The experimental observation of this novel phase of matter with cold atoms
is an intriguing possibility which our study has put forward.

Another major source of challenges for modern computational methods is the study of sys-
tems with fermionic statistics. In this case, the stochastic connection breaks down and, at
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variance with bosons, often uncontrolled approximations need to be introduced in their sim-
ulation. Fermions do however constitute a substantial part of the matter surrounding us and
the description of most phenomena due to strong correlation suffers from the approximations
needed in their numerical study. Advances in this direction should therefore concern both the
improvement of the existing approximate schemes and the introduction of unbiased novel tools.
In this Thesis relevant steps in both directions have been undertaken. As for the advancement
of existing approximations, we have introduced a scheme to systematically improve upon the
so-called fixed-node approximation by means of the Hamiltonian moments.[30] Whereas, as
for the introduction of novel unbiased schemes for fermions, we have exploited the spectral
properties of an auxiliary bosonic system in order to infer exact ground-state, equilibrium
properties of corresponding strongly interacting fermions.[34] In the latter case we have been
able to characterize with unprecedented accuracy one of the most debated phases of the Hub-
bard model, namely the ferromagnetic order in the large interaction limit. Within our study
we have established the stability of a purely itinerant saturated ferromagnetism accompanied
by an unexpected phase transition of infinite-order.

A possibly even more challenging field of application for numerical methods to physically
relevant quantum problems is to be found in the context of the out-of-equilibrium dynamics.
At variance with the huge momentum towards the improvement of the numerical simulation
of systems at equilibrium, in this case the lack of a stochastic connection has voided most of the
formal basis on which to build-up appropriate Monte Carlo schemes. The dynamics of strongly
correlated systems is indeed a very hard problem in which the specific structure of the energy
eigenspectrum plays a decisive role. Nonetheless, important experimental achievements in the
context of cold atoms have recently made possible the study of closed systems in a regime of
full quantum coherence and for relatively long times. These exciting experimental advances
have lead to the possibility to probe very fundamental aspects of quantum Mechanics and the
mechanisms beyond the approach to equilibrium. From a theoretical point of view, it is however
particularly challenging to assess the validity of one of themost important axioms of Statistical
Mechanics, namely the ergodic principle and its physical consequences.

In this Thesis we have examined this problem both from a phenomenological and a more
methodological point of view. Concerning the first one, we have provided convincing evidences
that a form of long-lived metastability can be observed in realistic experiments with cold
atoms.[31] The nature of this metastability is merely due to strong correlation and has sur-
prising analogies with the sharp transition observed in structural glasses. Concerning the
methodological advancements, we have introduced an extension of the VariationalMonte Carlo
to out-of-equilibrium problems.[32] The importance of this novel scheme resides in its range
of applicability and in its accuracy. The applicability is indeed not limited to one-dimensional
geometries and short time scales as most of the existing exact methods, whereas its accuracy
is highly competitive with renormalization-based numerical tools.
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Outlook

In the first part of the Thesis we mostly concentrate on spectral properties of strongly corre-
lated systems and on their equilibrium properties. This is accomplished by the general concept
of imaginary-time dynamics which we apply to a number of different problems in which differ-
ent strengths of this approach emerge.

• In Chapter 1 we introduce the formalism that allows for a connection between the quan-
tum and the classical worlds. The connection is established by means of the imaginary-time
quantum evolution which, under certain circumstances, is shown to be equivalent to a clas-
sical stochastic process. It is further shown that exact static and spectral properties of cor-
related systems can be obtained when this mapping is feasible. The relationship between
the imaginary-time dynamics in different frameworks such as the path-integral and the
perturbative one is also underlined.

• In Chapter 2 we present a specific implementation of the general ideas previously pre-
sented. In particular we introduced an extension to lattice systems of the Reptation Monte
Carlo algorithm [30] which benefits of a sampling scheme based on directed updates. Spe-
cific improvements over the existing methodologies consist in the unbiased evaluation of
the imaginary-time path integrals for bosons and a systematic scheme to improve over the
Fixed-node approximation for fermions. Applications to the Hubbard and the Heisenberg
models are presented.

• In Chapter 3 we demonstrate the application of the imaginary-time dynamics to the exact
study of spectral properties. Subject of our attention is a highly anharmonic and correlated
quantum crystal such asHelium 4 at zero temperature.[33] Concerning this system, we have
obtained the first ab-initio complete phonon dispersion in good agreement with neutron
spectroscopy experiments. Moreover, we have also studied the density excitations of solid
helium in a region of wave-vectors in between the collective (phonon) and the single-particle
regimes, where the presence of residual coherence in the dynamics shows analogies between
the highly anharmonic crystal and the superfluid phase.

• In Chapter 4 we introduce a novel method, based on the imaginary-time dynamics, to ob-
tain unbiased estimates of fermionic properties.[34] By means of this method and of a very
accurate variational state, we provide strong evidence for the stability of a saturated fer-
romagnetic phase in the high-density regime of the two-dimensional infinite-U Hubbard
model. By decreasing the electron density, we observe a discontinuous transition to a para-
magnetic phase, accompanied by a divergence of the susceptibility on the paramagnetic side.
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This behavior, resulting from a high degeneracy among different spin sectors, is consistent
with an infinite-order phase transition scenario.

• In Chapter 5 the use of imaginary-time dynamics in the context of finite-temperature re-
sponse functions is highlighted. As an application, we study an intriguing quantum phase
featuring both glassy order and Bose-Einstein condensation. [35] We introduce and validate
a model for the role of geometrical frustration in the coexistence of off-diagonal long range
order with an amorphous density profile. The exact characterization of the response of the
system to an external density perturbation is what allows here to establish the existence
of a spin-glass phase. The differences between such a phase and the otherwise insulating
"Bose glasses" are further elucidated in the Chapter.

In the second part of the Thesis we focus our attention on the dynamics of closed systems
out of equilibrium. This is accomplished by both non-stochastic exact methods for the dynamics
and the introduction of a novel time-dependent Variational Monte Carlo scheme.

• In Chapter 6 exact diagonalization schemes and renormalization-based methods for one-
dimensional systems are introduced.We identify key phenomenological traits resulting from
the many-body correlation in closed systems driven sufficiently away from equilibrium.[31]
We provide evidences that the dynamics of interacting lattice bosons away from equilibrium
can be trapped into extremely long-lived inhomogeneous metastable states. The slowing
down of incoherent density excitations above a threshold energy, much reminiscent of a
dynamical arrest on the verge of a glass transition, is identified as the key feature of this
phenomenon.

• In Chapter 7 we present an extension to dynamical properties of the Variational Quan-
tum Monte Carlo method.[32] This is accomplished by introducing a general class of time-
dependent variational states which is based on the mapping of the many-body dynamics
onto an instantaneous ground-state problem. The application of the method to the exper-
imentally relevant quantum quenches of interacting bosons reveals the accuracy and the
reliability of the introduced numerical scheme. We indeed obtain for the first time a con-
sistent variational description of the approach to the equilibrium of local observables and
underline the origin of the metastability and glassy behavior previously identified.

In the very last part we draw our conclusions and show some possible paths for stimulating
future research.
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Part I
Imaginary-Time Dynamics

Equilibrium Properties

Sans l’imagination, il n’y aurait pas
de ressemblance entre les choses

Michel Foucault, “Les mots et les choses”





Chapter 1
The Imaginary-Time Connection
A Stochastic Bridge Between the Classical and the Quantum Worlds

The so-called imaginary time is a rather unfamiliar concept which nonetheless constitutes
an essential tool to establish a connection among the classical and the quantum worlds. This
mathematical object is of paramount importance in providing such a link and it is at the basis
of the interpretation of quantum mechanics in terms of classical and more intuitive concepts.
The resulting connection is moreover a the very roots of the possibility to study numerically
quantum phenomena by means of a class of methods that generally goes under the name of
quantum Monte Carlo. Despite the numerous flavors of the numerical algorithms within this
class of techniques, the imaginary-time connection is the common inspiring paradigm and
therefore deserves a special treatment. In this Chapter we discuss and concentrate on the most
general concepts underlying the imaginary-time connection, whereas a practical numerical
implementation of the ideas shown here will be given in the next Chapter.

Hereinafter, we present two different contexts in which the imaginary-time connectionman-
ifests itself, namely classical diffusion and the path-integral representation of quantum me-
chanics. We show how these concepts are of great importance in offering an unbiased access
to both spectral and response properties of interacting quantum systems. Finally, we under-
line the connection between the imaginary-time representation of quantum mechanics and
different types of perturbation theories.

1.1 Classical Diffusion and Quantum Mechanics

The somehow abstract notion of imaginary time is in reality at the very roots of a connection
between the classical and the quantumworld which is for many aspects surprising. Indeed, the
stochastic diffusion of a purely classical particle is in rigorous connection with the imaginary-
time dynamics of an otherwise quantum particle. [110]

To demonstrate this connection, we consider a classical particle suspended in a fluid and
subject to a given external potential U(x) which depends on the particle coordinates. The New-
tonian dynamics of this particle is well described as a stochastic Brownian motion at a given
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temperature T .[74] The equation of motion that the particle coordinates obey is therefore the
Langevin equation

γ
dx

dt
= − ∂

∂x
U(x) + η(t), (1.1.1)

where γ is the friction coefficient for the diffusion of the particle in the environment and η(t)

is a Gaussian noise with zero mean and covariance
〈
ηα(t)ηβ(t′)

〉
= 2Tγδα,βδ(t − t′). In the

following, for simplicity we set the friction coefficient to γ = 1.
The Langevin equation is a stochastic differential equation in the variables x and a math-

ematically unambiguous meaning to its solutions can be given through the theory of stochas-
tic calculus.[74] However, it is more appropriate for our purposes to consider here the time-
discretized version of this equation. We therefore integrate both sides of Eq. (1.1.1) over a small
time-step ε and obtain

x(tn+1)− x(tn) = −ε ∂

∂x
U(x)

∣∣∣∣
x(tn)

+

ˆ tn+1

tn

dtη(t), (1.1.2)

where the discretized time is tn = εn and we have neglected higher order terms in ε. The
integral on the right hand side can be explicitly performed considering that an integral of
a Gaussian variable is itself normally distributed. Indeed one can show that

´ tn+1

tn
dtη(t) =√

2εTξ(tn), where ξ(tn) are random variables normally distributed, i.e. with zero average and
unitary variance.

1.1.1 Fokker-Planck Equation

The discretized formulation of the Langevin equation is particularly useful because it takes the
form of a Markov process, where at each time step the particle coordinates change according
to

x(tn+1) = x(tn)− ε ∂
∂x

U(x) +
√

2εT ξ(tn). (1.1.3)

By the theory of Markov processes it is well known that the time evolution of the probability
distribution for the variable x is given by the master equation

P (x, tn+1) =

ˆ
K(x|y)P (y, tn)dy, (1.1.4)

where K(x|y) is the conditional probability that the particle is in a configuration x after a
jump in which the particle was in a initial configuration y. Due to the particular form of the
Gaussian transition in (1.1.3), the conditional probability reads
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K(x|y) ∝
ˆ
dz e−

z2

2 δ

(
x− y + ε

∂

∂y
U(y)−

√
2εT z

)
. (1.1.5)

Replacing the form of the conditional probability in the master equation and considering the
small ε expansion of the Dirac delta, we can determine the equation of motion for the proba-
bility density, which reads

P (x, tn+1) = P (x, tn) + ε

[
T
∂2

∂x2
P (x, tn) +

∂

∂x

(
∂

∂x
U(x)P (x, tn)

)]
. (1.1.6)

In the continuous-time limit and generalizing the formalism to an ensemble on N particles,
we can write a first-order differential equation for the probability density in the form

∂tP = −FP, (1.1.7)

where we have introduced the Fokker-Planck operator [53, 104]

F = −
∑
i

∂

∂xi

[
∂

∂xi
U(x1, . . .xN ) + T

∂

∂xi

]
. (1.1.8)

The Fokker-Planck operator is non-hermitian and it can be shown that its eigenvalues are
larger than or equal to zero.[110] In particular, the lowest eigenvalue is vanishing and corre-
spond to the classical canonical ensemble probability density, namely

P0(x1, . . .xN ) =
1

ZN
e−

U(x1,...xN )

T , (1.1.9)

where ZN is the partition function that normalizes the probability. The equilibrium distribu-
tion for the Langevin process is therefore just the Gibbs measure at the given temperature
T .

1.1.2 The Classical-Quantum Mapping

A deep connection exists between the dynamical evolution of classical particles described by the
Langevin equation and a set of quantum particles described by a particular Hamiltonian op-
erator. This connection [97, 152] is particularly suggestive because it shows that the real-time
dynamics of classical particles in an external medium actually corresponds to the imaginary-
time dynamics of an associated quantum system. The imaginary time therefore enters as a
link between the classical and the quantum worlds.

Such a connection is realized upon considering a mapping of the Fokker-Planck operator
into a hermitian Hamiltonian operator, by means of the similarity transformation
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H̃ = e
1

2T UFe− 1
2T U , (1.1.10)

which leads to the quantum Hamiltonian

H̃ = −
∑
i

∇2
i

2m
+ V(x1, . . .xN ), (1.1.11)

where the particle masses are m = 1/2T and the interaction potential has the form

V(x1, . . .xN ) =
∑
i

[
(∇iU)2

4T
− 1

2
∇2
iU

]
. (1.1.12)

The eigenvalues and the eigenvectors of the introduced quantum Hamiltonian are in corre-
spondence with the eigenvalues and eigenvector of the Fokker-Planck operator. More specifi-
cally, due to the particular form of the transformation introduced, they have the same eigen-
values while their eigenvectors are related through

Ψk(x) ∝ eU/2TPk(x), (1.1.13)

where Ψk are the eigenfunctions of the quantumHamiltonian. In particular, the ground state of
the quantumHamiltonian will have zero energy and directly correspond to the Gibbs measure,
being equal to

Ψ0(x) =
1√
ZN

e−
U(x1,...xN )

2T . (1.1.14)

Such a mapping explicitly shows that the stochastic dynamics of a classical systems corre-
sponds to the imaginary-time dynamics of a quantum systems of interacting particles. The
price to be paid is that the quantum interaction potential is not simply the original interaction
potential of the classical system but it includes kinetic corrections which might be not trivial to
deal with. In particular, the Fokker-Planck quantumHamiltonian satisfies an imaginary-time
Schrödinger Equation of the form

∂τΨ(x, τ) = −H̃Ψ(x, τ), (1.1.15)

where one can show that Ψ(x, τ) = P (x, τ)/P0(x).

1.1.3 Classical Stochastic Dynamics of a Quantum Problem

The previously established connection hints to the possibility of describing interacting quan-
tum systems by means of an underlying purely classical stochastic dynamics. This analogy
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can be pushed further demonstrating that the mapping can take place in the other direction
as well: the imaginary-time dynamics of a generic quantumHamiltonian can bemapped, under
certain assumptions, into a corresponding classical stochastic problem. The previous restric-
tion on the particular form of the resulting quantum interaction can be therefore lifted and a
quantum to classical mapping can be successfully realized.

Indeed, we can consider the differential equation associated to the imaginary-time evolution

∂τΨ(x, τ) = −HΨ(x, τ), (1.1.16)

which in an integral form is equivalent to

Ψ(x, τ + ε) =

ˆ
Gε(x,y)Ψ(y, τ)dy, (1.1.17)

where we have introduced the propagator in imaginary time

Gε(x,y) = 〈x| e−εH |y〉 . (1.1.18)

As long as the wave-function is positive-defined, we can therefore immediately recover in Eq.
(1.1.17) the same structure of the master equation for a Markov process, such as (1.1.4), with
the imaginary-time propagator, once correctly normalized, playing the role of a conditional
probability. This very general idea is at the basis of the oldest developed numerical stochastic
methods for interacting quantum systems, such as the the green-function Monte Carlo method
[73]. In particular, a simple Markov process can be devised in order to mimic the imaginary-
time evolution of the quantum Hamiltonian.

At each step of the discretized imaginary-time evolution a new spatial configuration for the
system is generated according to the probability

Tx(τ)→x(τ+ε) =
Gε [x(τ + ε),x(τ)]

w(x(τ))
, (1.1.19)

where we have introduced the normalization factor

w(x(τ)) =

ˆ
Gε(y,x(τ))dy. (1.1.20)

Due to the presence of these time-dependent normalization factors, it can be easily realized
that a Markov process in which transitions are done according to (1.1.19) will determine a
time-dependent probability which does not coincide with Ψ(x, τ). To overcome this issue one
has indeed to consider an enlarged configurational space determined by both the particle co-
ordinates x(τ) and some residual weights W̄ (τ). The residual weights are evolved according to
W̄ (τ + ε) = W̄ (τ)× w(x(τ)), with the corresponding conditional probability given by
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K
[
y, W̄ ′|x, W̄

]
= Tx→yδ

[
W̄ ′ − W̄ × w(x)

]
, (1.1.21)

and the master equation for this enlarged space reads

Pτ+ε(x, W̄ ) =

ˆ
K
[
x, W̄ |y, W̄ ′

]
× Pτ (y, W̄ ′)dydW̄ ′. (1.1.22)

In practice, even if formally correct, such a simple formulation of the Markov process is numer-
ically unstable due to the large fluctuations of the residual weights. Methods to overcome this
issue have been introduced and successfully applied in a number of different contexts and ba-
sically amount to generate a sequence of Markov chains of which only those with a sufficiently
large weight are propagated whereas the others are conveniently terminated and reinitialized
with the information carried in the other chains. Details of this process, known in literature
as the branching scheme, can be found elsewhere [54, 130] and will not be discussed here.

1.2 Path-Integrals

The path-integral formulation of quantum mechanics, due to the successful elaboration by
Richard Feynman [50] of Paul Dirac’s original idea,[47] is in many ways another important
bridge between the classical and the quantum world. In this respect it is natural to foresee an
application of this idea to the simulation of the intriguing properties of quantum systems by
means of an auxiliary classical problems. Whereas this program is at the very foundation of
the previous discussions on the correspondence between a classical, stochastic system, and a
quantum one, it is with the path integral formulation that such a useful correspondence can
be pushed further.

In the path-integral formalism the imaginary-time evolution of a quantum state is mapped
into a superposition of classical trajectories (paths) in space-time. We again consider the
imaginary-time Schrödinger equation

∂τΨ(x, τ) = −HΨ(x, τ), (1.2.1)

with initial condition Ψ(x, τ = 0) = Φ0(x), which we assume to be a known state being a linear
superposition of eigenstates of H. We can formally write the evolved state at a certain time as

Ψ(x, τ) = 〈x| e−τH |Φ0〉 , (1.2.2)

which, at variance with the real-time dynamical evolution is not a conservative unitary dy-
namics, therefore not conserving neither the energy nor the norm. Indeed, in the limit of large
imaginary time τ , the evolved state will be proportional to the lowest eigenstate of H non-
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orthogonal to Φ(x). To elucidate this point, we consider the representation of the initial state
in the eigenstates of the Hamiltonian,

Φ0(x) =
∑
k

ckΨk(x), (1.2.3)

with coefficients ck. The evolved state thus reads

Ψ(x, τ) =
∑
k

e−τEkΨk(x)ck, (1.2.4)

which we can as well rewrite arranging the energies Ek in ascending order and isolating the
lowest eigenvalue as

Ψ(x, τ) = e−τE0

c0Ψ0(x) +
∑
k 6=0

e−τ∆kckΨk(x)

 , (1.2.5)

where ∆k = Ek − E0 > 0 having assumed that the lowest eigenstate is non-degenerate. In
the limit of large τ it is easily recognized that the terms appearing in the summation are
exponentially suppressed and that

Ψ(x, τ →∞) ' e−τE0c0Ψ0(x), (1.2.6)

in other words, the long-time evolution of our initial state approaches an exact and possibly
unknown eigenstate ofH. For this reason, the application of the long imaginary-time evolution
onto an arbitrary state is often regarded as a projection of the initial state onto the exact
eigenstate of the Hamiltonian.

The connection of Ψ(x, τ) with the classical trajectories of an auxiliary classical system is
realized when considering a time-discretization of the imaginary propagation, namely τ =

M × ε which leads to

Ψ(x, τ) = 〈x| e−εHe−εH . . . e−εH︸ ︷︷ ︸
M times

|Φ〉 , (1.2.7)

and upon insertion of a set ofM completeness relations
´
dxk |xk〉 〈xk|we arrive to the integral

expression

Ψ(x, τ) =

ˆ
dx1 . . . dxM

M∏
i=1

Gε(xi−1,xi)Φ(xM ), (1.2.8)

where x0 ≡ x and having considered the previously introduced short-time propagatorsGε(x,y) =

〈x| e−εH |y〉 which are typically analytically known in the limit of small time-step ε.
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Such a representation leads both to a suggestive interpretation of the quantum evolution
and to a fundamental tool for practical computational schemes. Concerning the first one, we
notice that the amplitude of the evolved wave-function on a given configuration is the sum over
an (infinite) set of trajectories in imaginary time, namely at variance with the classical case,
there does not exist a unique dynamical trajectory that connects configurations at different
times, but a superposition of them, with a quantum trajectory therefore regarded as a sum of
many classical ones. On the other hand, as long as such trajectories carry a positive weight it
is possible and straightforward to identify the imaginary-time propagation with a stochastic
process. We mention here that this deep connection is at the core of numerical methods such
as the path integral quantumMonte Carlo at finite temperature [36] and its zero temperature
counterparts such as the path integral ground-state method [118] or the reptation quantum
Monte Carlo.[8, 30] Instead of entering into the details of all of these numerical schemes, we
defer the reader to more specific literature on the subject. However, in the next Chapter, we
will give a full account of a novel path-integral based method, therefore also giving further
details on how a path-integral scheme can be successfully devised and applied by means of a
stochastic approach.

1.3 Exact Properties of Quantum Systems

In the previous section we have shown that in the long imaginary-time limit the projected state
approaches an exact eigenstate of the Hamiltonian and, more specifically, the lowest-energy
eigenstate non orthogonal to the initial state. Taking advantage of this very important result,
it is possible to exploit the time projection in order to obtain exact properties of quantum
systems.

We now introduce a pseudo partition function

Z(τ) = 〈Φ0| e−τH |Φ0〉 , (1.3.1)

which plays the role of a generating function for a number of exact properties of the system,
much as for ensemble partition functions in statistical mechanics. A path-integral expression
for the pseudo partition function can be immediately recovered and in the continuous imagi-
nary time limit reads

Z(τ) =

ˆ
D[X]Πτ (X), (1.3.2)

where the weight of each imaginary-time path is obtained considering small time steps such
that τ = ε×M and then taking the limit:
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Πτ (X) = lim
ε→0
M→∞

Φ0(x0)

M∏
i=1

Gε(xi−1,xi)Φ0(xM ). (1.3.3)

The above introduced Πτ (X) is in general not normalized and not positive defined, and
should therefore be regarded as a pseudo probability density. While a proper normalization
can be generally achieved as long as Z(τ) is a finite quantity, the condition of positiveness is
generally achieved only for bosonic species of quantum particles. A strictly probabilistic in-
terpretation closely paralleling classical statistical mechanics is therefore only possible when
these two conditions are achieved. Implications and limitations arising from the above men-
tioned limited probabilistic interpretation will be detailed in the next Chapter.

1.3.1 Ground-state Expectation Values

We assume in this context that Φ0 is non-orthogonal to the ground state of H and also expand
the initial state in eigenstates of the Hamiltonian as done before obtaining

Z(τ) = |c0|2 e−τE0 +
∑
k 6=0

|ck|2 e−τEk . (1.3.4)

From this expansion we can immediately realize that the exact ground-state energyE0 is given
by

E0 = − lim
τ→∞

{
1

τ
log [Z(τ)]

}
. (1.3.5)

Ground-state expectation values of a local observable O can be as well obtained upon
considering the perturbed Hamiltonian H(λ) = H + λO and using the Hellmann-Feynman
theorem,[49, 67] according to which

〈Ψ0| O |Ψ0〉 =
dE0(λ)

dλ

∣∣∣∣
λ=0

, (1.3.6)

where E0(λ) is the ground-state energy ofH(λ). To explicitly evaluate the ground-state energy
of the perturbedHamiltonian, we consider themodified propagatorsGε(x,y;λ) = 〈x| e−εH(λ) |y〉
and use the Trotter decomposition of such propagators which reads

Gε(x,y;λ) = Gε(x,y) [1− ελO(x)] +O(λ2). (1.3.7)

The path-integral representation of the corresponding perturbed pseudo partition function is
therefore
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Z(τ ;λ) = Z(τ)− λ
∑
j

ε

ˆ
dx0 . . . dxMΦ0(x0)O(xj)

M∏
i=1

Gε(xi−1,xi)Φ0(xM )︸ ︷︷ ︸
∆Z

+O(λ2), (1.3.8)

and to first-order in λ the perturbed ground-state energy is

E0(λ) = E0 + lim
τ→∞

λ

τ

∆Z
Z . (1.3.9)

In the continuous imaginary-time limit, the expectation value of the observable will therefore
be equal to

〈Ψ0| O |Ψ0〉 = lim
τ→∞

1

τ

´ τ
0
dτ1 〈Φ0| e−τHO(τ1) |Φ0〉

Z(τ)
(1.3.10)

= lim
τ→∞

1

τ

´ τ
0
dτ1
´
D[X]Πτ [X]O(x(τ1))

Z(τ)
, (1.3.11)

where we have introduced the Heisenberg time evolution of the observable, namely O(τ) =

eHτOe−Hτ .

1.3.2 Static Response Functions

In order to experimentally study the physical properties of a quantum system, one has to act
on it with some external probe. This amounts to add to the original Hamiltonian of the isolated
system an external perturbation. We can consider for example a set of external classical fields
λi coupled to some observables Oi, in a way that the resulting interaction is described by the
Hamiltonian

Hλ = H+
∑
i

λiOi. (1.3.12)

Due to the presence of the external perturbation, the expectation values of the observables will
change accordingly. It is therefore desirable to quantify the response of the quantum system
to the external fields and compute the susceptibilities

χi,j =
∂ 〈Oi〉
∂λj

∣∣∣∣
λ=0

, (1.3.13)

where angular brackets denote ground-state expectation values. Extending the previous analy-
sis on the ground-state expectation values, we can express the ground-state expectation values
in terms of energy derivatives and therefore χi,j = ∂2E(λ)

∂λi∂λj

∣∣∣
λ=0

, where E(λ) is the ground-state
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energy of the perturbed Hamiltonian. It is therefore possible to express the susceptibilities as
imaginary-time integrals of the form

χi,j = − lim
τ→∞

1

τ

ˆ τ

0

dτ1

ˆ τ

0

dτ2
[
〈Oi(τ1)Oj(τ2)〉Πτ − 〈Oi(τ1)〉Πτ × 〈Oj(τ2)〉Πτ

]
, (1.3.14)

where angular brackets denote expectation values over the pseudo probability density Πτ ,
namely for a generic function in the path space we define:

〈F 〉Πτ =

´
D[X]Πτ [X]F [X]

Z(τ)
. (1.3.15)

1.3.3 Correlations in Imaginary-Time and Spectral Functions

Static susceptibilities such as the ones introduced before provide precious information on the
time-independent response of quantum systems subject to an external field. However, when
the perturbation is itself time dependent it can induce specific spectral transitions that pro-
vide additional information on the excited states properties of the system. A quantity often
appearing in linear response theory and that further relates the quantum fluctuations to the
time-dependent dissipation are the so-called structure factors. Structure factors in imaginary-
time take the form of two-point correlators on the path-integrals pseudo probabilities:

Si,j(τ̄) = limτ→∞
1
τ

´ τ−τ̄
0

dτ1

{
〈Oi(τ1)Oj(τ1 + τ̄)〉Πτ − 〈Oi(τ1)〉Πτ × 〈Oj(τ1)〉Πτ

}
,(1.3.16)

where τ̄ is an imaginary-time lag. In the large τ limit the integrand above is equivalent to the
ground-state average of the time correlations, namely

Si,j(τ̄) = 〈Oi(τ̄)Oj〉 − 〈Oi〉 × 〈Oj〉 . (1.3.17)

This expression can in turn be expressed in terms of eigenfunctions of theHamiltonian, leading
to the so-called Lehman spectral representation

Si,j(τ̄) =
∑
k

e−∆k τ̄ 〈Ψ0 |δOi|Ψk〉 〈Ψk |δOj |Ψ0〉 , (1.3.18)

where we have introduced the fluctuations over the ground-state value of the observables,
namely δOi = Oi−〈Oi〉. The spectral representation of the imaginary-time structure factors is
particularly enlightening on their deepest physical meaning. The matrix elements appearing
in the Lehman representation correspond, respectively, to excitation processes in which the
operator Oi drives the initial (ground)-state into an excited state Ψk, whereas the correspond-
ing de-excitation process occurs through the operator Oj . Structure factors are of paramount
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importance for experimental measurements in which a probe induces an absorption of energy
in the analyzed sample. Indeed in most relevant cases the external probe is a beam of incoming
particles, either photons, neutrons or others and the physical system adsorbs energy due to a
coupling with the beam mediated by some operator OA (which can be, for example, the density
or some spin degrees of freedom). The adsorption rate per unit time of an energy ~ω is in this
case a keymeasurable quantity and it is given by the Fermi golden rule. The Fourier transform
of the associated structure factor is proportional to the absorption rate PA(ω) ∝

´
SA,A(t)e−iωt

and therefore much of the physical information accessible in the experiment is parallely acces-
sible in path-integral based numerical simulations, provided that an analytical continuation
of the imaginary-time structure factors is realized. The amount of information that can be ex-
tracted from imaginary-time correlations is therefore bound to the accuracy of the analytical
continuation, which we discuss more thourougly in the following.

