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Introduction 1

Introduction

The fascinating subject of superconductivity was opened over a century ago by Onnes
[1], but until quite recently it was strictly a low-temperature phenomenon diduevery
of the cuprate superconductors [2] in a family of transition metal oxides, vattsition
temperatures up t@. ~ 100K, has generated tremendous excitement for two main
reasons. First, from a practical point of view, these compounds open a new tengeratur
realm for superconducting devices which may have interesting commercialappis,
and these potential benefits have attracted extraordinary attention fronmtie seien-
tific community. The second reason, relevant to those in a more abstractiidhe
interest in the microscopic mechanism driving superconductivity.

The first main distinction to be made is between theories which seek toiluesc
these new materials within the framework of standard Eliashberg appr@pchdther
weak coupling approaches arising from the exchange of other bosons, e.g. excitons
or plasmons, and theories which make a radical break with the past and plaee the
materials in the category of very strong coupling systems. It has become aipjpane
the early years of their discovery that many properties of these matar@alunusual,
and a proper understanding will require developing and extending concepts from many
areas of condensed matter physics.

The main characteristic of the superconducting state is the opening of a gap at the
Fermi level in the electronic spectrum. The difference with the convealtisupercon-
ductors, where the gap opens isotropically along the Fermi surface, is thatgfer hi
temperature superconductors, the gap has a strong dependence on the wayevector
having ad,»_,» symmetry. Nevertheless, the superconducting state appears to be asso-
ciated with a pairing of electrons, and hence the overall superconducting bebvior
these new systems is similar to the one of the conventional materialst imést of the
familiar phenomena which are manifestations of the superconducting statestgrarsi
current, Josephson tunneling, vortex lattice) have been established diesémbateri-
als, but, the microscopic mechanism underlying the high transition temperatsti# i
mysterious.
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There are theoretical problems connected not only with the tigand with the
microscopic mechanism of superconductivity, but also with the many unconventional
electronic properties observed abdvein the metallic state. The usual metals are well
described by the Landau theory of the normal Fermi liquid [4]. Within this theasy it
possible to view much of solid-state physics in terms of ceté@mentary excitations
which interact only weakly with one another. The use of an elementary eraittti
describe the complicated interrelated motion of many particles has touted be an
extraordinarily useful device in contemporary physics.

The remarkable fact is that, although the interactions between the electnoihe c
very strong and long-range (i.e. through the Coulomb potential), it is possible to de-
scribe the whole system with weakly interactiggasi-particles with the same quan-
tum numbers of the non-interacting gas of electrons. The Landau theory breaks down if
there is a spontaneous symmetry breaking, e.g. if the gas of quasi-particles isaunstabl
against superconductivity, antiferromagnetism or ferromagnetism. This cadeeba
known for many years, and it is at the basis of the mechanism leading to the grdinar
low-temperature superconductivity: if the net interaction between the qudsilgais
attractive in some angular momentum channel, it drives the system towarsispée
conducting state. Another, more interesting, way to break the Landau theory s whe
the residual interactions among quasi-particles are sufficiently strond thatot pos-
sible to use a description of weakly interacting gas. This is the case of orensional
systems, where interactions lead to a decoupling between charge and sg@tienst
low energy. However, in two or higher dimensions, singular (i.e. diverging)aotens
at the Fermi surface are needed in order to break the Landau quasi-paricigptien
[5].

The transition metal oxides represent prototype examples of materials in thieich
strong electron-electron and the strong electron-phonon interactions lead ¢s phts
a very poor conductivity or even an insulating behavior, possibly leading to a Landau
theory breaking. For exampl€j,O; andVO, are dimerized insulating materialBi, O,
andV,0; are charge ordered insulato€s;0, is a ferromagnetic metalinO andNiO
are Mott insulators with antiferromagnetic order. In this context the disgaMehigh-
temperature superconductors by Bednorz and Muller in 1986 [2] has played the role of
a sounding board for a renewed interest in this class of materials, opening aaew e
of unconventional superconductors. The cuprate superconductors are layered materials
with a complex perovskite chemical structure. Copper-oxide pl@né€s are alternated
with insulating block layers of rare and/or alkaline earth and Oxygen atom§&igeb).

At stoichiometric composition, the cuprates are insulators with antifergoeta order
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Figure 1: The structure 6f Ba;CuzO-.

of the spin localized on the Copper atoms. The richness of the phase diagram of these
materials depends upon the fact that the electron density can be varied byusinigsti

the rare earths with lower valence elements or by adding Oxygen in the ingubddick

layers. Although the new atoms reside in betweenth®, layers the free carriers are
injected into the these layers. Hence, it is widely accepted that'tiag layers play a
fundamental role in determining the physics of these materials. Detailedmegoes re-

veal a strong dependence of the physical properties of the cuprates upon electron doping
and temperature.

Two main features have particularly focused the attention of the sctectifnimu-
nity in these years: the existence opseudogagphase in the underdoped region, in
which the system does not have a superconducting long-range order, but there is a large
anisotropic gap in the excitation spectrum [6, 7, 8], and the presence of huge charge
and spin fluctuations, the so-callsttipes found at low temperature in many cuprates
[9, 10]. One of the major challenges of high-temperature superconductors is to under-
stand the nature of this anomalous phase alipwand the relevance of the stripes with
respect to the superconducting phase.

As suggested by Anderson in an early paper [11], stnomgly electronicinter-
action combined withow dimensionalitynay entirely determine the physics of these
systems. Following this suggestion, a huge amount of work has been done in order to
understand and clarify how these two aspects change the usual properties otthe ele
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Figure 2: In second order perturbation theory iV, if the spins of neighboring sites
are antiparallel, they gain energy by a virtual process creating a double occupati

tron gas as predicted by simple mean-field treatments. Despite thaiatsitucture of

the real materials, it is essential to reduce the problem as much as paasiblden-

tify the minimal features which can capture the relevant physics. In déigigrd, much
attention has been devoted to effective low-energy models such as the Habdate
so-calledt — .J model. The Hubbard model was introduced well before the discovery of
high-temperature superconductors in order to describe the ferromagnetic propkrties
the transition metals [12]. In this simple model the complicated structuteedfifferent
bound and continuum energy levels of each ion, which corresponds to a lattice site, is
reduced to a single localized orbital level. The states of the model ane lgyvepecify-

ing the four possible configurations of each site, i.e. its level can be emptyjrcon&
electron with either spin up or down, or be doubly occupied. The Hamiltonian contains
only two terms: a diagonal term corresponding to a positive enérgsnes the number

of doubly occupied ionic levels, and an off-diagonal term (nearest neighbor hopping)
which has a non-vanishing matrix elemeretween those pairs of states that differ by
the position of a single electron. In the strong coupling libiits>> ¢, the low-energy
states of the model belong to the subspace without doubly occupied sites. At lowest
order in perturbation theory, the effective Hamiltonian, acting in the sulespébout
doubly occupied sites, contains, in addition to the hopping term, an antiferronagneti
coupling.J = % between the spins of neighboring lattice sites (superexchange). In-
deed, as sketched in Fig. 2, in second order perturbation theory, two opposite $pins ga
energy by virtual double occupation, whereas if the spins are parallel, the Paulplarinc
forbids this virtual process.

These simple models of strongly correlated electrons represent a training goound
studying how the charge and spin fluctuations may affect the nature of the ground-state.
Indeed, it turns out that the strong interaction between electrons may drivedtesns
towards different phases, e.g. superconducting, phase separated, stripe-likdirtgpe
on the strength of the antiferromagnetic interaction and the level of doping.

Despite remarkable progress, we still lack reliable theoretical methadisvork in
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arbitrary dimension. In two dimensions in particular, even the seemingiplsigoal

of understanding the magnetic phase diagram of the Hubbard er-thé model is a
challenge. Traditional mean-field techniques, slave-boson approaches [13] and-dynami
cal mean-field theory [14] fail to give a satisfactory description of the @llgsgram of
strongly correlated electron systems in two dimensions. One of the main m®ilih

these methods is the difficulty in handling the constraint of no double occupancy of the
t — J model.

Instead, quantum Monte Carlo techniques, allow us to overcome this difficulty and
to treat exactly the constraint of thhe- .J model. Moreover, by using quantum Monte
Carlo itis possible to extract unbiased information about the ground-state pespsEré
generic correlated system in the whole parameter region. In its simptastfation, the
variational Monte Carlo, both the energy and the correlation functions of a gisn st
can be calculated, by a stochastic sampling. In this case, the best regtieseoit the
true ground-state is given by the wavefunction with the lowest energy, butdhkksrare
strongly dependent on the chosen wavefunction, and therefore highly questionable. In
the variational Monte Carlo scheme, the electronic configurations are saaggolealing
to the square modulus of the given wavefunction, i.e. a positive definite quantityp whic
can be interpreted as a probability. This fact makes possible the usual Mombe Ca
sampling, e.g. by using the Metropolis algorithm [15].

A systematic improvement of the variational Monte Carlo is given by stdichas
methods which allow us to filter out, from a starting trial wavefunction, treugd-
state, e.g. by the Green function Monte Carlo [16]. In this case the configuratiens
sampled according to the true ground-state wavefunction. Because of the anttsymme
of the many-body wavefunction, this quantity does not have a definite sign and cannot be
interpreted as a probability distribution, and therefore these stochadtiadgeies cannot
be straightforwardly applied. This is a particular case of the well-knownsighlem,
that affects all the quantum Monte Carlo methods for fermionic systems.

In order to overcome this difficulty, some approximate method is needed. The sim-
plest one is the fixed-node [17], which allows us to obtain the best wavefunctian in
class of states with their signs being fixed by the best variational one. Hifsoohre-
lies on the choice of variational guess and therefore it contains an intrinsiclhithis
thesis we have also developed and made use of a recent improvement of the fixed-node
approximation, the Green function with stochastic reconfiguration [18, 19], wikich a
lows us to release the fixed-node approximation in a controlled way and to ohialn m
more accurate estimates of the ground-state correlations.

On the other hand, whenever it is possible to improve systematically thretivagal
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wavefunction and estimate its accuracy, the variational Monte Cadalaion also as-
sumes a powerful role in determining the ground-state properties of a many-bodly Hami
tonian. This can be done by applying a numpef Lanczos steps to a given starting
wavefunction and by computing the energy and the variance of the resulting stete. S
the ground-state has both the minimum energy and a zero variance, it is possible to
use thep different results to estimate the exact zero-variance energy. It turrthatuyt
whenever the variational wavefunction is a good approximation of the ground-state, fe
Lanczos steps are enough to determine a very accurate estimate of the groeied-sta
ergy and correlation functions. By using this method, we have shown that the prbject
d-wave superconducting wavefunction represents an exceptionally good variataiaal
whenever the lattice does not break any spatial symmetry, namely for a tmensiional
square lattice, and we have obtained very accurate results for the enertheager-
conducting order parameter of the- J model for.J = 0.4¢. This method gives reliable
results in a large range of dopings and antiferromagnetic couplingdotivated by a
renewed interest in the determination of the ferromagnetic stabilityagryt= 0 limit

[20, 21, 22], we have found that the paramagnetic phase, stable at large hole &doping
undergoes a second-order transition to a ferromagnetic stafe-fdr.4.

By allowing few Lanczos steps, however, it is not possible to change digstioa
nature of the wavefunction used as initial guess. For example, it is not possibtete@r
a charge/spin inhomogeneity, like phase separation or incommensurate chametspin
ulation, if the starting wavefunction has a homogeneous charge distribution. Bystpntra
within the fixed-node and the stochastic reconfiguration approaches, it is possible to
change the structure of the wavefunction and recover a charge or spin modulation. It
is worth noting that, at least within the fixed-node scheme, the charge and apin re
rangement is possible by changing only the amplitudes of the approximate ground-state
wavefunction, without changing its relative phases. By calculating the desesitgity
structure factor, we have given an accurate phase separation boundary for thedHubba
and thet — J models.

Moreover, there is a strong and subtle dependence of the electron charge and spin
distribution upon the shape of the lattice cluster. If rotational symmetryakeor by
considering a rectangular cluster, the ground-state exhibits peaks in the density-dens
and spin-spin correlation functions, suggesting a charge and spin ordering. Theise res
may explain the fact that a different numerical method, the density matrormealiza-
tion group, applied to rectangular clusters with cylindrical boundary conditions, finds
huge density modulations, whereas Monte Carlo techniques, with periodic boundary
conditions leads to a homogeneous ground-state. The main feature which comes out
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is that thet — J model has a superconducting ground-state at moderate doping, but
small perturbations in the underlying lattice, that induce some anisotropy initheabr
model, may drive the system towards a charge and spin inhomogeneity.






Chapter 1

The strongly correlated electron
systems

1.1 Introduction

The discovery of high-temperature superconductors (HTSC) by Bednorz and Miller in
1986 [2] marked the beginning of the new era of the unconventional superconductors.
Indeed Bednorz and Miller succeeded in finding superconductivity in a class of tran-
sition metal oxides, which are known to show a wide range of phase transitioes driv
by strong purely electronic and strong electron-phonon interactions. Hencetidransi
metal oxides range from antiferromagnetic insulatof¥8), Cr,O3) to ferromagnetic
metals CrO,), and can show metal-insulator transitioR5()3), spin pairing Ti>O3)

or charge ordering\(,O~, Ti,O7), see Fig. 1.1 [23]. Therefore, it soon became clear that
the microscopic mechanism leading to high-temperature superconductivity has a com-
pletely different origin from the classic low-temperature superconduaessribed by

the BCS theory [24, 25]. The difference between these two kinds of superconductors is
not restricted only to the value of the critical temperatfire but involves many aspects

of their properties, both in the superconducting and in the metallic phase. Indeed, the
basis of the BCS theory is the existence of a metallic Fermi-liquid at higpéeatures

[4]. Then, by decreasing the temperature, an attractive pairing intaraciakes the
metal unstable and drives the system towards a state in which the elestecstsongly
bound in pairs. This scenario does not work for HTSC: indeed, through the years, it
became clear that the phase ab@veannot be described by a simple Fermi-liquid, in
view of the many anomalous properties.

A common characteristic of the HTSC is the presendeudd, layers; between these



10  The strongly correlated electron systems
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Figure 1.1: Phases of transition metal oxides, from Ref. [23].

layers there are chargeservoirsof rare-earth atoms like Lanthanum or Barium (see
Fig. 1.2). In all the stoichiometric compounds, tfe’* ions have a magnetic moment
and, below a Néel temperature, the undoped materials are insulatingrantdgmets
with a charge-transfer gap, despite there being one hole per unit cell. This $aletcha
to the consideration of the strong electronic interaction as a fundamental iewy.ei
particular, the local Coulomb interaction between two holes on a Copper atorthis of
same magnitude as the bandwidth.

As the system is doped, the antiferromagnetic order is suppressed and the sys-
tem eventually becomes superconducting (see Fig. 1.2). For example, in the case of
Lay,CuQy, doping can be achieved in two different ways, either by substitUtirtg
with Sr?* or by insertingD?~. Although the new atoms reside in theservoirs in both
cases the free carriers (holes and electrons, respectively) arethjeto theCuO, lay-
ers. This fact suggests that thaO, planes have a fundamental role in determining the
entire physics of HTSC.

The confirmation of the d-wave character of the superconducting gap [26], has def-
initely convinced that a purely phononic mechanism is not adequate to describe these
materials and that superconductivity is caused by a different mechanisny. dd#rors
have suggested theories that combine the pairing ideas with the presence of strong a
ferromagnetic correlations. Among these there are the spin-bag theoriethfigarly
antiferromagnetic Fermi-liquid theories [28], and theories based on a@wistent
fluctuating exchange approximation [29].
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Figure 1.2: The structure dfa,CuO, and the phase diagram bf,_,Sr,CuO,4. The
CuO, planes are believed to be the active region when additional holes are added by
replacing some Lanthanum with Strontium.

A different point of view considers the superconductivity as caused by charge fluc-
tuations [30, 31]. As pointed out first in Ref. [30], the strong electronic interacti
between carriers can lead to phase separation, that is a state inthicobile carriers
cluster together, leaving the rest of the system undoped. This is what is experimen-
tally observed for the Oxygen dopéd,CuO, s [32]. In this compound the long-range
Coulomb repulsion between charge carriers inth€©, planes is screened by the mo-
bile Oxygen atoms in theeservoirs By contrast, in those compounds in which the
long-range Coulomb repulsion is not screened, the long wavelength charge fluctuations
are energetically unfavorable and only microscopic inhomogeneities are po8§iple [

One of the most puzzling aspects of the HTSC is the anomalous behavior of the
metallic state above the superconducting transition temperature. Bdth optimally
doped region, where the critical temperature has the maximum value, and in the under
doped region, there is clear evidence that the metallic state cannot be debgrited
usual Fermi-liquid theory [4]. At optimal doping, the linear behavior of the resigtivi
from the critical temperature over a wide range of temperatures [33] handeg au-
thors to claim that there is a breakdown of the Fermi-liquid theory in the nostatd
[34]. Inthe underdoped regime, below a crossover temperatutiee cuprates are char-
acterized by the opening of a largseudogafin the single-particle excitation spectrum
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and in the spin and charge response function, as observed in angle resolved photoemis-
sion, tunneling and specific heat [35]. Although in this state there is a gafy, of:
symmetry, there is no long-range order [7, 8].