1.3.4 Analytical Continuation and Maximum Entropy Method

The Fourier trasform of the real-time structure factors, in imaginary time takes the form of
a Laplace transform. The energy-resolved structure factors are related to the imaginary-time
structure factors through the integral equation

S(τ̄) =

ˆ ∞
0

P (ω)e−ωτ̄dω. (1.3.19)

In numerical simulations, S(τ̄) is typically accessible only for a discrete set of values of τ̄ (which
we call τ̄k) and with an associated statistical incertitude. In particular, we imagine that N
measurements of the imaginary-time structure factors at the given time values have been per-
formed, which we denote as Si(τ̄k), with i = 1, . . . N . Numerical schemes to invert the Laplace
transform and obtain the spectral function P (ω) are therefore concerned with the search for
some optimal solution P opt(ω), in turn related to some associated optimal values of the corre-
lations via

Sopt(τ̄k) =

ˆ ∞
0

P opt(ω)e−ωτ̄kdω. (1.3.20)

There exist however numerous solutions for P (ω) which both satisfy Eq. (1.3.20) and that are
statistically compatible with the measured values Si(τ̄k). The maximum-likelood estimator for
a given pairs of S and G satisfying Eq. (1.3.20) reads

χ2(S,G) =

N∑
i,j

[
Si(τ̄k)− S(τ̄k)

]
C−1
i,j

[
Sj(τ̄k)− S(τ̄k)

]
, (1.3.21)
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and it is a measure of the statistical deviation of a given solution with respect to the measured
values, Ci,j being the covariance matrix of the measurements.

However, it is not always the case that the best physical solution for the spectral functions
is found amongst the many possible ones that minimize the χ2 function. Indeed, it has been
proven useful to include some prior knowledge on the required features of the spectral func-
tions (such as their high-frequency behavior or more general regularity constraints) in order
to obtain physically sound solutions. In particular, the Maximum Entropy Method amounts to
maximize the quantity

Q(S,G) = αΣ(G)− χ2(S,G), (1.3.22)

where α is a positive constant, and Σ(G) is the entropy associated to a given solution. The
entropy term measures the deviation of a proposed spectral function from a given regular
model imposed a-priori. The optimal solutions Sopt,Gopt are therefore the ones that maximize
Q(S,G), and represent an optimal compromise between the need for a regular solution and the
need of statistical compatibility with the measured values. The choice of the entropy form and
of the models are fully discussed in Ref. [64], to which we defer the interested reader.

As a general consideration, the Maximum Entropy method is suitable to recover important
physical properties of the spectral functions such as the position of their peaks (which are
physically associated to the excitation processes described previously). However, thiner spectral
feature are, in pratice, dependent on the chosen model for the Maximum Entropy procedure
and therefore constitute a not particularly accurate quantitaty to be extracted from imaginary-
time correlations.

1.4 Perturbative Expansions for the Imaginary-Time Evolution

Perturbative methods have played a major role in the advancement of the theoretical under-
standing of many body interacting quantum systems. The aim of this class of methods is to
express the exact properties of a complicated many body problem in terms of an auxiliary one
which can bemore easily solved.Whereas this program is generally only partially accomplished
in the framework of approximate diagrammatic analysis,[1] in recent years it has been possible
to devise numerical methods that allow for an exact evaluation of the perturbative expansions.
In the following, we put the quantum imaginary-time evolution in connection with two distinct
perturbative methods.

We first show the representation of the imaginary-time dynamics in terms of the pertur-
bative Dyson series. Such a representation offers yet another way of looking at the quantum-
classical mapping. Furthermore, it provides an alternative and often powerful formal basis for
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the numerical analysis of a large class of quantum systems with discrete spatial degrees of
freedom.

We then establish a connection between the path-integral representation and the Rayleigh-
Schrödinger perturbation theory. This last connection, often neglected, is of general interest
in the analysis of the response to small perturbations acting on a system at equilibrium.

1.4.1 The Dyson Series

A conceptually different way of looking at the quantum imaginary-time evolution is offered by
the Dyson perturbative expansion.[1] The basic idea underlying the expansion is to consider
an unperturbed HamiltonianH0 whose eigenstates are known and some perturbationW, such
that the full Hamiltonian reads H = H0 +W. The imaginary-time evolution is then factorized
as

e−τH = e−τH0S(τ) (1.4.1)

where we have introduced the so-called S matrix which satisfies the equation of motion

d

dτ
S(τ) = −W(τ)S(τ). (1.4.2)

The time evolution of the perturbation is considered in the so-called “interaction represen-
tation”, which reads W(τ) = eH0τWe−H0τ . This equation of motion can be iteratively solved
resulting in an expansion in terms of powers of the interaction strength

S(τ) =

∞∑
k=0

Sk(τ), (1.4.3)

where the k-th perturbative order reads

Sk(τ) =
(−1)k

k!

ˆ τ

0

Πk
i=1dτiTτ [W(τ1)W(τ2) . . .W(τk)] , (1.4.4)

and the time ordered product Tτ chronologically orders the product of k perturbation operators.
The expression introduced above does not only constitute a formally exact basis for analytic

perturbative expansions but also for successful numerical schemes.[106, 24, 112, 115] One of
the major advantages of the Dyson representation with respect to the path-integral one is that
there is no explicit zero time step limit to be considered (see Eq. 1.3.3). This circumstance is of
great practical importance for numerical schemes in which the path-integral limit of exactly
zero time step is only approximately achieved by increasingly small discretizations of time.
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On the other hand, the Dyson expansion is generally applicable only when the matrix ele-
ments of the perturbation in the unperturbed basis, 〈Φk0 |W|Φk

′

0 〉, are non-singular. This condi-
tion is met when considering the lattice kinetic energy as a perturbation of a classical Hamilto-
nian in which the potential energy is diagonal. However, this is instead not generally the case
for a system living in a continuous space, for which the former matrix elements are singular.
This circumstance leads to an application of the Dyson series expansions mainly to quantum
problems characterized by discrete spatial degrees of freedom.

1.4.2 Path-Integrals and Rayleigh-Schrödinger Perturbation Theory

We conclude the discussion on the perturbative expansions showing an instructive connection
between the path-integral formalism introduced in 1.2 and the ordinary Rayleigh-Schrödinger
perturbation theory. Indeed, we have seen that in the limit of large imaginary time projection
the evolved state does approach en exact eigenstate of the Hamiltonian, therefore it is reason-
able to expect that a kind of implicit resummation of a perturbative series takes place when
considering the imaginary-time paths.

To elucidate this connection, we again consider the Hamiltonian H and suppose that its
ground-state energy has to be determined. Moreover, we also introduce an “unperturbed”
HamiltonianH0 whose ground state |Φ0〉 is supposed to be known. The aim of the perturbation
theory we want to pursue is therefore to determine the quantum properties of H considering
the perturbation operatorW = H−H0. If we call E the ground-state energy of the full Hamil-
tonian H, then it is assumed that it is possible to write a series expansion in terms of the
strength of the interactionW, which we can imagine to enter via a coupling constant λ that we
will eventually set equal to 1 at the end of the calculations, i.e. we have that H = H0 + λW. In
such a way, the perturbative expansion reads E = E0 +λE1 +λ2E2 + . . . which is assumed to be
“summable”, either in the standard framework of the convergent series either in the framework
of the asymptotic series.

The perturbed ground-state energy is derived considering the previously introduced Dyson
expansion (1.4.3) and reads, also making use of (1.3.5),

E = E0 − lim
τ→∞

log 〈Φ0| 1 + λS1 + λ2S2 + . . . |Φ0〉
τ

. (1.4.5)

Assuming that E is an analytic function of λ, it is possible to identify the k-th order in the
perturbation expansion for the energy with Ek = ∂kE

∂λk

∣∣∣
λ=0

. Defining the expectation values of
the various orders of the S matrix, Sk, over the unperturbed state:
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S0
k(τ) = k! 〈Φ0| Sk(τ) |Φ0〉 =

= (−1)k 〈Φ0|
ˆ τ

0

Πk
i=1dτiTτ [W(τ1)W(τ2) . . .W(τk)] |Φ0〉 , (1.4.6)

we can express the exact ground-state energy as

E = E0 − lim
τ→∞

log
∑∞
k=1 S0

k(τ)λ
k

k!

τ
. (1.4.7)

Each order in standard Rayleigh-Schrödinger perturbation theory is therefore reconstructed
considering a Taylor expansion of the logarithm in powers of λ, whose first few orders are:

E(λ) = E0 − lim
τ→∞

1

τ

{
λ
[
S0

1(τ)
]

+
λ2

2

[
S0

2(τ)− S0
1(τ)2

]
+

+
λ3

3!

[
S0

3(τ)− 3S0
1(τ)S0

2(τ) + 2S0
1(τ)3

]}
+O(λ4), (1.4.8)

where the terms in square brackets are the cumulants defined via the relation

ck =
∂k

∂λk
log

 ∞∑
j=1

S0
j (τ)

λj

j!

∣∣∣∣∣∣
λ=0

. (1.4.9)

As we have seen before, the path-integral formalism gives access to the imaginary-time dy-
namics of generic observables and, in particular, gives access to the imaginary-time evolution
of the interaction potentialW(τ) = eH0τWe−H0τ . The various perturbative orders ck are there-
fore in direct connection with the k-points imaginary-time correlations in (1.4.6). For example,
the second-order correction to the ground-state energy reads

E2 = − lim
τ→∞

1

τ

ˆ τ

0

dτ1

ˆ τ1

0

dτ2 [〈Φ0| (W(τ1)− 〈W〉) (W(τ2)− 〈W〉) |Φ0〉] , (1.4.10)

the k-th order containing imaginary-time correlation function of order k. It should be finally
noticed that these kind of expressions is particularly useful when considering the action of
an external perturbation over an equilibrium ground state. For example, the second-order
correction to the ground-state energy is in direct connection with the susceptibilities (1.3.14),
where the external field acting on the system is regarded as a small perturbation.
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Chapter 2
Sampling Imaginary-Time Paths
Reptation Monte Carlo for Lattice Hamiltonians

The path-integral formulation of quantum mechanics introduced in the previous Chapter is
the foundation of many numerical methods that allow one to study with great accuracy the
rich physics of interacting quantum systems. The aim of this Chapter is to present a detailed
description of a novel stochastic computational scheme based on the imaginary-time path in-
tegral formalism.

The first applications of a stochastic approach to the simulation of continuous systems trace
back to Ceperley and Pollock [38, 36], whose path-integral Monte Carlo has provided the first
exact results for the superfluid transition of Helium 4 at low temperatures and has given a
huge momentum to the development of this class of computational methods. Recently, this
finite-temperature approach has been renovated in a new class of methods known as worm
algorithms, [106, 24] which allow for a consistently improved efficiency in the treatment of
bosonic problems. At zero-temperature, alternative and more specific approaches have been
developed on the lines of the formalism highlighted in the previous Chapter, with a varia-
tional state serving as the starting state for the imaginary-time projection. Zero-temperature
counterparts of the path-integralMonte Carlo algorithm that have been developed in this spirit
are the reptation quantumMonte Carlo [8] and the path-integral ground-state methods, [118]
which have been demonstrated useful in a number of applications, such as the simulation of
coupled electron-ion systems, [102] as well as to infer spectral properties from imaginary-time
dynamics. [33]

A number of important physical problems—particularly in the fields of strongly correlated
fermions and cold atoms—can be fruitfully modeled by lattice Hamiltonians. A first appli-
cation of path-integral techniques to (boson) lattice models was proposed by Krauth et al.
in 1991. [77] Few other attempts to apply path-integral Monte Carlo to lattice models have
been made since, with a recent application of the reptation quantum Monte Carlo idea to the
quantum dimer model Hamiltonian. [134] In this Chapter, we describe a method that gen-
eralizes and improves the approach of Ref. [134] in several ways. Our method is based on
continuous-time random walks and is therefore unaffected by time-step errors resulting from
the discretization of the imaginary-time propagation. Inspired by the work of Syljuasen and
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Sandvik [135] and Rousseau, [114] we have adopted a generalization of the bounce algorithm
of Pierleoni and Ceperley, [102] called directed updates, which helps to improve the overall
computational efficiency by reducing the correlation time in path sampling. We also have in-
troduced a worm-algorithm based method to calculate pure expectation values of arbitrary
non-diagonal observables, which are generally out of the scope of existing lattice ground-state
methods. The resulting algorithm naturally applies to fermions, using the so-called fixed-node
approximation. We show here how to systematic improve this approximation, by means of the
Hamiltonian moments.

In Sec. 2.1 we present the general formalism of ground-state path-integrals for lattice mod-
els; in Sec. 2.2 our implementation of the reptation quantum Monte Carlo algorithm on a lat-
tice is presented. In particular, we give a detailed account of the above mentioned directed
update technique (Sec. 2.2.1) and of the continuous-time propagator (Sec. 2.2.2); in Sec. 2.2.3,
we introduce an extension of the algorithm to cope with non-diagonal observables, while in
Sec. 2.2.4 a further extension to systems affected by sign problems is presented, including a
strategy to improve systematically upon the fixed-node approximation. Sec. 2.3 contains a few
case applications, including the simulation of the spectral properties and spin correlations
of the one-dimensional Heisenberg model and the calculation of the ground-state energies of
the fermionic Hubbard model with a significantly better accuracy than that achieved by the
fixed-node approximation.

2.1 General Formalism

Let us consider a generic lattice HamiltonianH and a complete and orthogonal basis set, whose
states are denoted by |x〉. Given the generic wave function |Ψ〉, its amplitude on the configu-
ration |x〉 will be denoted by Ψ(x), namely Ψ(x) = 〈x|Ψ〉. As shown in the previous Chapter,
the exact ground-state wave function |Ψ0〉 can be obtained by the imaginary-time evolution of
a variational state |Φ0〉:

|Ψ0〉 ∝ lim
τ→∞

|Ψτ 〉, (2.1.1)

where |Ψτ 〉 ≡ e−τH|Φ0〉, provided that the variational state is non-orthogonal to |Ψ0〉, i.e.,
〈Φ0|Ψ0〉 6= 0. Then, the ground-state expectation value of a quantum operator O can be as
well obtained by

〈O〉 = lim
τ→∞

〈Ψτ |O|Ψτ 〉
〈Ψτ |Ψτ 〉

. (2.1.2)

At variance with the previously introduced estimator 1.3.11, the above expression exponen-
tially converges to the exact ground-state expectation values for large values of τ , whereas in
the previous case such a convergence is achieved only polynomially.
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A practical computational scheme can be conveniently introduced by considering the path-
integral representation of the imaginary-time evolution. To such a purpose, we split the total
imaginary-time τ into M slices of “duration” δ = τ/M , in such a way that the value of the
evolved wave function on a generic many-body state of the system reads

Ψτ (x0) =
∑

x1...xM

M∏
i=1

Gδxi−1xiΦ0(xM ), (2.1.3)

where we have introduced the imaginary-time propagators

Gδxi−1xi = 〈xi−1|e−τH|xi〉. (2.1.4)

Within this approach, it is easy to write expectation values of operators O that are diagonal in
the chosen basis |x〉, i.e., 〈x|O|y〉 = O(x)δx,y. In fact, in this case we have that:

〈O〉 = lim
τ→∞

∑
XΠ

τ (X)O(xM )∑
XΠ

τ (X)
, (2.1.5)

where the sum is extended to all possible imaginary-time pathsX ≡ {x0, x1, . . . , x2M}, and the
pseudo-probability Πτ (X) is given by:

Πτ (X) = Φ0(x0)

[
2M∏
i=1

Gδxi−1xi

]
Φ0(x2M ). (2.1.6)

The ground-state energy can be conveniently obtained by means of the so-calledmixed average
over the pseudo-probability, namely:

E0 = lim
τ→∞

∑
XΠ

τ (X)EL(x0)∑
XΠ

τ (X)
, (2.1.7)

where EL(x) = 〈x|H|Φ0〉/〈x|Φ0〉 is referred as the local energy.
Besides the static (i.e., equal-time) correlation functions, this formalism allows one to calcu-

late also the dynamical correlation functions (structure factors) in imaginary time CAB(τ̄) =

〈A(τ̄)B(0)〉 introduced in 1.3.3, that can be computed as

CAB(τ̄) = lim
τ→∞

∑
XΠ

τ (X)A
(
xn+τ̄/δ

)
B(xn)∑

XΠ
τ (X)

, (2.1.8)

where xn is a coordinate of the path and the operatorsA and B are separated by an imaginary-
time lag τ̄ .
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2.2 Reptation Quantum Monte Carlo

The expectation values in Eqs. (2.1.5), (2.1.7), and (2.1.8) suggest a probabilistic interpretation
provided thatΠτ (X) ≥ 0 for all the pathsX. Indeed, in this case,Πτ (X) can be interpreted as a
proper probability distribution that may be readily sampled by using Monte Carlo algorithms.
This fact allows ground-state expectation values and dynamical correlations to be calculated
exactly, within statistical errors.

The basic idea of the reptation quantum Monte Carlo algorithm is to sample the distribu-
tion probability Πτ (X) by using a Markov process with simple moves. Given the path XI ≡
{x0, x1, . . . , x2M}, a new path is proposed in two possible ways: eitherXL ≡ {xF , x0, . . . , x2M−1}
(which we call “left move”) or XR ≡ {x1, . . . , x2M , xF }, (which we call “right move”). In
both cases, xF is a new configuration proposed according to a suitable transition probability
Rδ(xd → xF ), where xd stays for x0 (x2M ) when the left (right) move is considered. Such “sliding
moves” are depicted in Fig. 2.2.1. Ideally, the transition probability should guarantee the min-
imum possible statistical error on the desired observables and, to such a purpose, it has been
proved useful to consider the propagator with importance sampling, i.e., G̃δxy = GδxyΦ0(y)/Φ0(x)

resulting in the following transition probability

Rδ(x→ y) =
G̃δxy
w(x)

, (2.2.1)

where
w(x) =

∑
x′

G̃δxx′ (2.2.2)

is a normalization factor. The explicit form of Rδ(xd → xF ) will be discussed in more detail in
Sec. 2.2.2. The proposed path Xd (where d = L or R) is accepted or rejected according to the
usual Metropolis algorithm, where the acceptance rate is given by:

A = min

{
1 ,

Πτ (Xd)R
δ(xF → xd)

Πτ (XI)Rδ(xd → xF )

}
. (2.2.3)

In this way, a sequence of configurations Xk is generated, k being the (discrete) sequential
index of the Markov chain.

In order to reduce the auto-correlation time of the observables it is convenient to make
several consecutive sliding moves along the same imaginary time direction. [8] To such a pur-
pose, a recent development called “bounce” algorithm has been proposed. [102] The reptation
quantum Monte Carlo algorithm with bounce moves can be then summarized in the following
steps:
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Fig. 2.2.1 Pictorial representation of the “sliding moves” along the right imaginary time direction. In the new
configuration (bottom), a new head for the reptile is generated from the old configuration (top) and the tail is
discarded.

1. For the current direction of the move and for the present configuration Xk, propose xF ac-
cording to the transition probability Rδ(xd → xF ), where xd = xk0 if d = L and xd = xk2M if
d = R.

2. Given the form of the acceptance ratio A of Eq. (2.2.3), accept the proposed configuration
according to the probability

AL = min

{
1 ,

w(xk0)

w(xk2M−1)

}
, (2.2.4)

if d = L, or with probability
AR = min

{
1 ,

w(xk2M )

w(xk1)

}
, (2.2.5)

if d = R.
3. If themove is accepted, update the path configurations according toXk+1 = Xd and continue

along the same direction, otherwise Xk+1 = Xk and change direction.
4. Cycle to 1.

Although the bounce algorithm sampling procedure does not fulfill the microscopic detailed
balance, the equilibrium probability distribution Πτ (X) is nonetheless correctly sampled, as
shown in Ref. [102].
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2.2.1 Directed Updates

At this point we present a novel alternative sampling approach, which generalizes the bounce
idea while strictly fulfilling the detailed balance condition. Such a scheme, which is largely
inspired by the loop algorithm methods devised for the stochastic series expansion [117, 135]
and for the worm algorithm, [114, 112] allows one to choose the time direction in a purely
Markovian way, i.e., independently of the previous history.

In our algorithm, a Markov step consists of many simple consecutive “sliding moves”, whose
number is not fixed a-priori but is determined by a certain probability (see below). The actual
Monte Carlo step takes place at the end of few consecutive updates along the currently chosen
direction. In the examples below, we denote the number of these sliding moves between two
Monte Carlo steps by s.

At the beginning of each Markov step we choose a direction d according to the probability
P
(
d |Xk

)
, whose form will be specified later. Assuming that the right direction has been cho-

sen, we propose a new configuration xF , according to the transition probability Rδ(xk2M → xF )

and the configuration labels are shifted according toXk+1 = {xk1 , . . . , xk2M , xF }, with xk+1
2M = xF .

At this point, we continue the updates along this direction with probability K
(
R , Xk+1

)
, or

stop with probability [1−K
(
R , Xk+1

)
]. If it has been decided to continue the updates, then a

new configuration is generated according to Rδ(xk+1
2M → xF ) and the labels of the configuration

are again shifted according toXk+2 = {xk+1
1 , . . . , xk+1

2M , xF }. TheMarkov step then finishes after
a certain number of s consecutive updates along the right direction. At this stage a Metropolis
test should be done, in order to accept or reject the sequence of intermediate s sliding moves:

A = min

{
1,
q(Xk+s)

q(Xk)

}
, (2.2.6)

where (see Appendix A.1 for details)

q(X) =
P (L |X)

1−K (R , X)
w(x2M−1)

=
P (R |X)

1−K (L , X)
w(x1). (2.2.7)

However, in order to avoid time-consuming restorations of the original configuration, it is
preferable to accept all the moves, while keeping track of the residual weight q(X). This is pos-
sible sinceA only depends upon initial and final configurations, so that, given that all the inter-
mediate moves are accepted, the sampled equilibrium distribution probability isΠτ (X)×q(X).
The contribution of the current configuration to statistical averages must be then weighted by
the factor 1/q(X). To proceed to the next Markov step, a new direction d is chosen according to
P
(
d |Xk+s

)
and the updates are carried along the extracted new direction.
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In Appendix A.1, it is demonstrated that the detailed balance is satisfied if one chooses the
probabilities for the directions as

P (L |X) =
1

1 + a(X)
, (2.2.8)

P (R |X) =
a(X)

1 + a(X)
, (2.2.9)

where
a(X) =

w(x2M−1)

w(x1)

1−K(L , X)

1−K(R , X)
, (2.2.10)

which is positive and, therefore, guarantees that the above defined quantities are well defined
probabilities, i.e., 0 ≤ P (L |X) ≤ 1 and 0 ≤ P (R |X) ≤ 1, with the additional property that
P (L |X) + P (R |X) = 1.

Regarding the probabilities to continue the updates along the current direction, we have a
substantial freedom of choice, provided that the condition K(L ,X)

K(R ,X) = w(x1)
w(x2M−1) , is satisfied. The

particular choice we have adopted is

K(L , X) = αmin

{
1,

w(x1)

w(x2M−1)

}
, (2.2.11)

K(R , X) = αmin

{
1,
w(x2M−1)

w(x1)

}
, (2.2.12)

where 0 < α < 1 is an arbitrary parameter of the algorithm, which controls the average number
of consecutive updates along the same direction.

Summarizing, the reptation quantumMonte Carlo algorithmwith directed updates consists
of a sequence of Markov steps determined by the following rules:

1. Choose a time direction d according to the probabilities of Eqs. (2.2.8) and (2.2.9).
2. Propose a new configuration xF according to the transition probability Rδ(xd → xF ), where

xd = xk0 if d = L and xd = xk2M if d = R.
3. Shift the configuration indexes according to Xk+1 = {xF , xk0 , . . . , xk2M−1} if d = L or Xk+1 =

{xk1 , . . . , xk2M , xF } if d = R.
4. According to the probabilityK(L , Xk) orK(R , X), decide whether keep moving in the same

direction or change direction. In the former case, go to 2, otherwise go to 5.
5. The Markov step ends here and the current configuration carries the weight 1/q(Xk+s),

where s is the number of intermediate moves along the direction chosen.

The relationship between the directed update scheme and the bounce algorithm is further
elucidated in the Appendix A.1, where general considerations about the efficiency of the algo-
rithms are also presented.
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2.2.2 Continuous-Time Propagator

One of themost striking differences between the original formulation of the reptation quantum
Monte Carlo on the continuum and the present formulation on the lattice is the lack of the
discretization error appearing in the Trotter decomposition of the propagator. Indeed it is
easier to carry the propagation in continuous imaginary time on a lattice, [130] than on the
continuum. [121] To such a purpose, let us consider the limit of an infinitesimal imaginary
time ε, for which the transition probability of Eq. (2.2.1) can be written as

Rε(x→ y) ' δxy − εΦ0(y)Hxy/Φ0(x)

1− εEL(x)
(2.2.13)

' δxy [1 + εEL(x)]− ε
[
Hxy

Φ0(y)

Φ0(x)

]
+ o(ε2), (2.2.14)

where EL(x) is the previously defined local energy and Hx,y = 〈x|H|y〉 denotes the matrix
elements of the Hamiltonian. Whenever Φ0(y)Hxy/Φ0(x) is non positive for all x and y, this
equation takes the form of a continuous-time Markov process, whose analytical properties are
well known. In particular, the probability distribution for the “waiting time” τw in a given state
x, i.e., the average time that the system spends in the state x before making an off-diagonal
transition to another state y 6= x, is exactly known, namely P (τw;x) = exp{−τw [Hxx − EL(x)]}.
As a consequence, the finite-time propagator Rδ(x → y) can be directly sampled, giving rise
to a succession of a certain number n of consecutive transitions x → z1 → z2 → · · · → y, with
corresponding waiting times τw(zi) (such that

∑
i τw(zi) = δ). The normalization of the whole

process is

w(x) = exp

[
−
∑
i

τw(zi)EL(zi)

]
, (2.2.15)

where the waiting times are extracted according to the exponential probability P (τw; zi). The
transitions between the intermediate configurations are done according to the off-diagonal
elements of Eq. (2.2.14), i.e., zi+1 is chosen with probability proportional to −Hzizi+1

Φ0(zi+1)
Φ0(zi)

.