On the other hand, one of the longstanding mysteries of HTSC concerns the sup-
pression of superconductivity iha,_,Ba,CuO, at x = % [36]. Different studies
[9, 37, 38, 39] of this and related cuprates materials, su¢has (Ndg 4Sr,CuO,, have
established that the suppressioriipfrequires both a hole concentrationsof= % and
a lattice distortion from the usual low-temperature orthorhombic to the éomperature
tetragonal structure. Furthermore, at the same doping, neutron studies have found a
clear evidence of static incommensurate ordering of antiferromagneticssteparated
by charged domain walls [9, 39]. The presence of dynamic incommensurate spin and
charge fluctuations is well established also for other hole densities ancedtfiesm-
pounds [40, 41]. The understanding of the role of these inhomogeneities remains a
challenging unsolved problem.

Definitely, the discovery of HTSC has given a great impetus to clarifyidgssiues
and to investigating new possible phases in solid state physics. Indeed, HE ®€dma
the starting point for studying different problems such as the metal-insulatittoan,
the breakdown of the Fermi-liquid theory, charge and spin order in solids. Maréove
the last few years it has become evident that many different materialsasunangan-
ites [42], fullerides [43], organic conductors [44], cannot be described by standard the
ries and electron-electron correlations play a crucial role in detengnithieir physics.

In this regard, simple microscopic models of strongly correlated electrpnssent
a very useful training ground to understand the fundamental physics of the much more
complicated real materials.

1.2 Microscopic models

The simplest model of interacting electrons on a lattice is the Hubbard tdeumaih [12]

H=—-t Z C;[,UC]'J + UZTLZ"TTLZ"J,, (11)

<i7]>70-

where ( ) stands for nearest neighbors,, (cZT’g) destroys (creates) an electron with
spino at site:, andn;, = c;(,ci,g. Each site can be empty, singly occupied, by an
electron with spin up or down, or doubly occupied. Electrons can hop from a site to the
neighboring one with an amplitudet. The interaction between patrticles is reduced to

a local density-density term, while all the non-local terms are dropped.
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A more realistic model for describing tHeuO, layers is the three-band Hubbard
model

H = e dl dig+e Y plopo+Us Y dldigdl di
7

i lo
+ U, ZplT,TplvalT, Pl + Upa Z di,gdi,ap;,g,pz,m
I

(i,l)o,01

— tpd Z dj‘.vo.pl’g' + H.C., (12)
@i,0)o

whered] , creates &u(3d,2_,2) hole with spins at Copper sité, p] , creates af (2p,),

or O(2p, ), hole with spino at Oxygen sité, ¢, ande,, are the atomic energies of Copper
and Oxygen respectively, aml,; = ¢, — ¢, > 0. U, andU, are the local Coulomb
repulsion on Copper and Oxygen atoitis; is the Coulomb interaction between nearest
neighbor Copper and Oxygen atoms. Finally,is theCu — O hybridization, and the
last sum runs over the four Oxygen atoms around the Copper site

Although the Hubbard model (1.1) is certainly a very simple Hamiltonian of inter-
acting electrons on a lattice, there are no exact solutions for spatial donsmgeater
than one [45], and even at zero temperature the ground-state properties asoa foinct
the interaction strength’ and the electron density are not known. In Fig. 1.3 we report
the Hartree-Fock phase diagram of the two-dimensional Hubbard model as calculate
in Ref. [46]. Although the Hartree-Fock approximation gives a presumably relalgona
description of the true ground-state only in the weak-coupling limit, this approach ca
give important insights into the competing phases, e.g. metallic, or with spimeoge
order.

Furthermore, the most intriguing problem in strongly correlated electron madels
the possibility of having superconductivity from a purely repulsive interaction. The
nature and the extent of the pairing correlations in the two-dimensional Hubbard model
near half-filling remains an open question. Diagrammatic calculations hgesedthe
exchange of spin fluctuations [28, 29] suggest the possibility of d-wave pairing. Within
guantum Monte Carlo calculations it turns out that the superconducting correlations are
suppressed by increasing the electron interaction both in the single-banah{4iri the
three-band Hubbard models [48]. On the other hand, within a renormalization group
approach [49], al,-_,» superconducting ground-state at infinitely small coupling and
finite doping has been recently obtained.

In the strong coupling regime, i.&/ > t, the Hubbard model can be mapped onto
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F F
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P

Figure 1.3: Hartree-Fock phase diagram for the two-dimensional Hubbard model from
Ref. [46],p is the electron density. A, F, and P denote antiferromagnetic, ferromagnetic
and paramagnetic ground-states, respectively.

the so-called — .J model, projecting out the subspace with doubly occupied sites
1
H=—t Z 6;[’Uéj,g + JZ <Sz : Sj — an]> (13)
(i5),0 (4.3)

whereé!, = ¢l (1—mn;;), n; = 3, n, is the electron density on site S; =
ZM, é};,r(,,(,/éi,(,/ is the spin operator and, ,» are Pauli matrices. The antiferromag-
netic coupling/ is related to the Coulomb interaction bBy= 4¢> /U [50].

The relevance of this model for HTSC is given by the fact that also the mdrstiea
three-band Hubbard model (1.2) reduces toi#the.J model for large on-site Copper
repulsionUy > t,4, Apa, Uy, Uyq [51], although in this case the expression fas more
complicated

_ At2 { 1 2 }
(Apg +Upa)” LUs 2800+ Up ]
Using the realistic values for the parameters [52], it is found fhat0.2 = 0.6t.

At half-filling, that is when the number of electrons equals the number of sites, the
charge dynamics is completely frozen and only the spin degrees of freedom ateeffe
in this case the — .J model is equivalent to the Heisenberg model. Although we lack
the exact solution of the Heisenberg model for dimensions greater than one, it is wel
accepted that, in two dimensions, the ground-state is magnetically orderdtharad

(1.4)
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Figure 1.4: Two holes in an antiferromagnetic background. In.thg ¢ limit, the
energy loss with respect to the ordered state is given by number of broken bors. If t
holes are far apart (a) the energy los8iis/ whereas if they form a cluster (b) it7$.J.

finite staggered magnetization in the thermodynamic limit [16, 53]. This faahgly
suggests that, at least at half-filling, the cuprates are well describddsidgamiltonian.

The crucial point for HTSC is whether the underdoped regime can be described by
doping the Heisenberg model, that is by the J model.

1.2.1 Phase separation

Recently, the problem of a finite number of holes in an antiferromagnetic background
has attracted considerable attention. At finite hole doping there is competitivadre
the kinetic energy, which favors a homogeneous delocalized state, and thetioterac
energy, which favors an inhomogeneous localized state. This competition nearysgv
to strong charge fluctuations and eventually to phase separation or charge dexsgy w

In order to gain insight into the possible charge inhomogeneities in the lightly doped
t — J model, it is instructive to consider the case of two holes ang ¢. In this limit
the kinetic energy can be neglected, and the energy of a state with two wigahated
holes isF = E, — 8B.J, where E, is the energy of the uniform antiferromagnetic
background and is the antiferromagnetic energy per bond. By contrast the energy of a
state with the two holes clustered together to form a pdir is F, —7B.J (see Fig. 1.4).
The same argument holds for a finite number of holes.

This simple variational calculation suggests that, at least for vegg lealues of/,
the state in which the holes are segregated, leaving the rest of the system undoped, i
favored over the uniform one. At finitethe loss in antiferromagnetic energy competes
with the gain in kinetic energy, and it is not at all obvious if the homogeneous state is
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unfavorite.

In an early work, Emery and co-workers [54] claimed that, at low doping, the
ground-state of thé — .J model is phase-separated for all the interaction strerdgth
Their statement was supported by an exact diagonalization on a small thiseer and
by a variational calculation foy < t. Although the exact diagonalization results give
insights into the physical properties of the cluster under consideration, for ferysen s
tems it is impossible to consider sizes with more thér- 32 sites and, for such small
lattices, any size scaling in more than one dimension is highly questionahtz the
phase separation is a long-wavelength instability it is crucial to consadge kystems.
Moreover, on small lattices and for low doping it is not easy to distinguistvédet
phase separation and pairing. For example, for a 16-sites lattice, the idgsiEtwo
holes can represent both pairing or phase separation at a doping 0f12.

In the thermodynamic limit, the compressibility of a stable system is fimitepmos-
itive. Since the compressibility can be related to the second deevattishe energy per
sitee(d) with respect to the density

= (5) (15)

it turns out that, in an infinite system, the stability criterium requiresttienergy per

site is a concave function of the density, see Fig. 1.5 (a). By contrast, ibthpressibil-

ity is negative, the system phase-separates, i.e. it creates twosuoapic regions with
densities)., andd,,. In this case, the energy of the homogeneous state can be lowered
by forming two separated regions with different densities, being the totalege/en

by the Maxwell construction, see Fig. 1.5 (b).

In Ref. [54], a very clever way to detect phase separation by using endmyaca
tions has also been suggested. Assuming that, at a fixed hole dpimg system is
composed of a hole-free and a hole-rich phase, with densignd assuming that the
volume is large enough that the surface interaction can be neglected, the enesijg per
can be written in the form

e(d) = mxin e(d, ) = min { <1 - %) eo + %ez} , (1.6)

x

whereL is the total number of siteg,, is the number of sites in the hole-rich phasg,

is the energy per site of the Heisenberg (hole-free) phaseg,ailscthe energy per site
of the uniform hole-rich phase, which is a functionaot= N, /L., with N, number of
holes, finally the hole density of the total systend is= NV, /L. For fixed values ofV,
andZ, i.e. for a given doping, e(4, x) is a function ofL,.. The system phase-separates
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Figure 1.5: Energy per site landscape versus doping for a stable (a) and a phase-
separated (b) system. Energy per per hole versus doping for a stable (c) and yd3table
system. The dashed line is the Maxwell construction.

if e(d, ) has a minimum as a function df, at L, < L. The energy per site can be
rearranged into the form
e(0, ) = eg + de(x), (1.7)

where
€x — €p

e(r) = (1.8)

T

is the energy per hole in the (uniform) hole-rich region. Therefore phase separation
occurs ife(x) has a minimum at finite, see Fig. 1.5 (c) and (d). It is worth noting that,
in the thermodynamic limit, if the system phase-separates$ s a flat function ofx for
0 < z < ¢., whereas, in a finite size lattice, due to surface terfis, can be slightly
convex.

By using the above mentioned method, different authors have addressed the problem
of finding out the critical valud, above which there is phase separation at low doping in
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thet — .J model by using different numerical techniques [55, 56, 57, 58, 59, 60, 61, 62,
63]. It is worth noting that because the Hubbard model reduces to-thé one in the
strong coupling limit, one could expect that, if the .J model phase-separates at small
J's, the Hubbard model will also at largés. Although there is no general consensus on
the value ofJ., most of the calculations agree that it is betwéemn and1.2¢. Different
guantum Monte Carlo calculations [57, 58, 59, 60] agree with & 0.5¢, by contrast

in Refs. [61, 62] it is found that there is phase separation at all the intamasttengths.
These discrepancies are probably due to the fact that in the latter work tbeeniff
dopings are not achieved by varying the number of holes while keeping the lattice size
constant, but by varying the lattice size while keeping the number of holes constant.
Although this procedure probably overcomes the problems of having shell effects, it
forces one to use fairly small sizes in the delicate low-doping region.

The high-temperature expansion [55, 56] gives~ 1.2t, but this method suffers
from the difficulty of extrapolating the ground-state energy from very high tempesat
Finally a recent density matrix renormalization group calculation [63]syive- ¢. This
value is found by calculating the critical value rleg ladders with increasing number
of legs (up toN = 6) and extrapolating to the two-dimensional limit.

1.2.2 Superconductivity

Many of the methods that have been used in establishing results on charge or spin orde
have not been able to provide clear and definite evidence for or against superconduc-
tivity. The main problem of quantum Monte Carlo techniques is that the sign problem
prevents us from reaching low enough temperatures to show a clear superconducting
signal [64, 65, 66]. Within the high-temperature expansion it is not clear whethes ser

of high enough order can be calculated to reach a temperature below which ao$ignal
superconductivity would be observed. As far as the exact diagonalization methods are
concerned, Dagotto and Riera [67] found a strongly enhanced pair-pair structare fact

in a4 x 4 cluster at quarter filling fo7 ~ 3¢. Their results indicate that the symmetry

of the order parameter if2_,.. However thet x 4 system is still quite small and this
signal may be due to short-range correlations instead of true off-diagonal long-range
order.

Insights in favor of superconductivity come from variational results. Although var
ational calculations are limited by the small number of wavefunctions one canehoos
they nevertheless provide useful information about the ground-state propertiesyand the
give a good starting point for further investigations. The work is especially imathe
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t — .J model, where many different magnetic and charge-ordered phases are compet-
ing. Indeed, from variational calculations it becomes clear that in the lowagaopgion
antiferromagnetic ordered phases are competing with superconductivity, tipdases
having very similar energies. Moreover it is not clear if it is possibladge a coexis-
tence of these two phases or if they are exclusive.

Gros [68] suggested that tig._,. BCS wavefunction projected onto the subspace
of no doubly occupied sites is a very good variational state for-themodel. Moreover,
Giamarchi and Lhuillier [69] found the d-wave state stable up 4100.4.

More recently, different more involved techniques have been used to imgreve
variational state by using few Lanczos steps [70], or the fixed-node approximation [17]
on the lattice. The former approach has given controversial results. shitoaworkers
[71] have shown that the pair-pair structure factor is suppressed and they #ngtied
there is no superconducting order fbi< 0.7¢. Conversely, Heeb and Rice [58] identify
a finite region of d-wave superconductivity for hole densities down+o0.16.

Calandra and Sorella [72] have suggested that, instead of calculating thealuyey-r
pair-pair correlations, in Monte Carlo methods a more reliable and lesschtpgntity
is the short-range superconducting order parameter. Indeed it is found that byimgreas
the accuracy of the calculation, the order parameter remains finite antllsitea/ =
0.4t andd ~ 0.13.

The density matrix renormalization group calculations present a completielyeait
scenario. Using a rectangular cluster with open boundary condition in one diretison, i
found that the ground-state has a huge charge modulation and that the superconducting
pair-pair correlations are almost negligible [73].

As far as the Hubbard model is concerned, a superconducting instability, with a max-
imal T, ~ 150K atd ~ 0.2, has been found fdr = 12t within the dynamical cluster
approximation [74]. Moreover a wide region of coexistence of antiferromagnetigm a
superconductivity comes out &t ~ 5¢ from a slightly different approach [75]. Finally,

a weak-coupling renormalization group approach [49] also gives rise to a d-wdee or
parameter in a large region of the phase diagram of the Hubbard model. These results
are in strong disagreement with what is found in quantum Monte Carlo calcul@itins
where no sign of superconducting correlations is detected.

1.2.3 Magnetic order

At half-filling both thet — J and the Hubbard model are antiferromagnetic insulators.
Thet—.J model reduces to the Heisenberg model, and due to the constraint of no doubly
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occupied sites, only the spin exchange interaction is relevant. By contthsttitubbard
model there are both charge and spin fluctuations, but at half-filling, because of the
completely nested Fermi surface, the ground-state is an insulator antiggnetically
ordered at any finite interactidii. At finite doping, the hole hopping highly frustrates
the antiferromagnetic background, leading to the suppression of the long-range order.
This has been verified in the— .J model by Variational Monte Carlo [69, 76] which
found a rapid suppression of antiferromagnetism with doping, and by high-temperature
expansion [77] which found a sharp antiferromagnetic peak in the spin-spin structure
factor atQ) = (w,n) at half-filling, which is present but suppressed by increasing the
doping. Moreover, in the low-doping region of the Hubbard model it has been found by
using the Hartree-Fock approximation that the commensurate antiferromagaétics
unstable against domain-wall formation [78], and by Monte Carlo calculationshibat
spin-spin structure factor develops incommensurate peaks at wavevectofs [18&r
Another type of magnetic order, not related to cuprates, is the ferromagneée inst
bility, that may occur at low doping and small coupling, /e« t. In particular, one of
the few rigorous theorems in strongly correlated systems refers to one hbéejint 0
limit [80]. In this case, Nagaoka showed that the ground-state is fully pothribat is
it has all the spins aligned. Although the Nagaoka theorem holds at any finite size and
in the thermodynamic limit, there are no generalizations at finite hole denditiéeed,
the case of one hole is not relevant for infinite size and can only be a "singular point”.
The question of ferromagnetism in the infinteHubbard model (or equivalently
the J = 0 case of thet — J model) has attracted much interest in the past years
[20, 21, 22, 81, 82, 83, 84]. In particular, it has become clear that, at leasinfdt s
sizes, there are huge boundary effects that affect the result [84]. Extragoatiies
of few coefficients, the high-temperature expansion gives an energy much luaver t
the ferromagnetic one, suggesting that at any finite hole doping the ground-state is not
fully polarized. Itis worth noting that the high-temperature expansion is not atiaral
method and extrapolation from high temperature down to zero temperature is iaghl
trivial. By contrast, pure variational calculations [21, 22], which are Basea single
spin-flip on the ferromagnetic state, give a finite critical hole densityvb&bich the
ground-state is fully polarized.
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Chapter 2

Numerical methods

2.1 Lanczos

From a general point of view, the ground stédg) of an HamiltonianH can be ob-
tained by thepower methodrom a trial wavefunction¥ ), provided that | ®,) # 0.
Indeed, if we define the operatér= A — H, with A a suitable constant chosen to allow
us the convergence to the ground-state, we have that:

G"|Wr) = (A — Ep)" {%@0) + Z (2:5;) ai|q)i>} ; (2.1)

i#£0

where E; and |®;) are the eigenvalues and eigenvectordiofespectively, and; =
(®;|¥r). Therefore
lim G"|Ur) ~ |Dy), (2.2)
n—o0

thatis, as: goes to infinity, the iteration converges to the ground-state of the Hamiltonian
H.

Starting from the power method, it is possible to define a much more efficient it-
erative procedure for the determination of the lowest eigenstate of Harnmitatrices,
known as the Lanczos technique. Indeed, within the power method, the ground-state
is approximated by a single state, i.&,) ~ G"|¥), by contrast, the basic idea of
the Lanczos method, is to use all the information contained in the pawébs-), with
i =1,...,ntoreconstruct the ground-stdte,), namely

|Dg) ~ | > oH|D). (2.3)

However, the vectors generated by the power method are not orthogonal, wheheas wi
the Lanczos method a special orthogonal basis is constructed. This basis is generate
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iteratively. The first step is to choose an arbitrary ve¢iar of the Hilbert space, the
only requirement is that this vector has a non-zero overlap with the true groated-st
If there is noa priori information about the ground-state, this requirement is satisfied
by selecting random coefficients in the working basis. If some information about the
ground-state is known, like its momentum, spin, or its properties under rotation, then
it is useful to initialize the starting vector using these properties, chgasvector that
belongs to the particular subspace having the right quantum numbers.

The Lanczos procedure consists in generating a set of orthogonal vectors as follow:
we normalizg ¥, ) and define a new vector by applying the Hamiltonfaro the initial
state, and we subtract the projection oh&r)

52|‘I’2> = H|‘I’1> - 041|‘I’1>a (2.4)
the coefficientsy; andj, are such that¥,|¥,) = 1 and(¥,|¥,) = 0, that is:

ar = (U[H|¥) (2.5)
Ba = (W] H[Wy). (2.6)

Then we can construct a new state, orthogonal to the previous ones as

53|‘I’3> = H|‘I’2> - 042|‘I’2> - 52|‘I’1>: (2-7)

with
ay = (Vo|H|Uy) (2.8)
Bz = (V3|H|Ts). (2.9)

In general the procedure can be generalized by defining an orthogonal basis regursivel
as

Brs1|Vni1) = H|Wy) — 0| Wp) — B, |V, 1), (2.10)

forn=1,2,3,..., being|¥y) =0, 3; =0 and

ﬂn—H = <\Ijn+1|H|\Ijn> (212)

It is worth noting that, by construction, the vectdr,) is orthogonal to all the previ-
ous ones, although we subtract only the projections of the last two. In this basis the
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Hamiltonian has a tridiagonal form

ar B2 0
Ba ay B3 s

H = 0 B3 as By ... |- (2.13)
0 0 fB1 o

Once in this form, the matrix can be easily diagonalized by using standaadylibub-
routines. In principle, in order to obtain the exact ground-state of the Hamiltahian,
necessary to perform a number of iterations equal to the dimension of the Hpaed.s
In practice, the greatest advantage of this method is that a very accppatianation

of the ground-state is obtained after a very small number of iterations, typafaihe
order of 100, depending on the model.

The main limitation of this technique is the exponential growing of the Hilbertespac

Indeed, although the ground-state can be written with a great accuracy indkfens

w,) as
~100

[P0} ~ > W), (2.14)

n=1
it is necessary to express the general vector of the Lanczos [dg3isn a suitable
basis to which the Hamiltonian is applied. For example, for the épl'rﬂeisenberg
model, in which each site can have an up or a down spin, it is convenient toimork
the Ising basis, wheré, is defined at every site, i.e. a generic element is given by
lz) = |t | &1 41, 1, ... ). Forthe Hubbard model, each site can be singly
occupied, by a spin up or down, doubly occupied by opposite spins or empty, and the
generic elementreads) = | 1, 0, 1, |, 0, 0, 14, 1, ... ). For the Hubbard
model on 16 sites at half-filling anél, = 0 the Hilbert space is abow65 x 10°, a huge
computer memory. In practice this problem can be heavily alleviated by usirsytire
metries of the Hamiltonian (in Appendix A it is shown how to implement symiegt
in the Lanczos algorithm). Indeed, in the case of periodic boundary conditions, there is
translational invariance and the total momentum of the system is a conservedyqua
Moreover, on square lattices also discrete rotations/@fand reflections with respect
to a particular axis are defined and can give rise to good quantum numbers.

Since in general translations and rotations do not commute, it is not possible to
diagonalize the Hamiltonian in a subspace with a definite momentum and a definite
symmetry with respect to rotations. However, for particular valuee®htomentum it
is possible to define also the rotational quantum number. For example=dp, 0) or
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k = (m,7) the Hamiltonian has a block-form also with respect to rotations. After the
introduction of these symmetries, the Hilbert space of the Hubbard model atlladf-fi

S, = 0, zero momentum angtwave is about .3 x 10°. Therefore it comes out that the
use of the symmetries is a fundamental achievement to perform a diagonalfatien
Hubbard model, at least near half-filling.

In principle the Lanczos procedure, as described in Eqgs. (2.10), (2.11) and (2.12),
can give informations about both the ground-state energy and the ground-state vector.
In practice, during the Lanczos matrix construction, only three vectors aredsti.e.
|ni1), |¥,) and|¥,_;) (by using an improved algorithm, it is possible to store only
two vectors), because each elem@nt) of the basis is represented by a large set of co-
efficients, when it is expanded in the basis selected to carry out the problerefore,
it is not convenient to store all th&,,) vectors individually, since this procedure would
demand a memory requirement equal to the size of the Hilbert space times thernumbe
of Lanczos steps. A possible solution of the problem is to run the Lanczos twice: in
the first run we find the coefficient, of Eq. (2.14), in the second run the vectois,)
are systematically reconstructed one by one, multiplied by their coeffanehstored in
| Do)

Within the Lanczos method, it is useful to consider not onlyshe: N cluster, but
also other tilted square lattices, which have axes forming non-zero angletattice
axes. In general it is possible to construct square cluster ivith [? + m?, being
[ andm positive integers. Only cluster with= 0 (or m = 0) or [ = m have all
the symmetries of the infinite lattice, clusters with2 m can have rotations but not
reflections with respect to a given axis.

In this thesis, using all the lattice symmetries, we have diagonalizeHubbard
model on 18 sites, where the symmetrized Hilbert space at half-fillingSand 0 is
about16 x 10° [85]. By contrast, due to the smaller bare Hilbert space,tthe./
model can be diagonalized in rather bigger cluster, i.e. for 4 holes on 26, where the
symmetrized Hilbert space is abdift x 10°.

2.2 Variational Monte Carlo

One of the most useful properties of quantum mechanics is that the expectation value of
an HamiltonianH over any trial wavefunctiof’) gives an upper bound to the ground-
state energy,

V[H|Y)

E= <<qf|mp> > E, (2.15)
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this can be easily seen if we expanig) in terms of the eigenfunctiof;) of H with
energykb;

2
q’\'ﬂj@ Z E; Z'é = Eo + Z(E - E@% > Ey. (2.16)
In this way, if we have a set of different wavefunctions, we can choose thaesixi-
mation of the ground-state by looking for the lowest expectation value of the energy.
In general, due to the rapid growth of the Hilbert space with the latties gie vari-
ational expectation values (2.15) can be calculated exactly only for very cinsters,
e.g. about 40 sites for the spgnHeisenberg model. On larger sizes only a Monte Carlo
approach to evaluate Eq. (2.15) is possible. In order to show how statistitedadsecan
be used to calculate this kind of expectation values, it is useful to introducpletam
sets of state&:) in Eq. (2.15)

(WHD) 3w V) Ho V()
(w[w) S ()

whereV¥ (z) = (z|V), Hy , = («'|H|z), and for the sake of simplicity we have restricted
to real wavefunctions. Defining tHecal energyF, as

(2.17)

_ (@A) (@)
E, = o) ;\p(x)ﬂm,z, (2.18)

EqQ. (2.17) can be written as > 2(a)
E V% (x
E = —Z’Cm ) (2.19)
The local energyF, depends crucially on the choice of the wavefunctigi, in partic-
ular, if |I) is an eigenstate off with eigenvalueF, it comes out from Eq. (2.18) that
E, = F, and the Monte Carlo method is free from statistical fluctuations.
The evaluation of Eg. (2.19) can be done by generating a salplfe\ configura-
tions according to the probability distribution

V()
Px) = =———— 2.2
SNSRI Z (220
and then averaging the values of the local energy over these configurations
Z E,. (2.21)
:EGX

In practice, the simplest method to generate a set of configurations accordngy to
probability distributionP(z) is the Metropolis algorithm [15]: given a configuration
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a new configuration’ is accepted if a random numbgrbetween 0 and 1, satisfied the

condition )
pPa) _ [¥(2)
= 2.22
<56 = [t (222
otherwise the new configuration is kept equal to the old ohe; .
By the Variational Monte Carlo, it is possible to calculate any kind of expecta

value over a given wavefunction in a similar way
_(vjopw) ¥, 0.V%(x)

O TS e 2239
where @O1T) ()
0, = ey - Z Wo‘”"‘”' (2.24)

An important point is that the only rigorous result is the upper bound to the ground-state
energy, and there are no criteria about the accuracy of other properties of the ground-
state, such ag)).

2.2.1 Systematic improvement by Lanczos steps

A given trial wavefunctior|¥) can be systematically improved by applyintimes the
Hamiltonian and then by constructing a linear combination of alptterms

|\I;o¢1 ..... ap>: Z azHZ|\II>, (225)

where the coefficients; are variational parameters. If we want to calculate the expec-
tation value ofH over Eq. (2.25), we need all the momexis| 7| ¥) up to the order
2p + 1. In principle, if we want to calculate exactly the moments, the above ipéscr
is straightforward, but, in practice, it has serious computational lirartaf because the
time required for the evaluation of the moments grows exponentially with the number
of Lanczos steps. On the other hand, if we compute the moments stochasticaligewe f
the problem of having statistical errors, that strongly affect the final exjp@ctzalue of
the Hamiltonian.

What we can easily do is to consider= 1, in this case it is possible to evaluate the
expectation value of the Hamiltonian over

[Wa) = (1+ )W), (2.26)

with a reasonable amount of computer time. For an efficient way to find the optimal
value of the parameter see Appendix B. In this case we have
U, |H|V,) . Zx,x’ o (') Hyr 2 Vo ()
(Pa|Ta) >0 Vo)

o , (2.27)
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whereVU,,(z) = (z|U,).
By defining the local energy as

U, (z")
E% = H,, ——Z 2.2
we obtain s E \IIQ( )
@ T
EO‘ — r T o\ 22
> U2 (r) (2.29)

which can be stochastically sampled using Monte Carlo by generating configusrati
according tol? (x)/ >, ¥2(z'). Notice that the ratial,, (') /¥, (z), necessary to the
Metropolis algorithm, is evaluated by using the fact that
Wa(a') _ (@|(L+aH)[¥) _ W) (1+aBy,
1+aE, )

Volz)  (2|(1+aH)|[¥) V()
Therefore, at each Monte Carlo step, we have to calculate the local ewiettogy trial
wavefunction|¥) both on the configuratiom and’. This kind of calculation takes

(2.30)

order of the number of the lattice sites operations. Notice that we have to &valla
the matrix elementgz’|H|¥), even if the movement from to 2’ is not accepted. It
is easy to see that, if we want to perfognianczos steps exactly, we have to calculate
quantities like(z'|H'|¥) for i = 1,...,2p + 1, which takes an exponential increasing
time withp. Indeed we have to consider all the possible configurations which come from
the application ofi/’ to 2.

In Section 2.4, we will show an efficient way to perform the Lanczos steps bg usi
the stochastic reconfiguration technique.

2.3 Green function Monte Carlo

2.3.1 Basic principles

The Green function Monte Carlo (GFMC) [16] is a stochastic technique thatsalis
to filter out the ground-stat@,) of an HamiltonianH from a trial wavefunction ),
provided that U1 |®,) # 0, by using the power method Eq. (2.1).

In practice we define a basjs) (e.g. the spin configuration of the lattice) and the
iterative application of the Green functidh, , given by Eq. (2.1) reads

Vo1 (#) =) Gar oW (2). (2.31)

On large sizes it is not possible to evaluate exactly this recursive equathdeed,
after few steps, the application 6f generates transitions to a very large number of
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different states, implying a huge amount of memory occupation. Therefore an aterna
approach is necessary. The solution is to sample in a statistical wagatnx-vector
product (2.31) by defining a Markov process.
In order to implement efficiently the power method, it is convenient to consioler
the original matrix, but the slightly more involved non-symmetric one [86]
5 Ug(a)
x’,x - \IIG(ZL')

(EP (2.32)

where¥ () is the so-calleguiding wavefunctionThe convenience of using instead
of G comes out from the following argument. If we considgrthe local energys,, is
given by

Ue(z)
Thus if U (z) is exactly equal to the ground-state Bfthen E,, = E,, independently
onz. This is the so called zero-variance property, namely if the guiding wavieimnc
approaches an exact eigenstatéiofthe method is free of statistical fluctuations. The
guiding wavefunction has to be as simple as possible to be efficiently impledniente
the calculation of the matrix elements and as close as possible to the grotendtsta
Moreover, it is easy to show that &;(x) is an eigenvector off with eigenvalueF;,
then¥;(z)®;(z) is an eigenvector of/ with the same eigenvalue, i.& andG have
the same spectrum. It is worth noting that, after the importance samplirgjdranation
(2.32), the iteration step (2.31), reads

E,=Y Vol@) N o (2.33)

U (2)Va(a') =) Gor o Un(2) Vg (). (2.34)

For simplicity, from now on the bar over an operator represents the sameasdtat
the importance sampling transformation.

2.3.2 Statistical implementation of the power method

In order to define the statistical implementation of Eq. (2.34), we decompose the ma
@x,,x in terms of three factors:

Gx’,x = Sm’,xpx’,xbxa (235)

wheres, , is the sign of@x,,x, b, is a normalization factor ang, , is a stochastic
matrix, i.e. it fulfills the conditiong,/ , > 0 and)__, p.s, = 1.

The basic element of the stochastic process iswthler, which, in the simplest
formulation, is defined byz,w), i.e. by its configuration in the lattice and by a
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weightw. Stochastically, the iteration (2.34) is interpreted as a transition ofvétieer
x — ', whereas the weight of the walker is scated— w' = s,/ ;b,w. This scheme
defines a Markov process in the walker spécev). The basic idea of the stochastic
implementation of Eq. (2.34) is that, although the number of non-zero eleme@ts of
is of the order of the Hilbert space times the number of sites, the number of non-zero
entries in each column is of the order of the number of sites. Therefore all theenon-z
elements of7,, , for a fixedz can be computed, even for large size systems.

The previous Markov iteration allows us to define the evolution of the probability
distribution P, (w, x) to have a walker with weight and configuration:, namely:

x’x w'
Pyi(w', 2" Zp : <b - ,x). (2.36)

The first momentum of the probability distributid) (w, x) completely determines the
wavefunction wavefunctiof¥,, (x) of the power method (2.1)

U, (2)¥q() :/dwwpn(w,x). (2.37)

Indeed, it can be easily seen that the evolution (2.36) correctly reproduces the-dynam
ics of the wavefunction, Eq. (2.34). Therefore, after an equilibration, the pratyabili
P,(w,x) converges to its equilibrium limiP*(w, ), which defines the ground-state
wavefunction

Dy (2)Vq(z) = /dwa*(w,x). (2.38)
Therefore, the ground-state energy is given by
<‘I’G|H|®0> N ZI,I’ H;p’,;p f dwwp()(w, .I’)
(V| Do) > [dww Ry(w,z)
Using the fact that the local enerdy, = Y, H, ., we have that the ground-state
energyE, can be computed over a sampleof independentV’ values of configurations
Z(w,m)GX why
Z(w,x)eX w
In addition, within the same Monte Carlo sampling, it is also possible tailzt the
so-calledmixed averageRL6] of arbitrary linear operator®,
(Ve |O|®y)
(Wa|Po)
In fact, such mixed averages can be calculated using Eq. (2.40) by substitigtilogal
energyE, with the local estimator associated to the operéatpnamely

0= Oy (2.42)

E():

(2.39)

Eoﬁ

(2.40)

(O)ma = (2.41)
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whereO, , are the operator matrix elements transformed according to the guiding wave-
function.

In the practical implementation of the method, since the walker weights grxew e
ponentially with the Markov iteration, the procedure for the statisticaluation of the
ground-state energy and the mixed averages is slightly different. We carmleotisat,
after many iterations, the configurationgenerated in the Markov process, is distributed
according to the maximum right eigenstate of the matrix,. This state is different
from the statel'; (x)®,(x) we are interested in, and we can consider it as a trial state in
the power method. At any Markov iteration we can compute the weight of theewalk
assuming thalL iterations before it was equal to 1. In this way the ground-state energy
is given by

E,, GE
where
L
Gl =] beus 500 sirimn - (2.44)

j=1
In principle, the previously described procedure is free from any approximation, and,
it gives exact results within the statistical errors. Unfortunatelyetlaee two main tech-
nical problem. The first one is that the weighf grows exponentially by increasing
L, implying a divergent variance in the energy average. Indggds a product ofL
different factors and it can assume very large or very small values. prbblem has a
simple solution by considering the GFMC technique with many walkers and by intro-
ducing a reconfiguration scheme, which enables to drop out the irrelevant waikers
small weights. Recently, Calandra and Sorella [53] have introduced a recotibgura
scheme working at fixed number of walkers, in a way that allows us to contrbidise
due to the finite walker population, which we will describe in the following.
The second problem is much more serious and it is related tsighgoroblem It is
due to the fact that the average sign,

_ .G

(s1) = R (2.45)
vanishes exponentially with. Indeed walkers with positive and negative weights can-
cel almost exactly, giving rise to an exponentially small quantity to samyté huge
fluctuations. In the following Sections we will discuss different ways tcchtice some
approximation to avoid the sign problem.