2.2.3 Non-Diagonal Observables

The formalism so-far developed allows one to successfully compute pure ground-state expecta-
tion values of operators that are diagonal in the local basis x, with the expectation values of
non-diagonal operators restricted to the so-called mixed averages. [8, 118, 130] Nonetheless,
it is often of great interest to remove such a limitation (whose result is biased by the quality
of the variational wave function) and a dedicated sampling strategy has to be devised in or-
der to cope with such a need. In the following, we show that a relatively easy modification of
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the sampling scheme can accomplish this task, providing us with a general tool to compute
ground-state averages of operators that are non local in the chosen basis x.

We consider an arbitrary non-diagonal observable O and, in the spirit of Refs [112, 115], we
introduce a worm operator defined by

Wx,y = δx,y + λOx,y, (2.2.16)

where λ is a positive constant and consider the extended configuration space spanned by the
probability distribution

Πτ
W(X) = Φ0 (x0)×

L∏
i=1

Gδxi−1xi ×WxLxR ×

×
2M+1∏
i=R+1

Gδxi−1xi × Φ0 (x2M+1) . (2.2.17)

At variance with Eq. (2.1.6), the worm operator now breaks the imaginary-time paths into two
distinct pieces. The discontinuity is realized at the imaginary time 0 ≤ τLR ≤ τ , where the
worm operator sits and the paths contain 2(M + 1) configurations, including xL and xR that
refer to the same imaginary time τLR. The path space in which Eq. (2.2.17) is defined is clearly
larger than the support of Eq. (2.1.6), which is recovered whenever xL = xR, i.e., when the
worm operator is diagonal.

The pure ground-state expectation value of the operator O is conveniently written in terms
of the extended paths as

〈O〉 =
1

λ
lim
τ→∞

∑
XΠ

τ
W(X)×Θ(xL 6= xR)∑

XΠ
τ
W(X)×Θ(xL = xR)

, (2.2.18)

where Θ(C) 6= 0 whenever condition C is satisfied. The modulus of Eq. (2.2.17) can be in turn
interpreted as a probability distribution and sampled stochastically by means of the elemen-
tary sliding moves considered before. Indeed, whenever the worm operator is far from the ends
of the imaginary-time paths, the sampling scheme remains unchanged. In this case, a move
along direction dwill generate a new head (or tail) for the reptile according toRδ(x→ xF ) while
shifting the worm position of ±δ. On the other hand, whenever the worm operator reaches the
ends of the reptile, a new worm configuration is proposed on the opposite side. In analogy with
the previous analysis, new configurations are generated according to a transition probability

RW(x→ y) =
1

w̄(x)

∣∣∣∣Wxy
Φ0(y)

Φ0(x)

∣∣∣∣ , (2.2.19)

where w̄(x) is a normalization factor. Due to the particular form of thematrix elements (2.2.16),
the transition probability will lead either to diagonal configurations (x = y) or to non-diagonal
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configurations (x 6= y), thus generating continuous and discontinuous paths. The relative prob-
ability for diagonal and non-diagonal configurations depends on the value of λ that can be
tuned in order to reach a balanced sampling frequency for the different sectors of the extended
paths. In order to exemplify the worm updates, let us consider the case in which d = R and a
path with probability Φ0 (x0)Wx0x1

[∏2M+1
i=2 Gδxi−1xi

]
Φ0 (x2M+1), after a sliding update in the

right direction, we will have Φ0 (x1)
[∏2M+1

i=2 Gδxi−1xi

]
Wx2M+1xFΦ0 (xF ), where xF is proposed

according to the transition probability RW(x2M+1 → xF ) (see Fig. 2.2.2). In analogy with the
previous case, the acceptance factor for the bounce moves reads ĀR = min

{
1 , w̄(x2M+1)

w̄(xk1 )

}
.

x0

x1
x2

x3
x4

x5

x1
x2

x3
x4

x5 xT

Wx0,x
1

Wx5,xT

X

XR

Fig. 2.2.2 Pictorial representation of the “sliding moves” along the right imaginary-time direction when the
worm operator sits at the tail of the reptile. In the new configuration (bottom), a new head for the reptile is
generated from the old configuration (top), the old tail configuration is discarded and the worm discontinuity
is moved to the “neck” of the reptile.

Summarizing, the reptation quantum Monte Carlo with worm-updates consists of the fol-
lowing steps:

1. For the current direction of the move d and for the present configuration Xk consider the
worm-operator position τLR.

2. If the worm is not at the ends of the reptile (i.e., τLR 6= 0 when d = L and τLR 6= τ when
d = R) go to step (a), otherwise go to step (b).

a. Propose a new configuration xF according to the transition probability Rδ(xd → xF ),
where xd = xk0 if d = L and xd = xk2M+1 if d = R. The new configuration is accepted with
probability

AL = min

{
1 ,

w(xk0)

w(xk2M )

}
, (2.2.20)
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if d = L, or with probability

AR = min

{
1 ,

w(xk2M+1)

w(xk1)

}
, (2.2.21)

if d = R. In the proposed state Xd, all the configuration labels are shifted in the d direc-
tion, determining in turn a shift of the worm operator of a time interval ±δ, depending
on d.

b. Propose a new configuration xF according to the worm transition probability RW(xd →
xF ), where xd = xkL = xk0 if d = L and xd = xkR = xk2M+1 if d = R. Accept the new
configuration with probability

ĀL = min

{
1 ,

w̄(xk0)

w̄(xk2M )

}
, (2.2.22)

if d = L, or with probability

ĀR = min

{
1 ,

w̄(xk2M+1)

w̄(xk1)

}
, (2.2.23)

if d = R. In the proposed pathXd, all the configuration labels are shifted in the d direction,
and the worm operator is moved from the head (tail) to the tail (head) of the reptile,
depending on d.

3. If themove is accepted, update the path configurations according toXk+1 = Xd and continue
along the same direction, otherwise Xk+1 = Xk and change direction.

4. Cycle to 1.

This scheme samples the probability density associated to the modulus of Eq. (2.2.17), and the
expectation value ofO can be recast as a statistical average over such a probability distribution,
while keeping track of the overall sign of the extended paths. In particular the best estimate
of the ground-state expectation values is obtained when the worm is in the central part of the
path, at τLR = τ/2, leading to

〈O〉 =

∑
XΠ

τ
W(X)×Θ

(
OxLxR 6= 0, τLR = τ

2

)∑
XΠ

τ
W(X)×Θ

(
xL = xR, τLR = τ

2

)
=

1

λ

〈Θ (OxLxR 6= 0)× sign [Πτ
W(X)]〉centerOD

N center
D

, (2.2.24)

where 〈. . . 〉centerOD denotes statistical averages over the non-diagonal distribution |Πτ
W(X)|Θ(xL 6=

xR, τLR = τ
2 ) and N center

D is the number of configurations sampled with a diagonal worm oper-
ator in the center of the paths.
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2.2.4 Fixed-Node Approximation and Systematic Improvements

When the probability distribution of Eq. (2.1.6) is not positive defined, as is generally the case
with fermions, the probabilistic interpretation of the imaginary-time paths breaks down. This
circumstance, which is known as the sign problem, originates whenever Φ0(y)Hxy/Φ0(x) > 0 for
some element x 6= y. In this case, it is not possible to have polynomial algorithms that are able
to obtain an exact solution of the problem, which would imply to sample correctly the resulting
signs. Therefore, approximated schemes are welcome and often adopted, the most widespread
one being the so-called fixed-node approximation. For lattice systems, this approach relies on
the definition of an effectiveHamiltonian, which depends parametrically on the nodal structure
of a variational wave function Φ0(x) = 〈x|Φ0〉. [140] The matrix elements of the fixed-node
Hamiltonian are defined as

H fn
xy =


Hxx + νsf(x) if x = y

Hxy if Φ0(y)HxyΦ0(x) ≤ 0

0 if Φ0(y)HxyΦ0(x) > 0

(2.2.25)

where the sign-flip potential is νsf(x) =
∑
y:sf Φ0(y)Hxy/Φ0(x), the sum being extended to all the

sign-flip states defined by the condition Φ0(y)HxyΦ0(x) > 0. With such a choice, the transition
matrix Rδ(x → y) of Eq. (2.2.14) is always positive definite and the sum of Eq. (2.1.3) is now
restricted to a region of the configuration space in which imaginary-time paths have positive-
definite weights, thus resulting in the fixed-node approximation. Therefore, within the fixed-
node approximation, the ground-state wave function |Ψ fn〉 ofHfn can be stochastically sampled
without any sign problem. The fixed-node approximation becomes exact whenever the signs
of the exact ground state are known and, most importantly, it has been proven [140] that the
fixed-node ground-state energy Efn = 〈Hfn〉 gives a rigorous upper-bound to the exact ground-
state one and improves the pure variational results.

At this point, we introduce a straightforward, although computationally expensive, way to
improve upon the fixed-node energy. Our strategy amounts to compute the expectation values
of arbitrary powers of the original HamiltonianH on the fixed-node ground state |Ψfn〉, namely

Lk =
〈Ψfn|Hk|Ψfn〉
〈Ψfn|Ψfn〉

. (2.2.26)

The fixed-node ground state can be expanded in the basis set of the eigenstates of H as |Ψfn〉 =

γ0|Ψ0〉 + γ1|Ψ1〉 + γ2|Ψ2〉 + . . . and Lk = γ2
0E

k
0 + γ2

1E
k
1 + γ2

2E
k
2 + . . . , with

∑
i γ

2
i = 1. Since

very often the fixed-node wave function has a considerable overlap with only few low-energy
states, the knowledge of the first fewmoments of the Hamiltonian are enough to approximately
reconstruct both the coefficients γi and the energies Ei. To such a purpose, let us consider a
typical situation in which only the first 2nmoments of the Hamiltonian have been numerically
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calculated and are therefore known. We can then truncate the expansion for Lk to the order
n− 1 having a closed system of 2n equations

Lk =

n−1∑
i=0

γ2
i,nE

k
i,n, (2.2.27)

for k = 0, . . . 2n − 1 that can be solved for the unknowns γi,n and Ei,n. In the limit of large
n, the approximated E0,n converges to the exact ground-state energy. Moreover, we verified
that E0,n ≥ E0, as a result of a connection between the solutions of the Eq. (2.2.27) and the
variational Lanczos procedure written in terms of the moments of the Hamiltonian. [150]

The Hamiltonian moments are non-diagonal operators and can, in principle, measured ac-
cording to the sampling procedure detailed in Sec. 2.2.3. In the present implementation we
are able to achieve sufficient statistical accuracy only for the first moment of the Hamiltonian,
i.e., L1 = 〈H〉, while higher moments are too noisy. Yet, to our knowledge our algorithm is the
only one that allows the calculation of the expectation value of the original Hamiltonian H.
This is known [140] to be a better upper bound than the expectation value of the fixed-node
Hamiltonian accessible with other zero-temperature algorithms.

Although we are not currently in position to measure directly the Hamiltonian moments Lk
we have a controlled access to the mixed averages

Lmix
k =

〈Ψfn|Hk|Φ0〉
〈Ψfn|Φ0〉

, (2.2.28)

which present optimal statistical uncertainty. Moreover, an improved estimate of the ground-
state energy based on the knowledge of the first few moments Lmix

k can be obtained solving
a system of equation similar to Eq. (2.2.27) that leads to the approximate ground-state en-
ergies Emix

i,n . Unfortunately, it is difficult to prove (or disprove) that Emix
i,n ≥ E0, for n > 1,

requiring a generalization of the already non-trivial upper bound for n = 1 described in Ref.
[140]. Nonetheless, we have numerically verified that, in all the cases discussed in this Chapter
(where E0 is a-priori known), the condition Emix

i,n ≥ E0 is always verified. We are then led to
conjecture that this may always be the case.
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2.3 Case Studies

2.3.1 Low-Energy Excitations and Spin Correlations of the Heisenberg
Model

Hereafter, we present a simple application of the previous ideas to sign-problem free spin
Hamiltonians. Let us consider the one-dimensional quantum Heisenberg model

H = J
∑
i

Si · Si+1, (2.3.1)

where Si = (Sxi ,Syi ,Szi ) is the spin 1/2 operator on the site i and J > 0 is the nearest-neighbor
super-exchange coupling.
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Fig. 2.3.1 Lowest-energy excitations as a function of the wave-vector q for an L = 20 Heisenberg chain. The
energies are extracted from the dynamical structure factor S(q, ω) and are compared to exact results by the
Lanczos method.

The total number of sites is denoted by L and periodic-boundary conditions are assumed.
This model can be solved exactly by using the so-called Bethe ansatz technique. [See for exam-
ple, 58] Information on the excitation spectrum can be obtained from the dynamic structure
factor

S(q, ω) =

ˆ
dt〈Szq (t)Sz−q(0)〉eiωt, (2.3.2)
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Fig. 2.3.2 The same as in Fig. 2.3.1 for L = 80. Exact results are given by Bethe ansatz.

where Szq (t) = 1/
√
L
∑
j Szj (t)eiqj is the Fourier transform of time-evolved z-component of the

spin operator. By introducing a complete set of eigenstates of the Hamiltonian |Ψn〉 with eigen-
values En, we have that

S(q, ω) =
∑
n 6=0

|〈Ψ0|Szq |Ψn〉|2δ(ω − ωn), (2.3.3)

where ωn = (En − E0). In the thermodynamic limit, the spin-1 states form a branch, which is
very similar to spin waves in standard ordered systems, although no long-range order is found
in one dimension.

Imaginary-time correlation functions of arbitrary (diagonal) operators can be efficiently
evaluated via Eq. (2.1.8). This fact allows us to have a direct access to S(q, τ̄) = 〈Szq (τ̄)Sz−q(0)〉.
This imaginary-time correlation function can be then analytically continued, by using theMax-
imum Entropy method described in 1.3.4. This procedure allows us to have a reasonably accu-
rate numerical estimate for the dynamic structure factor of Eq. (2.3.3).

Before presenting the results, let us mention that we consider the following Jastrow state
as a variational wave function: [84, 55]

|Φ0〉 = exp

∑
i,j

vijSzi Szj

 |FM〉 (2.3.4)
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where |FM〉 is the ferromagnetic state along the x direction, for which 〈x|FM〉 does not depend
upon the spin configuration and the variational parameters vij are optimized by using the
method of Ref. [128].

In Fig. 2.3.1, we show the results for a small (L = 20) system, where exact diagonalization
is possible by using the Lanczos method. We report the energy excitations ∆E(q) = Eq − E0

for the lowest state with S = 1 and fixed momentum q. In this case an excellent agreement
between our reptation quantum Monte Carlo results and the exact ones is found. Moreover,
also on larger systems a very good accuracy is attained (see Fig. 2.3.2), demonstrating the
performances of our numerical algorithm.

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40

C(
d
)

d
Fig. 2.3.3 Ground-state expectation value of the spin-spin correlation function C(d) for the Heisenberg model
on a 80-site chain.

In order to exemplify the potentialities of the scheme outlined in 2.2.3, we conclude this part
of the results devoted to the Heisenberg model showing the ground-state expectation value of
the spin-spin correlation at distance d

C(d) =
1

L

∑
i

(
Ŝi · Ŝi+d

)
. (2.3.5)

The desired observable is used as a worm operator and the value of the correlation function
at the various distances is computed by means of the estimator of Eq. (2.2.24). In Fig. 2.3.3,
we show the expectation value of C(d) for a 80-site one-dimensional lattice. In this case we are
able to achieve very good statistics for the non-diagonal observable, with a relatively negligible
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computational effort, when compared to the evaluation of the ground-state expectation value
of other diagonal observables.

2.3.2 Ground-State Properties of the Fermionic Hubbard Model

As an example of the application of the reptation quantum Monte Carlo to sign-problem af-
fected Hamiltonians, we present some results for the fermionic Hubbard model on a square
lattice, defined by:

H = −t
∑
〈i,j〉,σ

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓, (2.3.6)

where 〈. . . 〉 indicate nearest-neighbor sites, ĉ†i,σ (ĉi,σ) creates (destroys) an electron on the site
i with spin σ, and ni,σ = c†i,σci,σ. As a variational state we consider

|Φ0〉 = exp

∑
i,j

vijninj

 |FS〉 (2.3.7)

where |FS〉 is the non-interacting Fermi sea and the Jastrow factor involves density-density
correlations. The variational parameters vij entering in the Jastrow factor may be optimized
again by minimizing the variational energy with the method of Ref. [128]. In order to avoid
open shells in |FS〉, we consider 45-degrees tilted lattices with L = 2× l2 sites, such that both
the half-filled case and selected holes-doped cases are closed shells.

Let us start by showing the results for 18 electrons on 18 sites, where Lanczos diagonaliza-
tions are possible. [11] In Fig. 2.3.4, we report our results for the ground-state energy. The
fixed-node approach gives rather accurate results for small values the interaction (U/t . 4),
where (Eexact − Efn)/Eexact . 0.01. By increasing the on-site interaction, the fixed-node ap-
proach becomes worse and worse. This fact is due to the choice of the variational wave function
that does not contain antiferromagnetic order. Remarkably, a considerable improvement may
be obtained by considering the pure expectation value of the Hamiltonian, which is system-
atically lower than the fixed-node energy, as demonstrated in Ref. [140] and now accessible
within our algorithm. Further improvements to the fixed-node energy can be obtained upon
considering few (up to three) highermoments of the Hamiltonianmeasured asmixed-averages,
see Fig. 2.3.4. The scheme based upon the Hamiltonian moments (described in Sec. 2.2.4) al-
lows us to reach a great accuracy for the ground-state energy, with a residual error almost
independent of U/t. Indeed, in this way we have (Eexact − E)/Eexact . 0.002 up to U/t = 8.

This approach remains very effective also for larger systems, even though the variational
wave function loses accuracy by increasing the cluster size (because the ground state has anti-
ferromagnetic order in the thermodynamic limit, while the variational state is paramagnetic).
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Fig. 2.3.4 Ground-state energy for the fermionic Hubbard model at half filling on a 18-sites tilted-square
lattice. The energy difference ∆E = Eexact −E is computed with distinct approximations described in the text.

In Table 2.1, we report the ground-state energy for 50 sites for the half-filled case, while in
Table 2.2 we report the ground-state energies for selected cases at finite hole-doping, where
numerically exact results (for moderate values of U andmoderate lattice sizes) can be obtained
by the Auxiliary-Field Monte Carlo method. [129]

U/t Efn 〈H〉 Emix
0,2

4 −42.850(1) −43.16(1) −43.282(1)
5 −36.364(1) −36.51(1) −37.052(1)
6 −31.885(1) −32.17(1) −32.640(1)
7 −28.318(1) −28.66(1) −29.022(1)
8 −25.382(1) −25.62(1) −26.056(1)

Table 2.1 Ground-state energy as a function of the Hubbard U repulsion on the 50-site lattice at half filling.

2.4 Conclusions

In this Chapter we have described an efficient and general formulation of the reptation quan-
tum Monte Carlo technique on lattice models. In particular, we have shown an alternative
sampling approach which generalizes the bounce algorithm, previously introduced to reduce
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N Efn 〈H〉 Emix
0,2 EAF

50 −42.850(1) −43.16(1) −43.282(1) −43.983(1)
42 −53.402(1) −53.57(1) −53.769(1) −54.001(1)
26 −55.4325(1) −55.63(1) −55.6112(1) −55.782(1)
18 −50.4127(1) −50.50(1) −50.4383(1) −50.474(1)

Table 2.2 Ground-state energy as a function of the number of electrons N for Hubbard repulsion U/t = 4 on
a 50-site lattice. The numerically exact results obtained by the Auxiliary-Field Monte Carlo method EAF are
also shown for comparison. [129]

auto-correlation time of the observables. Our scheme allows one to choose the time direction in
a purely Markovian way. In addition, the average number of consecutive moves along the time
directions may be optimized by a fine tuning of a certain parameter that has been expressly
introduced in the transition probabilities. We reported benchmarks for two different models
with pure bosonic and fermionic degrees of freedom, by showing to what extent it is possible
to have accurate results both on the ground state and low-energy excitations. The introduction
of a general method to compute ground-state expectation values of arbitrary non-diagonal ob-
servables also constitutes an important achievement, which will ease the study of relevant
properties such as Bose-Einstein condensation and superconductivity phenomena in strongly
interacting models. In addition, the possibility to directly measure the pure ground-state ex-
pectation values may open the way to a better optimization of the correlated wave function
associated to the ground-state of an effective Hamiltonian which is not the fixed-node one.
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Chapter 3
Quantum Spectral Properties From
Imaginary-Time Dynamics
Lattice Dynamics of Helium 4

Particles obeying the Bose statistics often offer spectacular and unexpected manifestations of
the quantum coherence on macroscopic scales, such as superfluidity and superconductivity.
The structure of the excitations of strongly correlated bosonic systems determines in a sub-
stantial way their response to external probes and the very nature of the most purely quan-
tum phenomena they give rise to. An intriguing case, in which such excited-state properties
can be exploited by means of the imaginary-time dynamics methods outlined in the previous
chapters, is the crystalline phase of Helium 4.[33]

Indeed, the non-trivial quantitative features of the excited-states play in this case a key
role in the observed response to inelastic neutron scattering experiments which induce and
therefore probe the collective density excitations. The lattice dynamics of solid 4He has long
been considered a major challenge to ab initio calculations, due to the strong anharmonicity
of this highly quantum solid. Many calculations have been performed within the Self Consis-
tent Phonon (SCP) approximation,[59, 61] which however may be rather unsatisfactory, due to
the magnitude of anharmonic effects. A significant improvement has been later made possible
by the application of a variational quantum Monte Carlo approach, based on the shadow wave
function formalism, to bcc 3He [86] and to hcp 4He.[56] The variational nature of this approach,
however, makes it not fully suitable at high energy where optical or zone-boundary longitudi-
nal excitations exhibit broad multiphonon features. In this spectral regime, the calculation of
the full dynamic structure factor is therefore in order. On the other hand, as we have seen in
Chapter 1, quantum Monte Carlo path-integral techniques allow quite naturally for the cal-
culation of imaginary-time correlation functions from which various spectral functions, such
as the dynamic structure factor, can be obtained upon analytical continuation. This procedure
has been successfully demonstrated for superfluid 4He,[22, 8] as well as for the bcc crystalline
phases of 4He [131, 100] and 3He.[132] In the latter studies the spectrum of the transverse
excitations has also been obtained, albeit in the one-phonon approximation only.[61]

In this Chapter we present an application of the previously presented ideas to the lattice
dynamics of solid helium. In particular, we will show an extensive study of the dynamical
properties of hcp 4He at zero temperature,[33] performed by estimating the dynamic structure
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factor from ground-state path-integral simulations. [36, 8, 118] This technique allows us to
parallel to some extent the procedure followed experimentally to map phonon dispersions from
the measured neutron scattering. In the long wave-length region—well approximated by a
phonon picture of the collective density excitations—we thus obtain longitudinal as well as
transverse modes for both acoustic and optical branches. For higher wave-vectors we analyze
the dynamic structure factor in terms of corrections to the so-called impulse approximation,[62]
finding a coherent response which is peculiar of both superfluid and solid helium.

In Sec. 3.1 we give an introductory account of the phonon theory of long wave-length excita-
tions in solids. In Sec. 3.2 the reader is provided with an outline of the numerical methods we
have adopted to best accomplish the study of density excitations. In Sec. 3.3 we report on the
analysis of our quantum Monte Carlo results both in the phonon regime and in the intermedi-
ate momentum region. Sec. 3.4 is finally devoted to a few concluding remarks on this specific
application of the quantum Monte Carlo methodology for excited-state properties.

3.1 Lattice Dynamics

3.1.1 Long Wave-Lengths

The long wave-length lattice dynamics of a solid is fully characterized by its dynamic structure
factor, which is the space-time Fourier transform of the density-density correlation function.
In real time and reciprocal space, the autocorrelation function of the density operator reads:

S(Q, t) =
1

N

〈∑
kl

e−iQ·rk(t)eiQ·rl(0)

〉
, (3.1.1)

where the brackets indicate equilibrium (ground-state or thermal) expectation values. In a
weakly anharmonic system, it is convenient to expand S(Q, t) into a sum of terms involving
one-phonon processes, two-phonon scattering, interference processes and so on:[61]

S(Q, t) = S1(Q, t) + S2(Q, t) + S1,2(Q, t) + · · · . (3.1.2)

The physical meaning of such an expansion is best appreciated by introducing the atomic dis-
placements from the equilibrium lattice sites, {Rl}: ul(t) = rl(t)−Rl. In terms of the u’s and
theR’s, the one-phonon contribution to the dynamic structure factor of a simple Bravais lattice
reads:[61]

S1(Q, t) = e−2W
∑
l

e−iQ·(Rl−R0) × 〈Q · ul(t)Q · u0(0)〉 , (3.1.3)
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where e−2W is the Debye-Waller factor. For a harmonic crystal—to which only, strictly speak-
ing, the phonon language applies—we consider the vibrational frequency ωj(q) and polariza-
tion vector ε(q|j) of the j-th phonon branch at wave vector q in the first Brillouin zone. In terms
of these quantities, the one-phonon contribution reads:[25]

S1H(Q, t) =
∑
j

g2(Q|j)e−iωj(q)t, (3.1.4)

whereQ = q+G,G being a reciprocal-lattice vector, and g2(Q|j) ∝ |Q · ε(Q|j)|2 is the so-called
inelastic structure factor that filters out transverse vibrations. In the case of a non-primitive
lattice, such as the hcp phase of Helium, the form of the inelastic structure factor is slightly
more complicated:[25]

g2(Q|j) = e−2W ~
2mωj(q)

∣∣∣∣∣∑
k

Q · εk(q|j)eiQ·dk
∣∣∣∣∣
2

, (3.1.5)

where the d’s are the positions of the atomic basis.
In a perfectly harmonic solid the Fourier transform of Eq. (3.1.4), S1H(Q, ω) is merely a sum

of Dirac delta functions centered at the phonon frequencies. In a real solid, things are more
complicated: anharmonic interactions broaden the one-phonon peaks and give rise to non-
vanishing multi-phonon and interference contributions to the dynamic structure factor (Eq.
3.1.4). When anharmonic effects are not too large, one-phonon excitations can still be long-
lived—thus providing a reasonable description of the dynamics—and it is thus well justified to
identify the positions of the finite-width peaks of S1(Q, ω) with phonon frequencies. From an
experimental point of view, phonon frequencies are generally extracted from the peaks of the
full dynamic structure factor S(Q, ω). The cross section of inelastic neutron or X-ray scattering
is in fact proportional to S(Q, ω) [144] and no direct access is possible to its one-phonon com-
ponent. The latter dominates the cross section only at small transferred momentum, whereas
multi-phonon contributions cannot in general be neglected when pursuing a comparison be-
tween calculated and measured phonon dispersions.

3.1.2 Shorter Wave-Lengths

The very concept of phonon, which lies at the basis of the theory of lattice dynamics sketched
above, is most appropriate to describe the low-lying portion of the spectrum of solid 4He, probed
by inelastic neutron or X-ray scattering at long wave-lengths. In the opposite limit of short
wave-lengths, the scattering process can be pictured as the creation of particle-hole (atom-
vacancy) pairs, resulting from the highmomentum transferred to the crystal from the incoming
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particle beam. [61] The atomic kinematics at high energies is affected by the single-particle
momentum distribution, n(Q), and neutron spectroscopy at large momentum transfer has in
fact proven useful to probe off-diagonal long-range order, both in superfluid [124] and, more
recently, in solid Helium. [46]

At intermediate wave-lengths both the phonon and a purely impulsive, particle-hole, pic-
ture of density excitations break down. In spite of the attention paid by both experimentalists
and theorists to this peculiar intermediate regime, both in the superfluid [85, 137] and in the
solid[60, 45] phases, it turns out that the neglect of interaction-induced coherence effects make
previous theoretical studies not totally satisfactory. [60]

At small wave-length, the solid behaves like a collection of almost non-interacting atoms
and the intermediate scattering function can be approximated by its incoherent part, [62] i.e.