Let us focus on the first problem and, in order to show how the reconfiguration

scheme works, let consider a case without sign problem, i.e.swith= 1. We consider
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M walkers and label the corresponding configurations and weights with a couple of
vectors(x, w), with each componerttr;, w;), i = 1,..., M corresponding to thé”
walker. It is easy to generalize Eq. (2.36) to many independent walkers

! far s Patm
Ponw,x)= Y P, < wM) Dot == Doy = (5 46

b by, ... b
T1yTM M o1 ™™

Again, the wavefunctio®,, (x) is completely determined by the first momentum of the
probability P, (w, x), namely

WOy
W, (2)Vg(z) = / [dw] ) #Pn(w,x). (2.47)

X

If the evolution of P,,(w, x) is done without any restriction, we have that each walker is
completely uncorrelated from the other

In order to prevent the divergence of the weights, we define a reconfiguration process
that changes the probability distribution without changing its first momentum, i.e. the
wavefunction:

P (w' x') = /[dw] ZK(W',X',W,X)PH(W,X), (2.49)

where the kernek'(w', x', w, x) is given by

M ; '5:6’- T
JI j

=1

where the symbo|[dw] indicates thel/ dimensional integral over the; variables.

In practice this reconfiguration process amounts to generate a new/detvafkers
(x', w') in terms of the old\/ walkers(x, w) in the following way: each new walker will
have a weighto = ﬁ Z]. w; and a new configuratiorf among the possible old oneg
chosen with a probability; = w;;)/ >, wk. After this reconfiguration scheme, all the
new walkers have the same weight and most of the irrelevant walkersmatthweight
are dropped out. Moreover it is easy to show that this kind of reconfiguration does not
change the first momentum of the probability distribution [53].
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2.3.3 Fixed-node approximation

When the weights of the walkers are not all positive it is always possible toedtfe
transition probability for the stochastic process, but even if the Markovegsocon-
verges to a probability distribution which determines the ground-state wavefncal-
culations are unstable due to wild cancelations between positive and negeaitiVesy It

is then necessary to consider some kind of approximation. The fixed-node (FN) approx-
imation [17] defines an effective Hamiltonidir//, starting fromH, setting to zero the
positive off diagonal elements @f

_ Hy, if Hy, <0
Heff:{ 1 T (2.51)

v 0 if Hy, > 0.

Moreover, in order to have variational results for the energies, it srasessary that
the diagonal term takes an additional sign-flip contribute:

HY] = Hyp+ V(o) (2.52)
H, >0 #x

A generalization of the fixed node approximation can be obtained defining the ef-
fective Hamiltonian in a slightly different way. Indeed reversing tigg ®f the positive
off-diagonal matrix elements df and multiplying them by a constant> 0 one ob-
tains:

_ Hy, if Hy,<0
mff =TT = (2.54)
—YHy , it Hpy > 0.

The diagonal term must be changed as

HY] = Hyp+ (14+9)Vi (). (2.55)
Note that the standard FN dynamic is recovered with 0, while the case withy = —1
is the opposite limit in which7¢// = H. The energy only slightly depends enand
the lowest value can be obtained in the standard FN frameworky ize.0. Neverthe-
less the introduction of allows us transition to states on different nodal regions. This
feature will be extensively used in the framework of the Green functiohn stachastic
reconfiguration.
The FN approximation gives an upper bound of the ground-state energy. Indeed if
we consider any stat@), and we compare its energy with respectt@and H¢//:

AE = (U| (HY! — H) |¥), (2.56)
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we obtain:

‘Ifg(xl)
‘Ifg(l')

H, ,>0a'#¢

U(z) ‘

] \IJG(‘I)
— U(a") ‘\I’G(x’)

sgnH, 4

(2.57)

Because\ F is positive for any wavefunction, it comes out that the ground-stai& 6f
is an upper bound of the ground-statefbf Moreover the GFMC method can calculate
the exact ground-state enerd’/ and the wavefunctiow*// of H¢// without any
sign problem. Hence

BT > (US| H[@eIT)

(Telf|Welf)

where the last inequality follows from the usual variational principle. Tioeeewe
can conclude that the FN energy is an upper bound to the true ground-state energy.
Furthermore, because one can easily verify tiaf| H |V ;) = (| H*//|¥), one can
be sure that the GFMC procedure improves the energy of the guiding wavefunction

pett o (YalHWG)  (ValH|Vg)
T (W) (Ta|Wa)

(2.59)

2.3.4 Forward walking technique

The GFMC technique can be used with success to compute also correlatiomrigncti
on the ground-state off. In particular, it is simple to compute expectation values of
operators that are diagonal in the working basis, sodhat = ¢, . (z|O|z). By using
GFMC, the configurations of the walkers are distributediagz)®, (), however, in
order to compute

(Wo|O[Wo)
0)=——-", 2.60
= Twaw) (2:60)
a further work is required.
To this purpose, the desired expectation value is written as
N N’
(0) = WalH_OH" %) (2.61)

1 .
NN oo (U HNV W)

From a statistical point of view, Eq. (2.61) amounts first to sample a configuration
after N' GFMC steps, then to measure the quantity)|x), and finally to let the walker
propagate forward for furtheN steps. In order to evaluate the stochastic average, an
approach similar to that done for the energy is possible. In this case we have:

>, 0"G

R

(2.62)
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whereO" is the average over the walker population of the oper@tat the generation
n,l.e.0" = ﬁ Zj 07, beingO7 the value of the operat@p on the configuration; of
the j** walker at the iteratiom, and

L—-1
Gr= 1] wn-s (2.63)
j=—N

Notice that the correcting factofs? are different from the case of the energy. Indeed,
in this case(7 contain a further propagation &f steps as compared to the previous
expression.

A further condition is necessary in order to control the bias in the forward aglki
technique. The set of measured valdgswith weight factors given by Eq. (2.63) has
to be modified after each reconfiguration process occurring in the forwardidirec
In practice after each reconfiguration, we have to bookkeep only the v@lues the
observable that survive after the reconfiguration. Therefore, after eamhfigearation,
O} = Oju, fori = 1,..., M and the functionj(i) describing the reconfiguration
scheme has to be computed: the walker with indessumes the configuration with
index (i) before the reconfiguration.

In order to implement recursively the forward walking, it is useful to sadreach
reconfiguration the integer functigi(7) for each reconfiguration and the value 0O}
of the operator for each walker. Thenitis possible to compute the relevant catifogus
contributing to the operatap after N reconfiguration steps by recursive application of
the integer function,, (7).

2.3.5 Green function Monte Carlo with stochastic reconfiguration

The GFMC with stochastic reconfiguration (SR) [18, 19] represents a systemat
provement of the FN approximation that allows us to sample the sign changes of the
guiding wavefunction. This method is based upon the simple requirement that, after a
short propagation via the approximate FN dynamics, a numladrcorrelation func-
tions over the stat@,, (z) can be constrained to be exact by a small perturbation of the
FN evolved statel®//(z), which is free from sign problem. By iterating this process
the average sign remains stable. Moreover the method has the important ptoerty
exact if all the possible correlation functions are included.

Therefore, in the original formulation, the main idea of the SR is to replace the
many-body staté,, (), to which the exact Green function has been applied, with an
approximate state related to the FN dynamics. In this way, the Greenduoiéti . is
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related to the FN oné*// by a factors, ,

Gz’,z = Sm’,méifﬁa (264)
where B
1 if Gu,>0
Swa=4 —L if Gp, <0 (2.65)
A_Ha: T : !
m if z=2a.

Notice that we have
b, = Zéx’ ZGeff. (2.66)

The appropriate stochastic process relative to the Hamiltaiiaan be defined by the
following three steps:

1. Given the walkefx, w), change the weight by scaling it with:

w — byw .

2. Generate randomly a new configuratidmccording to the stochastic matix .
3. Finally multiply the weight of the walker by, ,:

!/
W — WSy g

Without the last step, one is actually sampling the fixed-node Hamiltdiidh. In the
simulation both the dynamics given l6y// and byG are followed, by updating both
the weightw associated to the true Hamiltonian and the weigtit’ associated to the
approximateH¢//. Therefore the walker can be characterized by the triad, w/7).

The previous algorithm allows us to define the evolution of the probability to find the
walker with weightsw andw®//, in a configuration:, namely:

/ / / eff’
P (0, w5 pr”"’”" (“’ v x) (2.67)

|3x’ x| bxsx’,x bx

The first moments of the probability distributid®, (w, w®//, z) overw andw*// give
the statel,, (x), propagated with the exa6t, and the stat@¢//(z), propagated with the
approximate7¢//, respectively

U, (2)¥q(x) = /dw/dweffan(w,weff,x) (2.68)

T () V() = /dw/dweff w! Py (w, w7, ). (2.69)
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The iteration step reads
g (2)Ug(2) = Z(‘;m RN (z) (2.70)
U () Ue(a') = ZG?Q\PZ” Ve(x). (2.71)

The generalization of this algorithm for many walkers is straightforwdngeiconsider
M walkers and we label the corresponding configurations and weighs, ly), with
each componerit:;, w;, w''/) referring to thei" walker, fori = 1,... M, we have

.wj(sx,xj
U, (2)Vg(z) = / [dw] ) Z]T P,(w,x) (2.72)
wells, .
\ijsz(x)\pG(x) = /[dW] Z % Pn(wa X): (273)

the symbol[[dw] indicates the M/ dimensional integral over thew;, w’/) variables,

i = 1,...,M. The reference weights®// sample statistically the reference state
VeI (2)Uq(x), whereas the weights; refers to the statd,, (z)¥(x), propagated by
the exact Green function, namely:

(Wi 600)) = U (2)Wo() (2.74)
((wilea;)) = Un(2)¥a(z), (2.75)
where the bracket§ )) indicate both the average over the number of walkers at a given
Markov iterationn and the statistical average.
The Egs. (2.72) and (2.73) show that the statgér) and¥¢//(x) do not uniquely
determines the walker probabilify, (w, x), but, as for the case without sign problem,
it is possible to change the probability distribution without changing the exact infor-

mation content, i.eX¥,(z) and¥¢//(z). In this regard it is possible to define a linear
transformation, described by a simple kerfgw’, x'; w, x)

Pl(w' x") = /[dw] ZX(W',X';W,X)PH(W,X). (2.76)

The kernel is defined by:

a w5 | Oat
X(w.¥iw,x) = H(Ezm fp|

=1

4} (w sgnpl, )

% b (weff’ '.|) 2.77)

X
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where

_ Zj Pz,
a Z]‘ |pacj |’
the coefficients,; will be defined in the following. Notice that the outcoming variables
z; andw; are completely independent for differeptalues. Therefore it is possible
to integrate each of thé/ factors of the kernel in the variables; and w;f’f " and to
sum over the new configurationg, the result being simply one, as required by the
normalization condition of the density probability. In the reconfiguration prochss, t
new configurations; are taken randomly among the old ongs according with the
probability |p,, .|/ > [P, |, defined below in terms of the weights;, w’/ and the
configurations:;. Furthermore the new weightg are taken as

B

(2.78)

_ w
wi =3 12]’{4 Esgnpa (2.79)

whereas the FN weights are restricted to be positive
wi = . (2.80)
In this way, after each reconfiguration
U, (z) = V! (), (2.81)

moreover, also the reference state explicitly depends on the SR itemtiafter each
reconfiguration
Uil () — sgnW(2) W), (2)]. (2.82)

The reason of this choice is to optimize the reference state and make lasasas
possible tol! (x), being the signs fixed by (z).
The coefficients guarantees that the normalization of the wavefunction is preserved

Y U (z) =) U,(x). (2.83)

The only quantities which we need to define are the coefficigntsThe important
point is that these coefficients are not restricted to be positive, and thedepand on
all the weightsw;, the configurations; and the reference weights’/.

The choicep,; = w; is exact in the sense that, (r) = ¥,(z), and coincides
with the one for the case without sign problem. However this choice is not convenient
because this reconfiguration will not improve the average sign, which will dexay
ponentially to zero. Instead, in the case with sign problem, we can pandrectiee
coefficientsp,; by assuming that they are close enough to the positive definite weights
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w$’!, the ones obtained witfi*//. The reason for this choice is that, though the weights
wjff may be occasionally very different from the exact ongsnamely their sign can

be wrong, they sample a stab&// (), which is supposed to be quite close to the exact
propagated on& (). This condition is clearly verified for an appropriate choice of
the guiding wavefunction, making the FN accurate. Then, we can assume that small
perturbations over the stalef// () may lead to fulfill the equality

with an arbitrary small error. Therefore we can assume thapthare given by small
correction to thev!’/

pa; = i’ {1 + Z ay, (O’;j — o’f’eff) } . (2.85)
k

The corrections are taken proportional to the fluctuations different operator£* ,
with corresponding local estimator

V| Oz,
oF = M (2.86)
’ (Telzy)
and average value over the positive reference weights
eff Nk
okets 22" Ox,; (2.87)
Zj w;ff

With the general form (2.85) for the coefficients, it is possible to fulfill that all the
mixed averages for the choseroperators have the same value before and after the
reconfiguration

Ok, W (x) =) Ok 0,(x). (2.88)
It can be proven [19] that, in order to fulfill exactly the SR conditions (2.88), Sui-
cientthat thep,; coefficients are chosen in a way that

2iPei 02 _ 2010 (2.89)

which can be fulfilled with a solution of a simple linear system for the unknowiabes
ap, fork=1,...,p

5w, (08 — Oke1r)
S Qg = , 2.90
; k& O ijj ( )
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whereS, i is the covariance matrix

eff k _ Nkeff K _ Ok .eff
>, (OIJ, Ok ) (om]_ OF'e )
Zj w;;ff

It is worth noting that, asymptotically, by adding more and more parameters
we can achieve the conditio®, (z) = ¥, (z) exactly, since the stat&, (x) is com-
pletely determined by its correlation functions. Indeed, consider the diagonal opera
tors: all these operators may be written as a linear combination of elementas
Oﬁ,ﬂx = 0. 202 2y, ACtING ON a single configuratiarny, plus at most an overall constant.
If the conditions (2.88) are satisfied for all the elementary operdgrs, it follows
thatW; (z) = ¥, (z0) for all z,. Then itis simple to show that the coefficiepts are
invariant for any constant shift of the operatars. Furthermore, with a little algebra it

Sppr = (2.91)

turns out that these coefficients do not change for any linear transformation of the cho-
sen operator set. Thus we prove the convergence of the SR for any sequence of diagonal
operators, that, with increasing becomes complete. For non-diagonal operatyyg,

we simply note that they assume the same mixed average values of the equiiaje-

nal ones()dmg = 0p x> Ox . Thus the proof that the SR procedure converges to the
exact solutlon is valid in general even for non-diagonal operators.

2.4 Few Lanczos steps from Monte Carlo technique

In this Section we show that the SR procedure can be considered as a projeckien of t
exactly propagated state onto a particular subspace. By using as a referenoécdyna
the FN one, the method is not variational, but, if a different reference éntakcomes
out that the SR gives variational estimate of the energy. Moreover, we diaivat
slightly different approach allows us to perfoprLanczos steps on a given variational
wavefunction.

Let us redefine thg,, coefficients as

pa; = wi'’ {1 +> ako’;j} : (2.92)
k

Then the constants, are determined by the condition

kl

1 J OIJ
ZSW S (2.93)
J
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where the covariance matrix is

Sk okt = : (2.94)

In this way, at each reconfiguration step, the new skter) is defined starting from the
reference ond&¢// ()

= (Z akO';) \I/fo(l') = Tz\pfsz(x)a (295)
k
with .
p_ (Ye|OF|z)
0r = e (2.96)

wherek = 0,...,p, O° being the identity operator. In the limit if large number of
walkers, the constants, are given by

Z St Z U ()0, (') O%, (2.97)

with
Sy = qu ) (2)OFOF (2.98)

Therefore the SR can be considered as a projection of the exactly propagatéuheave
tion onto the subspace spanned by the stafes:// ()

U, (2) =Y (PsR)ow ¥al), (2.99)
being
(Psw)aw = 3 SpORTH (2)Wg(2")OF. (2.100)
k.k'
The operatofPsy is not a true projector, because, although it satisfies the requirement
P2n = Psr, the conditiorTP;R = Psr is not generally satisfied. At equilibrium, the
statel,,(x) represents the maximum right eigenvector of the matrix

Gsr = PsrGPsr = Psr(A — H)Psr. (2.101)

The method is therefore rigorously variatiopabvidedthe operatoPsy is a true pro-
jector, namely for¥¢// () = U4 (z). Indeed the maximum eigenvalgé — Esy) of
the Hermitian matrixPs (Al — H)Pgsg is certainly smaller than the corresponding one
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(A — E,) of the exact Green functiop\] — H). In fact if Uggr(x) = PsrWsr(z) is the
eigenstate oPs,(AI — H)Psy with eigenvalugA — Esy), thenP}R = Pgr implies

\IJSR|PSRHPSR|\IISR> _ <‘IISR|H|\IJSR>
<‘IISR|PSRPSR|\IJSR> <‘IISR|‘IISR>

In order to have a rigorous variational method, a further detail has to be taken int
account. Indeed, after each reconfiguration, not only the state) is replaced by
U’ (), but also the reference stabé// (z) is changed as

el () = sgnWq (2) W), (). (2.103)

Within the Monte Carlo method, instead of changing the weights of the referenee wav
function with the choiceufff' = |w}| (which implies Eg. (2.103), in the large number of
walkers), it is possible to remain with the same reference $tgtg ), without chang-

ing it during the simulation. This is obtained by the followirgwveightingscheme:
after the reconfiguration, the new configuratiofisire selected among the old ongs
according to the weightg, |. The new weights for the stati, (x) are taken as

wh = 7Zk]\|}9xk|sgnpxm), (2.104)

7

whereas the weights for the reference stet€’ () are taken as

!

eff
w?ff’ — Zk |pIk| w](l) — |wz ) (2105)
! M |ij(i) |TI'1|

In this way the walker population can describe both the wavefunckipi:) and the
reference ond¢//" (), by considering the weights! andwfff', respectively:

(Wi 6,0,0) = W (2)Ug () (2.106)
(Widpa)) = h(x)Ta(2), (2.107)

where, as stated before, the symbpl )) stands for both the average over the walker
population, at a given Markov iteration) and the statistical average.

As the reference Green function, the one proposed by Hellberg and Manousakis [62]
is the most convenient from the practical point of view of reducing statistieztifations

_ 1 _
0 — [Ny — Hay g, (2.108)

ar —
' \x P

where
2= |N0w o — Hyal. (2.109)

x/
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By applying the power method with the Green function (2.108), the convergence is
reached when the maximum right eigenveck@r(x) is filtered out, namely

> G (x) = WE(a). (2.110)
Thus this Green function can be used to generate configurations distributed agcordi
U2 (z) with a stochastic matrix

P, = LG, (2111)
: RS
and, because in general Eq. (2.71) holds, we have that, using the fixed reference algo-
rithm Egs. (2.104) and (2.105%¢//(z) = Uq(x). Therefore, by using:2" as the
reference Green function, the methodigorously variational
The advantage of using the reference Green function (2.108) is that it has a very

simple relation with the exact or@,

Gx’,x

Yvar
GI’ T

= Sglx = :l:ZII, (2112)

where the signt is given by the exact Green function matrix element. In this way, the
stochastic conditions (2.88) can be fulfilled with high statistical accuracg $oth the
left and right hand side of Eq. (2.88) are sampled statistically with the samfegura-
tions and weights; andw?//, which are highly correlated.

We notice an important property of this method: if we consider only operators de-
fined by powers of the Hamiltonian, i.€* = H* for k = 0,..., p, the projectorPsp
acts on the Krilov basis, the same of the Lanczos algorithm. TheréfRygGPsr)"
filters out the lowest energy state in the Krilov basis, i.e. the statenglotdy applying
p Lanczos steps. Moreover, sindg; () belongs to the subspace projected By,
we have tha{V;|HPsr = (¥¢|PsrH, and hence the mixed average of the energy
coincides with the variational energy

(Vg|H|UsR) _ (V| PsrHPsr|Vsr)
(Va|¥sr) (Y| Psr|¥sr)

The advantage of using the SR scheme to perfotranczos steps is due to the fact
that it is sufficient to compute only Hamiltonian powers on a given configuration. By

= Fgp. (2.113)

contrast, in the conventional method, all the powers of the Hamiltonian @p te 1
are needed, leading to a much more demanding numerical effort. It is also amport
to emphasize that within this technique it is not necessary to optimize thenptms
oy, With an iterative procedure. These parameters are simply obtained and of the
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simulation as a simple statistical average of the ones obtained by solving.&8) {or
each Markov iteration.

In principle, with this method it is possible to perfopianczos steps onto a given
wavefunction, but, in practice, only few powers of the Hamiltonian areilfézas By
combining this technique with the one described in Section 2.2.1, it is easy to apply
two Lanczos steps to a given variational wavefunction. In practice wWiesapply one
Lanczos step without using the SR scheme (see Section 2.2.1), then, we use the SR to
reconstruct the second Lanczos step.

2.4.1 Variance extrapolation

A great advantage of the variational method is that we have an additional infonmat
about the quality of the trial wavefunction. Indeed the variance

L1 [y (@)
7 ‘L?{ o () } (@11

measures the width of the energy distribution of the wavefungtion In other words
it provides a criterion for how much¥) deviates from an eigenfunction. Indeed the
variances? vanishes for all the eigenstatesif and a good variational state have both
an energy close t&, and a small variance.

In practice the variance is easy to calculate by using Monte Carlo teclsjigdeed,
if we introduce a complete sét) of states, we have

(W|H?\W) 3 (VIH ) (z|H|[Y) 35, E20(z)
(T]w) .. V2 (2) ()
where we have used the definition of the local enekgy Eq. (2.18). Therefore the
calculation of the variance can be performed sampling both the local energysand i
square.
Suppose that a given wavefunction is close to the true ground{Stgtei.e |U) ~
|Wo) + €]&), with (Ty|€) = 0 and(T,|T,) = (£]€) = 1, then its energy per site is

E _1([E+&¢H[E| E €
{ 1+ e }Nf+f(<£|ﬂ|§>—Eo). (2.116)

(2.115)

L L

Therefore the difference between the variational and the exact energiskeshnearly
with €2. On the other hand the variance is given by

. 1 {Eg + (€| HYE) (Eo + 62<§|H|f>>2} ‘ (2.117)

L? 1+ e 1+ €2
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Figure 2.1: Energy per site extrapolation for the- J model, 4 holes on 26 sites,

J = 0.3t. p = 0,1,2 Lanczos iterations over the projected d-wave wavefunction are
reported. The extrapolated value of the energy is also shown, and the continuous line is
a linear fit of the data.

Expanding to the leading order &4, we obtain

2

€
0% ~ 15 (€l (H = Eo)’[¢). (2.118)
It follows that, if the trial wavefunction is close to the exact ground-statehave that
E E, 5
T~ + const X L x o”. (2.119)

The last relation can be used to extract information alhgutve can use different values

of E ando?, for different number of Lanczos iterations and extrapolate®o= 0,
obtaining an estimate df,. This kind of estimate is not a variational bound and it is
meaningful only if the starting wavefunction is a good approximation for the ground-
state.

We note that the best information of the variance extrapolation is achievedry usi
the results of givenstarting variational wavefunction (for example the one which mini-
mizes the energy), and then by applying a certain number of Lanczos steps. Byt¢ontras
the information contained in different variational starting points may be munegile for
the variance extrapolation. Indeed the relation between the energy and dnecedor
different variational wavefunctions is uncorrelated, because, in generaitim@um for
the energy does not coincide with the minimum for the variance. Instead the ajgplicat
of p Lanczos steps generates a hierarchy of wavefunctions in which each stdlg st
descends from the previous one, improving its energy and variance. In this way, the
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Figure 2.2: Energy per site extrapolation for the- J model, 4 holes on 26 sites,

J = 0.5t. p = 0,1,2 Lanczos iterations over the projected d-wave wavefunction are
reported. The extrapolated value of the energy is also shown, and the continuous line is
a linear fit of the data.

gain in the energy is highly correlated to the gain in the variance, and wetthawest
possible information about the energy of the best state belonging to the class gknerate
by the starting wavefunction.

As an example of how the variance extrapolation works, we report in Figs. 2.1 and
2.2 the case of the — J model for 4 holes on 26 sites, where the exact results are
known by Lanczos diagonalization, fdr= 0.3t and.J = 0.5t respectively. We refer
to Section 3.3.1 for a detailed description of the variational wavefunction,overave
express all the energies in unit ©f Both the energy and the variance are improved by
a factor of three by applying exactly one Lanczos step to the variational waweionc
As described in the previous Section, by using the SR technique, it is also possible t
perform two Lanczos steps onto the variational wavefunction. The gain in ensalgg a
variance is another factor of two. This represents the best variational: regubbtain
FEyr/L = —0.6372(1) for J = 0.3t, andEy, /L = —0.7847(1) for J = 0.5¢.

Moreover the three results fer= 0, 1,2 Lanczos steps can be used to extrapolate
the exact energy by using Eq. (2.119). It turns out that the, non variational, estamate i
exact in the statistical errors: for = 0.3, where the exact result 8,/L = —0.6426,
we obtainE' /L = —0.6422(4), whereas for = 0.5¢, whereE,/L = —0.7881, we have
E/L = —0.7882(2). It is worth noting that, besides the fact the variational results for
p = 0 are abou).03 above in energy with respect to the exact ones, the three points
with p = 0, 1, 2 lies on the same straight line, and Eq. (2.119) holds.



46 Numerical methods

-1.14

-1.15

-1.16

Energy per site
J’l’

—-1.18
-1.19
—=
-1.2 | 1 | 1 | 1
0 0.001 0.002 0.003
Variance

Figure 2.3: Energy per site of the finite-size Heisenberg model. Comparison of exact
results (indicated by arrows) and the approximate0, 1, 2 Lanczos iterations over the
projected d-wave wavefunction fdr = 18 (full triangles), L = 50 (full squares) and

L = 98 (full circles). The extrapolated value of the energy is also shown, continuous
lines are quadratic fit of the data.
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Figure 2.4: Order parametet = /S(w,7)/L in the finite-size Heisenberg model,
S(m, ) being the spin isotropic antiferromagnetic structure factor. Comparison of exac
results (indicated by arrows) and the approximate 0, 1,2 Lanczos iterations over
the projected d-wave wavefunction fér = 18 (full triangles), L = 50 (full squares)
and L = 98 (full circles). The extrapolated value of the order parameter is alsorshow
continuous lines are quadratic fit of the data. Inset: finite-size scalingh@tvariational
wavefunction (empty circles) and with the variance extrapolated onec{fales).
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It is remarkable that the variance extrapolation method can give excepyigoaid
results also for rather large lattice sizes. For the Heisenberg mdukelevthere is no sign
problem, it is possible to obtain the exact results, with arbitrary srtetisical errors,
both on the energy and on the correlation functions by using GFMC. In order to show
the accuracy of the variance extrapolation we report in Fig. 2.3 the energy passt
function of the variance for 18, 50 and 98 sites and 0, 1, 2. Much more impressive
is the behavior of the antiferromagnetic order parameter as a function of the siee of
lattice (Fig. 2.4). Although the variational wavefunction does not have magnetic long-
range order, and the expectation value of the magnetic order parameter monotonically
decreases by increasing the lattice size (see inset of Fig. 2.4), fewdsastaps are
enough to reproduce the magnetic correlations of the ground-state.

2.4.2 Improving the variational energy

We have seen that, by using (2.105) as the definition of the reference weights, tloel met
is rigorously variational. However, the choice (2.80) gives a better refergyicamics
because it allows us to improve self-consistently the amplitudes of theerefe wave-
function. In this casel?//(z) # ¥q(x) and the method is no longer variational. A
compromise between the two cases is to introduce a paramtiarinterpolate the two
limits [87]

wel ' = 12 (2.120)

= |TI;|1_T.

In this case, the reference wavefunctibi{/ () is not given by averaging the configura-
tions with the weightss®//: by using Eq. (2.95)¥' (z) = r,¥¢//(z), and Eq. (2.107),
at equilibrium, we have that

(Wi 85.0.)) = |rs U (2) W (2) = Tr(2) Vo (), (2.121)
whereVU (z)Uq(x) is the right eigenvector of the renormalized Green function
e = |rw "G (2.122)

From Egs. (2.121) and (2.95), at equilibrium we obtain

V(1) = el " Wr(a) (2.123)
U(a) = |r] Tsgnr,Un(e) = R Ua(e), (2.124)

and therefore the statie(z) is uniquely determined.
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Figure 2.5: Energy per site for thte- J model, 8 holes on & x 8 lattice,.J = 0.4t as

a function of the numbe#/ of forward walking. Ther = 0.25 andr = 1.0 cases are
shown, the arrow indicate the resultpf= 2 Lanczos steps. The fixed-node approxima-
tion givesE /L = —0.6560(1).

In order to compute the correlation function over the stochastic dtate, it is
necessary to use a slight generalization to non-symmetric matrices,fofweed walk-
ing technique. Indeed, for non-symmetric matrices, suoﬁ”ﬁ; the left eigenvector
U (z)/Ve(z) does not necessarily coincide with the right eigenvedtgtz) ¥ (x).
Since in the large number of walkers, the fluctuations of the parametease vanish-
ingly small, it is convenient to implement the forward walking with fixedgraetersy;,.
The matrixG?, , can be written in terms of a symmetric mat6ig,

G, = ‘;—GO (2.125)

where
Gy = |\IJG(£EJ)L_|”|T/2 (2.126)
ct., %ma Hl @.127)

The right and left eigenvectors Ojf;,@ are written in terms of the eigenvectoy(z) of

G oo namelyV z(2) U () = a,po(x) and¥(x)/Va(z) = ¢o(z)/a,. Then, it follows
that the stochastic stafie(x) can be written in terms o¥ ;, ()
U(r) = W (x) = LUy (o), (2.128)
2y

By applying several times the Green functié’r;],,z, it is possible to filter out the state
Ur(z)¥s(x), then it is possible to evaluate the expectation value of any ope&vabyr
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propagatingV/ times forward

g Y ) GT %I’OI’ I\Ij z)Wea(x
(TlON%) _ . Dt ( _)M, it r(2)Va( ), (2.129)
(UIw) Moo S (GY T o UR(2) Ve (z)
where the operator@ and! are given by
~ \Ifg(fl',)
Oy 2 LyR,Oy 2.130
) \:[JG(.T) ) ( )
Lvs = LiRyOu. (2.131)

Therefore, contrary to the standard forward walking whefe= L, = 1 is satisfied,
in this case slightly more involved matrix elements have to be considéndded, by
using the fact tha}~ , (G")) , ~ U (z)/Pq(z), Eq. (2.129) is easily verified. Notice
that also the denominator in Eq. (2.129) has to be forward propagatéd ftarations,
since in this case the diagonal element$ afe not trivial. In particular, it is possible to
considerO = H and calculate theariationalexpectation value over the stochastic state
In Fig. 2.5, we report the energy as a function of the numldesf forward walking
for thet — J model, 8 holes on & x 8 lattice atJ = 0.4¢. The true energy expectation
value (M — oo) can be much higher than the mixed averayje £ 0) estimate, espe-
cially for » ~ 1 on large systems. The sizeable gain in energy by considering a small
but finite  with respect to the case of = 0 is due to the fact that, with > 0, it is
possible to strongly improve the amplitudes of the wavefunction. /The0 case can
overcome, at least partially, the limitation of the few Lanczos stepriique to be not
size consistent, namely that in the thermodynamic limit the energy per siteothe
improved from the variational one. By contrast, for 0, the reference Green function
is modified similarly to the FN case, and it is possible to obtain a sinsistent gain in
energy [87].
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Chapter 3

Phase separation

3.1 Introduction

One of the most debated issues in strongly correlated electron systems&uhe of
the charge distribution in their ground-state. In particular, many authorsrbegatly
addressed the question of phase separation (PS) inthe[54, 55, 56, 57, 58, 59, 60,
61, 62, 63] and in the Hubbard model [88, 89]. In theJ model, it is well accepted that
for .J > t the holes tend to cluster together leaving the rest of the system in an undoped
antiferromagnetic state. The main question is if this scenario pedsiats to smallJ’s,
or even toJ = 0 [90]. Although most of the calculations lead to the conclusion that
a finite critical valueJ, of .J below which the ground-state is homogeneous exists, it
is not clear what this value is at low doping, with estimates ranging figimto 1.2t.
Moreover some authors [91] suggest that just before PS the ground-state has charge
modulations, i.e. charge density waves.

As stated in Chapter 1, the simplest way to detect PS is by looking at the greargy
hole

(3.1)

wheree(d) is the energy per site at hole dopifig@nde(0) is the energy per site at half-
filling (Heisenberg model). In the thermodynamic limit, whereas for a selsteme(J)

is a concave function df, if the system phase-separates for densities Uptad,., €(J)

is a flat function for < ... For finite systems, due to surface effeets) can be convex
even for a stable system. Therefore, it is necessary to consider large datiiogis to
wash out this spurious finite size effect. By using this approach with diffepegmtum
Monte Carlo techniques, many authors agree that the critical valuei®f/. ~ 0.5¢

[57, 58, 59, 60]. By contrast Hellberg and Manousakis [61, 62], using a modified Green
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function Monte Carlo (GFMC) technique, claim that the phase-separatedpsteists
down toJ = 0, that is the ground-state is unstable against PS at small hole doping for
any interaction strength. The disagreement between these results is prdbaldythe

fact that, in Refs. [61, 62], the delicate low-doping region is studied veittyf small
clusters, introducing serious finite size effects. A completely diffeagmroach, the
high-temperature expansion [55, 56], gives instead a stable ground-staté.up 02t¢,

but this method suffers from the difficulty of extrapolating the zero tempexdiunit

from few coefficient series.

Recent density matrix renormalization group results support a differentrszeBg
performing the calculation oiV-leg ladders, the value of. ~ ¢ in the two-dimensional
case is found by extrapolating the value found at a fiXefdr N — oo [63]. Because of
the growing of the Hilbert space when increasigthe number of legs is limited tb+-6
and the largeV limit is not well under control. Moreover, within the same approach,
White and Scalapino proposed that the ground-state of the/ model has a charge
density wave order in a wide range of dopings Jor 0.4¢ [91]. This statement could
be strongly affected by the choice of boundary conditions (periodic in one direction and
open in the other) which might introduce uncontrolled finite size effects.

As far as the Hubbard model is concerned, little work has been done. Cosentini and
co-workers [88], by calculating the energy per hole using the fixed-node method, found
that there is a large region of PS in the phase diagram, at leaét for 10¢. Their
conclusions, however, are affected by the choice of the guiding wavefunction, which
gives a very poor approximation near half-filling.