Sinc(Q, t) =
1

N

〈∑
l

e−iQ·rl(t)eiQ·rl(0)

〉
, (3.1.6)

which amounts to neglecting the interference terms involving different atoms. For a crystal,
the incoherent part can be expressed in terms of the recoil frequency ωR = ~

2mQ
2 and of the

phonon density of states g(ω), leading to

Sinc(Q, t) = exp

[
ωR

ˆ ∞
0

dωg(ω)
1

ω
(e−iωt − 1)

]
. (3.1.7)

Such an expression has been used by Glyde [60] to compute the incoherent response of bcc 4He.
By its very nature, the incoherent approximation is only reliable at very high wave-vector,[60]
roughly larger than 20Å−1. In order to account for the leading coherence effects on the short
wave-length dynamics of an extended system, it is convenient to consider a cumulant expansion
of the intermediate scattering function,[62]

S(Q, t) = S(Q)e−iωRt exp

[ ∞∑
n=1

µn
n!

(−it)n
]
, (3.1.8)

where S(Q) is the static structure factor and µn are the cumulants of the distribution S(Q, ω−
ωR). Retaining the leading contribution to such an expansion yields the so-called Impulse Ap-
proximation, according to which the Fourier transform of the dynamic structure factor consists
of a main Gaussian component centered at the recoil frequency ωR, plus additive corrections:
[6]

S(Q, ω) = S̃IA(Q, ω) + S̃1(Q, ω) + +S̃2(Q, ω) + S̃3(Q, ω) + · · · , (3.1.9)

where the first terms of the expansion read
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S̃IA(Q, ω) =
S(Q)√
2πµ2

e−
ω2
d
2 (3.1.10)

S̃1(Q, ω) = − µ3

2µ2
2

(ω − ω′R)

[
1− ω2

d

3

]
S̃IA(Q, ω) (3.1.11)

S̃2(Q, ω) =
µ4

8µ2
2

[
1− 2ω2

d +
ω4
d

3

]
S̃IA(Q, ω) (3.1.12)

S̃3(Q, ω) =
µ5

8µ3
2

(ω − ω′R)

[
1− 2

3
ω2
d +

ω4
d

15

]
S̃IA(Q, ω) (3.1.13)

with ω′R = ωR/S(Q) and ω2
d = (ω − ω′R)

2
/µ2 .

3.2 Numerical Methods

The path integral quantum Monte Carlo methodology allows for the exact simulation of the
imaginary-time dynamics of continuous bosonic systems at both finite [22] and zero [8] tem-
perature. Specializing to the zero temperature case, a discretized path integral expression for
the imaginary-time propagator can be used to project out the exact ground state Ψ0 from a pos-
itive trial wave function Φ0, according to by now familiar expression Ψ0 = limτ→∞ exp(−τH)Φ0,
thus mapping the imaginary-time evolution, from which ground-state expectation values can
be obtained, onto a classical system whose fundamental variables are open quantum paths (or
reptiles in the parlance of Refs. [8, 30] and [7]). The details of the formalism and its numerical
realization for continuous systems are conceptually similar to the ones introduced in the pre-
vious Chapter. However, at variance with the imaginary-time diffusion of particles on a lattice,
an exact expression for the small time propagators is recovered in this case only in the limit
of small time step ε. A systematic error due to the small-time Trotter decomposition of the
propagator has therefore to be carefully taken into account. Nonetheless, as also explained in
detail in Ref. [7], unbiased ground-state expectation values are obtained when the projection
time τ is large enough and the step ε of the time discretization is small enough. Conditions
that are practically very well verified in most numerical simulations.

Our strategy is to simulate realistic models of 4He atoms interacting through the Aziz [5]
pair potential, placed in a cuboid cell accommodating an hcp lattice. The numberN of particles
is either 180 or 360, the latter corresponding to a cell with double extension in the ΓA direction.
Although all the reported results refer to the larger system, we have found a full agreement
between the relevant observables computed on the common set of wave vectors shared by the
smaller and the larger simulation cells. For systems of this size, we find it more efficient to use
the bisection algorithm [36, 118] rather than the reptation algorithm [8] for sampling the path
space. We adopt the so-called primitive approximation for the imaginary-time propagator,[36]
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which requires a small time step ε = 10−3 inverse K for accurate results, and we set the
projection time to τ = 0.3K−1.
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Fig. 3.2.1 Example of two reconstructed spectra at different wave-vectors along the ΓA direction at the melting
density ρ1.

The trial function which serves as a starting state for the imaginary-time projection is of
the standard McMillan-Nosanow form,

Φ0(R) = exp

[
−
∑
k<l

ar−bkl −
∑
l

c(rl − sl)
2

]
(3.2.1)

where {r1, . . . , rN} ≡ R are the coordinates of the N atoms, and sl is the l-th site of the hcp
lattice. The three parameters a, b, and c are optimized by minimizing the variational energy
and their numerical values for the densities considered hereby are shown in Table 3.1. The
Gaussian localization terms in the trial function explicitly break Bose symmetry at the varia-
tional level. Even though the imaginary-time projection fully restores the Bose symmetry, the
required projection time is extensive in the number of particles and particularly long in all the
gapless density sectors of the spectrum we are interested in. Nonetheless, we believe that the
lack of permutation symmetry cannot affect the determination of the density excitation ener-
gies due to the small frequency of particle exchanges in the crystal. This point can be further
elucidated noticing that the presence of a vacancy in the simulation box greatly enhances the
number of exchanges.[40] Therefore, if indistinguishability were important, one would expect
a change in the frequency upon doping with vacancies. However, no such effect was found in
in a variational calculation[56] where Bose symmetry was taken into account.
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ρ
[
Å−3

]
a
[
Åb
]

b c
[
Å−2

]
0.028 156.0 5.74 0.565

0.037 139.4 5.75 0.993

Table 3.1 Optimal values of the variational parameters appearing in the McMillan-Nosanow wave-function.

In order to obtain S(Q, ω) from imaginary-time correlations, an inverse Laplace transform
must be performed, for which we use the maximum entropy method described in 1.3.4. Al-
though the reconstructed spectra are typically much too broad, this procedure gives good re-
sults, at least for the position of the peaks, when a single sharp feature exhausts most of the
spectral weight. As a typical example, we show in Figure 3.2.1 two spectra at different wave-
vectors for the longitudinal acoustic branch, calculated at the melting density ρ1 = 0.028 [Å−3

].
Despite the fact that much of the width of the peaks is an artifact of the numerical inversion
of the Laplace transform, it is nonetheless plausible that the broadening of the spectra shown
in Figure 3.2.1 reflects stronger multiphonon effects at higher wave-vectors. In the following
we refer to the position of the peaks of the reconstructed spectrum as to phonon energies. The
reported error bar is the statistical uncertainty of the peak position, as estimated with the
jackknife resampling method.[63]

3.3 Results

In this Section we present the results of our quantum Monte Carlo simulations for both the
phonon dispersion energies and the higher wave-vectors response of the solid along high sym-
metry directions. A representation of the first Brillouin zone of the hcp crystal and its high
symmetry points is shown in Figure 3.3.1.

3.3.1 Long Wave-length Excitations

Longitudinal Modes

The excitation energies of longitudinal vibrations can be straightforwardly obtained from the
dynamic structure factor S(Q, ω), when available. In a lattice with a basis, such as hcp 4He,
multiple modes (acoustic and optic) exist at each point of the first Brillouin zone. Although for
a generic wave-vector all the branches contribute to S(Q, ω), it often happens that—because of
the explicit dependence of the inelastic structure factor 3.1.5 on both the wave-vector and the
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Fig. 3.3.1 First Brillouin zone of the hcp crystal. The high symmetry directions investigated in this Chapter
are ΓA and ΓM .

branch index—along high-symmetry directions different branches dominate (and in practice
are only visible) at different values of thewave-vector. As a consequence, there are regions of the
reciprocal space in which the acoustic modes dominate while the optical modes are suppressed
and vice-versa. To figure out the relative weights of the branches, the inelastic structure factor
can be calculated in a number of (approximate) ways, as in Ref. [122] for beryllium, another
hcp solid. By virtue of the strongly geometrical nature of g2(Q|j), it is sufficient to look at one
of these approximate calculations performed for the hcp geometry to realize that, with few
exceptions, the relative weights do generally suppress one mode and privilege the other. Our
results substantially confirm this picture, the calculated spectral functions being generally
dominated by a single peak. Reconstructing a complete picture of the phonon dispersions thus
require sampling the dynamic structure factor outside the first Brillouin zone.

We have calculated the phonon energies at the melting density ρ1 = 0.028 [Å−3
]—in a regime

of strong quantum fluctuations signaled by a considerable Lindemann’s ratio—and at the den-
sity ρ2 = 0.037 [Å−3

], where the quantum fluctuations are less pronounced. Results are shown
in Figures 3.3.2 and 3.3.3 using an extended-zone scheme reminiscent of the way the optic and
acoustic modes are measured in the lab. The phonon energies extracted by S(Q, ω) are com-
pared to experimental data. The phonon energies resulting from an analysis of the one-phonon
contribution to the dynamic structure factor are also shown for comparison.

The main findings that emerge from the calculations of the longitudinal modes are the fol-
lowing:

1. The overall agreement between the calculated and measured peak energies is good. The
estimated errors come from the intrinsic width of the peaks of the dynamic structure fac-
tor, which is larger for optic than for acoustic phonon. This feature is present in both the
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Fig. 3.3.2 Longitudinal phonon energies at the melting density ρ1 extracted from S(Q, ω) and S1(Q, ω), ΓA
and ΓM directions (resp. left and right panel). The limit of the first Brillouin zone is indicated by a vertical gray
line. Experimental data from [90] and [91]. Frequencies calculated at discrete wave-vectors are interpolated
by cubic splines as a guide to the eye.
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Fig. 3.3.3 Longitudinal phonon energies at the density ρ2 = 0.037 [Å−3
] extracted from S(Q, ω) and S1(Q, ω),

ΓA and ΓM directions (resp. left and right panel). The limit of the first Brillouin zone is indicated by a vertical
gray line. Experimental data from Ref. [108]. Frequencies calculated at discrete wave-vectors are interpolated
by cubic splines as a guide to the eye.

theoretical and experimental spectra, although in the former the width is enhanced by the
numerical difficulties in performing inverse Laplace transforms.

2. The discrepancy between the frequencies estimated in the one-phonon approximation and
from the full dynamic structure factor is generally small. Multiphonon processes have
clearly the effect of broadening the spectrum—particularly for large wave vectors—but they
hardly affect peaks’ positions.

3. In the ΓM direction at the melting density ρ1, we obtain a substantial improvement over
SCP results.[59] We are thus able to separate the optic from the acoustic branches, which
appear as distinct peaks in the dynamic structure factor. We also obtain a significant im-
provement over previous variational quantum Monte Carlo results;[56] besides, in Ref. [56]
optical branches are calculated only in the ΓA direction.
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4. For the higher density ρ2 we observe a stronger discrepancy between theoretical and exper-
imental data, particularly in the ΓM direction, possibly due to the pair potential adopted
here.[92]

Transverse Modes

The direct evaluation of transverse phonon modes from the dynamic structure factor is hin-
dered by the Q · ε(q|j) term appearing in its expression (Eqs. 3.1.4 and 3.1.5) that selects
longitudinal modes. At least two strategies can be deployed to circumvent this problem. The
most immediate solution consists in considering the peaks in the Fourier transform of the
transverse counterpart of the one-phonon contribution to the dynamic structure factor:[131]

S1⊥(Q, t) ∝
〈∑
l,m

u⊥,l(t)u⊥,m(0)eiQ·(Rl−Rm)

〉
, (3.3.1)

where u⊥, is the transverse component of the atomic displacement from equilibrium. Although
legitimate in principle, this approach is limited to the weak anharmonic regime and only gives
access to the positions of the peaks, not to their intensities. A better approach, which in prin-
ciple also gives access to peaks intensities, is to mimic closely the experimental practice and
calculate the dynamic structure factor at wave-vectors Q = G + q such that q is arbitrar-
ily quasi-perpendicular to Q, so that a lattice vibration polarized parallel to Q is actually
quasi-transverse:[86] this is always possible, just choosing a large enough G, i.e. looking at
wave-vectors in the second, third, or successive Brillouin zones. In such a geometry transverse
phonon energies at high-symmetry wave-vectors in the first Brillouin zone can be estimated
from the position of the peaks in the dynamic structure factor. In order to achieve a close
comparison between our results and experimental data, our simulations at the melting den-
sity have been performed along the same quasi-transverse wave-vector directions as used in
Ref. [90]. The transverse phonon energies thus obtained are presented in Figures 3.3.4 and
3.3.5, in an extended zone scheme.

Themain findings that emerge from the calculations of the transversemodes closely parallel
the results obtained in the longitudinal case:

1. The overall agreement with the experimental data is good.
2. The discrepancy between the energy obtained from the full dynamic form factor and from

its one-phonon component is small. Energies from the full form factor tend to be more noisy
than in the longitudinal case, possibly due to larger multi-phonon effects related to the large
wave-vector involved in the quasi-transverse geometry.

3. We find a substantial improvement over the SCP results, particularly in the ΓM direction,
whilst there are no other quantum Monte Carlo results to compare with.
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Fig. 3.3.4 Transverse phonon energies at the melting density ρ1 extracted from the quasi-transverse geometry
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Fig. 3.3.5 Transverse phonon energies at the density ρ2 = 0.037 [Å−3
] extracted from the quasi-transverse

geometry of S(Q, ω) and from the transverse components of S1(Q, ω), ΓA direction and T‖ branch of the ΓM
direction (resp. left and right panel). The limit of the first Brillouin zone is indicated by a vertical gray line.
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as a guide to the eye.

4. We find a systematic degradation of the agreement with experimental results for increasing
density, especially for the direction ΓM of Figure 3.3.5.
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3.3.2 Intermediate Wave-length Excitations

Recent claims that solid 4He may display a supersolid behavior closely related to superflu-
idity in the liquid phase have prompted a revived interest in the experimental investigation
of density excitations at intermediate wave-lengths, from which valuable information on the
atomic momentum distribution can be extracted.[46] These experimental efforts rely on the
accurate determination of corrections to the Impulse Approximation (Eq. 3.1.9), a task which
is facilitated in the large-momentum regime.[62]

Apart from the issues of off-diagonal long-range order and Bose-Einstein condensation in
solid 4He, the role of atomic interference—as emerging from the additive corrections to the
bare Impulse Approximation—has not yet been the subject of detailed theoretical investiga-
tions. To our knowledge, the best quantitative account of the response of solid helium is lim-
ited to regions of small and very large wave-vectors.[60] Nonetheless in the intermediate re-
gion where the long-wavelength spectra of both the liquid and the solid merge into the large-
momentum regime of nearly free-particle recoil, no ab initio results have been reported so far.
Our quantumMonte Carlo methodology, instead, allows us to provide an accurate description
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Fig. 3.3.6 Longitudinal excitations along the ΓM direction at the density ρ1. The solid line is the fitted free-
particle dispersion of a quasi-particle with effective massm∗, while the gray line is the free-particle dispersion
of atomicHelium. The two different background colors ideally separate the phonon region from the intermediate
region of wave-vectors.

of this regime as well, showing evidence of a phonon-like residual coherence, not dissimilar
from what is found in the superfluid phase.[85] We have concentrated our attention on wave-
vectors roughly ranging from 5Å−1 to 10Å−1, between the phonon and the purely single particle
regimes. The transition between these two regions can be clearly seen looking at the disper-
sion of the peaks of the dynamic structure factor, as a function of the excitation wave-vector.
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In Figure 3.3.6 the longitudinal excitation energies of the crystal at the melting density ρ1 are
shown. In the phonon-like regime (on the left of the figure with a yellowish background) we
observe a periodic dispersion with soft modes corresponding to reciprocal-lattice vectors; for
larger wave-vectors (on the right with a bluish background) we observe a free-particle parabolic
dispersion, corresponding to an effective mass which is slightly larger than the bare Helium
mass, withM? ' 1.27M .
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In order to characterize the density excitations of 4He in this region of momenta, we have
analyzed the dynamic structure factor in terms of a cumulant expansion, Eq. (3.1.9), thus ex-
tending the scope of previous theoretical results, [60] which were essentially unable to predict
the response of the solid in this intermediate regime. In Figure 3.3.7 the calculated dynamic
structure factor at the melting density ρ1 is shown along with its decomposition in terms of the
leading Impulse Approximation and its additive corrections of Eqs. (3.1.10-3.1.13). The coeffi-
cients µn are taken as free parameters in the fitting procedure of the dynamic structure factor,
much as it is done in the analysis of the experimental data.[62]

The bare Impulse Approximation of the dynamic structure factor overlooks quantum coher-
ence effects in the density response functions, which are experimentally observed [85, 137]
in superfluid 4He. A better account of quantum coherence can be achieved including higher-
order corrections in the cumulant expansion of Eq. (3.1.9) whose non-vanishing contribution
is in fact recognized in the fitting of our reconstructed spectra, Figure 3.3.7. The presence of
quantum coherence between Helium atoms in the solid is further appreciated upon looking
for deviations from the incoherent approximation of Eq. (3.1.6). A cumulant expansion of the
incoherent dynamic structure factor can be carried out, and it is known [61] that the cumu-
lants µinc

2 and µinc
3 of such an expansion increase monotonically as Q2 whereas µinc

4 and µinc
5

increase as Q4. Characteristic Q-dependent oscillations in the ratios µ2,3/Q
2 and µ4,5/Q

4 can
be therefore exploited to infer deviations from the purely incoherent response. Such oscillations
have been observed in the superfluid phase [85] and theoretically justified within a T-matrix
approximation of the He-He atom scattering. [137] A similar behavior has also been recently
observed in solid 4He, [45] although no satisfactory ab-initio theoretical description exists yet.
The cumulant dissection of the spectral properties extracted from our quantum Monte Carlo
simulations is a natural tool to examine the relics of quantum coherence in the intermediate
wave-vector region, which closely parallels the experimental analysis. In Figure 3.3.8 we show
the Q-dependent oscillations in the ratios µ2/Q

2 and µ3/Q
2 as found in our analysis of the dy-

namic structure factor, which are a quite clear manifestation of the residual coherence in the
dynamics of solid helium in this intermediate region. The quantitative aspects of this analysis
may be influenced by the quality of the Maximum Entropy reconstruction of the spectrum.
However, the shift of the peak position with respect to the free particle recoil frequency should
be reliable information, as suggested by the good agreement of the calculated and measured
phonon dispersions previously shown.
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3.4 Concluding Remarks

In this Chapter we have shown a completely ab-initio and unbasied study of the lattice dynam-
ics of crystalline 4He at zero temperature. Although the stochastic nature of quantum Monte
Carlo methods limits us to explore the quantum imaginary-time dynamics, we have shown that
quantitative accuracy can be nonetheless achieved. One of the most appealing features of our
analysis is the possibility to directly parallel the experimental investigation based on neutron
scattering. The study of the full dynamic structure factor has allowed us to describe both the
phonon and the intermediate wave-length regions of excitations.

At lower density, where the quantum fluctuations substantially affect the dynamics, we have
obtained satisfactory results for the phonon energies, whereas approximate quasi-harmonic
theories have shown difficulties in the accurate determination of the vibrational dispersions.
An interesting point deserving more research is the effect of the adopted pair-potential on the
calculated phonon branches. Our study suggests a degradation of the agreement to experi-
mental data at higher density which could probably be alleviated upon the inclusion of higher
than two body terms in the interatomic potential.

In the intermediate regime of wave-vectors, where the density excitations are better under-
stood in terms of corrections to the small wave-length behaviour, we have shown that residual
coherence in the quasi-particle excitations is present as in superfluid helium. Altough much
of the theoretical and experimental efforts on the merging between the phonon and the single
particle regimes have concentrated on the archetypal quantum solid –4He– we believe that an
extension of such an analysis to other quantum solids such as 3He or molecular hydrogens H2

would surely be worthwhile.
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Chapter 4
Exact Fermionic Properties From Spectral
Functions
The Itinerant Ferromagnetic Phase of the Hubbard Model

The quantum Monte Carlo simulation of systems of interacting fermions is beset by the anti-
symmetry of the ground-state wave function which, at variance with bosons, prevents it from
being treated as the stationary distribution of a classical stochastic process. The main attempt
to cope with the ensuing difficulties is the fixed-node approximation, which we have introduced
in 2.2.4. If complemented by an accurate variational ansatz for the wave function, the fixed-
node approach provides a method to study the properties of large fermionic systems allowing
for reliable extrapolations to the thermodynamic limit. Unfortunately, the nature of the ap-
proximation does not allow for an estimate of the residual error, which not rarely can lead
to biased results. However, there exists an interesting class of non-trivial strongly correlated
Hamiltonians whose eigenstates of fermionic symmetry are sufficiently close in energy to the
bosonic ground state, to allow them to be treated on an equal footing; for this class of Hamilto-
nians we have proposed and demonstrated [34] a strategy to overcome the sign problem via the
dissection of the excitation spectrum of the corresponding bosonic auxiliary problem, providing
an essentially unbiased scheme for medium-size fermionic systems.

In the following we describe the above-mentioned methodology that exploits a suitable
bosonic imaginary-time dynamics to provide exact information on the ground-state proper-
ties of the fermionic system of interest. By means of this novel scheme, we show that impor-
tant advances in the understanding of an elusive model for itinerant ferromagnetism can be
achieved. In particular, we obtain particularly accurate results for the ground-state properties
of the fermionic Hubbard model in the large interacting limit. Our findings indicate that at
high electron density a fully ferromagnetic (Nagaoka) state is stable not only with respect to
the paramagnetic phase, but also with respect to other previously proposed partially polarized
states. [12] A non-trivial transition to a paramagnetic phase is observed upon decreasing the
electron density. Near the transition this phase is characterized by highly degenerate states
with different values of the total spin, thus indicating a divergence of the magnetic suscepti-
bility, consistent with an infinite-order phase transition. [15]

In Sec. 4.1 we present our novel approach to exact fermionic properties; in Sec. 4.2 the
infinite-U Hubbard model and its relevance to itinerant ferromagnetism is explained, whereas
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in Sec. 4.3 themain findings of our analysis are presented. In 4.4 the effect of a realistic interac-
tion for trapped cold atoms is shown and some concluding remarks on both the novel quantum
Monte Carlo methodology introduced and the itinerant ferromagnetism and are finally drawn
in 4.5.

4.1 Fermionic-Correlations Method

The spectrum of a Hamiltonian of identical particles, H, can be classified according to the
irreducible representations of the symmetric (permutation) group. The Pauli principle asserts
that only totally antisymmetric states are physically allowed for fermions, but mathematical
states of any symmetry can also be considered. In particular, the (unphysical) state of lowest
energy is in general totally symmetric, so that the fermionic ground state can be formally
considered as an excited state of a bosonic system. As such, it can be studied via excited-state
techniques, provided the Bose-Fermi gap is not too large with respect to the physical gap in
the fermionic sector of the spectrum. Let |Ψb

0 〉 be the bosonic ground state of the system and A
an arbitrary observable. In Chapter 2 we have shown that a recent extension of the reptation
quantum Monte Carlo method [8] to lattice models [30] allows for an efficient and unbiased
evaluation of imaginary-time τ = it correlation functions, CA(τ) = 〈Ψb

0 |A†(τ)A|Ψb
0 〉/〈Ψb

0 |Ψb
0 〉,

where A(τ) = eHτAe−Hτ is the Heisenberg representation of A.
The connection of such correlation functions with the excited states |Ψk〉 of H is obtained by

considering the Lehman spectral representation,

CA(τ) =

∑
k |〈Ψb

0 |A|Ψk〉|2e−∆kτ
〈Ψb

0 |Ψb
0 〉

, (4.1.1)

where∆k = Ek−Eb
0 are excitation energies with respect to the bosonic ground state. Selection

rules act in such a way as to exclude fromEq. (4.1.1) those excited states whose symmetry is dif-
ferent from that of the stateA|Ψb

0 〉. In particular, ifA is chosen to be totally antisymmetric with
respect to permutations, only fermionic (ground and excited) states would contribute to CA(τ).
For example, ifA is the local operator whose coordinate representation is the ratio between the
fermionic and bosonic ground-state wave functions (Af (n) = 〈n|Ψ f

0〉/〈n|Ψb
0 〉, where |n〉 denotes

the many-body lattice configuration), the correlation function CA(τ) would be proportional to
the single exponential e−∆0τ .

In practice, neither the bosonic nor the fermionic ground state are known exactly and only
variational approximations to them are available, which we denote here by |Φb

0〉 and |Φf
0〉, re-

spectively. Correspondingly, the antisymmetric observable is defined asAf (n) = 〈n|Φf
0〉/〈n|Φb

0〉.
In this way, the leading coefficient of the expansion is given by 〈Ψb

0 |Af |Ψ f
0〉 ' 〈Φf

0|Ψ f
0〉 and

can be systematically maximized by improving the quality of the variational states. The en-
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ergy of the fermionic ground state can be then extracted either directly by noticing that
Ef

0 = Eb
0 − limτ→∞ [∂τ log CA(τ)] or, indirectly, by fitting the exponential decay of the corre-

lation function of Eq. (4.1.1) and extracting the smallest energy gap.
In order for this procedure to make any sense, it is necessary that the (unphysical) Bose-

Fermi gap is not too large with respect to the physical excitation energies in the fermionic
sector of the spectrum. If this condition is not met, the anti-symmetric correlation function gets
effectively extinguished before the selection of the fermionic ground state from its excitation
background is attained by imaginary-time evolution.

This condition is actually verified for infinite-U fermionic Hubbard models of moderate size,
of which we will present our analysis in the following and whose properties are not too dissim-
ilar from those of a system of hard-core bosons. The condition of a small fermion-boson gap
is also met in other interesting systems, where the effects of statistics on the total energy are
overwhelmed by the effects of correlations, such as the low-density electron gas, liquid 3He,
quasi-unidimensional systems and mixtures of bosons and fermions. It should be however re-
marked that the Fermi-Bose gap is, in general, an extensive property, thus providing effective
restrictions on the affordable systems size.

This fermion-correlationsmethod is related to the transient estimatemethod for the fermionic
ground state, [120] or its generalization for a few excitations. [37] However, the transient es-
timate method works with ratios of decaying correlation functions, thereby reducing the sig-
nal/noise ratio, and typically uses sub-optimal bosonic guiding functions, with increased fluctu-
ations in the weights of the random walks. A crucial point for our method to succeed is instead
the calculation of spectra directly from imaginary-time correlation functions. Although, in gen-
eral, this is an ill-posed problem, in practice sharp peaks with strong spectral weight can be
reliably extracted if the correlation function is known with good statistical precision for suffi-
ciently long times. [8, 93] In the fermionic Hubbard models we have analyzed this condition is
met even for systems of several tens particles, due to the relatively small Bose-Fermi gap, as
well as to the good quality of the variational states.