In this Chapter we present quantum Monte Carlo calculations for the Hubbard and
thet — .J model. For the Hubbard model, the auxiliary-field quantum Monte Carlo
(AFQMC) gives very accurate results in the weak- and intermediate-iogurdgime,

i.e. forU < 4t [92]. AFQMC will then be used to assess the accuracy of our results
also for sizes where the exact results by Lanczos diagonalization are nabaiVe

will show that a study of the PS instability is very difficult using only enerdgwation.
Instead, a careful calculation of charge correlation functions

N(g) = (ngn_g) = + 37 " P () (3.2)

L ~—
2,]
gives a safer indication of the charge fluctuations. Moreover, the knowledgé f
allows us to extract information about charge fluctuations for all the wavelermgtirsg
insight in favor of possible charge modulations. Within this approach, we are able to

find an homogeneous ground-state§ors 10¢.
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For thet — .J model, the accuracy of the calculation is more difficult to assess com-
pared to the Hubbard model, since there are no reliable methods for large thiges:
comparison with exact results is then limited to small clusters. Wereport both
energy andV(q) calculations that support a scenario in whith~ 0.5¢.

3.2 The Hubbard Model

3.2.1 \Variational wavefunction

We consider the Hubbard model on a square lattidesifes withV = N+ N, particles
andN; = N, N; (V}) being the number of spin up (down) particles. The Hamiltonian
reads:

H=—t Z cl’gcj,g + Uannm, (3.3)

(i.4),0 i
where( ) stands for nearest neighbots, (c}:g) destroys (creates) an electron with spin
o at site:, andn,; , = cg’gcm. In the following all energies are measured in unitg.of
In order to study PS as close as possible to half-filling using only closed-simdi¢a-
rations, we consider square lattices tilted4y with L? = 2/2 and/ odd. In this way
half-filling is a closed shell and the first doped closed shelltasles independently on
L.
In the presence of the sign-problem the choice of the guiding wavefunction is crucial.

Our guiding wavefunction reads

|\IIG> = PSz:0P9j5|D>a (34)

where|D) is a Slater determinant in which the orbitals are suitably chosen (seg)belo
Ps.—o is the projector onto the subspace wih = N, i.e. with zero total spin compo-
nent along the-axis, P, is a Gutzwiller operator that inhibits the double occupancies

P, = e 92imitni (3.5)
whereg is a variational parameter, agd is a Jastrow factor
T, = e3 2 Vi ST (3.6)

wherey is another variational parameter, and the are taken from the theory of spin-
waves [93]. Some care must be taken in the choice of the orbitals appearindgiatie
determinant. The most common choice is to take the orbitals from an Hé&ice-
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approximation of the Hamiltonian breaking the SU(2) spin rotation symmetry alang t
z-axis.

H=t Y eyt o 3 [0 — o (=) (m)] ni, 3.7)
(i.§)s0 io
where
(ni) = (nix) + (niy), (3.8)
(mi) = (=) [(nig) — (niy)]. (3.9)

We consider only fillings which are closed shells tor= 0 and where a solution with
constant densityn;) = & = n and staggered magnetization;) = m is found. In this
case the Hartree-Fock many body wavefunction can be written as

..........

1,...,N; 1,..,.N|
D)= 1] 8l 1] 8.0, (3.10)
k q

where the quasi-particles have definite momentum mo@uio (7, 7) and definite spin,
since the antiferromagnetic order parameter is alongévas

B, = vk, + ourc) g 0 (3.11)

k belongs to the reduced magnetic Brillouin zongandwv, are defined by:

1 €k

€L

wheree, = —2t (cos k, + cosk,) andA = B It is worth noting that fol/ /t — oo
one hasy, = v, = % namely the spin up and the spin down are in different sub-lattices

DO | =

(classical Néel state).

In a previous work [88] the wavefunction (3.4) witR) given by Eq. (3.10) has been
found to be a rather poor approximation for lafgé at half-filling. In particular in this
representation the Jastrow fact@r does not play any important role.

We propose a new wavefunction which is a straightforward generalization of the one
successfully used for the Heisenberg model [53]. The fundamental ingredientieito a
spin fluctuations perpendicular to the staggered magnetization. An easy inmpdéiore
of this idea is to put the magnetization in the y plane allowing transverse fluctuations
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along thez-axis through a Jastrow-like factor [93]. This is achieved by eotation
U, (%) around they-axis of the canonical operators:

UJ(E)CI,TU@/(E) = %(CI,TJFCZT,J (3.14)
UHHAUG) = o5 (de—ed). (3.15)

The fermionic part of our guiding wavefunction is therefore defined as a Slatendete
nant of the transformed orbitals

Bl = UGG (3.16)

B = UGBLUG) (317)

namely it is given by

..........

H Bis H 5;.-10). (3.18)

Remarkably, foil /t — oo and at half-filling, by construction the state (3.18) becomes
the Néel state with spin quantization parallel tothaxis, i.e. it has the correct Marshall
sign on each of the” configurations sampled by GFMC. In this limit it is also clear why
the Jastrow factor may be much more effective: being defined alongdks, it allows
us to sample the quantum fluctuation perpendicular to the staggered magnetization. In
the previous case instead both the Jastrow quantization axis and the order paramet
were parallel and fof//t — oo there is no way to sample any fluctuation, the only
possible configuration being the classical one.

An important systematic improvement of the wavefunction can be achievedby pe
forming exactly one Lanczos step starting frpin,)

1) = (1+aH)| V), (3.19)

with « a variational parameter chosen to minimize the energy. This technique has been
successfully used for thie— J model both to improve the variational calculation [58]
and as starting point for power methods [70]. Henceforth we will denote by VMC and
LS the results obtained performing a variational Monte Carlo with the waetion

(3.4) and (3.19), respectively. Analogously, the symbols FN and FNLS will indicate
the fixed-node approximation applied to the wavefunction (3.4) and (3.19), respectively
Finally the symbol SR will indicate the (not variational) results obtained bghststic
reconfiguration applied to wavefunction (3.19).
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U/t |D) F../L FEyvme/L Epy/L  Eps/L  Epyis/L

4  Eq.(3.10) -0.9585 -0.9382(1) -0.9514(1) -0.9520(1) -0.9556(1)
10 Eq.(3.10) -0.4484 -0.4034(1) -0.4284(1) -0.4154(1) -0.4316(1)
20 Eq.(3.10) -0.2339 -0.2023(1) -0.2195(1) -0.2060(1) -0.2225(1)
4  Eq.(3.18) -0.9585 -0.9460(1) -0.9547(1) -0.9553(1) -0.9576(1)
10 Eq.(3.18) -0.4484 -0.4382(1) -0.4451(1) -0.4428(1) -0.4470(1)
20 Eq.(3.18) -0.2339 -0.2293(1) -0.2232(1) -0.2310(1) -0.2337(1)

Table 3.1: Variational energies for 18 electrons on 18 sites as a functibiitaising
(3.10) and (3.18) as Slater determinant.

U/t Ee/L Eyume/L Epn/L Ers/L Ernes/L

4  -1.1299 -1.1124(1) -1.1218(1) -1.1229(1) -1.1263(1)
10 -1.0193 -0.9749(1) -1.0006(1) -0.9997(1) -1.0098(1)
20 -0.9598 -0.8983(1) -0.9354(1) -0.9253(1) -0.9450(1)

Table 3.2: Variational energies for 10 electrons on 18 sites as a functigyy.of

In Table 3.1 and 3.2 we report the energies of 18 and 10 electrons on 18 sites, respec-

tively. At half-filling we compare the results using (3.4) with the Slateedwinant D)

given by (3.10) and (3.18) for different approximations and valuds$/of Using (3.18)

we obtain a sizeable improvement for largés (U > 10t). Notice that forU = 20t

the best variational result with (3.10) is worse than the simple VMC with (3R&)10
electrons the two Slater determinants give the same results. Indeedsfdofhing the
antiferromagnetic order is strongly suppressed and the Jastrow factlmes not play

any important role.

3.2.2 Results

In order to show that the energy calculations may overestimate the tendeacl$
instability, it is important to compare the GFMC results with some exaference. Pre-
vious studies on the Hubbard model have shown that it is important to consideralglativ
large lattice sizes since finite size effects favor PS [79]UAE 0 and half-filling there

is a large density of states at the Fermi level, this huge degeneracy beindightly s
removed by a small Coulomb interaction. It turns out that the energy per hole is al-
most constant up to the first closed shell, i.e.for 1/L, giving rise to an unphysical
and spurious PS [79]. We need therefore a reference result for large latitoer® ex-

act diagonalizations are not available. In the case of the Hubbard model for4t
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Figure 3.1: Relative accuracy of various GFMC techniques with respect tavA-Qr
a 162-site lattice witll/ = 4¢ as a function of fillingd. From top to bottom VMC (empty
triangles), FN (empty hexagons), LS (empty squares), FNLS (empty gir&es(full
squares). Lines are guides to the eye.

the AFQMC is almost exact and represents the reference we need. Unfostutiegel
AFQMC suffers from very large fluctuations for larger values of the Hubbardaotien

U and no useful informations can be obtained with this method/fer 10¢. There-

fore, the GFMC plays a fundamental role in studying the strong coupling regime of the
Hubbard model.

In Fig. 3.1 we show the accuracy of the GFMC results obtained with different ap-
proximations compared with the AFQMC ones for a 162-site lattice @ne- 4t.
For this coupling value AFQMC does not provide evidence for PS. We/ptdt) =
[e(0) — earomc(9)]/earonc(d), Wheree(d) andeargrc(d) are the energies per site
of GFMC and AFQMC respectively for a dopirg Besides the improvement in the ab-
solute accuracy, the curves get flatter and flatter improving the approximiatioonly
the SR accuracy is almost doping independent. In other words, we need a realgt@ccur
calculation to wash out the spurious dependence of the variational energy upon doping.
Even for the best variational method, the FNLS, although the accuracy on the energy
for all dopings less thaih%, the difference in accuracy between, for example, the half-
filled case and the first closed shell is still sizeable. This diffexaac/ery important,
because it represents just the energy scale determining or ruling out PS.

In Fig. 3.2 the function(¢) is shown for FN, FNLS, SR, and AFQMC methods. We
need to use SR to exclude the occurrence of PS, where even the FNLS data wowld impl
PS. The reason for this disappointing situation is that all the known variatei-
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Figure 3.2: Energy per hold¢) for a 162-site lattice witti/ = 4¢. From top to bottom
FN (empty hexagons), FNLS (empty circles), SR (full squares) , and AFQMIC (
circles). Lines are guides to the eye.

ods are still too dependent on the guiding wavefunction. As evidenced by the previous
analysis, the resolution in energy necessary to detect or rule out PS is vdriphze
reached with statistical methods, especially for |dige.

On the other hand, GFMC methods have proven to be reliable not only for energy
calculations but also for correlation functions liR&q) [60]. For a phase-separated
system there are strong fluctuations in the density for small moménta: — 0) is
expected to be strongly enhanced for small momenta, that ig|for 2?” ¢ being the
characteristic length of the phase-separated region. Moreover if the cesifgligy v
diverges alsaV(q — 0) diverges yielding an alternative tool to probe PS.

The GFMC study ofN(¢) turns out to be reliable, since it is based on a single
calculation for a given doping value, whereas the evaluation usgif)gnvolves a com-
parison between energies obtained by different simulations for differemgslliwith
corresponding guiding wavefunction having different accuracies. Moreover&om
it is also possible to extract information about charge fluctuations at fjisiteelated
to charge density waves, and therefore the knowledg¥ (g allows us to have more
general results with respect to the simple study(6f.

We computed the density structure facféfq) by means of the forward-walking
technique, within the FNLS approximation, at half-filling and for the first feased-
shell configurations on a 162 and a 98-site lattice. The evaluation of density-density
correlation function is in principle possible even within SR by numericaédgffitiation
of the energy with respect to an external field coupledtq). However this approach
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Figure 3.3: FNLS results a¥(q) for U = 4t, 162 electrons on 162 sites (empty circles),
98 electron on 98 sites (empty squares), 154 electrons on 162 sites (fudsgiacid 90
electrons on 98 sites (full squares). Lines are guides to the eye and errardansaller
than pointsI" = (0,0), X = (r,7), M = (7, 0).

U=4t q FNLS EXACT | U = 10t q FNLS EXACT

0.2117(1) 0.2106 0.0448(1) 0.0456
0.4151(1) 0.4144 0.1164(1) 0.1176
0.5310(1) 0.5283 0.1491(1) 0.1503
0.2806(1) 0.2806 0.0647(1) 0.0658
0.3616(1) 0.3613 0.0997(1) 0.1010
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Table 3.3: Density-density correlation functidf(¢) for 18 electrons on 18-site lattice
in the Hubbard model. Momenta are in unit2f/18.

is very demanding and does not give a significant improvement to the FNLS results,
which are very accurate. In Table 3.3 we report the density-density caorefanction
for U = 4t andU = 10t at half-filling on a 18-site lattice. Furthermore, it is found
that even in a larger system the FNLS provides a very accurate resufi9 felectrons
on the 98-site lattice, the FNLS give$(q) = 0.097(1) for the smallesy-point, i.e.
q = (2n/7,27/7), whereas the AFQMC give¥ (¢) = 0.0932(2). It is worth noting
that the value of FNLS is slightly greater than the one of AFQMC, implying that the
FNLS tends to overestimate the tendency towards PS.

In Fig. 3.3N(q) is shown forU' = 4t at half-filling for a 162-site and a 98-site lattices
and for 154 electrons on a 162-site lattice and 90 electrons on a 98-site |Aibicgn
of divergence, and consequently of PS or charge density waves, is seen in thé&/elata.
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Figure 3.4: Relative accuracy of various GFMC techniques with respect tavA&FFQ
for different lattices [ = 18,98, 162) andU = 4t. From top to bottom VMC (empty
triangles), FN (empty hexagons), LS (empty squares), FNLS (empty girtliees are
guides to the eye.

also notice that the two sets of points for the half-filled systems lie on tne sarve,
showing that we have substantially reached the thermodynamic limit. Foratis of

U, N(q) is essentially featureless for all dopings we considered, suggesting that there
are no charge instabilities at any finite length. The smallest doping we coediger

0 ~ 0.049 and we cannot exclude that for smaller dopings PS or charge density waves
are present.

In order to investigate smaller dopings we should consider larger latticgfertu-
nately the accuracy of the approximations considered decreases when inciteasiag
of the system and the 162-site lattice represents the largest lattice thhexecuracy is
acceptable. In Fig. 3.4 we repalte(0) for various sizes and for different approxima-
tions: from the 18 sites to the 162 sites the accuracy of FNLS changes fronmess t
0.1% to about0.5%. These indications prevent us from considering sizes larger than the
ones presented in this thesis.

Now we turn to larger Coulomb interactions and consitier= 10¢, where the
AFQMC results are not reliable due to large fluctuations. In principle GFMBrigues
do not suffer from intrinsic limitations in the large coupling regime and it is fpbs$o
consider any value df.. In practice we need an accurate knowledge of the nodes, i.e. an
accurate guiding wavefunction. Our choice, Eqg. (3.4) with orbitals given by Eqgs. (3.16)
and (3.17), is a very good approximation for the half-filling case. In Table 3.1 wetrepor
the energies for various methods for 18 electrons on 18 sites at difféinalthough
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0.3 . .

Figure 3.5: FNLS results oN(q) for U = 10t, 162 electrons on 162 sites (empty
circles), 98 electrons on 98 sites (empty squares), 154 electrons on 1gfdlitascles),

90 electrons on 98 sites (full squares), and 138 electrons on 162 sites (fudjiésa
Lines are guides to the eye and error-bars are smaller than pdints.(0,0), X =
(m,m), M = (m,0).

all the approximations are quite size dependent, the wavefunction becomes more and
more accurate by increasing the Coulomb potential. Therefore we expect thsat it a
gives a good starting point at least close to half-filling.

We present results fd¥ = 10¢, for which previous FN calculations based g#)
and a less accurate wavefunction [88] have shown PS tiptd.15. Indeed if we use
¢(9) as a probe for PS we find that the phase diagram shows a large instability region,
confirming the results of Ref. [88]. As for tlié = 4t case, this instability is very likely
to be a spurious effect: a consequence of the different energy accuracy forrdiffere
dopings. This possibility, that cannot be proved without knowing the exact energies
at strong coupling, is instead very clearly supported by the calculation of thhgecha
correlation functions.

Fig. 3.5 displaysV(q) for the same fillings of Fig. 3.3 and for 138 electrons on
the 162-site lattice, which correspondsita~ 0.148. All the correlation functions are
definitely non-divergent foy — 0 and are qualitatively similar to thE€ = 4t case,
indicating that the system is far away from a PS instability. Furthermdeg does not
show peaks at any finite momenta for this Coulomb interaction.
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3.2.3 Conclusions

An extensive GFMC analysis of the Hubbard model at low hole doping has been carried
out. In particular we have focused on the possible instability of the model vatrec

to PS and charge density waves. Comparing GFMC results with AFQMC onbs in t
weak coupling regionl{ = 4t), we show that detecting PS by means of energy results
requires a very accurate calculation at all electronic densities. drttieeaccuracy of the
energy is strongly dependent on the electron density, and the signature of PS based only
on energy calculations is clearly affected by this bias, leading to a spuggis of PS
instability. In the case of the Hubbard model this is particularly relevacdlee, while

we are able to give a very good description of the half-filled case, in whiglgtound-

state is an antiferromagnetic insulator, we are not aware of equally éecascriptions

of the doped state. Even féf = 4t it is necessary to use the really accurate SR and
AFQMC technique to eliminate the doping dependence of the accuracy and to rule out
PS.

Onthe other hand, PS and charge density waves instabilities can be probed more eas
ily using density-density correlation functions. This approach has various adeanta
First, it is found thatV(¢) has very small size effects and the thermodynamic limit is
reached with about 100 sites. Second, the information containddqh does not de-
pend on different densities, implying that a different accuracy as a function ofiglopi
does not introduce any external bias.