4.2 A Model for Itinerant Ferromagnetism

Ever since classical antiquity, ferromagnetism has attracted the attention of natural philoso-
phers. [82] A proper understanding of this phenomenon was only made possible by the ad-
vent of quantummechanics, from the early interpretations [20, 133] to its modern realizations
in quantum simulators engineered by means of cold atomic gases. [71] In some solids, such
as transitions metals, the spin-independent nature of interactions has led to conjecture that
long-range magnetic order is due to an itinerant mechanism in which the Coulomb interaction
and the Pauli exclusion principle play a fundamental role. The single-band Hubbard model,
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possibly the simplest and most studied lattice model of correlated electrons, was first thought
to encompass a minimal description of itinerant ferromagnetism. [68] Recent experiments on
ultra-cold atoms hinted at the formation of ferromagnetic domains in a gas of repulsively in-
teracting fermions. [71] This important result and subsequent numerical calculations in the
continuum [42, 103] suggested that this phenomenon has some general features independent
on the details of the repulsive interaction, thus renewing the interest in the understanding of
a minimal model for itinerant ferromagnetism. In spite of its simplicity, exact solutions of the
Hubbard model are not available in more than one spatial dimension, leaving the question of
the stability of a ferromagnetic phase unsolved. One of the very few exact results that is known
is due to Nagaoka, [94] who proved a theorem stating that, in the infinite-U limit, a single hole
stabilizes a fully-polarized ground state. Following this pioneering work, much effort has been
devoted to study the fully-polarized state for finite hole densities. [48, 127, 151, 57, 12, 107, 99].
However, the possible stability of ferromagnetic phases and the nature of the involved quantum
phase transitions is still matter of debate. [14, 81]

The Hamiltonian of the infinite-U Hubbard model reads:

Hf = −t
∑
〈i,j〉,σ

PGc†i,σcj,σPG + h.c., (4.2.1)

where c†i,σ (ci,σ) creates (destroys) an electron on site i with spin σ; 〈i, j〉 denotes nearest-
neighbor site pairs and the Gutzwiller projector PG forbids double-occupancy. In the following,
we will consider a square lattice and take t = 1 as the energy scale. The total number of sites
will be denoted by L and the number of electrons by N .

4.3 Ground-State Phase Diagram

4.3.1 Back-Flow Variational Wave Function

Relatively simple variational wave functions have been constructed, [127, 151] by flipping one
(say up) spin with respect to the saturated ferromagnetic state. The flip of the spin leads to a
gain of kinetic energy for the down spin, but also a loss in the spin-up kinetic energy (since the
motion of spin up electrons is restricted by the necessity of avoiding double occupancy). Here,
we consider

〈n|Φf
0〉 = J f (n)×Det

[
φk(R↑j )

]
×Det

[
φk(R↓j )

]
, (4.3.1)

where the Jastrow factor J f (n) = exp
[∑

i,j V
f
ijninj

]
multiplies two Slater determinants that

are constructed by applying backflow correlations to single-particle orbitals for up and down
spins. [141] The correlated orbitals are defined by φk(Rσj ) = φ0

k(Rσj ) + bk
∑
Rl,σ′

φ0
k(Rσ

′

l ), where

68



−0.51

−0.495

−0.48

−0.465

−0.45

0 0.2 0.4 0.6 0.8 1

E
0 f
(τ

)

τ

m = 20/21

m = 16/21

m = 8/21

Fig. 4.2.1 Energy Ef
0(τ) = Eb

0 − ∂τ log CA(τ) as a function of the imaginary-time τ for L = 50 and N = 42

electrons and different magnetizations. The dashed horizontal lines are fixed-node energies, while the solid
lines are the energies as obtained fitting the imaginary-time correlations.

−0.645

−0.63

−0.615

0 0.2 0.4 0.6 0.8 1

E
0 f
(τ

)

τ

m = 18/19

m = 10/19

Fig. 4.2.2 Energy Ef
0(τ) = E0

b − ∂τ log CA(τ) as a function of the imaginary-time τ for L = 50 and N = 38

electrons and different magnetizations. The dashed horizontal lines are fixed-node energies, while the solid
lines are the energies as obtained fitting the imaginary-time correlations.

69



0

0.5

1

0.5 0.6 0.7 0.8 0.9 1

M
(n

)

n

NagaokaParamagnetic
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bk are orbital-dependent backflow parameters, φ0
i (R

σ
j ) are plane waves, and the sum includes

all nearest neighbors of the j-th particle, thus preserving the spin rotational invariance. The
proposed backflow wave function (4.3.1) encodes the effect of correlation on the deformation
of the free-orbitals nodal structure and consistently catches much of the physics of previous
treatments, [127, 151, 57] while leaving room for a systematic improvement with the quantum
Monte Carlo methods.

The bosonic counterpart of the model studied is a purely kinetic hard-core bosons Hamil-
tonian, where the fermionic operators are substituted by bosonic ones. Our quantum Monte
Carlo method is particularly suitable to study the high-density region, namely few holes close
to full filling (N = L), where the boson-fermion gap is very small and increases upon decreas-
ing the density. [11] The bosonic trial state is given by a Jastrow wave function 〈n|Φb

0〉 = J b(n),
which is similar to the fermionic one (but with different parameters V bi,j) and represents an
excellent ansatz for the bosonic ground state. [28] In all cases, the variational parameters are
fully optimized, by minimizing the variational energy with the method of Ref. [128].

The fermionic correlation technique remains efficient up to relatively large system sizes
(i.e., L = 50 ÷ 100) and allows us to reach numerical results, which are exact within sta-
tistical accuracy. In the following, we present the results for different magnetizations m =

(n↑−n↓)/(n↑+n↓) and densities n = n↑+n↓. In Fig. 4.2.1, we report our results for L = 50 and
N = 42 electrons, for different values of the magnetization, m. In addition, we also report the
results based upon the fixed-node approach. The possibility to obtain numerically exact results
on rather large systems allows us to assess the accuracy of the fixed-node method that can be
extended to much larger sizes (i.e., L . 1000), without any numerical instability. Thanks to

70



backflow correlations, we get a considerable improvement upon the standard plane waves that
has been used in Ref. [12]. There is a small difference between the fixed-node results and the
energies obtained by the imaginary-time correlations, indicating a very small residual fixed-
node error. In Fig. 4.2.2 we show a comparison between the fermionic correlation energies
and the fixed-node approximation, close to the transition density. It can be noticed that the
estimated error for the fixed-node energies (which are the dashed horizontal lines) is safely
estimated to be ∆E/t . 0.01.

In Fig. 4.3.1, we report the overall phase diagram obtained by considering large-scale fixed-
node calculations. A saturated ferromagnetic phase is stable for n & 0.75, while for smaller
densities a paramagnetic ground state is found. The narrow shaded region denotes the incer-
titude due to the residual numerical error, which can be estimated by comparing the fixed-node
energies with the exact ones (obtained from the fermionic correlations) on smaller clusters, see
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Fig. 4.3.2 Difference between the energy per site of different magnetizations and the one of the saturated
ferromagnet as a function of the density n. The cases with L = 200 (squares) and L = 400 (circles) are reported;
lines connecting points are a guide for the eye.
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Fig. 4.2.1. This direct comparison puts us on secure grounds as concerns the robustness of the
dependence of the ground-state magnetization on the electron density.

In Fig. 4.3.2 we display the dependence of the ground-state energy upon magnetization, for
different values of the electron density. The remarkable feature emerging from this figure is
the strong flattening of the energy as a function of the magnetization (i.e., the spin) close to
the transition between the fully-polarized ferromagnet and the paramagnetic state. Indeed, at
low and high densities the energy has a monotonic behavior as a function of the magnetization
m. At low density a clear minimum exists at m = 0, typical of a paramagnetic phase, where
the curvature of the energy-versus-magnetization curve witnesses to a finite spin susceptibil-
ity. On the other hand, in the high-density ferromagnetic phase, E(m) displays a well defined
minimum for m = 1. By approaching the transition, E(m) becomes flatter and flatter, sug-
gesting that the susceptibility may diverge at the critical point. Although we cannot exclude a
tiny region with a finite but non-saturated magnetization, these results would suggest that the
paramagnetic-to-ferromagnetic transition is not due to a simple level crossing, namely to the
creation of a local minimum in E(m) at m = 1 that eventually prevails over the paramagnetic
one, but rather to the progressive flattening of the whole E(m) curve.

4.3.2 Infinite-Order Phase Transition

Our scenario is compatible with an infinite-order phase transition, which, in general, is de-
scribed by E(m) = (g − gc)m2 + bm2r, where r →∞; a phase transition is obtained by varying
the order parameter g (in our case the electron density) across its critical value gc. The critical
exponent of the order parameter is β = 1/(2r − 2), generating a jump from zero to the satu-
ration value for r → ∞. Moreover, the susceptibility χ ∼ A±/|g − gc|γ has an exponent γ = 1

independent of r, with an amplitude ratio A−/A+ that vanishes for r → ∞. [15] Even though
the order parameter shows a finite jump, like in ordinary first-order phase transitions, there is
no hysteresis. We have indeed verified that the ground-state energy is a convex function of the
electron density (see Fig. 4.3.3), implying a finite compressibility in the neighborhood of the
ferromagnetic-paramagnetic transition. This picture implies that spin-flip excitations over the
fully-polarized state are non-interacting at the transition point. In fact, we find that, at small
distances, the minority spins repel each other, whereas at large distances they do not interact.
In the variational wave function, this fact generates a sizable repulsive short-range Jastrow
factor, while at long range the V fi,j pseudopotential vanishes.
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4.4 Effect of a Density Interaction

In pursuing the program to describe ferromagnetism within a purely spin rotationally in-
variant Hamiltonian, it is natural to envisage a more realistic situation in which the elec-
trons experience a mutual density-density interaction too. With this in mind, we have studied
the stability of the Nagaoka state with respect to a nearest-neighboring interaction, namely
the extended-Hubbard Hamiltonian in the infinite-U limit Hext = −∑〈i,j〉∑σ PGc

†
iσcjσPG +

h.c.,+V
∑
〈i,j〉 ninj where V is the strength of the density-density potential. This Hamiltonian

preserves the SU(2) spin rotational invariance and it has been conjectured to have a stable
ferromagnetic phase, from purely perturbative arguments. Moreover, it is a prominent candi-
date for future experimental studies with two component Fermi gases in optical lattices with
tunable intra-species interactions.[72, 21]

To study the physics of this system we choose a variational back-flow wave-function of the
same form of (4.3.1) and checked whether a possibly strong interaction could destroy ferromag-
netism in its region of stability at V = 0. In Figure 4.4.1 we show the fixed-node energies as a
function of the polarization, at the density n = 0.84 for different values of V . It is quite notice-
able that even a strong interaction leaves the ferromagnetism stable, emphasizing the role of
the infinite on-site Coulomb repulsion as a crucial ingredient for the itinerant ferromagnetism
in absence of frustration.
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4.5 Conclusions

In this Chapter we have shown that unbiased ground-state properties of a fermionic system
can be studied by means of imaginary-time correlations of an auxiliary bosonic problem. As an
application, we have analyzed with high accuracy the magnetic phase diagram of the fermionic
Hubbard model on the square lattice in the limit of infinite on-site repulsion U . By the com-
bination of different quantum Monte Carlo methods, we have been able to give a very precise
determination of the transition between the ferromagnetic and the paramagnetic states.

Interestingly,we have found that all spin excitations become essentially gapless at the tran-
sition, possibly indicating that the transition is of infinite order. Compared to previous calcula-
tions, this is the first time that such a behavior has been observed. Indeed, given the extreme
difficulty to treat this highly-correlated system, most of the theoretical efforts were limited to
study very high densities or a single spin flip. [48, 127, 151, 57] Our results pave the way to
a better understanding of itinerant ferromagnetic phenomena in both traditional condensed
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matter systems and in recent and forthcoming realizations of such phases in cold atomic gases.
Indeed, the recent achievements for the realization of interacting fermionic systems trapped in
optical lattices [72] will most likely lead to experimentally probe the strongly-correlated regime
of the Hubbard model at sufficiently low temperatures. Lastly, the generality of the numerical
methods introduced in [34] and hereby reviewed, will also offer new insights in other strongly
correlated fermionic systems where currently available analytical and numerical treatments
may fail to offer a quantitative or even qualitative account of the relevant physical properties.
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Chapter 5
Finite-Temperature Susceptibilities
Bose-Einstein Condensation in Quantum Glasses

The emergence of an ordered pattern in a sample of matter is often an indication of the ten-
dency of the system to break some physical symmetry and give rise to a phase transition. How-
ever, as much as for ferromagnetic order in absence of an external field and for other forms of
spontaneous symmetry breaking, these phenomena cannot be directly observed on any finite
sample but only in the thermodynamic limit. The characterization of a given phase transition
and the determination of the properties of the phases themselves, is therefore in numerical
simulation left to a careful analysis of other properties which are well defined indicators of the
intrinsic phase change on a finite system.

We have shown in 1.3.2 that imaginary-time dynamics allows for the study of static sus-
ceptibilities, which represent both theoretical and experimental precious tools to characterize
the response of a quantum system to an external (small) perturbation and can be carefully
used to determine the tendency of a system to break some symmetry associated to the exter-
nal perturbing field. In this Chapter we show an application of imaginary-time dynamics to
the finite-temperature study of a very intriguing novel phase of matter characterized by both
amorphous, glassy, order and Bose-Einstein condensation. In particular we have character-
ized and demonstrated the existence of a novel quantum phase featuring both Bose-Einstein
condensation and spin-glass behaviour [35]. The mechanism inducing the coexistence of these
two orders is very different from the one inducing localization in the insulating “Bose-glasses”
and could be experimentally probed in future experiments.

In Sec. 5.1 we introduce both a finite-temperature quantum Monte Carlo method and a
mean-field numerical tool particularly useful for our analysis of quantum glasses. In Sec. 5.2
the experimental findings and the theoretical problems concerning the current understanding
of “superglasses” are introduced and in Sec. 5.3 our model for the existence of Bose-Einstein
condensation in quantum glasses is presented. We account for and demonstrate the spin-glass
nature of this model in 5.4; in Sec. 5.5 we discuss recently obtained related results and finally
draw our conclusions.
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5.1 Finite-Temperature Methods for Strongly Correlated Systems

In order to characterize the finite-temperature equilibrium properties of a quantum system,
the canonical partition function Z = Tr e−βH at finite temperature T = 1/β can be considered.
The basic structure of the canonical partition function is that of an imaginary-time projection
in which the inverse temperature plays the role of the total imaginary projection time. There-
fore, stochastic methods devised to simulate the imaginary-time dynamics of quantum systems
can be conveniently modified and successfully applied to the study of finite-temperature prop-
erties. In this Section we first present a quantum Monte Carlo method which, in general, pro-
vides numerically exact properties of any finite bosonic system on an arbitrary lattice. We later
consider also a recently introduced method which is exact only on particular class of graphs,
such as the Bethe lattices, which has nonetheless the advantage of giving physical properties
already in the thermodynamic limit. Both methods have a wide range of applicability and, in
particular, they have been used in our study of quantum glasses.

5.1.1 Stochastic Sampling of the Canonical Partition Function

The stochastic sampling of the quantum partition function can be conveniently exploited to
obtain numerically exact properties of a generic bosonic Hamiltonian H = −T + V, where
we have isolated the kinetic T and the potential terms V. Finite-temperature quantum Monte
Carlo schemes based on the original Worm algorithm idea [106] have been recently extended to
Canonical ensemble simulations [112, 115]. These methods offer an efficient scheme based on
the sampling of the configuration space spanned by the extended partition functionZW(β, τ) =

Tr e−(β−τ)HWe−τH, whereW is a suitable worm operator determining an imaginary-time dis-
continuity in the world-lines. For our analysis, we have chosen the worm operator introduced
in [115], which is a linear superposition of n-body Green functions, avoiding the complications
arising in [112] where the commutability of the worm operator with the non-diagonal part of
the Hamiltonian is required. The extended partition function is in turn expanded by means of
a finite-temperature Dyson expansion, which guarantees the lack of time-discretization error
and reads

ZW(β, τ) =
∑
n

∑
x0...xn

ˆ
0<τ1<···<τn<β

e−βV(x0) 〈x0| T (τn) |xn−1〉 〈xn−1| T (τn−1) |xn−2〉 × . . .

〈xL|W(τ) |xR〉 × . . . 〈x2| T (τ2) |x1〉 〈x1| T (τ1) |x0〉 . (5.1.1)

The configurational space spanned by the Dyson paths are depicted in Fig. 5.1.1, where each
dot represents a many-body configuration at a given imaginary-time and periodic boundaries
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are due to the cyclic properties of the trace. An important difference between the Dyson series
approach and the path-integral one, is that in the first case an additional summation over the
perturbative order (i.e. the number of dots in Fig. 5.1.1) is required. Apart from this difference,
which has to be carefully treated when devising a stochastic method, the general formalism
and potentialities are otherwise identical with the path-integral case. For example, two-points
imaginary-time correlations can be indeed easily obtained upon considering the value of the
observable at distinct pair of points in the periodic imaginary times spanned by the Dyson
configurations.

X0

X1

X2
X3

X4

X5

X6

X7

XL
XR

W

Fig. 5.1.1 Graphical representation of the configurational space of the Dyson series for the the extended par-
tition function at finite temperature. Dots represent many-body configurations at given imaginary times in
the interval [0, β). Blue points are connected by the off-diagonal part of the Hamiltonian, whereas the worm
operator connects the two red points.

Full details of the sampling strategy adopted by the Stochastic Green Function (SGF)
method are given in Ref. [115], we only stress here that this particular algorithm gives full
access to exact equal-time thermal averages of n-body Green functions as well as to thermal
averages of imaginary-time correlation functions of local, i.e. diagonal in the occupation num-
bers representation, quantum operators.
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5.1.2 The Quantum Cavity Method

A different and complementary approach to models defined on Bethe lattices, or, their topo-
logically equivalent random graphs, consists in solving them exactly in the thermodynamic
limit L → ∞, by means of the cavity method [89]. Since local observables are self-averaging
in this limit, this results in automatically taking into account the average over the different
realizations of the random graphs which is particularly useful for model with disordered in-
teractions. For bosonic systems, the cavity method allows to reduce the solution of the model
to the problem of finding the fixed point of a functional equation for the local effective action,
in a similar spirit to bosonic DMFT. All the details of the computation have been discussed
in [125], where it has been shown that the method allows to compute the average of all the
relevant observables. However, in the simplest version discussed in [125], the cavity method
can only describe homogeneous pure phases such as the low-density liquid. In order to describe
exactly the high density glassy phase, where many different inhomogeneous states coexist, one
has to introduce a generalization of the simplest cavity method which goes under the name of
replica symmetry breaking (RSB). Unfortunately, this is already a difficult task for classical
models, in particular in spin-glass like phases [89]. Hence, we describe the glassy phase using
the simplest version of the method, the so-called replica symmetric (RS) one. This yields an
approximate description of the glassy phase which we expect to be qualitatively correct. In the
glassy phase, the RS cavity method is only approximate, an exact solution for L → ∞ requir-
ing the introduction of RSB. On the other hand, quantum Monte Carlo methods are limited
for large L by the unavoidable divergence of equilibration times due to the glassy nature of the
system. Still, we have generally found a very good agreement between the results obtained by
means of the unbiased Stochastic Green Function method for fairly large L, where the system
can still be equilibrated, and the RS cavity method for L→∞.

5.2 Quantum Glasses, Localization and the Superglass Phase

Quantum particles moving in a disordered environment exhibit a plethora of non-trivial phe-
nomena. The competition between disorder and quantum fluctuations has been the subject of
vast literature [2, 51] in past years, with a renewed interest following from the exciting fron-
tiers opened by the experimental research with cold-atoms [111, 16]. One of the most striking
features resulting from the presence of a disordered external potential is the appearance of
localized states [2]. Localization happens both for fermions and bosons [51], but in the latter
case one has to introduce repulsive interactions to prevent condensation of particles in the
lowest energy state. This results in the existence of an insulating phase called “Bose glass”,
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characterized by a finite compressibility and gapless density excitations in sharp contrast to
the Mott insulating phase [51, 77].

On the other hand, latest research stimulated by the discovery of a supersolid phase of He-
lium has brought to the theoretical foresight of a “superglass” phase [23, 17], corroborated by
recent experimental evidence [69], where a metastable amorphous solid features both conden-
sation and superfluidity, in absence of any random external potential. The apparent irrecon-
cilability, between the current picture of insulating “Bose glasses" and the emergence of this
novel phase of matter, calls for a moment of thought. Although it has been recently demon-
strated that attractively interacting lattice bosons can overcome the localization induced by
an external random potential and feature a coexistence of superfluidity and amorphous order
[44], a general understanding of the physics of Bose-Einstein condensation in quantum glasses
and in the presence of purely repulsive interactions is still in order. In particular, we wonder
what could be the possible microscopic mechanism leading to super-glassines and if the ex-
ternal disorder, current paradigm in the description of quantum glasses, could be replaced by
some other mechanism.

In [35] we have shown that geometrical frustration is the missing ingredient. Geometrical
frustration is a well recognized feature of disordered phases in which the translational symme-
try is not explicitly broken by any external potential. Examples are spin liquids phases of frus-
tratedmagnets [29], valence-bond glasses [138] and the order-by-disordermechanism inducing
supersolidity on frustrated lattices [148]. Another prominent manifestation of frustration is
the presence of a large number of metastable states that constitutes the fingerprint of spin-
glasses. When quantum fluctuations and geometrical frustration meet, their interplay raises
nontrivial questions on the possible realization of relevant phases of matter. Most pertinently
to our purposes: can quantum fluctuations stabilize a superglass phase in a self-disordered en-
vironment induced by geometrical frustration? Hereby we review our proposed answer to this
question, demonstrating that repulsively interacting bosons can feature a low-temperature
phase characterized both by spin-glass order and Bose-Einstein condensation. Such a frus-
tration induced superglass sheds light onto a novel mechanism for glass formation in bosonic
systems noticeably different from the localization effects leading to “Bose glass" insulators and
paving the way to a better understanding of this new phase of the matter.
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Fig. 5.2.1 Example of a small random graph with connectivity z = 3 and for hard-core bosons at half filling.
Full green circles represent occupied sites. Due to geometrical frustration there is more than one configuration
that minimize the potential energy. In this example, the highlighted nearest-neighboring bonds are frustrated
in either of the two configurations represented in the picture (light green circles).

5.3 A Model for the Superglass Phase and the Role of Frustration

Strongly interacting bosons on a lattice can be conveniently described bymeans of the extended
Hubbard Hamiltonian, namely

H = −t
∑
〈i,j〉

[
b†i bj + bib

†
j

]
+ V

∑
〈i,j〉

ninj , (5.3.1)

where b†i (bi) creates (destroys) a hard-core boson on site i, ni = b†i bi is the on-site density and
the summations over the indexes 〈i, j〉 are extended to nearest-neighbor vertices of a given
lattice with L sites. In the following we will set t = 1, i.e. we will measure all energies in units
of t.

In order to capture the essential physics of the problem in exam, we adopt a minimal and
transparent strategy to induce geometrical frustration in the solid. We therefore consider the
set of all possible graphs of L sites, such that each site is connected to exactly z = 3 other sites,
and give the same probability to each graph in this set. We will discuss average properties over
this ensemble of random graphs in the thermodynamic limit L→∞.
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The motivations for this choice are the following:

• On a square lattice, model (5.3.1) is known to produce a solid insulating phase at high
enough density, where the particles are arranged in a checkerboard pattern [126]. This is
due to the fact that all loops have even length. On the contrary, typical random graphs are
characterized by loops of even or odd length; in the classical case t = 0, this frustrates the
solid phase enough to produce a thermodynamically stable glass phase at high density [89].
An exemplification of the geometrical frustration induced by the topology of the graph and
the density-density interaction is shown in Fig. 5.2.1.

• Typical random graphs have the important property that they are locally isomorphic to
trees, since the size of the loops scales as lnL for large L: indeed, this is a consistent way
of defining Bethe lattices without boundary [89]. This locally tree-like structure allows to
solve the model exactly, at least in the liquid phase, by means of the cavity method [80, 125].

• These lattices are quite different from square lattices. Yet, it has been shown in the classical
case, and for some more complicated interactions, that the phase diagram is qualitatively
very similar for themodel defined on a random graph and on a square lattice [19, 39]. Hence,
we believe that it is possible to find a model similar to Eq. (5.3.1), defined on a square lattice
but with slightly more complicated interactions (probably involving many-body terms) that
will show the same qualitative behaviour of the model investigated here.
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Fig. 5.3.1 Condensate fraction ρc/ρ as a function of the interaction strength V at half-filling, computed via the
cavity method at different values of β. Results for ρc/ρ as obtained by the Stochastic Green Function (SGF) at
β = 5 are reported.
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5.3.1 Results

The presence of off-diagonal long range order and therefore the onset of Bose-Einstein conden-
sation can be conveniently detected by considering the large separation limit of the one-body
density matrix, i.e. the condensate density reads

ρc = lim
|i−j|→∞

〈
b†i bj

〉
= |〈bi〉2| , (5.3.2)

where the square brackets indicate a quantum and thermal average and the bar indicates
averages over independent realizations of the random graphs. The cavity method works in the
grand-canonical ensemble and gives direct access to the average of b, while canonical ensemble
simulations done with the Stochastic Green Function method give easy access to the one-body
density matrix. On the other hand, spin-glass order is signaled by the breaking of translational
invariance, namely 〈ni〉 6= L−1

∑L
i=1〈ni〉 = ρ which, strictly speaking, can take place only in

the thermodynamic limit. Introducing δni = (ni − ρ), the on-site deviation from the average
density, spin-glass order can be quantified by the Edwards-Anderson order parameter

qEA =
1

L

L∑
i=1

〈δni〉2, (5.3.3)

which can be easily computed by the cavity method in the thermodynamic limit.
The emergency of a spin-glass behavior on a finite system is, on the other hand, conveniently

identified by the divergence of the associated spin-glass susceptibility

χSG =
1

L

ˆ β

0

dτ
∑
i,j

〈δni(0)δnj(τ)〉2, (5.3.4)

which, as per usual susceptibilities introduced before, has the form of a two-point imaginary-
time correlator and it is accessible with a suitable finite-temperature quantum Monte Carlo
method as the Stochastic Green Function. It is possible to show [65] thatχSG is the susceptibility
naturally associated to the order parameter qEA, because it can be defined as the derivative of
qEA with respect to an external field coupled to the order parameter itself (as in standard critical
phenomena).

At half-filling factor ρ = 1/2, the condensate fraction, the Edwards-Anderson order param-
eter, and the scaled spin-glass susceptibility are shown respectively in Figs. 5.3.2-5.3.3. In Fig.
5.3.2 we also show a comparison between the values of the condensate fraction obtained via the
cavity method and via Stochastic Green Function in a linear extrapolation to L→∞. The very
good coincidence of these results supports our conjecture that the approximate RS description
of the glass phase we adopted here is quantitatively and qualitatively accurate. At the lowest
temperature, the system becomes a glass around V ∼ 2.7 while it still displays BEC; the con-
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Fig. 5.3.2 Edwards-Anderson order parameter as a function of the interaction strength V at half-filling, com-
puted via the cavity method at different values of β.
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Fig. 5.3.3 Scaled spin-glass susceptibility χSG = χSG/L5/6 reported as a function of the interaction strength
V . Standard finite-size-scaling arguments [65] show that the different curves must intersect at the spin-glass
transition. Results are obtained by the Stochastic Green Function method.

densate fraction only vanishes at V ∼ 3.5 inside the glass phase. This clearly establishes the
existence of a zero-temperature superglass phase in the region 2.7 . V . 3.5. Note additionally
that both transitions are of second order, hence the condensate fraction is a continuous func-
tion; since the latter stays finite on approaching the spin-glass transition from the liquid side
(where the cavity method gives the exact solution), it must also be finite on the glass side just
after the transition. In Fig. 5.3.4 we report the finite-temperature phase diagram of the model
at half-filling. It is defined by two lines: the first separates the non-condensed (〈b〉=0) from the
BEC (〈b〉 6= 0) phase, the second separates the glassy (qEA 6= 0) from the liquid (qEA = 0) phase.
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The intersection between these two lines determines the existence of four different phases
(normal liquid, superfluid, normal glass, superglass).
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Fig. 5.3.4 finite-temperature phase diagram of the extended Bose-Hubbard Hamiltonian on a z = 3 random
graph at half-filling, where V is the density-density interaction strength. A finite region characterized by the
coexistence of Bose-Einstein condensation and glassy behavior is clearly visible.