Instead of using energy calculations, which are very expensive at moderdéegand
U’s, we calculate the charge correlation functions and we are able to finceviel@nce
for the absence of PS up to= 10t in the low-doping regime.

3.3 Thet — J Model

3.3.1 Variational wavefunction

As in the case of the Hubbard model, we considertthe/ model on at5° tilted square
lattice of L sites withL? = 2{* (I odd) andV = N; + N, particles,N; = N. In order to
compare the quantum Monte Carlo results with exact results by Lanczos diagboaliza
we report also calculations forla= 26 lattice.

Thet — J Hamiltonian reads:

4 1
H = —t<Z> CZJC]'VJ + J; (Sz : Sj — ZTLJ%) s (320)
1,5),0 1,J
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whereé!, = ¢l (1 -niz), n; = Y, ni, is the electron density on site S; =
ZM, 6}70%,01 ¢,» 1S the spin operator ang ,» are Pauli matrices.
As pointed out by Gros [68], a very good variational wavefunction in the low-doping

regime is given by the projected d-wave BCS state
Tkve) =PyvP ] (1 + fuch ety ¢> 0), (3.21)
k

wherePy projects onto the subspace/@fparticles,P is the Gutzwiller projector, which
completely forbids doubly occupied sites, afids the pair amplitude given by

Ay

&+ \/E+AY

with A, = A (cos k, — cosky), & = —2t (cos k, + cos k,) — p, A being a variational
parameter ang the chemical potential.

The non-projected wavefunction (3.21) can be obtained as the ground-state of the
mean-field Hamiltonian

Jr = (3.22)

H = Z gkclt;’gck,a + Z [Akcjt;ﬁcf_k’i + H.ec.|. (323)
k k

It is worth noting thatf} is highly singular for a d-wave superconducting order pa-
rameter: it diverges along the diagonal directionsgok 0, i.e. inside the bare elec-
tronic Fermi surface. Therefore it comes out that the wavefunction (3.21)dsfithed
on every finite cluster containirigpoints along the diagonal direction. In order to avoid
these singularities, it is useful to perform a particle-hole transfoonath down-spin

di = (-1)%c], (3:24)
G = Cip (3.25)

After this transformation, the average number of electkois related to the difference
between: andd particles as follows

N = L—i—Z(ch d*d)) (3.26)

whereas the average magnetization is given by

M= Z(ZTCZT wcw):—LjLZ(ch (dldi)) . (3.27)
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We can easily solve Egs. (3.26) and (3.27) and obtain, in the subspace with zero magne-
tization:

Stde) = 5 (3.28)

> (didy) = L—g. (3.29)

)

After the particle-hole transformation, the wavefunction (3.21) can be writse

W35 = PP [ (sl + vact) 10), (3.30)
k

wherePy andP are the particle-hole transformed projectdrs and P, respectively.

1 &k
— 14+ —===— 3.31

1 &k
Py -1 —, 3.32

and|0) is the vacuum of: andd particles, i.e.c;|0) = di|0) = 0, defined by|0) =
I d,1|0>. In this case the singular points are occupied by the particles. It is worth
noting that, if the magnetization is zero, the system is always at hatfgfilli

In order to improve our variational and guiding wavefunction, we add to the wave-
function (3.21) a density-density Jastrow factor [94]

J = e Lij Vii™ing (3.33)
with ~ variational parameter. Therefore our wavefunction reads
|\I’G> = «7|\I’g\/3>- (3.34)

The accuracy of the wavefunction can be improved further by performing one Lanc-
Zos step:
W) = (14 aH)|¥a), (3.35)

wherea is a free parameter chosen to minimize the energy.

It is worth noting that, although for the — J model the projected d-wave BCS
wavefunction with a spin-rotationally invariant density-density Jasfemior represents
a very accurate variational state, for the Hubbard model at small anchiediéate cou-
pling (U < 10t) the best choice for the variational and guiding wavefunction is given by
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J/t Ee/L Evyme/L  Epn/L Ers/L Epnrs/L
0.2 -0.57413 -0.5380(1) -0.5550(1) -0.5605(1) -0.5654(1)
0.3 -0.64262 -0.6128(1) -0.6271(1) -0.6328(1) -0.6365(1)
0.4 -0.71437 -0.6883(1) -0.7007(1) -0.7065(1) -0.7096(1)
0.5 -0.78812 -0.7640(1) -0.7754(1) -0.7811(1) -0.7839(1)
0.6 -0.86337 -0.8400(1) -0.8510(1) -0.8567(1) -0.8594(1)
Table 3.4: Variational energies for 22 electrons on 26 sites as a functipft of
J/t Eee/L  Eyuc/L Ern/L Ers/L Epnps/L
0.2 -0.40956 -0.3895(1) -0.3997(1) -0.4028(1) -0.4058(1)
0.3 -0.50097 -0.4826(1) -0.4921(1) -0.4951(1) -0.4981(1)
0.4 -0.59452 -0.5761(1) -0.5860(1) -0.5887(1) -0.5918(1)
0.5 -0.68945 -0.6698(1) -0.6807(1) -0.6833(1) -0.6867(1)
0.6 -0.78537 -0.7638(1) -0.7763(1) -0.7787(1) -0.7826(1)
Table 3.5: Variational energies for 24 electrons on 26 sites as a functipft of

a Jastrow-Slater determinant with rotated orbitals (3.16) and (3.17). Indgexngh the
projected d-wave BCS wavefunction is a singlet and does not break the SU(2) symme
it has a very poor variational energy for the Hubbard model. The quality of the varia-
tional energy obtained with our Jastrow-Slater determinant remains caasiyleetter
than the BCS one at half-filling arid < 10¢ even when the accuracy of the approxima-
tion is improved by the GFMC. Instead, in the doped case, the BCS wavefumdtion
GFMC is only slightly worse than the corresponding Jastrow-Slater detemntryma-
posed in Section 3.2.1. This may suggest that antiferromagnetism is already sagdpres
at small finite doping and d-wave superconductivity is a possible stable phaseaéigpeci

at largeU/t.

In Table 3.4 and 3.5 we report the energies 22 and 24 electrons on 26 sites, where
the exact result is known by Lanczos diagonalization, for different approximatians. A
for the case of the Hubbard model, we indicate with VMC and LS the results obtained
with the wavefunction (3.34) and (3.35), respectively, using Variational Monte Ca
The symbols FN and FNLS will indicate the results obtained with fixed-node approxi-
mation applied to wavefunction (3.34) and (3.35) respectively. Finally, the sy8i®ol
will indicate the results obtained with stochastic reconfiguration appliaéwefunction

(3.34).
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Figure 3.6: Energy per holg¢) within the FN approximation for 98-site (triangles),
162-site (squares) and 242-site lattice (circles): 0.4¢. Inset: the same foy = t.
Lines are guides to the eye.

3.3.2 Results

In this Section we show the result for the energy per hole and the density-denséy cor
lation functionN(q) for thet — J model. Contrary to the case of the Hubbard model,
for thet — J model there are no accurate reference results for large lattice arzes,
therefore it is not possible to perform a comparison with an almost exactsolon
large lattices. Assuming that the guiding wavefunction (3.21) is size consiséerihat

its accuracy does not depend too much on the system size, the same accuracy obtaine
on small lattice can be achieved also on larger cluster. In Fig. 3.6 peetréhe energy

per hole calculation foy = 0.4¢ within the FN approximation: the inset shows the case
of J = t. The two cases are qualitatively different: tor= 0.4t the minimum at finite
doping, present in the 98-site lattice, disappears when larger sizes are cemglE?

and 242 sites), suggesting that for this value of the antiferromagnetic coupliegsmer

PS for the infinite system. We believe that the occurrence of BS=a0.4¢ and 98 sites

is an artifact of the FN approximation on small sizes and the minimwfjjno longer
occurs in the thermodynamic limit. Instead, fbe= ¢ the finite doping minimum im(4)

is almost size independent, suggesting that, for this valug aftrue phase-separated
state is present. On the other hand.for 0.4¢, a different insight in favor of a uniform
ground-state comes from the SR method. In Fig. 3.7 it is reported the case of 5@dsite a
98-site lattice: although for the smallest cluster even the SR techniqueagmaimum

in the energy per hole, for the 98-site lattice the SR recovers a uniform groued-sta

As for the Hubbard model, in order to detect the charge inhomogeneities of the
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Figure 3.7: Energy per holds) for 50-site (triangles) and 98-site lattice (circles). FN
results are connected by dashed lines and SR by continuous lines.

ground-state it is better to look at the density-density correlation function oviipeted

the density structure factoy(¢) by means of the forward-walking technique, within the

FN approximation for few dopings near half-filling on a 98 and a 162-site lattice. In
Fig. 3.8 N(q¢) is shown forJ = 0.4¢ for a 98-site cluster and different dopings. The
peak aty — 0, near half-filling, progressively disappears by increasing the doping. At

0 ~ 0.1, a considerable peak at finite momenta is present, indicating a possible charge
modulation.

In order to investigate more deeply the region near half-filling, we consider aif&2-
lattice for 152 and 146 electrons, see Fig. 3.9. These two fillings give hole cortmardra
similar to the ones of the 98-site cluster. In this case, for both dopings, apeakrat
small, but finite, momenta is present. There are two possible interpretadi these
results. The first one is that the thermodynamic limit is reached with about €¥) si
therefore theN (¢) results for the two clusters should lie on the same curve. This is
especially the case for the smaller doping, where the two electron fillingswgity
similar densities. Because thepoints in the two lattices are slightly different, these
results suggest that there is a very narrow peak at finite small momentasetbed
possibility is that the 98-site system is too small to detect the findiearge modulation
present in the larger 162-site lattice.

It is very important to note that the peak ¥Ny(¢) is a genuine feature of the ground-
state of the — .J model: indeed it is not present at a pure VMC level, and it is extremely
important to use many power iterations to generate it, see Fig. 3.10.

It is worth noting that, at small doping, the shape of the density-density correlation
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Figure 3.8: N(q) forJ = 0.4t and 98 sites by using FN approximation. From top to
bottom: 88 (triangles), 90 (squares), 92 (hexagons), 94 (circles) electronss aie
guides to the eyd” = (0,0), X = (m,7), M = (7,0).
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Figure 3.9: N(q) forJ = 0.4¢, 98 and 162 sites by using FN approximation. From top
to bottom: 88 electrons on 98 sites (full squares) and 146 electrons on 162 siptg (em
squares), and 92 electrons on 98 sites (full circles) and 152 electrons onelo@sipty
circles). Lines are guides to the eye= (0,0), X = (7, 7), M = (=, 0).
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Figure 3.10: Comparison between the N(q) calculated by VMC and by FIX fe10.4¢

and 162 sites. From top to bottom: 146 electrons by VMC (full squares) and by FN
(empty squares), and 152 electrons by VMC (full circles) and by FN (emptiesi
Lines are guides to the eyB.= (0,0), X = (7, 7), M = (m,0).

function for thet — J model atJ = 0.4¢ is quite different from the one of the Hubbard
model atU = 10¢. Indeed, whereas in the Hubbard model no signature of charge mod-
ulations are present iN(q), in thet — .J model a considerable peak at small momenta

is present even at rather large doping;- 0.1. This disagreement is perhaps due to
the fact that the — J model completely forbids doubly occupied sites. In Table 3.6 we
report theN (¢) calculation for the Hubbard and ttie- ./ model for 16 electrons on a
small 18-site lattice by exact Lanczos diagonalization. Even in this base &re some
guantitative difference, but if we project out all the states with attleas site doubly
occupied from the ground-state of the Hubbard model, the density-density correlations
over this state look much more similar to the ones oftthe/ model.

In order to clarify the question of PS in the- .J model, it is necessary to perform
the same kind of calculation for different antiferromagnetic coupliigdndeed, the
density-density correlation function is found to be much less size dependent than the
energy per hole, and therefore the PS instability can be studied in a muclvagfeith
this kind of method. In Fig. 3.11 and 3.12 we show #fig)) for J = 0.2t and.J = 0.6t,
respectively. In theJ = 0.2t case, a finite peak at finite momenta is present, although
it is sensibly smaller than the corresponding peall at 0.4¢. Moreover, as soon as
the doping is increased, every feature at small momenta disappears indtbatirige
density becomes almost uniform.

The situation is completely different for = 0.6t where a huge peak in the density-
density correlations is present close to th@oint, both in the 98 and in the 162-site
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J/t ¢=(3,3) ¢=(6,6) ¢=1(9,9) ¢=(6,0) ¢=(9,3)
04 01104 0.1089  0.1101  0.0959  0.1016
0.2 0.0996 0.1100 0.1108  0.1005  0.1065
0.1 00951 01104  0.1110 0.1029  0.1083
U/t

10 0.1349  0.2085  0.2448  0.1510  0.1865
20 0.1065  0.1376  0.1499  0.1145  0.1290
40 0.0974  0.1172 01211  0.1060  0.1136
40 0.0955  0.1102  0.1110 0.1029  0.1080

Table 3.6: Exact ground-state values for the density-density correlation furi€tign

for 16 electrons on 18-site lattice in the Hubbard ard.J model by Lanczos diagonal-
ization. The value ofV(¢) on the ground-state of the Hubbard model, having projected
out all the states with at least one site doubly occupied, is also reported lastirew

for U = 40t. Momenta are in unit o2r/18.
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Figure 3.11: N(q) forJ = 0.2¢, 98 and 162 sites by using FN approximation. From top
to bottom: 88 electrons on 98 sites (full squares) and 146 electrons on 162 siptg (em
squares), and 92 electrons on 98 sites (full circles) and 152 electrons onel6@sipty
circles). Lines are guides to the eye= (0,0), X = (7, 7), M = (=, 0).
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Figure 3.12: N(q) forJ = 0.6¢, 98 and 162 sites by using FN approximation. 94
electrons on 98 sites (empty squares) and 156 electrons on 162 sites (enlps).circ
The VMC calculation for 156 electrons on 162 sites is also reported (fulesiycLines
are guides to the ey&. = (0,0), X = (w,7), M = (m,0).

system, as shown in Fig. 3.12. Away from thepoint the behavior ofV(g) is almost
featureless and does not show any finiteeak.

The boundary of PS instability found looking at(¢) agrees very well with the
one found looking at the energy per hole. In Fig. 3.13, the energy per hole is plotted
for J = 0.6t for 50 and 98 sites, using the SR approximation. For this value of the
antiferromagnetic coupling, the behaviored®) is rather different from the one of =
0.4t. Indeed the minimum in the energy per hole is present both in the 50 and in the 98-
site system, and, although it is less marked by increasing the size, it®pasialmost
size-independent.

Our results on the—.J model are in good quantitative agreement with other quantum
Monte Carlo calculations [57, 58, 59], and, although it is not possible to rule out the
possibility that PS takes place very close to half-filling, it is safedoclude that no PS
occurs forJ < 0.4t andd 2 0.05. This statement would be in disagreement with a
recent calculation by Hellberg and Manousakis [61, 62], who claim that PS odalls a
interaction strengths. The main problem with Refs. [61, 62] is that, insteawiking
at fixed lattice and varying the number of particles, in order to change the doping, the
size of the lattice is changed, keeping fixed the number of electrons. In thjsheay
delicate low-doping region is studied only with exceedingly small latticHserefore
the energy per hole suffers of huge size effects and it is not at all repregerafthe
thermodynamic limit.
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Figure 3.13: Energy per hold4) for 50-site (empty circles) and 98-site lattice (full
circles) by using the SR approximatioh= 0.6¢. Lines are guides to the eye.

3.3.3 Conclusions

In this Section we performed an extensive study of the charge fluctuationsin-tbie
model at low doping and for different antiferromagnetic couplings. Although both the
energy per hole and the density-density correlation function calculations giveig-cons
tent boundary for the PS instability, we believe that the second method has msich les
size dependence and gives a more reliable tool to look at the long-wavelengthlinstabi
ity. Moreover, it also gives information about finigeeharge modulations, that cannot
be detected with the energy per hole only. A clear qualitative differensdn at small
momenta forJ = 0.2 + 0.4t and.J = 0.6t strongly suggests that the onset of PS is at
J. ~ 0.5¢.

Even though at small couplingsthe ground-state is not phase-separated, at least for
0 2 0.05, there is clear evidence of some charge modulations with long wavelengths.
These findings could support density matrix renormalization group calculationsten rec
angular lattices [91], although within this method clearer evidence of a tipedphase
is found. Indeed, the charge fluctuations at snialcan be easily pinned by the open
boundary conditions chosen along one of the direction of the rectangular cluster. In
order to gain kinetic energy the system tends to expel the holes from the boundaries,
favoring a pinned charge modulation.

It is worth noting that, even foy = 0.4¢, the analysis of the energy per hole gives
a very large compressibility, suggesting that, even though the ground-state is set pha
separated, the system is strongly susceptible and it is expected that a fungdeat-
tractive interaction can drive the system towards a charge instability
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Chapter 4

Superconductivity and stripes in the
t — J model

4.1 Introduction

The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS)
[24, 25] was founded on a number of assumptions which, on the basis of experiments,
were generally accepted. In particular, the experimental evidence pointad fact

that, in the transition of a metal to the superconducting state, the lattccé&saprop-

erties were essentially unchanged, whereas the properties of the conducttammslec
were changed drastically. The early attempts suggested that a theoryupasethe
independent-particle model of conduction electrons did not have the possibility of ex-
plaining the fundamental properties of superconductors. Thus the simplest model which
seemed capable of explaining superconductivity was that of a gas of electronstintera
ing with each other through some two-particle interaction. The question of whatispe
interaction is responsible for superconductivity has been considered over a |aod) per
When the Coulomb interaction between electrons was little understood, iheagttt

that the long-range part of this force could bring about the correlations that seemed nec
essary to explain superconductivity. However, Bohm and Pines [95] showechéhat t
long-range part of the Coulomb potential is connected with the collective ogmillat

of the electrons (the plasma mode) which, because of its high frequency chasanter,
weakly affect the low-energy superconducting phase. The difficulty in finding giheé ri
interaction is due to the small energy change between the normal and the supercon-
ducting states. Despite this difficulty, Frohlich [96] proposed that thecsittrawhich

drives to the superconducting state arises as a result of the interacti@atiwbes with
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the lattice vibrations, e.g. with phonons. Its significance in causing superconductivit
is confirmed by the dependence of the critical temperature on the isotopic mass of the
lattice.