5.4 Ground-State Degeneracy and Spin-Glass Nature

Geometrical frustration induces the existence of a highly degenerate set of ground states, each
of them characterized by a different average on-site density, which is absent in glassy phases
induced by localization in disordered external potentials such as the Bose glass. To demon-
strate this peculiar feature, it is instructive to consider a variational wave-function explicitly
breaking the translational symmetry of the lattice

〈n |Ψα〉 ∝ exp

[∑
i

αini

]
, (5.4.1)

where the variational parameters αi are explicitly site-dependent and tend to (dis)-favour the
occupation of a given site. In the spin-glass phase of the bosons, the optimal set of the varia-
tional parameters is highly dependent on the initial conditions associated with the αi, whereas
all the variational states, even with different parameters, have almost degenerate variational
energies. Each set of optimized variational parameters is then representative of one of the
many degenerate ground states of H. As an example, we show in Fig. 5.4.1 the variational

86



expectation values of the site densities for two different solutions resulting from the mini-
mization of the variational energy with the SRH method [128], a robust stochastic variant of
the Newton Method. We further checked, using the zero-temperature Green Function Monte
Carlo method [130], that if one applies the imaginary-time evolution |φα〉 = exp (−τH) |Ψα〉 to
one of these states, the density profile remains amorphous for a time τ that is divergent with
the size of the system.

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80

δn
i/

ρ

i

Fig. 5.4.1 Variational expectation values of the site density for different sets of the optimized parameters at
half-filling density for L = 80 and V = 4.

5.5 Conclusions

The aim of this Chapter was to show a successful application of finite-temperature methods
and imaginary-time correlations to the characterization of a novel phase of matter. In par-
ticular we have established the existence of a stable superglass phase in a lattice model of
geometrically frustrated bosons, in absence of quenched disorder in the Hamiltonian. This has
been done by combining the analytical solution of the model via the quantum cavity method
and numerical simulations via QuantumMonte Carlo. The glass phase we found is very differ-
ent from the usual Bose glass, since the latter is driven by localization effects in presence of an
external disorder and is then insulating, while the former is driven by self-induced frustration
on a disordered lattice and displays Bose-Einstein condensation. This results in a coexistence
of a large number of degenerate amorphous ground states, whose existence we showed by a
variational argument corroborated by quantum Monte Carlo. We expect, by analogy with the
classical case [19], that the glassy phase found here will exist also on regular finite dimensional
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lattices, provided the interactions are modified to induce sufficient geometrical frustration. In
that case, its properties should be very similar to the one showed by metastable superglasses
observed both in numerical simulations [23] and experiments [69] on Helium 4. The main dif-
ference is that, due to the randomness of the underlying lattice, the superglass studied here
is a truly stable equilibrium state, allowing for a much more precise characterization of its
properties.

We conclude the discussion on the existence of superglass phases induced by geometrical
frustration noticing that a similar scenario is realized when random interactions on a regular
lattice are chosen. In particular, the interesting outcome of Ref. [136] is that a random two-
body density-density interaction on a cubic lattice can stabilize a superglass phase and give
rise to a finite-temperature phase diagram qualitatively close to the one we have obtained and
shown in Fig. 5.3.4. Classical (magnetic) realistic systems realizing effectively random two-
body interactions are known and have been studied as prototypical examples of spin-glasses.
Their quantum counterparts are still to be identified but a number of possible candidates both
in the field of frustrated quantum magnets and trapped cold-atoms exist and future research
will be devoted to their identification.
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Part II
Real Time Dynamics

Out-of-Equilibrium Properties

Τοὺς δὲ μέθ᾿v ὁπλότατος γένετο Κρόνος ἀγκυλομήτης,
δεινότατος παίδων· θαλερὸν δ᾿v ἤχθηρε τοκῆα.

Hesiod, “Theogony” verses 137-138





Chapter 6
Exact Dynamics After A Quantum Quench
Localization and Glassy Dynamics of Many-Body Quantum Systems

Isolated physical systems are an idealization which is practically never perfectly realized in
nature. Matter is indeed regularly driven out of equilibrium and its physical properties are
consequently affected. Perturbations to an underlying state of equilibrium of a physical system
can be of diverse nature and can be often regarded as an external disturbance. The external
disturbance is the effective result of the complex interactions taking place between a large
environment and the small portion of which we are examining.

It is however often the case that either the external disturbance acts for a relatively short
amount of time or that the external environment acts in a rather smooth and controlled way.
In such a circumstance, even though the physical system is not isolated from the external
environment, it nonetheless reaches a kind of stationary state in which physical quantities
of interest are expected not to exhibit large fluctuations in time. A characterization of the
macroscopic properties of the system in terms of an equilibrium, time-independent, picture is
often very accurate and of paramount importance in the study of classical physical systems
ranging from simple fluids to complex biological matter.

At the very roots of the possibility to provide a stationary description of these phenom-
ena there is the ergodicity axiom in classical statistical mechanics, brought by the intuition
of Ludwig Boltzmann in the nineteenth century. The ergodicity axiom states that, during its
time evolution, a macroscopic system uniformly explores the entire phase space compatible
with conservation laws, so that the time average of any observable comes to coincide with the
micro-canonical ensemble average and, when the observable is local, also with the canonical
Gibbs ensemble average. Nonetheless, ergodicity can be violated in classical systems, a notice-
able example being glasses. [98] Quantum effects might also spoil ergodicity by preventing the
wave function from diffusing within all available configurations. This phenomenon is actually
known to occur in the presence of disorder and manifests itself either by single-particle [2] or
many-particle [9, 95, 96] wave function localization. However, alike classical models for glassy
behavior, ergodicity breakdown in the quantum dynamics may not necessarily require disorder
and it could instead be entirely due to frustrating dynamical constraints. [19, 52]
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An extremely important difference between the classical and the quantum case is that, from
a practical point of view, the validity of the ergodicity axiom can be extensively assessed in the
first case whereas it cannot be assessed in an exact fashion for a generic (non-integrable) quan-
tum system. The very difference between the two cases is indeed in the manifestly different
nature of the mathematical description of the physical time evolution. In the classical case,
the Newton equations of motion do not present, in principle, any conceptual problem in their
exact numerical solution and, in practice, the current evolutionary state of technology allows
for the simulation of even very intricate and large systems in a controlled amount of compu-
tational time. On the other hand, the mathematical description of the quantum dynamics and
the large physical (Hilbert) space in which a quantum state is described, are intrinsically more
demanding objects. This complexity hinders the possibility to specifically assess the validity of
the ergodicity principle and poses serious and restrictive limitations on the dimensions of the
systems whose exact dynamics can be studied.

In this Chapter we present some existing numerical methods that are able to treat, with
some important restrictions that will be highlighted, the dynamical properties of quantum one-
dimensional systems and we will review some of the numerical evidences we have presented
in Ref. [31]. In particular we will show that an isolated system of strongly interacting bosons,
modeling atoms in optical lattices, can be trapped during its evolution into long-lived inhomo-
geneous metastable states, provided that its internal energy exceeds a certain threshold. We
argue that the slowing down of high-energy incoherent excitations in the strongly correlated
system is the key feature responsible for this dynamical arrest, much resembling a kind of
glass transition. By formulating the problem in a different language, we also explicitly show
that a system initially prepared in a inhomogeneous state is unable to diffuse within the entire
configurational space; such a dynamical localization in the many-body Hilbert space looks in-
triguing and may represent a kind of many-body Anderson localization [9] that occurs without
disorder. The above phenomenon is put in further relation with and deemed responsible for
the lack of ergodicity observed in large finite size systems.
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6.1 Exact Methods for the Quantum Dynamics

The dynamical evolution of a wave-function induced by a quantum HamiltonianH is governed
by the the Schrödinger equation

d

dt
Ψ(x, t) = −i

∑
y

Hx,yΨ(y, t), (6.1.1)

where bold variables denote many-body configurations in a (discrete) Hilbert space. Eq. (6.1.1)
is a system of first-order ordinary differential equations and, in principle, does not present
any difficulty in its solution, whenever the initial condition Ψ(x, 0) is provided. However, the
number of coupled differential equations grows with the dimensionality of the Hilbert space
of the problem which in turn has typically an exponential growth in the system size. This
circumstance poses serious restrictions on the affordable system sizes that can be studied and
limits the numerical studymainly to one dimensional geometries, for which the dimensionality
of the Hilbert space is smaller than higher dimensional counterparts.

The first method we describe here, in 6.1.1, is based on the exact solution of the bare
Schrödinger equation (6.1.1), which, apart from the restriction on the possible system sizes
accessible, does not suffer from any approximation. The second method outlined in the follow-
ing,in 6.1.2, is based on a different idea, namely on the possibility in most low-dimensional
systems to reduce the full size of the Hilbert space into a much smaller effective space, which
encodes all the relevant physical information. This approach is not limited to small systems
but suffers from other important drawbacks that will be explained. A third scheme, which will
be particularly useful in the following, is instead based on the construction of a particular ba-
sis of orthonormal vectors in which the Hamiltonian has a simple tridiagonal form and it is
described in 6.1.3.

6.1.1 Series Expansion for the Schrödinger Evolution

One of the major problems arising in the numerical solution of the system of ordinary differ-
ential equations (6.1.1) is that an intrinsic discretization of time is needed which leads to a
systematic error that grows with time. Even though the error can be controlled with appro-
priate high order integration schemes such as the Runge-Kutta methods, we describe here
an alternative higher order method which offers great stability and accuracy thus allowing to
follow the dynamical evolution up to very long times.

Upon time integration of the Schrödinger Equation, we get a closed form for the exact time
evolution of an initial quantum state |Ψ(0)〉
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|Ψ(t)〉 = e−iH t|Ψ(0)〉, (6.1.2)

where the exponential unitary evolution of the Hamiltonian operator manifests itself. At each
time, we can make an evolution for a time step∆t by considering a truncated Taylor expansion
of the unitary evolution:

|Ψ(t+∆t)〉 = e−iH ∆t|Ψ(t)〉 '
∑

k=0,kmax

(−i∆t)k
k!

Hk|Ψ(t)〉. (6.1.3)

Here, the series converges very quickly with k and the cutoff kmax must be chosen to obtain
the desirable convergence for a given ∆t. Therefore, the evolved wave function |Ψ(t+∆t)〉 can
be easily obtained by summing terms that can be in turn recovered by repeatedly applying the
Hamiltonian H to |Ψ(t)〉. The full time evolution at long times can be achieved by subsequent
small-time evolutions.

Moreover, time-dependent correlation functions of the form CA(t) = 〈Ψ |A†(t)A(0)|Ψ〉, where
A is an arbitrary operator, can be as well obtained by first applying A to |Ψ〉, then performing
the time evolution |ΨA(t)〉 = e−iH tA|Ψ〉, and finally computing CA(t) = 〈Ψ(t)|A†|ΨA(t)〉, where
|Ψ(t)〉 = e−iH t|Ψ〉.

The numerical accuracy of the unitary evolution can be verified by checking the conserved
quantities of the time-evolution (for example the total energy) which in our calculations remain
to all purposes constant up to the longest considered evolution times.

6.1.2 Time-Evolving Block Decimation

The general idea of the Time-Evolving Block decimation algorithm [145, 147] is to consider a
particular representation of a generic many-body state defined in a Hilbert space of dimension
DN , where D is the dimension of a certain local-basis. Such a generic state is fully described
in terms of the local quantum numbers ik as

|Ψ〉 =

D∑
i=1

ci1i2..iN |i1, i2, .., iN−1, iN 〉,

and in the Vidal’s representation the coefficients ci1i2..iN are taken to be

ci1i2..iN =

χ∑
α0,..,αN

λ[1]
α0
Γ [1]i1
α0α1

λ[2]
α1
Γ [2]i2
α1α2

λ[3]
α2
Γ [3]i3
α2α3

λ[4]
α3
· .. · λ[N ]

αN−1
Γ [N ]iN
αN−1αNλ

[N+1]
αN , (6.1.4)
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where the local tensors Γ and the bondmatrices λ constitute a set of Dχ2N +χ (N + 1) param-
eters that specify the state in this representation. The time evolution of a given initial state
is obtained upon considering a small time-step ∆t, and a repeated application of the real-
time propagator e−iH∆t within a Suzuki-Trotter approximation scheme, inducing systematic
errors of magnitudeO

(
∆t3

)
. When the infinitesimal unitary evolution is applied the decompo-

sition (6.1.4) is consistently updated. The other major and most limiting source of systematic
errors is however intrinsically due to the finite amount of entanglement retained by Vidal’s
representation. It can be indeed shown that the total truncation error is exponentially grow-
ing with time and it therefore severely limits the accessible time scales. Upon varying the bond
dimensionality χ a control of this systematic error can be achieved, even though other compu-
tational limitations coming from the general scaling of the algorithm, which is of O(D4χ3),
have to be faced.

6.1.3 Lanczos Basis

The Lanczos method [79] is a general and very important strategy to recursively generate a
basis in which a given Hamiltonian takes a tridiagonal form. This method and its variants are
typically used to study the spectrum of a sparse Hamiltonian matrix, to which its application
is particularly tailored. Moreover, the particular tridiagonal form of the Hamiltonian can be
also used to provide a sometimes faster convergent expansion of the short-time propagator
than the Taylor expansion of Eq. (6.1.3).

The Lanczos basis is characterized by a set of orthonormal states |0〉 , |1〉 , . . . |L〉 in which
the full Hamiltonian takes a reduced tridiagonal form:

HL =



ε0 t0→1 0
... 0

t1→0 ε1 t1→2

... 0

0 t2→1 ε2
... 0

0 0 . . .
. . . tL−1→L

0 0 . . . tL→L−1 εL


(6.1.5)

The basis set is constructed in a recursive way starting from an initial vector |0〉 upon repeat-
edly applying the Hamiltonian

tn→n+1 |n+ 1〉 = H |n〉 − εn |n〉 − tn−1→n |n− 1〉 , (6.1.6)

with the coefficients of the tridiagonal matrix given by
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tn→n+1 = 〈n+ 1|H |n〉 (6.1.7)
εn = 〈n|H |n〉 .

For sparse matrices, the recursive calculation of the Lanczos elements is eased by the local
structure of the Hamiltonian operator, for which a number of operations linear in the size of
the Hilbert space is required.

When the initial state vector is |Ψ(t)〉, the evolved state at a given time, then the unitary
evolution for a time step ∆t reads [83]

|Ψ(t+∆t)〉 ' VL(t)e−i∆tHL(t)VTL (t)|Ψ(t)〉, (6.1.8)

where VL(t) is the matrix containing all the Lanczos vectors and the exponential of the tridi-
agonal matrix is considered. This approach therefore constitutes a viable alternative to the
bare Taylor expansion previously introduced, even though a satisfactory error control can be
achieved with both methods. The Taylor expansion is nonetheless more straightforward to be
numerically implemented and it has been the preferred method for our studies.

However, we have considered an alternative use of the Lanczos method in order to charac-
terize the ergodic properties of the dynamics. Indeed, once for an initial many-body state |0〉
the tridiagonal matrix is constructed we are in condition to consider a time-dependent prob-
lem of a particle initially localized on site |0〉whose dynamics is governed byHL. This mapping
is particularly useful, as it will be shown later, to quantitatively characterize the many body
diffusion (or its lack) in the Hilbert space by means of a simple one particle problem.

Deferring the reader to the application of this method to a later part of the Chapter, we
make however a final important remark concerning the practical numerical evaluation of the
Lanczos states. Indeed when the tridiagonal matrix elements have to be computed on calcula-
tors with a finite-precision arithmetic an extremely careful treatment of numerical truncation
errors has to be envisaged. Truncation errors are due to the finiteness of the numerical repre-
sentation of rational numbers on any calculator and do generally propagate in any arithmetic
operation performed. The error accumulation can indeed quickly lead the most recently gener-
ated Lanczos vector not to be orthogonal to the previously generated ones and possibly yields
spurious results for the eigenvalues and eigenvectors of the Hamiltonian. This is commonly
know as the “ghost eigenvalues” problem. To overcome this problem, we have carefully ana-
lyzed the dependence of the results on the machine precision, considering up to 104 bits of
floating point arithmetic, for which no significant truncation error manifests up to the largest
value of the Lanczos basis dimension (L ∼ 5000) we have considered. A normal calculation
with standard double precision arithmetic is instead strongly biased by the ghost eigenvalues
and leads to wrong results.
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6.2 The Bose-Hubbard Model

The validity and the limitations of the ergodicity axiom for quantum matter is currently at-
tracting great interest, [109, 105] since well controlled realizations of closed quantum systems
have become feasible upon trapping cold atomic species. [21] Indeed, the evolution of the ex-
perimental techniques has led to the possibility to prepare atoms in a given initial state and
probe their time evolution under a Hamiltonian whose parameters are fully under control. It
is therefore for the first time in the history of physics that we are given the opportunity to
directly monitor the ergodicity principle at work in the quantum realm. [146]

One of the simplest models that can be realized in experiments is the Bose-Hubbard Hamil-
tonian: [21, 70]

H = −J
∑
〈i,j〉

(
b†i bj + h.c.

)
+
U

2

∑
i

ni(ni − 1), (6.2.1)

characterized by the amplitude J for an atomic bosonic species to hop between nearest-
neighboring wells of an optical lattice and by a local repulsion U among atoms localized in the
same potential well. The operators b†i and bi create and destroy, respectively, a boson on site
i, and ni = b†i bi is the density operator. 1 Experiments are often performed with anisotropic
lattices that realize a collection of almost uncoupled chains, a fortunate case for numerical
simulations that we shall mainly consider hereafter.

In one dimension, obstacles to ergodicity can arise in integrable models. [26] However, the
Hamiltonian (6.2.1) is not integrable and there are evidences that its dynamical evolution
succeeds in fast relaxing to a thermal state. In the experiment reported in Ref. [142], a system
of 87Rb atoms well described by the Hamiltonian (6.2.1) is prepared in a state in which the
sites of the optical lattice are alternatively empty and singly occupied. [142] This state is let
evolve with the Hamiltonian (6.2.1) for several ratios U/J . Even at the largest value U/J '
10, the initial density profile (. . . 1, 0, 1, 0, . . . ) rapidly relaxes to the homogeneous thermal one
(. . . 1

2 ,
1
2 ,

1
2 ,

1
2 , . . . ), much faster than the integrable counterparts of non-interacting or infinitely-

interacting (i.e., hard-core) bosons and consistently with the increased number of relaxation
channels that opens once integrability is lost.

When the number of bosons is multiple of the number of sites, the Hamiltonian (6.2.1) is
known to describe a Mott insulator for sufficiently large U/J , whereas for small values the
system is superfluid. In the gapless phase next to the Mott transition, we may expect that low-
energy itinerant Bogoliubov modes coexist with high-energy incoherent excitations. It is well
possible that the former relax much faster than the latter, so that the overall relaxation is con-
trolled just by the concentration of the high-energy incoherent excitations stored in the initial
state. For densities n ≤ 1 and U/J � 1, one may roughly identify those excitations as sites that
1 In the experimental setup, an additional confining potential is usually present. We do not expect the latter to
play a major role in what we shall discuss.
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Sd = 1 Sd = 2 Sd = 3

Fig. 6.3.1 Inhomogeneous initial states constituted by clusters of doubly occupied sites (large blue circles) and
empty sites (small dots). The size of each cluster is denoted by Sd.

are occupied by two or more bosons. From this perspective, the initial state in the experiment
of Ref. [142] is not the best choice for probing how high-energy excitations contribute to the
relaxation. Here, we shall consider different initial states that instead include a finite density
of high-energy excitations, and simulate their time evolution by means of numerical tools such
as exact diagonalization, the Lanczos method and the time-evolving block decimation [145]
previously introduced.

6.3 Inhomogeneous Initial States and Dynamical Localization

We start from analyzing the model at density n = 1, when at equilibrium a Mott transition
occurs at a critical (U/J)c ' 3.5. [78] We imagine to prepare an initial state where all the sites
are either empty or doubly occupied. In particular we consider the states depicted in Fig. 6.3.1,
namely with clusters of doubly occupied sites of variable size Sd. These states are let evolve with
the spatially homogeneous Hamiltonian (6.2.1) for different U/J , below and above the critical
value. While for small U/J the density profile rapidly reaches the equilibrium configuration
(. . . 1, 1, 1, 1, . . . ), for large U/J , it stays close to its initial value for a remarkably long time.
Eventually, since the system is finite, the density profile approaches the homogeneous plateau,
with small residual oscillations that get damped as the system size increases.

We can define a relaxation time τR (whose inverse is shown in Fig. 6.3.2, for Sd = 1), as the
first time for which the local density approaches its homogeneous value. We highlight that τR,
at a specific (U/J)dync , has a sudden step up, which becomes sharper and sharper as the system
size increases. The above results show that above (U/J)dync the system has the tendency to stay
dynamically trapped into long-lived inhomogeneous configurations.

For large values of U/J , we can better understand this surprising behavior by means of an
effective Hamiltonian that can be derived following the same reasoning of Refs. [101, 113].
For a sufficiently large interaction, it is justified to project the evolution onto states with the
same potential energy per site U/2, at least for time scales shorter than U2/J3. One realizes
that states with the same potential energy but with triply and singly occupied sites start to
contribute only at order J4/U3, so that, with accuracy J2/U , the number of doubly occupied
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Fig. 6.3.2 Inverse relaxation times τ−1
R of the local density for the initial state (. . . 2, 0, 2, 0, . . . ). Exact diagonal-

ization results with darker points marking larger systems, respectively N = 8, 10 and 12. The dashed line sets
the corresponding inverse decay times calculated within the dynamics obtained from the effective Hamiltonian
of Eq. (6.3.1).

sites is conserved. If we associate a fictitious spin up or down to a doublon (doubly occupied
site) or a holon (empty site), respectively, we find that the effective Hamiltonian that controls
the evolution reads:

Heff =
2J2

U

∑
〈ij〉

[
− 8Szi S

z
j +

(
S+
i S
−
j + S−i S

+
j

)]
, (6.3.1)

which describes a hard-axis ferromagnetic Heisenberg model. [101] In Fig. 6.3.3, we show the
time-dependence of the clusters density in the largeU regime, evolved according to the effective
Hamiltonian (6.3.1). Remarkably we see that, even for very small clusters, the system fails to
restore the spatial homogeneity up to very long time scales, which turns to be far beyond those
currently accessible in typical experimental setups.

To understand the slowing down of the dynamics in this framework we notice that the ef-
fective interaction among doublons turns to be attractive. This fact, together with the finite
density of high energy excitations in the initial state, makes the decay of locally ferromagnetic
clusters very unlikely and it is responsible for the effective lack of ergodicity on extremely long
time scales. Indeed we have checked that in the large U regime the system has the tendency
to get dynamically stuck into clusters of doublons of finite size, whereas a much faster annihi-
lation and recombination rate is observed in the small U limit.
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Fig. 6.3.3 Effective-Hamiltonian evolution of the average density within a cluster of different size Sd, where
the dimensionless time is defined as teff = 2J2

U
t. We show results for N = 72 and 96 sites, obtained by the

time-evolving block decimation technique. [147] We note that even small clusters of doubly occupied sites can
effectively freeze the dynamical evolution in the large-U regime.

6.3.1 Lanczos-Basis Analysis

To get further insights into the dynamical behavior of the system, we recast the problem in
a different language. Starting from the initial state, denoted as |0〉, we can generate an or-
thogonal basis set |i〉, i = 0, 1, . . . , by repeatedly applying the Hamiltonian. In this Lanczos
basis of many-body wave functions, the Hamiltonian has the form of a tight-binding model on
a semi-infinite chain. Each site i = 0, 1, . . . corresponds to a many-body state, it has an on-site
energy εi = 〈i|H|i〉 and is coupled only to its nearest neighbors by hopping elements ti→i+1 and
ti→i−1. [79] It is easy to realize that the unitary evolution of the original many body problem is
thus fully equivalent to the dynamics of a single particle, initially sitting at site 0, that is then
let propagate along such a tight-binding chain of many-body states. We note that, both εi and
ti→i+1 largely fluctuate from site to site, therefore resembling an effective Anderson model,
even though those parameters are in reality deterministic, see Fig. 6.3.4. In Figure 6.3.5, we
also show the mean distance traveled by the particle after time t starting from the first site of
the chain, which corresponds to an initial state |0〉 ≡ (. . . 2, 0, 2, 0, . . . ), and for differentU/J . We
observe that, for small values of U/J , the particle diffuses and its wave-packet finally spreads
over the whole chain, in a rather uniform way. On the contrary, above a certain critical value of
the interaction (U/J)dync , the particle stays localized near the origin for arbitrarily long times.

A closer look to the structure of the on site energies reveal the existence of a potential well at
the edge of the chain. This is crucial in order to understand the observed localization transition.
Since the potential well cannot induce a true bound state below the bottom of the spectrum,
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at most a resonance will form in the spectrum, from which the particle could in principle
escape in a finite time. This indeed happens at small U but apparently not at large U , where
the increased depth of the well and the effective randomness of the on-site energies conspire
together to keep the particle localized close to the edge, preventing the the states in the well
to hybridize with other states along the chain. We now see how this result connects with the
previous analysis on the density relaxation times. In the small U/J regime the particle is able
to escape from the well and to explore larger portions of the chain, thus resulting into a fast
density relaxation. As opposite, for large U/J , the particle bounces back and forth inside the
well, finding hard time to escape from it. This lack of diffusion results into a very long-time
scale for the density to relax to its homogeneous value.

The above results show explicitly that some kind of localization in the many-body configura-
tional space does occur, at least in the finite system. [9, 27] While such an intriguing behavior
might well be a subtle effect due to the finite size spectrum, it could also signal the onset of a
genuine localization that survives in the thermodynamic limit.

6.3.2 Lanczos-Basis Analysis of an Integrable Model

To better elucidate the many-body localization phenomenon suggested by the Lanczos-basis
analysis of the Bose-Hubbard model, we hereby show that localization is not strictly implied by
integrability. To this purpose, we consider a model of one-dimensional hard-core bosons pre-
pared in an initial inhomogeneous state with an alternating density profile (. . . 1, 0, 1, 0, . . . )

and let it evolve in the Lanczos basis with their non-interacting (integrable) kinetic Hamilto-
nian. In Fig. 6.3.6, we show both the Lanczos hopping elements and the expectation value of
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Fig. 6.3.4 On site energies and nearest-neighbor hoppings of the effective chain that represents the Hamil-
tonian in the Lanczos basis starting from the state (. . . , 2, 0, 2, 0, . . . ), the site 0. Red points refer to U = 2J ,
when the particle does diffuse starting from site 0, while blue points to U = 10J , when it does not. The shaded
regions correspond to energies less or equal that of the initial state.
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the Lanczos particle traveling in the many-body space. The effect of integrability is to reduce
the number of allowed Lanczos states with respect to the total Hilbert space. Indeed, we find
that the hopping is a strongly decreasing function of the iterations, approaching zero after a
certain number of states ν(N) that is a finite fraction of the full Hilbert space. Noticeably, the
average position traveled by the particle increases accordingly, leading, therefore, to a full de-
localization in the thermodynamic limit. This analysis shows that a localization in the Lanczos
basis is not necessarily due to integrability – whose effect only amounts to reduce the number
of active many-body states – whereas it is due to the effective dynamical constraints brought
by the interaction.

6.3.3 Inhomogeneous States Dynamics at n = 2/3

Until now, we have concentrated our attention on the unitary-filling density, where at equilib-
rium a Mott transition takes place upon increasing the interaction strength. To better realize
the importance of the density on our considerations on the large-U relaxation times, we now
show the exact time evolution of inhomogeneous states at n < 1. For example, we consider
n = 2/3 and an initial density profile (. . . 2, 0, 0, 2, 0, 0, . . . ). As shown in Fig. 6.3.7, we find quite
a different behavior for the density relaxation times with respect to the unitary-filling case,
with a much smoother crossover from small to large values of Uf . Moreover, there is no evi-
dence of any increase in the relaxation times with the system size. This fact suggests that the
dynamical constraints brought by the effective interaction among doublons are much stronger
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Fig. 6.3.5 Time-dependent expectation value of the wave-packet position of the effective particle traveling in
the Hilbert space generated by a chain of Rmax = 1000 Lanczos states. The red points correspond to U = 2J and
the blue points to U = 10J (the original lattice size of the Bose-Hubbard model is N = 12). The shaded region
marks the center of the Lanczos chain, which is not reached in the localized regime.
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at n = 1, where a sharp crossover in the relaxation times is observed. We finally remark that,
even at non unitary fillings, we expect larger clusters of doublons to have larger relaxation
times than the simple initial state we have considered here. The possibility of a non-thermal
behavior at non-unitary filling cannot be excluded, even though the strongest manifestation of
the dynamical arrest is expected to happen at n = 1. This fact suggests a deeper connection be-
tween the observed dynamical behavior and the zero temperature Mott transition that occurs
at equilibrium and at integer filling, as suggested by calculations with infinite-coordination
lattices. [119, 123]
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Fig. 6.3.7 Exact time evolution of the densities on initially doubly occupied sites at filling n = 2/3 for an
N = 15 chain. Different curves from left to right correspond to increasing values of the final interaction at
U/J = 0, 1, . . . 10. Inset: corresponding inverse relaxation times τ−1

R for increasing lattice size N = 9, 12, and 15.
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6.4 Homogeneous Initial States and Quantum Quenches

In light of the previous results, one may question that by choosing an inhomogeneous con-
figuration of doublons we pick up a rather specific initial state in the Hilbert space. We are
now going to show that the above findings strongly affect the dynamics starting from a per-
fectly homogeneous state. In this respect, a particularly interesting class of initial states are
the ground states of H for given values of the interaction Ui, which are let evolve under the
Hamiltonian dynamics after a sudden increase of the interaction to a final value Uf > Ui, the
so-called quantum quench. Kollath and coworkers [76] reported evidence for the existence of
two separated regimes in which either thermal or non-thermal behavior is observed for local
observables. The origin of the non-thermal behavior in the large Uf region and the possibility
of an ergodicity breaking in the thermodynamic limit is still highly debated [116, 18].

In the following, we focus on an average density n = 1 and we show that signatures of long
lived metastable states of doublons can be identified in the dynamics after a quantum quench.
At variance with the previous numerical experiments, now both the initial state and the quan-
tum Hamiltonian do preserve the spatial homogeneity and, therefore, the quest for possible
signatures of ergodicity breaking requires a different approach. Since we have identified den-
sity relaxation as the slowest process in the problem, we monitor the dynamics of the system
by measuring the auto-correlation of the density averaged over all sites, namely through

C(t) =
1

N

∑
i

〈ni(t)ni(0)〉 − 〈ni(t)〉 〈ni(0)〉 . (6.4.1)
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Fig. 6.4.1 Inverse relaxation times of density excitations in the homogeneous system, see Eq. (6.4.1). From
left to right, different curves correspond to different initial states at Ui/J = 0, 1, and 2. Insets: real part
of the density correlations C(t) in the ergodic and in the non-ergodic region. Data are obtained with exact-
diagonalization on a lattice with N = 12.
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For any finite size system, due to the homogeneity of both the initial and the quantum evolu-
tion, C(t) must have a vanishing long-time average. Indeed, as shown in Fig. 6.4.1, for small
Uf � Ui this quantity has a very fast transient to zero. On the contrary, for Uf � Ui the
density auto-correlation C(t) gets stuck into a long-lived finite value plateau C? 6= 0, before ap-
proaching zero only on a much longer time scale. If we extract a relaxation time from C(t), we
find a similar behavior as in Fig. 6.3.2, i.e., a dramatic increase of the relaxation times above
a threshold value of the final interaction strength.

In agreement with the previous analysis, the appearance of such a long-lived metastable
state characterized by a finite plateau C? of the density auto-correlation function might indi-
cate an excess of double occupancies that have no channel to relax. In other words, the dy-
namical constraints brought by the interaction severely slow down density excitations, whose
characteristic time scales increase abruptly after a critical threshold. The main phenomeno-
logical traits of this dynamical arrest characterized by long-lived inhomogeneous states closely
remind the physics of glassy materials.

6.5 Discussion

In conclusion, we have found that the dynamical constraints brought by a strong interaction
can trap the evolution of repulsive bosons hopping on a lattice into metastable states that
lack translational symmetry, provided that the energy stored into the initial state is above a
threshold. We pointed out that a self-induced effective attraction among doublons is one of the
major processes that can effectively freeze the dynamics on long time scales. Such amechanism
is recognized to play a role in the density relaxation processes of purely homogeneous systems
through a dynamical arrest visible in time-dependent density correlations. The main features
of this intriguing behavior, namely the slowing down of density excitations and the long-lived
inhomogeneous pattern, resembles closely a kind of glass transition.

Moreover, we have shown that the time evolution of the many-body problem can be mapped
onto that of a particle moving from the edge of a semi-infinite tight-binding chain with nearest-
neighbor hopping, where each site represents amany-bodywave function. Thismodel looks like
an Anderson model, since both the on-site energy and the hopping vary from site to site, with
a potential well at one edge due to the high-energy content of the initial state. Interestingly,
we find a delocalization-localization transition in this problem, with the particle being unable
to diffuse on the whole chain above a certain value of the well depth. We consider this analogy
quite suggestive and potentially constitutes an even stronger indication of ergodicity breaking
in the many-body space which is worth to be further investigated.
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Chapter 7
Time-Dependent Variational Monte Carlo
Non-Thermal Behavior of the Bose-Hubbard Model After a Quench

Since the early days of quantum mechanics, variational methods have played a central role
in the progress of our understanding of the ground-state properties of many body interact-
ing systems. The variational principle in quantum mechanics indeed often allows to validate
or disprove the physical description encoded in a particular functional form of the ground-
state wave-function. Due to their physical appeal and their intrinsic non perturbative na-
ture, variational methods are still largely used, either with further analytical (mean-field
like) approximations or in connection with very efficient numerical algorithms to optimize the
wavefunction.[128, 143] Indeed, our ability to describe ground-state properties of strongly cor-
related systems has largely increased thanks to the possibility to consider improved correlated
wave-functions with a large number of variational parameters. The role of Monte Carlo meth-
ods has been of particularly relevant for this program to be realized. Indeed, the very nature
of correlated wave functions and their intrinsically many body structure do not allow for an
analytical treatment of the variational problem. Since the early works by McMillan[87] it has
soon recognized the natural connection between the square modulus of a given wave function
with a probability density in the many-body configurational space that could be sampled by
means of stochastic methods.

The extension of those successful ideas to the dynamics of strongly correlated systems is a
natural goal to be pursued which has however not found until now a decisive advancement.
Indeed, in recent years mean-field-like variational methods have been developed and largely
applied to the real-time dynamics of correlated bosonic systems, mainly in the spirit of the
simple Gutzwiller approximation.[88, 119] Although they may capture some general physical
features, they are known to miss crucial ingredients such as damping and relaxation due to
quantum interference effects. The extension of these methods to time-dependent correlated
wave-functions is therefore an essential requirement for the advancement of our understand-
ing of quantum dynamics as much as it has been with the introduction of correlated wave-
functions for ground-state properties.

In this Chapter we show that the out-of-equilibrium properties of a closed quantum systems
can be accurately described by means of a time-dependent variational scheme supported by a
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very general class of wave-functions.[32] The functional form of the wave-function is presented
and justified in 7.1. In particular, we show that the exact dynamics of a quantum system can
be mapped onto an instantaneous ground-state problem. This ground-state problem is in turn
shown to be well approximated, in appropriate circumstances, by a specific generalization of
the Jastrow factors. In 7.2 we complete the description of the scheme upon introducing the
variational equations of motion for the wave-function parameters and underlying the essen-
tial role of Monte Carlo methods in their solution. The scheme we introduce here is applica-
ble to systems of arbitrary dimensionality and does not suffer from the limitations arising in
renormalization-based methods that have been discussed in the previous Chapter.

In the last part of the Chapter we present a specific application of the method to the previ-
ously introduce problem of the quantum quenches in the Bose Hubbard model, showing that
canonical thermalization is not achieved in the large interaction quench regime. By means of
the physical insight offered by the variational wave function we further show that this lack
of thermalization can be explained in terms of long-lasting metastability of density inhomo-
geneities, therefore providing a further consistency check for the previously discussed phe-
nomenological issues.
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7.1 Time-Dependent Ground states

When a system is driven out of equilibrium, at each time its wave-function evolves under the
action of the unitary evolution induced by its Hamiltonian H. In particular, without loss of
generality, we can imagine that the initial quantum state Φ(t = 0) coincides with the ground
state of a given Hamiltonian H(t = 0). Under reasonable assumptions of smoothness of the
evolution, at each time the exactly evolved wave-function Φ(t) = e−iHtΦ(t = 0) can be in turn
identified with the ground state of an auxiliary time-dependent Hamiltonian

H(t) = H+ V(t), (7.1.1)

where V(t) is a complex-valued time-dependent operator which is generally unknown. We also
introduce the instantaneous eigenstates of H(t), namely ψk(t) with energies Ek(t). In general,
apart from possible representability issues, it is always possible to choose V(t) in such a way
that the instantaneous ground state of H(t) corresponds to the exactly evolved state Φ(t) as
obtained by the unitary Schrödinger evolution. Therefore, at t = 0 by construction ψ0(t = 0) ≡
Φ(t = 0) is just the known ground state of the initial Hamiltonian.

Even though the operator V(t) is generally unknown at an arbitrary time, we can nonethe-
less ask ourselves whether its time evolution can be determined. The problem to be addressed
is therefore to identify the equations of motion for V(t) that determines the correct evolution.
To this end, we consider the ground state of H(t + ε) due to an infinitesimal change of the
unknown time-dependent “potential”. This ground state, according to first-order perturbation
theory is given by

ψ0(x, t+ ε) = ψ0(x, t) + ε
∑
k 6=0

〈
ψk(t)

∣∣ V̇(t)
∣∣ψ0(t)

〉
E0(t)− Ek(t)

ψk(x, t) +O(ε2), (7.1.2)

and it is therefore due to the small perturbation V(t + ε) − V(t) = εV̇(t) + O(ε2). The above
equation contains the instantaneous excited states of the auxiliary Hamiltonian. Even though
such excited states are generally unknown, it is generally possible to write them in terms of
some “excitation operators” in the spirit of Feynman construction. An assumption that we do
at this stage is that the instantaneous excited-states of H(t) can be written in terms of some
local excitation operators Ok(x), in such a way that

ψk(x, t) ' δOk(x)

Nk
ψ0(x, t), (7.1.3)
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where δOk(x) = Ok(x)−〈Ok〉. The presence of the ground-state expectation values fluctuations
guarantees the orthogonality condition

〈
ψk
∣∣ψ0

〉
= 0, whereas the quantities N 2

k = 〈OkOk〉 −
〈Ok〉2 guarantee that the eigenstates are properly normalized.

Notice that the chosen expression for the excited states, Eq. (7.1.3), does assume that the
excitation operators are time-independent. This assumption is, in general, well justified on
physical grounds whenever the dynamics of the system is characterized by a well defined set
of low-energy excitations. Such low-energy excitations are however not necessarily low-energy
excitations of the full Hamiltonian H but of the auxiliary Hamiltonian H(t). Therefore we do
not require the dynamics of the system to be confined in the low energy manifold of the full
Hamiltonian, which would otherwise be a restrictive limitations for the study of the dynamics
far from equilibrium.

Within this assumption, we are now in position to rewrite the perturbed ground state at
time t+ ε as

ψ0(x, t+ ε) = ψ0(x, t)

1 + ε
∑
k 6=0

〈
ψ0(t)

∣∣ δOkV̇(t)
∣∣ψ0(t)

〉[
E0(t)− Ek(t)

]
Nk

δOk(x)

+O(ε2), (7.1.4)

where the values of the matrix elements
〈
ψ0(t)

∣∣ δOkV̇(t)
∣∣ψ0(t)

〉
implicitly contain the time

evolution of the auxiliary potential. Defining the unknown quantities

α̇k(t) ≡
〈
ψ0(t)

∣∣ δOkV̇(t)
∣∣ψ0(t)

〉[
E0(t)− Ek(t)

]
Nk

, (7.1.5)

we immediately notice that the time evolution of the instantaneous ground state is given by

ψ0(x, t+ ε) = ψ0(x, t)

1 + ε
∑
k 6=0

[α̇k(t)] δOk(x)

+O(ε2), (7.1.6)

which corresponds to a time-dependent wave-function of the form

ψ(x;α(t)) = exp

{∑
k

[δOk(x)]αk(t)

}
× Φ(x, t = 0). (7.1.7)

The above obtained functional form, which relies on the assumption (7.1.3), is a generalized
Jastrow factor in which the complex-valued parameters αk(t) are coupled to the excitation
operators.

Equation (7.1.3) also enlightens on the range of validity of the introduced approximation.
Namely, if equation (7.1.3) were true, then the inter-orthogonality condition of the eigenstates〈
ψk
∣∣ψk〉 = δk,k′ would imply that
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〈OkOk′〉 − 〈Ok〉 〈Ok′〉 = δk,k′N 2
k , (7.1.8)

or, in other words, that off-diagonal fluctuations of these operators are exactly vanishing.
Therefore, a measure of the quality of the approximation is given by the magnitude of the
off-diagonal elements of the above-defined correlation matrix as a function of time.

7.2 Real-Time Evolution of the Variational Parameters

In order to complete our description of the dynamics in terms of the previously obtained wave-
functions, it is crucial to obtain the equations of motion for the set of complex parameters αk(t).
The variational parameters time trajectories αk(t) that best reproduce the exact quantum dy-
namics can be found in a number of different ways, all providing different insights into the
present time-dependent variational scheme. In the following we show both an optimization
argument, based on the minimization of the Hilbert space distance between the approximate
and the exact states, and a purely variational argument both leading to the same equations of
motion.

7.2.1 Minimal Hilbert Space Distance

Let us consider a time-dependent state of the form

ψ(x;α(t)) = exp

[∑
k

Ok(x)αk(t)

]
, (7.2.1)

where αk = αRk +iαIk are complex variational parameters coupled to the real local excitation op-
erators Ok(x). A physical justification for this particular form of the variational wave-function
has been given in the previous section and relies on the assumption that the instantaneous
eigenstates of H̃(t) relevant for the dynamics take the “Feynman-like” form (7.1.3). Moreover,
for simplicity we also assume in the following that the initial ground state Φ(x, t = 0) has the
same exponential form, therefore setting the initial conditions for the parameters αk(t = 0).
This latter assumption is very well verified in all the physical systems we will study but it is
not crucial for the applicability of the method.

The exact infinitesimal real-time evolution of ψ(t) is given by

Φ(x, t+ ε) = ψ(x;α(t)) [1− iεE(x, α(t)] , (7.2.2)
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where E(x, α(t)) = 〈x|H|ψ(t)〉
ψ(x,t) is the complex-valued “local energy” for a given set of variational

parameters and for a given configuration x. An infinitesimal variation of the variational wave-
function due to the change of parameters is instead given by

ψ(x;α(t+ ε)) = ψ(x, α(t))

[
1 + ε

∑
k

α̇kOk(x)

]
. (7.2.3)

In order to have the best possible variational description of the real-time dynamics we want
to minimize the total rate of departure of the variational state from the exact state, i.e. the
Euclidean norm of the first-order differences, namely

∆2
1(t) =

∑
x

∣∣∣∣dψ(x, t)

dt
− dΦ(x, t)

dt

∣∣∣∣2 . (7.2.4)

The rate of change is conveniently written as an expectation value over the square modulus of
the wave-function as

∆2
1(t) =

∑
x

|ψ(x;α(t))|2
[
ZR1 (x, t)2 + ZI1 (x, t)2

]
, (7.2.5)

where we have introduced the quantities

ZR1 (x, t) =
∑
k

α̇RkOk(x)− EI(x, α(t)) (7.2.6)

ZI1 (x, t) =
∑
k

α̇IkOk(x) + ER(x, α(t)). (7.2.7)

At a given time, the rate of change is in turn a function of the time derivatives of the variational
parameters, α̇k(t) which we therefore determine imposing that ∆2

1(t) is as small as possible.
To this purpose, we look for the solutions of the equations obtained setting the gradient com-
ponents to zero, which lead to

ZR1 (x, t)
∂

∂α̇Rk
ZR1 (x, t) =

(∑
k′

α̇Rk′Ok′(x)Ok(x)

)
− EI(x, α(t))Ok(x) (7.2.8)

ZI1 (x, t)
∂

∂α̇Ik
ZI1 (x, t) =

(∑
k′

α̇Ik′Ok′(x)Ok(x)

)
+ ER(x, α(t))Ok(x). (7.2.9)

The stationary solution that minimizes the variational error then can be found upon explicitly
considering the derivatives of the Z1(t) and read
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∑
k′

α̇Rk′ 〈OkOk′〉 =
〈
EIOk

〉
, (7.2.10)∑

k′

α̇Ik′ 〈OkOk′〉 = −
〈
EROk

〉
, (7.2.11)

where the expectation values are summation over the square-modulus measure of the varia-
tional wave-function.

An interesting point to be noticed is that the solution of Equations (7.2.10) also guarantees
the best possible expectation values of the “observables” Ok(x) for small propagation times.
Indeed, if we consider the difference between the exact and the variational expectation values
at order ε, (

∆Ȯk

)
(t) =

d

dt
〈Ok〉 −

d

dt
〈Ok〉exact , (7.2.12)

we find that for the optimal solution the condition ∆Ȯk(t0) = 0 is always verified.
Until now we have neglected the explicit time dependence of the complex phase of the wave-

function, which however can be also recovered from the previous equations. Indeed, we now
notice that the time-derivative of the phase of the wave-function can be explicitly found consid-
ering as an observable Oφ = 1. Thus, factoring the phase of the time-evolved variational state,
we have that

ψ(x, t) = eφ(t)e
∑
k Ok(x)αk(t), (7.2.13)

with the optimal values of the time-derivatives given by∑
k′

α̇Rk′ [〈OkOk′〉 − 〈Ok〉 〈Ok′〉] =
〈
EIOk

〉
(7.2.14)∑

k′

α̇Ik′ [〈OkOk′〉 − 〈Ok〉 〈Ok′〉] = −
〈
EROk

〉
+ E 〈Ok〉 , (7.2.15)

while the explicit time-derivatives of the phase factor read

φ̇R(t) = −
∑
k′

α̇Rk′ 〈Ok′〉 (7.2.16)

φ̇I(t) = −E −
∑
k′

α̇Ik′ 〈Ok′〉 . (7.2.17)

The optimal value of the square-displacement associated with the solution of the equations
(7.2.14-7.2.15) is

∆2
1(t) =

〈
H2
〉
− E2 −

∑
k,k′

(
α̇Rk α̇

R
k′ − α̇Ikα̇Ik′

)
Sk,k′

 , (7.2.18)
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having introduced thematrix of the fluctuations Sk,k′ = 〈OkOk′〉−〈Ok〉 〈Ok′〉which corresponds
to the left hand side of (7.1.8) and it is therefore also a crucial quantity for the validity of the
approximation.

7.2.2 Variational Principle

The equations of motion for the wave-function parameters can be also derived from an alter-
native approach directly based on the variational principle. In order to proceed, we introduce
the action

S =

ˆ
dt 〈ψ| i ∂

∂t
−H |ψ〉 , (7.2.19)

which is a functional of the variational parameters αk(t). The variational principle states that
the stationary solution for the variations of the action determines the optimal set of parame-
ters. The action explicitly reads

S =

ˆ
dt

[∑
k

iα̇k 〈Ok〉 − E(αRk , α
I
k)

]
, (7.2.20)

where E is the expectation value of the energy on the variational state. We first notice that the
action must be real, therefore we must have

∑
k α̇

R
k 〈Ok〉 = 0, this condition being equivalent

to the norm conservation and can be satisfied taking a constant observable associated to the
normalization, namely Oφ = 1 leading to the following time-evolution for the real part of the
phase φ̇R = −∑k α̇

R
k , which is completely equivalent to (7.2.17). Therefore the action is

S = −
ˆ
dt

[∑
k

α̇Ik 〈Ok〉+ E(αRk , α
I
k)

]
, (7.2.21)

and can be minimized with respect to 〈Ok〉 leading to

α̇Ik = − ∂E

∂ 〈Ok〉
, (7.2.22)

moreover by integration by parts we find

S =

ˆ
dt

[∑
k

˙〈Ok〉αIk − E(αRk , α
I
k)

]
, (7.2.23)

a further minimization of the action with respect to αIk then leads to the equations
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˙〈Ok〉 =
∂E

∂αIk
. (7.2.24)

Equations (7.2.22,7.2.24) are completely equivalent to the one found previously, as, concerning
Eq. (7.2.24) we have

˙〈Ok〉 = 2
∑
k′

α̇Rk′ 〈OkOk′〉 (7.2.25)

∂E

∂αIk
= 2

〈
EIOk

〉
. (7.2.26)

Concerning Eq. (7.2.22), we have that

∂E

∂ 〈Ok〉
=
∑
k′

∂E

∂αRk′

∂αRk′

∂ 〈Ok〉
, (7.2.27)

therefore, inverting this relation and pushing it in Eq. (7.2.22) we get

∑
k′

α̇Ik′
∂ 〈Ok〉
∂αRk′

= − ∂E

∂αRk
, (7.2.28)

which is again equivalent to Eq. (7.2.10) as

∂ 〈Ok〉
∂αRk′

= 2 〈OkOk′〉 (7.2.29)

∂E

∂αRk
= 2

〈
EROk

〉
. (7.2.30)

7.2.3 Norm and Energy Conservation

The equations introduced define a real-time dynamics of the variational states that preserves
both the norm and the energy. This can be verified noticing that the norm

N(t) =
∑
x

|ψ(x, t)|2 =
∑
x

e2φR(t)e2
∑
k Ok(x)αRk (t), (7.2.31)

is conserved, as

Ṅ(t) =
∑
x

[(
∂

∂φR
e2φR(t)

)
e2

∑
k′ Ok′ (x)αR

k′ (t)φ̇R+

+
∑
k

e2φR(t) ∂

∂αRk
e2

∑
k′ Ok′ (x)αR

k′ (t)α̇Rk

]
, (7.2.32)
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is equivalent to

Ṅ(t) =
∑
x

2 |ψ(x, t)|2
[
φ̇R +

∑
k

Ok(x)α̇Rk

]
= 0. (7.2.33)

Moreover, the time-derivative of the energy reads

Ė(t) = 2
∑
k

(
α̇Rk
〈
OkεR

〉
+ α̇Ik

〈
OkεI

〉)
. (7.2.34)

Contracting Eqs. (7.2.10) we get
∑
k α̇

I
k

〈
OkεI

〉
= −∑k α̇

R
k

〈
OkεR

〉
, therefore the energy is con-

served as Ė(t) = 0.

7.2.4 Real-Time Variational Monte Carlo

In the previous discussions we have derived both the variational ansatz and the equations
of motion for its complex-valued parameters. A crucial point for the scheme to be effective is
therefore to provide a reliable solution of those equations in a general case where the correlated
structure of the wave-function does not allow for analytical solutions. When this is the case, the
variational Monte Carlo method allows for an exact solution for the variational trajectories. In-
deed, at each time, the square modulus of the wave-function |ψ(x, t)|2can be straightforwardly
interpreted as a probability distribution over the Hilbert space spanned by the configurations
x and a Markov process can be devised whose stationary equilibrium distribution coincides
with the desired measure.

To this purpose, we consider transitions in the Hilbert space driven by the probabilities

Tx→x′ =
1

w(x, t)

|ψ(x′, t)|
|ψ(x, t)| , (7.2.35)

where w(x, t) is normalization factor and the candidate states x′ are restricted to the finite set
of configurations such thatHx,x′ 6= 0. Within such a choice, a new configuration x′ is accepted or
rejected according to the Metropolis algorithm with probability P = min {1, w(x)/w(x′)} . The
particular choice for the transition probabilities allows for an effective importance sampling,
in which configurations with a greater modulus of the wave-function are more often proposed
than less likely ones.

At each time, expectation values of both the correlation matrix Sk,k′ = 〈OkOk′〉 − 〈Ok〉 〈Ok′〉
and the local energy parts entering the right hand-sides of (7.2.14-7.2.15) are computed as
statistical averages over the random walk. The linear system of equations (7.2.14-7.2.15) can
be therefore solved in order to obtain at each time the first-order derivatives of the variational
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parameters, which can be in turn integrated by means of standard algorithms for first-order
differential equations.
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7.3 Examples of Exactly Solvable Quantum Dynamics

Before showing an application of the above introduced method to a realistic system, it is in-
structive to analyze some simple situations in which the generalized Jastrow ansazt provides
an exact dynamics.

7.3.1 Harmonic Oscillator

Wefirst start considering a simple one dimensional quantum oscillator described by theHamil-
tonian

H = −1

2

∂2

∂x2
+

1

2
x2. (7.3.1)

A normalized state (which resides in the cathegory of the generalized Jastrow factors) of the
form

ψ(x;α) =
4

√
αR

π
e−α

x2

2 , (7.3.2)

is also considered, where α = αR+iαI is complex parameter whose real part is strictly positive.
Fixing the parameter to a real value α = α0 > 0, we now consider the exact time evolution of
this state under the action of the Hamiltonian (7.3.1). The evolved state can be obtained in
many different ways, in particular it can be computed in the path-integral formalism as

ψ(x, t) =

ˆ
Gt(x, x

′)ψ(x′, 0)dx′, (7.3.3)

where the propagator Gt(x, x′) reads

Gt(x, x
′) =

√
1

2πi sin(t)
exp

[
−x

2 cos(t)− 2xx′ + x′2 cos(t)

2i sin(t)

]
. (7.3.4)

The evolved state can be then exactly computed performing the integration (7.3.3) and can
conveniently expressed as

ψ(x, t) = eiφ(t)

{
4

√
αR(t)

π
e−α(t) x

2

2

}
, (7.3.5)

i.e. the time evolution leaves the functional form of the wave-function unchanged (apart from a
global phase factor) while leading to a time dependence of the complex parameter which read
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αR(t) =
α0

α2
0 sin2(t) + cos2(t)

(7.3.6)

αI(t) =
(α2

0 − 1) sin(t) cos(t)

α2
0 sin2(t) + cos2(t)

, (7.3.7)

while the phase factor is

φ(t) = arg
{

1/
√

cos(t) + iα0 sin(t)
}
. (7.3.8)

Notice that when α0 = 1 the wave-function is the ground state with energy E0 = 1/2 and the
time-evolved parameters have the constant values αR(t) = α0, αI(t) = 0 while the phase factor
is φ = −t/2 = −E0t.

Due to the fact that the time evolution preserves exactly the functional form of the wave-
function, the same equations for the dynamics can be obtained considering the time-dependent
variational scheme for a state of the form (7.3.2). The differential equations for the variational
parameters can be obtained considering the observable O(x) = −x2

2 coupled to the complex
parameter α(t) and are

α̇R(t) = −2αR(t)αI(t) (7.3.9)
α̇I(t) = αR(t)2 − αI(t)2 − 1, (7.3.10)

which, as it can be proven by inspection, are satisfied by Eqs. (7.3.6,7.3.7). In conclusion, the
variational real-time dynamics is exact for coherent states evolving with the quantum har-
monic oscillator Hamiltonian.

7.3.2 Tomonaga-Luttinger Liquid

A non-trivial model for the low-interacting regime of one dimensional fermions is described by
the well known Tomonaga-Luttinger Hamiltonian, which in momentum space reads

HTL =
vF
2

∑
q

(
KΠqΠ−q +

q2

K
Φq Φ−q

)
, (7.3.11)

where we have introduced the bosonic fields

Φq =
1√
2| q|

(
a†q + a−q

)
(7.3.12)

Πq = i

√
| q|
2

(
a†−q − aq

)
, (7.3.13)
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K is the strength of the interaction between q-modes and vF is the Fermi velocity.
For any interaction strength, this model can be exactly diagonalized by means of a standard

Bogoliubov rotation (see for example [58]). An interesting point is however that its ground state
can also be exactly expressed as a Jastrow factor of the form

|Ψ (Jq)〉 = e−
1
2

∑
q>0 Jq Nq N−q |Ψ0〉 , (7.3.14)

where the Fourier transforms of the density Nq have been introduced, the Jastrow pseudo-
potential Jq and |Ψ0〉 is the non-interacting ground state of (7.3.11) for K = 1. It can be shown
[139] that the ground-state energy of the model is EGS =

∑
q
vF
2 |q| which is obtained imposing

Jq =
π

q

(
1

K
− 1

)
. (7.3.15)

The functional Jastrow form however does not only correctly describes the ground state of
the Tomonaga-Luttingermodel but also its dynamics. To demonstrate this very interesting fea-
ture, we consider for simplicity a quantum quench in which the system is initially prepared in
the non-interacting Fermi sea and it is let evolvewith the fully interacting Tomonaga-Luttinger
Hamiltonian, namely

|Ψ(t)〉 = e−iHTLt|Ψ0〉. (7.3.16)

In this case, the exactly evolved state reads

|Ψ(t)〉 = eφ(t)e−
1
2

∑
q>0 Jq(t)Nq N−q |Ψ0〉 , (7.3.17)

with the time-dependent Jastrow pseudo-potential being equal to [41]

Jq(t) =
π

q

(
1−K2

K2 − iK cot(εqt)

)
, (7.3.18)

where εq are the excited states energies of the Tomonaga-Luttinger Hamiltonian and φ(t) is a
time-dependent phase factor.

The above presented result in turn implies that the Jastrow ansatz for the quantum dy-
namics is expected to be a generally good approximation in the low-interacting regime. We
will however highlight in the following that a generalized Jastrow description of the dynamics
is accurate also in the strong-interacting regime, therefore providing a satisfying and flexible
description of the two opposite limiting cases.
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7.4 Quantum Quenches in the Bose-Hubbard Model

As a non trivial application of the time-dependent Variational Monte Carlo method, we now
consider the dynamics of a correlated bosonic system driven out of equilibrium. More specifi-
cally, we aim to provide a satisfactory description of the phenomenological issues described in
the previous Chapter. We concentrate again on a system which we imagine to be well described
by the Bose-Hubbard Hamiltonian

H = −J
∑
〈i,j〉

(
b†i bj + h.c.

)
+
U

2

∑
i

ni(ni − 1), (7.4.1)

and consider initial states which correspond to the ground state of such Hamiltonian for a
given value of the interaction, Ui. The initial, spatially homogeneous, prepared state is then
let evolve with another interaction strength Uf > Ui. This sudden quench in the interaction is
indeed practically achievable in experiments with cold atoms, as for example in [142].

In the previous discussion on the metastable states of the Bose-Hubbard model, we have re-
vealed the existence of a threshold energy above which a steep increase of the relaxation time
of density fluctuations takes place. In order to assess the relevance of this phenomenon for
the dynamics of larger systems or even for higher spatial dimensions, it is desirable to devise
a comprehensive alternative framework able to catch its very characteristics. The real-time
variational Monte Carlo approach has, from this perspective, two important advantages: it al-
lows us to follow the evolution for times comparable to those accessible experimentally, which
are much longer than t-DMRG; [149, 43] it can be easily extended to higher dimensions. More-
over, the physical insight offered by the possibility to have an explicit wave-function at any time
of the quantum evolution is certainly another important step towards a satisfactory theoreti-
cal understanding of the circumstances in which the ergodicity principle is violated in closed
quantum systems. Indeed, even though theoretical achievements in this direction have been
possible in recent years thanks to mean-field-like variational analysis, [119, 123] a plethora
of questions concerning the very validity of these approaches is under debate. Although the
mean-field-like description seems to capture well the main features of the dynamical evolution,
these methods are unable to describe very important aspects such as damping and relaxation.

In the following we present variational results for the dynamics of the Bose-Hubbard model
as obtained by means of both a simple variational Gutzwiller Wave Function and a more accu-
rate Jastrow factor with long-range density interactions.
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7.4.1 Gutzwiller Wave Function

Many basic concepts in the theory of strongly correlated systems, like e.g. the Brinkman-Rice
scenario for the Mott transition, have been originated from calculations based on a very simple
and physically transparent variational approach introduced in the 60th’s by Gutzwiller [66].
Its extension to out of equilibrium phenomena has been however only recently realized with
evidences of a dynamical transition for both fermions [88, 119] and bosons[123] being reported.

In simply Hubbard like models, the Gutzwiller approximation amounts to consider on-site
correlations induced by the interplay between the potential and the kinetic energies. In our
analysis we choose a wave-function of the form

|Ψ(t)〉 = exp

(∑
i

g(t)ni(ni − 1)

)
|Ψ0〉, (7.4.2)

where the complex time-dependent variational parameter g(t) is coupled to the double occu-
pancy and |Ψ0〉 is the best Gutzwiller variational description for the ground state of (7.4.1) at
a given Ui. In the static case, the double occupancies are exponentially suppressed in the Mott
phase (large negative values of g), whereas kinetic fluctuations and superfluidity are favored
for small values of g. In the general formalism of the wave-functions ansatz introduced with
(7.2.13), the excitation operator of the Gutzwiller wave-function is simply the double occupancy,
namely Og(x) =

∑
i ni(ni − 1).

We analyze the out of equilibrium dynamics of the Bose-Hubbard Hamiltonian at unitary
filling n = 1 and for a one dimensional geometry. Being the excitation operator related to the
potential energy of the Hamiltonian, it is natural to analyze its time-dependency after a quan-
tum quench. In Figure 7.4.1 we show the time-dependent expectation value of the potential
energy after a quantum quench in which the initial state is taken to be the best Gutzwiller
variational state at Ui = 2J . One of the main features emerging from this variational results
is that the potential energy does not relax to an equilibrium value after a certain equilibration
time. The time-dependent expectation values indeed continuously oscillate in a limited band.
This lack of damping is in turn due to the lack of explicit density correlations in the wave-
function and it is indeed far from the exact behavior,[76] in which damping and relaxation are
observed.

The Gutzwiller treatment however features a suggestive dynamical phase transition which
is expected to hold in higher dimensions. In our treatment of the Gutzwiller ansatz we ob-
serve such a transition at the critical energy threshold Ec(Uf ) = 0, i.e. when the internal
energy of the quench is vanishing. As shown in Figure 7.4.2, below the critical energy or equiv-
alently, the critical interaction U cdyn, the imaginary part of the Gutzwiller parameter g(t) is
oscillating. On the contrary, above the critical energy the imaginary part of g(t) starts preced-
ing with an almost ballistic behavior. Both the critical interaction values and the precession
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Fig. 7.4.1 Time-dependent expectation values of the on-site potential energy Ep(t) = Uf
2
〈ni(ni − 1)〉, different

values of Uf are shown in different time windows for clarity. The initial state is the optimal Gutzwiller varia-
tional ground state of the Bose-Hubbard Hamiltonian with Ui = 2J . Real-time Variational Monte Carlo results
with a Gutzwiller wave function are obtained for an N = 100 chain with periodic boundaries.

of complex phase associated to the double occupancy, are features consistent with previous
Gutzwiller calculations[119, 123]. However, an important difference we find is in the lack of
damping of the double occupancy at the critical interaction point. This feature, clearly emerged
in the fermionic case and in the bosonic case when a maximum number of particles per site
was imposed. We instead find that, upon lifting the maximum occupation number constraint,
the peculiar relaxation of the double occupancy at the transition point is no longer observed,
whereas the critical transition is still well evident in the imaginary part of the Gutzwiller
parameter.

7.4.2 Jastrow Wave Function

A substantial improvement over the Gutzwiller wave-function for strongly correlated systems
is realized in the context of the Jastrow correlated wave-functions. The equilibrium phase
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Fig. 7.4.2 Imaginary part of the Gutzwiller parameter as a function of time. Under the critical point the
parameter oscillates while above the critical energy threshold a precession is observed. The initial state is
the optimal Gutzwiller variational ground state of the Bose-Hubbard Hamiltonian with Ui = 2J . Real-time
Variational Monte Carlo results with a Gutzwiller wave function are obtained for an N = 100 chain with
periodic boundaries.

diagram of the Bose-Hubbard model and the quantitative description of the Mott phase are
some of the major physical properties that are well described by the Jastrow ansatz.[28] Long-
range density correlations are included in a consistent way in the Jastrow wave functions and
allow for a description of the static Mott phase in which kinetic fluctuations are not completely
suppressed as per the Gutzwiller ansatz.

In the following, we introduce an extension to time dependent problems of the Jastrowwave-
functions, namely we consider :

|Ψ(t)〉 = exp

∑
ij

Vij(ni, nj ; t)

 |Ψ0〉, (7.4.3)

where |Ψ0〉 is the initial state and Vij(ni, nj ; t) is a Jastrow factor that depends on the occupan-
cies ni and nj of two sites i and j and varies with time so to maintain the time evolution as
close as possible to the true evolution via the Schrödinger equation.

Results for the time evolution of a local observable, such as the potential energy, after a
sudden quench from Ui = 2J to a final Uf are shown in Fig. 7.4.4. The values of the thermal
averages have been computed in the grand-canonical ensemble by means of finite-temperature
quantum Monte Carlo calculations, [10] with the effective temperature fixed by the average
energy of the initial state, which we take as the best variational approximation for the ground
state at Ui = 2J . Moreover, the comparison between our approach and the t-DMRG [75] is
reported in Figure 7.4.3, demonstrating the high accuracy of the time-dependent variational
Monte Carlo.
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Fig. 7.4.3 Time-dependent expectation values of the on-site potential energy Ep(t) =
Uf
2
〈ni(ni − 1)〉. The

initial state is the ground state of the Bose-Hubbard Hamiltonian with Ui = 2J . Real-time Variational Monte
Carlo results are obtained for an N = 100 chain with periodic boundaries. Corresponding data by t-DMRG [75]
are the potential energy at the center of an N = 64 chain with open boundaries.

As shown in Fig. 7.4.4, in the region of small Uf we observe a damping of the average
potential-energy, which approaches a quasi-steady stationary value in contrast to the simple
Gutzwiller wave function, [119, 123]. In this regime, damping ismainly due to a density-density
Jastrow factor of the form Vij(ni, nj) = vij ni nj , which already at equilibrium was shown to
provide a satisfactory description of the physical behavior. [28] This fact enlightens the rele-
vance of the Bogoliubov modes whose dephasing during the time evolution allows to approach
the stationary state. Remarkably, the steady state averages coincide with the thermal ones; a
signal that the dynamics is ergodic.

In the region of large interactions Uf , a simple density-density Jastrow factor does not
account for all relaxation pathways, which will now mainly result from specific correlations
among doublons, holons and between holons and doublons. The effective Hamiltonian (6.3.1)
indeed explicitly shows that doublons attract each other as well as holons do, while doublons
repel holons. These correlations, as well as other among higher on-site densities, can be eas-
ily implemented via the the Jastrow factor in Eq. (7.4.3) and indeed substantially improve
the dynamics. Interestingly, the effective interaction between doblons that results from the
dynamical variational calculation turns to be attractive, therefore leading to a consistent de-
termination of the anticipated dynamical effects that drive the dynamics in this regime.

As we see from Fig. 7.4.4, in the region of very large Uf the potential-energy expectation
values do show a damping to a non-thermal quasi-steady state on a time of the order of τD ∼
1/Uf . This fast time scale must be put in comparison with the much longer one, τR of Fig. 6.4.1.
It is natural to identify τR with the time scale that controls the eventual escape from the quasi-
steady state, hence the approach to thermal equilibrium. Whether this time scale does truly
diverge in the thermodynamic limit, or rather saturates to a very large valuewhich is still out of
reach for state of the art numerics, it is certainly an important issue that cannot be definitively
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Fig. 7.4.4 Time-dependent expectation values of the on-site potential energy Ep(t) =
Uf
2
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ergodic (upper panel) and in the non-ergodic regions (lower panel). The initial state is the ground state of the
Bose-Hubbard Hamiltonian with Ui = 2J and the considered system size is N = 200. Grand-canonical thermal
averages are shown for comparison as dashed horizontal lines.

solved. However, we can safely state that a large finite system of actual experimental relevance
will get stuck for a quite long time into highly inhomogeneous metastable states, which we
revealed to be on the verge of a spatial symmetry breaking.

Within the Jastrow variational treatment, the onset of the dynamical transition is in the
non-analytic behavior of the dynamical averages at the transition point. As shown in Figure
7.4.5, the long-time averages of the double occupancy have indeed a discontinuous derivative
at U cdyn, where a pronounced cusp is observed.
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Fig. 7.4.5 Quantum quenches for a one-dimensional Bose-Hubbard chain initially in the non-interacting su-
perfluid phase (Ui = 0). The expectation values of the double occupancy are shown as a function of the final
interaction strength Uf . The two curves correspond to long-time dynamical averages 〈. . . 〉dyn and canonical
thermal averages 〈. . . 〉the at the corresponding effective temperature.

7.5 Two-Dimensional Systems

The above results have been obtained for out-of-equilibrium one dimensional systems and
therefore leave the questions concerning the dependence on the dimensionality of the prob-
lem still open. However, the anomalously long-time relaxation of the density auto-correlation
points towards a kind of glassy behavior that should be observable even in higher dimen-
sions, provided that the interaction induces sufficiently strong dynamical constraints. In this
regard, we have studied the two-dimensional case by means of our time-dependent variational
scheme, verifying that a similar behavior occurs even in two dimensions. In Fig. 7.5.1, we show
the results of the same experiment simulated previously in one dimension but now in a square
lattice. The system is prepared in a non-uniform configuration, with sites on one sublattice
occupied by two bosons, and on the other sublattice by none. As before, if the repulsion is weak
the density profile equilibrates to a uniform distribution, while for strong repulsion the density
stays close to the initial configuration for extremely long times. We therefore argue that the
phenomenology we have hereby identified is almost independent on the dimensionality and it
is rather due to the existence in strongly correlated systems of high-energy incoherent exci-
tations that do not have channels to relax efficiently. This scenario is also consistent with the
observed strong doping dependence of the relaxation time that we have discussed in 6.3.3.
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Fig. 7.5.1 Long-time density averages for a two-dimensional square lattice. We show here only a small piece,
9 sites, of the 100-site cluster that we simulated using the real-time variational MC method. The initial state
is prepared to have a non-uniform density and it is let evolve with the homogeneous Bose-Hubbard Hamilto-
nian (6.2.1) for different values of the interaction strength.

7.6 Discussion

In this Chapter we have shown an extension of the static variational method for correlated
systems to the out of equilibrium dynamics. A physically sound time dependent ansatz for the
evolved wave-function can be derived considering a set of Feynman-like excitation operators
that drive the dynamics. Whenever the complex many body dynamics is characterized by a well
defined set of relevant excitations, our approach is expected to be particularly accurate. This
prescription holds in a number of relatively simple cases in which the dynamics can be studied
analytically. We have however demonstrated that this is also the case for more challenging ap-
plications such as the experimentally relevant quantum quenches in the Bose-Hubbard model.
Concerning the latter, have obtained for the first time a consistent variational description of
important physical features such as the damping and the relaxation of local observables, oth-
erwise absent in mean-field treatments. The picture emerging within our generalized Jastrow
theory is consistent with the phenomenology introduced in the previous Chapter and points to-
wards a dynamical phase transition characterized by a consistent slowing down of the density
excitations.

The extension of the method to other systems of interest, such as fermions and particles on
the continuum is a task of sure interest which will be pursued in future studies. Moreover,
the systematic determination and inclusion of excitation operators in the correlated wave-
functions is a methodological task of primary importance. In the context of the out of equilib-
rium dynamics of quantum correlated systems, it is indeed particularly welcome to devise novel
and accurate numerical methods. The present limitations of the current numerical schemes
is certainly one of the most limiting factors in the understanding of fundamental questions
concerning the validity of the ergodic hypothesis and the approach to equilibrium. From this
perspective, our approach is able to treat with substantially improved accuracy with respect to
mean-field treatment the dynamics of correlated systems even in higher dimensionality, where
the lack of exact methods constitutes a manifestly limiting factor.
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Epilogue

The extensive research work we have presented in this Thesis has focused onto the charac-
terization of the spectral and dynamical properties of strongly correlated systems. This chal-
lenging goal has been tackled upon both the introduction and the extension of different and
complementary numerical tools. While a general and complete scheme for the study of low
and high energy processes due to strong correlations is yet to be realized, we have shown that
accurate answers to previously unaccessible problems can be obtained.

The imaginary-time dynamics is one of the crucial means thanks to which spectral prop-
erties of quantum systems can be obtained. We have indeed shown that its stochastic sam-
pling allows for the accurate determination of the excited-states traits of particles with bosonic
statistics. We have demonstrated the level of accuracy that can be achieved both for paradig-
matic models of correlation (in Chapter 2) and for the study of lattice excitations of 4He (in
Chapter 3). In the latter case, it has been possible to provide a sensible improvement over ex-
isting approximate results leading to a direct and satisfactory comparison with experimental
neutron scattering data.

On very general grounds, the response of a many-body quantum system to an external per-
turbation is encoded in its excitations spectrum. Therefore the potential fields of applicability
of the demonstrated techniques range from more traditionally studied correlated materials to
ultra-cold atomic gases for which spectroscopic techniques are increasingly becoming available.

The potentialities of the imaginary-time dynamics are however not limited to systems with
bosonic statistics. We have actually explained and demonstrated that imaginary-time dynam-
ics also constitutes an important tool to ease the study of exact fermionic properties. This in-
triguing possibility has been substantiated by the introduction of a general scheme inwhich the
excited states of an auxiliary bosonic system are used to infer accurate ground-state fermionic
properties. While the specific fields of applicability of the fermionic correlations method have
been discussed in Chapter 4, we want to remark here possible future applications and develop-
ments. In particular, the analysis of highly interacting fermions in low-dimensional geometries
is one of the possible topics in which the method could succeed. The study of confined fermions
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is indeed a very active field in which the ongoing experimental research with cold atoms is
rapidly advancing. Developments in the methodology will therefore need to be twofold. One
one hand, it will be fundamental to develop accurate correlated wave-functions to ease the
physical interpretation of different levels of cooperative phenomena such as magnetism and
superconductivity. Within this direction, efforts should be put in the improvement of the back-
flow correlations introduced in Chapter 4, and their application to other experimentally rel-
evant situations. On the other hand, the introduction of suitably defined auxiliary bosonic
systems with higher energy and a smaller energy gap with respect to the fermionic symmetry
sector will be a methodological challenge to be undertaken.

In the second part of the Thesis, we have focused our attention onto closed quantum sys-
tems driven out of equilibrium. Within this context, fundamental questions arise concerning
the approach of physical observables to equilibrium and the very validity of the Statistical Me-
chanics description. From a more phenomenological point of view, we have shown in Chapter
6 that an intriguing analogy with the glass transition and its breaking of the ergodicity can
be identified. A substantial slowing down of density excitations is indeed observed upon the
excitation of high energy eigenstates and due to the presence of strong dynamical constraints.
The possibility to identify these phenomenological traits in specific experimental realizations
with trapped cold atoms has been put forward and it will hopefully guide the experimental
validation of the suggested physical picture.

As a methodological step towards a better understanding of this rich phenomenology, we
have moreover introduced a novel approach to the real-time dynamics of quantum particles (in
Chapter 7). This field, in which traditionally stochastic methods have faced serious limitations,
is one of the most promising playgrounds for future methodological developments. We believe
that the introduced possibility to lift some previous restrictions concerning the dimensionality
(as for renormalization-based methods) and the accuracy (as for mean-field approaches) will
constitute an important aid to future theoretical analyses. Challenges in both the improvement
and in the extension of the method have however to be faced. In particular, most of the quality
of the variational approximation is due to the adopted time-dependent wave-function. It is
therefore natural to pursue research towards its systematic improvements, as much as it has
been done in the past years for static variational wave-functions.

Possible extensions of the time-dependent variational method are however numerous and
promising, ranging from systems with continuous spatial degrees of freedom to the treatment
of time-dependent perturbations. Within the last mentioned point, it would be desirable to
provide a consistent variational description of the adiabatic processes and of the universal
properties exhibited when passing through critical points. Moreover, the ability to accurately
characterize the response to a time-dependent perturbation is a strict requirement for the com-
putational spectroscopy of correlated materials to be successful. We believe that our approach
will give its contribution to the development of novel research lines in this direction. In par-
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ticular in the study of two-dimensional geometries and of their specific properties which are
currently unaccessible due to the limiting predictive power of the existing approaches.

In conclusion, we believe that future research oriented to the development and to the im-
provement of numerical methodologies will be a key requirement to progressively unveil the
complexity of correlated quantum systems. In this Thesis we have put our efforts in the ad-
vancement of this program contributing with both a refinement of existing methodologies and
with the conception of new ones. A better understanding of the physics beyond complex phe-
nomena such as the itinerant ferromagnetism, the superfluidity in quantum glasses and the
dynamics of correlated atoms, are specific examples of how these efforts have found successful
applications.
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Appendix A
Directed Updates Probabilities And Efficiency Of
The Lattice Reptation Monte Carlo

A.1 Derivation of the Probabilities for the Directed-Update Scheme

In this Appendix we give a detailed derivation of the probabilities for the directed updates.
The detailed balance condition guarantees that the given probability distribution Πτ (X) is
sampled if transitions from an initial stateXk to a final stateXk+s differing for s intermediate
updates are accepted according to:

As = min

{
1,
Πτ (Xk+s)

Πτ (Xk)

T s(Xk+s → Xk)

T s(Xk → Xk+s)

}
, (A.1.1)

T s being the overall transition probability between the two states. Let us first consider the
case when s = 1 and fix the right direction d = R (a similar derivation can be obtained for
d = L). In this case, the transition probability from the initial state to the final state reads

T 1(Xk → Xk+1) = P
(
R |Xk

)
×Rδ(xk2M → xk+1

2M )×
×
[
1−K(R , Xk+1)

]
, (A.1.2)

namely, it is the product of the probability of having chosen the right direction, times the tran-
sition probability for the new tail of the reptile, times the probability of stopping the updates
after one intermediate step. The inverse transition probability instead reads

T 1(Xk+1 → Xk) = P
(
L |Xk+1

)
×Rδ(xk+1

0 → xk0)×
×
[
1−K(L , Xk)

]
, (A.1.3)

which can be obtained reversing the time directions and considering transitions from the head
of the reptile instead that from the tail. Therefore, the acceptance factor reads as

147



A1 = min

{
1,

1−K(L , Xk)

P (R |Xk)
×

×w(xk+1
2M−1)

w(xk1)
× P

(
L |Xk+1

)
1−K(R , Xk+1)

}
. (A.1.4)

For two intermediate transitions instead the transition probabilities are

T 2(Xk → Xk+2) = P
(
R |Xk

)
×Rδ(xk2M → xk+1

2M )×
× K

(
R , Xk+1

)
×Rδ(xk+1

2M → xk+2
2M )×

×
[
1−K

(
R , Xk+2

)]
, (A.1.5)

and

T 2(Xk+2 → Xk) = P
(
L |Xk+2

)
×Rδ(xk+2

0 → xk+1
0 )×

× K
(
L , Xk+1

)
×Rδ(xk+1

0 → xk0)×
×
[
1−K

(
L , Xk

)]
, (A.1.6)

leading to the acceptance factor

A2 = min

{
1,

1−K
(
L , Xk

)
P (R |Xk)

× K
(
L , Xk+1

)
K (R , Xk+1)

×

×w(xk+1
2M−1)

w(xk+1
1 )

× P
(
L |Xk+2

)
1−K (R , Xk+2)

× w(xk+2
2M−1)

w(xk1)

}
. (A.1.7)

The generalization to generic s intermediate steps is straightforward and can be written as

As = min

{
1,

1−K
(
L , Xk

)
P (R |Xk)

× P
(
L |Xk+s

)
1−K (R , Xk+s)

×

×w(xk+s
2M−1)

w(xk1)
×
[
s−1∏
l=1

K
(
L , Xk+1

)
K (R , Xk+1)

× w(xk+l
2M−1)

w(xk+l
1 )

]}
. (A.1.8)

To find a simple solution for the unknown probabilities, we first impose a cancellation for the
intermediate acceptance factors, namely

K (L , X)

K (R , X)
=

w(x1)

w(x2M−1)
, (A.1.9)

this condition is satisfied by Eqs. (2.2.11) and (2.2.12). Then, we notice that the acceptance
factor can be written only in terms of the final and the initial states as
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As = min

{
1,
q(L , Xk+s)

q(R , Xk)

}
. (A.1.10)

Further, we can impose the two factors q to be independent on the direction, i.e., the condition
q(L , X) = q(R , X) = q(X), which is satisfied if

P (L |X)

1−K (R , X)
× w(x2M−1) =

=
P (R |X)

1−K (L , X)
× w(x1). (A.1.11)

Since the two time directions aremutually exclusive, it is also true that P (L |X)+P (R |X) = 1,
which allows us to solve Eq. (A.1.11) and obtain Eqs. (2.2.8) and (2.2.9). The same reasoning
can be repeated for the left direction and, due to imposed homogeneity for the probabilities, it
can be checked that the detailed balance is satisfied for the left direction too.

A.2 Bounce Algorithm, Directed Updates, and Efficiency

In this Appendix we comment on the relationship between the directed-update scheme and
the bounce algorithm. If α = 1 is taken in Eqs. (2.2.11) and (2.2.12), then after s updates
along the direction d, at the end of the Markov step P (d |Xk+s) = 0, i.e., the next Markov step
will be taken in the opposite direction, just like the bounce algorithm. Although the two algo-
rithms are similar in this particular limit, there is an important difference which eventually
leads to a different computational efficiency. In order to elucidate this point and to show the
α-dependence of the efficiency of the directed updates, we have done a systematic comparison
of the two algorithms.

In particular, we have compared the efficiency of the directed updates with the bounce al-
gorithm for a one-dimensional Heisenberg model. The computational efficiency is generally
defined as

E =
1

σ2
OT

, (A.2.1)

where σ2
O is the square of the statistical error associated to a given observable after a given

computational time T . In Fig. A.2.1, we show the ratio between the directed-update scheme
efficiency over the bounce algorithm efficiency, for the measurement of the ground-state energy
of a one-dimensional chain.

We notice that the two sampling schemes have comparable performances, being both based
on a similar approach. As anticipated, it clearly emerges from Fig. A.2.1 that the two algo-
rithms do not have exactly the same behavior at α = 1, the maximum efficiency of the directed
updates being reached for lower values of α. This feature is due to the fact that when α is very
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Fig. A.2.1 Relative efficiency of the directed update scheme and the bounce algorithm. The measured quantity
is the ground-state energy of the one-dimensional Heisenberg model on a chain of size L = 80 sites.

close to its saturation value, then a single Markov step can consist of a conspicuous number of
individual “sliding moves”. Even if this situation leads to a fast decorrelation of configurations
it also leads to a rarefaction of the possibility to measure the desired observables, which can
eventually take place only at the end of the Markov step and not during the individual moves.
This leads to a worse efficiency if compared to the bounce algorithm, where measurements can
be in principle done after every sliding move.

In conclusion, the performances of the two algorithms are very close, although some ad-
vantages may arise from the use of the directed-updates. We further notice that the purely
Markovian approach discussed in Chapter 2 could be slightly more efficient in cases where
the number of rejected configurations by the bounce algorithm is substantial whereas all the
generated configurations are accepted in the directed update scheme.
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