A fundamental step toward the understanding of superconductivity was made by
Cooper [97], who showed that the Fermi sea is unstable to the formation of bound pairs
for an arbitrary small attractive interaction. He solved the problemwof particles
interacting through an attractive potential” < 0 in the presence of the Fermi sea, and
demonstrated that they bind with an energy given by

E = —2hwpe ¥O7 (4.1)

where N (0) is the density of states at the Fermi level dng, is an energy cutoff. In
particularwy, is the frequency of the phonons which mediate the attractive interaction
between particles.

The Cooper argument suggests that in the presence of an attractive interaetion t
normal state of a free electron gas is unstable. This argument is only suggestiite
laid the foundations for the BCS theory. Assuming that, below the transition tampe
ture, electrons of opposite spin and momentum condensate into bound states, Bardeen,
Cooper and Schrieffer proposed that the wavefunction describing the superconducting
state is

|(I>BCS> = H (Uk + UkC]JL’TCT_k’J,) |0>, (42)
k

whereu,, andv,, are variational parameters.

In the presence of a small attractive interaction between electromghe&ermi
energy, it is possible to show [25] that the superconducting state e@&igys lower
than the normal statéy one

N(0)AZ(0
Esc — En = —%, (4.3)
where
A(0) = 2hwpe” TOW (4.4)

is the zero-temperature gap which opens at the Fermi level in the supercondtateng

In the low-temperature superconductors, described by the BCS theory, the gap does not
depend on the momentui i.e. it opens isotropically over the Fermi surface. In this
simple approach, the critical temperatdids related to the gap (0) by

A(0) = 1.75k5T,.. (4.5)



Introduction 75

The superconducting gap can be considered as the order parameter for the supercon-
ducting transition. Indeed, at finite temperatures the value of the gap decezakes
eventually vanishes fdf > T,

=

s~ (1- 1)} 0o

The discovery of high-temperature superconductors has renewed the discussion of
unconventional, i.e. non-phononic, pairing mechanisms in solids. Indeed, although
phonon exchange [98] could explain transition temperatures around 30 K, as required
for La, ,Sr,CuQy, it is more difficult to believe that it can be responsible for supercon-
ductivity above 90 K, as attained MBa,CuszO4_,. Moreover, besides the high critical
temperature itself, the anomalous properties described in Chapter 1 hawetetider
novel mechanisms for the superconducting instability.

One of the most striking features of the cuprate superconductors, and relatett insula
ing materials such as Neodymium doped compounds, is a strong evidence of dynamic
and static ordering of spins and charges, which, for example, shows up as incommen-
surate peaks in low-energy neutron diffraction measurements [9, 39]. largrveork,
Tranquada and co-workers [9], found a clear evidencstatic and incommensurate
charge and spin order ina; ¢_Ndg 4Sr,CuO,4 with x ~ % They argue that, although
bulk superconductivity is absent in this material, their results areastalso for super-
conducting samples.

Indeed, also in the superconductihg,_,Sr,CuQy,, there is increasing evidence of
dynamical magnetic and stripe correlations [10] from neutron and X-ray sogtteea-
surements. The low-energy magnetic scattering, which is charactéyzégek antifer-
romagnetic wavevectdp = (r, 7) at low doping, shifts to positiong = (7 + 27e, 7)
andg, = (m, 7 + 27e), with e proportional to the hole doping, i.ec ~ x. More-
over, peaks revealing charge orderingjat= (+4me,0) andg. = (0, +4we) are also
found. The relation betweep andg, implies that the periodicity of the spins is twice
the periodicity of charge: in Fig. 4.1 the case-of= % is reported. This hole den-
sity is often considered a "magic” filling, at which the charge and spin arosis are
strongest and presumably locked by the tilt distortion of the underlying latticdrf9]
deed, neutron and X-ray scattering measurementsagp .Nd, 4Sr,CuO, show that
the charge and magnetic ordering temperatures reach their maximumy %t, where
the superconducting temperature has an anomalous suppression. Moreover, a similar
suppression in the superconducting temperature is also observed in Bariunctased

1

pounds,La;_.Ba,CuOy, for the same hole doping ~ ;. This effect has attracted

the attention of many authors and the major controversy regards the issue of whethe
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Figure 4.1: Idealized diagram of the spin and charge stripe patter@irOa plane of

hole doped.a; Sr,CuO4 with x = é Arrows indicate spins and circles indicate holes

anda is theCu — Cu lattice spacing. The hole stripes are half-filled, i.e. there is only
one half of a hole peCu site.

this mesoscopic self-organization of charges and spins is a necessary présyurigr-
temperature superconductivity [99, 100] or whether it is simply an alternaisiability
that competes with superconductivity [73].

It is worth noting that, within a simple Hartree-Fock approach it is not poss$dl
predict half-filled stripes, and only stripes with one hole per site, correspgmak = 7,
are found [101]. Therefore a strong-coupling approach, which can treat more properly
the local hole correlations, is needed. By using the density matrix renorm@hzaoup
method on the¢ — .J model, White and Scalapino claimed that, for a wide range of dop-
ings, the ground-state has stripe-like correlations and, in particuldr,=at0.35¢ and
hole dopingd = é they reproduced the half-filled stripes of Fig. 4.1 [91]. This result
has stimulated much work in order to understand the stability of this kind of soluti
against the change of lattice shape, boundary conditions, interaction strength@and ele
tron doping. In general, the hole motion at finite doping, frustrates the antiferronagnet
alignment of the spins present at half-filling, and the strong electronic ini@naciay
drive the system towards phase-separation [54, 61], superconductivity [58, 7i2je cha
density waves or stripes [91], or to some exotic non-Fermi liquid phase, e.g. flugphas
[102]. Therefore the scenario presented bytthe/ model is far to be understood and it
is still an open question if this simple model containing only purely electronieizer
tions is able to describe the anomalous properties found in the underdoped region of the
high-temperature superconductors.
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In this Chapter we present Monte Carlo calculations of the superconducting order
parameter for thée— .J model (3.20) at finite doping. Furthermore, in the last Section we
report the density-density and spin-spin structure factor for two differeiddathapes,

i.e. square and rectangular, in order to study the dependence of the charge and spin
peaks on boundary conditions.

4.2 Small lattice calculations

In this Section we show the accuracy of the variance extrapolation methatbeesio
Section 2.4.1 on a small = 18 sites, where exact results are available. The variational
wavefunction is the one described in Section 3.3.1

N = PaPT ] (1 + fuch ey ¢) 10), (4.7)
k

wherePy is the projector onto the subspace\oparticles,P is the Gutzwiller projector,
which forbids doubly occupied siteg] is a density-density Jastrow factor (3.33), and
fr is defined by Eq. (3.22).
As stated in Section 3.3.1, the unprojected wavefunction (4.7) can be obtained as the
ground-state of the mean-field Hamiltonian

ANIVAN .
H = zkjékc,i,gck,g+5 (AT +4A) 4.8)
AT = D M (CZT,TC},i + C},Tcl,i) ) (4.9)
(4,3)
where¢, = —2t(cos k, + cos k) — u, p being the chemical potential)' creates all

possible nearest-neighbor singlet bonds with d-wave symmetry, Béjng= +1 or —1
if the bond(i, j) is in thex or y direction, respectively.
Our main task is to compute the anomalous order parameter at finite system size

_1 (AN
Bty iwye) ey |ey)

Py (4.10)

where|¥') and |¥)'*?) are the states wittV" and V + 2 electrons, respectively, and
p is the number of Lanczos steps applied onto the wavefunction (4.P). if finite in
the thermodynamic limit this necessarily implies off-diagonal long-range ordtrein
ground state. Following Refs. [72, 103], it is convenient with an approximakaigue
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Figure 4.2: Variational energy (upper panel) and d-wave order paramfigt@ower
panel) as a function of the variance obtained by applying exactlgnczos steps to
the variational wavefunction of Eq. (4.7). Full dots (optimisg), empty dots A = 0).
L =18, N =16 andJ = 0.4¢

to calculate a short-range quantity likg, instead of the more conventional long-range
expectation value o
1 (\IJI],V|AN|\III],V>
L2 (U
It is worth noting that, because of the constraint of no doubly occupied sites, the super-
conducting order parameté&};, at small hole densities, is proportional to the number of
holes and not to the number of electrons as in models of weakly correlated electrons
Therefore, in order to decide if the— J model has a superconducting ground-state or
not, it makes no sense to compare the valu&pin thet — J model with the corre-
sponding one in a free-electron model, as it is done in Ref. [71].

In Table 4.1 we show a comparison between the variance extrapolation method and
the exact results for 18 and 16 electrons/at 0.4¢. In Table 4.2 we showP’; as a
function of the number of Lanczos step iterations for the 18-site clusteérab.4t. In
the same Table we have computed also the variahgcthe overlap squared

(4.11)

Zy = [(T,|Po) [, (4.12)

of the wavefunctioni¥,) with the true ground statgb,), and the average sign of the
|¥,) wavefunction:

(Sp) = D (o) *Sgn ((x]¥,) (x]Po)), (4.13)
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N A p E/L P, E.,/L  Pgroct

18 0.55 1 -0.4765(1) -0.47668

18 0.55 2 -0.4775(1) -0.47749

16 0.20 1 -0.6541(1) 0.1074(4) -0.65420 0.10730
16 0.55 2 -0.6583(1) 0.122(1) -0.65826 0.12135

Table 4.1: Comparison between the estimates of the ground-state energy gefisite
and of the d-wave order paramefeyobtained with the exact and the statistical applica-
tion of p Lanczos steps on the variational wavefunction of Eq. (4\7is the variational
parameter of the mean-field Hamiltonian (4.B)= 18, N = 16, 18 and.J = 0.4t.

where|x) denotes configurations with definite electron positions and spins. For an exact
calculation, namely >> 1, bothZ, — 1 andS, — 1, whereasr> — 0. The variance

thus represents a very important tool to estimate the ‘distance’ from thé¢ geamnd

state when the latter is not known. In particular, wheneger 1 the energy approaches

the exact result linearly with the varianeé, allowing us to estimate the error in the
variational energy.

This can be achieved by plotting the variational energies as a function of ttes corr
sponding variance?, and performing a linear or quadratic fit to the= 0 exact limit
(see Fig. 4.2). Similar fits can be attempted for correlation functions thougihsicase,

a termox Vo? is also expected far?> — 0. This term is however negligible for quan-
tities like P, that are averaged bulk correlation functions in a large system sizehgsee t
Appendix C). In practice even in the small 18-site cluster the non-linear tiems out

to be negligible (see Fig. 4.2). We believe that, being the convergence of the Lanczos
algorithm particularly well behaved and certainly unbiased, the variancapetation
method is in this case particularly useful and reliable. However for migidliwavefunc-

tion (e.g., randomly generated) or very large sizes the approach to zero of idrecear
may behave rather wildly, requiring many Lanczos steps to reach the rediere the
extrapolation is possible.

As shown in Table 4.2 the quality of the variational wavefunction (4.7) is excep-
tionally good, especially in the doped case with= 16. HereZ, is larger thar).9
even at the simplegt = 0 variational level, and is drastically improved with very few
Lanczos step iterations. Remarkable is also the behavior of the average, sidnch
measures directly the accuracy of the BCS wavefunction phases, withauj edout
the amplitudes. In the undoped case the signs of the wavefun@igrcan be proven
to be exact, i.e.{Sy) = 1, having the state (4.7) the well-known Marshall signs, i.e.,
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N A p (Sy Z, o? E/L

18 0.00 0O 1.0000 0.6898 1.194 -0.43833
16 0.00 O 0.9656 0.8306 1.174 -0.63847
18 0.80 0 1.0000 0.8850 0.335 -0.46639
18 0.80 1 1.0000 0.9915 0.042 -0.47662
18 0.80 2 1.0000 0.9995 0.004 -0.47752
18 0.80 3 1.0000 1.0000 0.0003 -0.47759
18 0.80 4 1.0000 1.0000 0.00002 -0.47759
18 0.80 oo 1.0000 1.0000 0.0 -0.47759
16 055 0 0.9891 0.9260 0.940 -0.64559
16 055 1 0.9988 0.9814 0.191 -0.65638
16 055 2 0.9999 0.9942 0.060 -0.65826
16 0.55 3 1.0000 0.9983 0.018 -0.65882
16 0.55 4 1.0000 0.9995 0.005 -0.65898
16 055 5 1.0000 0.9999 0.002 -0.65902
16 0.55 6 1.0000 0.9999 0.0005 -0.65904
16 055 7 1.0000 1.0000 0.0001 -0.65904

16 0.55 o~ 1.0000 1.0000 0.0 -0.65904

Table 4.2: Average sighsS,), overlap squared on the exact ground-stéfeand vari-
ancec? obtained applying exactly Lanczos steps on the variational wavefunction of
Eq. (4.7).L =18, N = 16,18 and.J = 0.4t.
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the phases of the exact ground state of the Heisenberg model (see Appendix D). For the
two-hole case, the nodes change in a non trivial way. Neverth€lggstemains very
close to 1 and it is much higher than the average sign of the corresponding Gutzwille
wavefunction = 0), also shown in the Table for comparison.

These results suggest that there is a tendency to d-wave pairingtin thenodel at
dopingd ~ 0.1 and.J ~ 0.4t, and that the wavefunction (4.7) is a particularly accurate
wavefunction to describe the small and even zero doping region of-thé model.

4.3 Superconducting order parameter

In order to confirm the results found on the small 18-site lattice, we computasn t
Section the anomalous order paramdtgion larger size systems, by using variational
Monte Carlo with few Lanczos steps. In the variational approach, it is teasgiculate

the quantity

N+2| Aty N
pr— 1% N|A JV\I'P ) (4.14)
L (T

Hence in order to have the value of the normalized order paramfigtéins necessary to
perform a second simulation at + 2 particles in which the quantity
IRANAES

Pr=——————— 4.15
d L (q;lzjv+2|qjlz)v+2> ( )

is calculated. Then, the product of the two variational calculations yields theesglia

the desired quantity
P,=+/P/ x P,. (4.16)

In Figs. 4.3 and 4.4 we show the results for the energy and the d-wave order param-
eterP, for p = 0, 1,2 Lanczos steps for 4 and 8 holes on the 50-site lattice, respectively.
The starting variational wavefunction is chosen to have the best possitdgo@al en-
ergy within the class described by Eqg. 4.7. It turns out that the energy extrapoktion i
very stable and each Lanczos step improves by a factor of two both thecaad
the energy accuracy, giving rise to a very accurate value of the extrapeiasegy,

E/L = —0.5982(3) andE /L = —0.7203(4) for 4 and 8 holes, respectively.

For small lattice sizes, the extrapolated value of the energy does not depend on the
particular ansatz of the starting wavefunction, and it is possible to obtaateurate
value of the ground-state energy starting both from a metallic state,Avith 0, and
from a superconducting state, with a finite(see Fig. 4.2). Indeed, for small clusters,
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Figure 4.3: Variational energy (lower panel) and d-wave order paranigtéupper
panel) as a function of the variance obtained by applying exacty 0, 1, 2 Lanczos
steps to the variational wavefunction of Eq. (4.7). The extrapolated values ef&ngy
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Q

-

£

j

()]

Q,

>

0

S 50 sites 8 holes

= 70’?3 1 1 1 1 l 1 1 1 1 l 1
0 0.001 0.002

Variance
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panel) as a function of the variance obtained by applying exacty 0, 1, 2 Lanczos
steps to the variational wavefunction of Eq. (4.7). The extrapolated values ehéngy
and P, are also shownl = 50 and.J = 0.4t



Superconducting order parameter 83

there is a large gap between the ground-state and the first excited statbe drah¢-

zos algorithm converges to the ground-state in few steps. By contrast, on izege s
systems, the choice of the starting wavefunction is a crucial point to obtanamate
value of the ground-state energy. Indeed, although the Lanczos technique always con-
verges to the lowest eigenstate, it is not obvious that few iterations are etwagtain

a good approximation of the ground-state. The variance vanishes for all the eigenstate
of the Hamiltonian, and, with only few Lanczos steps, it is possible to rentagk $n

a local minimum and converge to an excited state. The convergence to thst lem

ergy state is guaranteed only if the starting wavefunction has a largeapweith the
ground-state. By increasing the size of the system this overlap goes to zéno, @r-

der to converge to the ground-state, it is necessary to perform more and nmezota
iterations. Therefore, it is interesting to compare the results obtainetabyng from
different wavefunctions. In particular, we can consider the optimal vanak wave-
function, with a sizeable\ ~ 0.2 + 0.8, and the wavefunction witl\ = 0, which
describes a correlated metal, without superconducting long-range order. At high den-
sities of holes, the two states have almost the same energy, and evenrtipslexed
values coincide within the statistical errors. In the lower panel of Fig.wéereport

the variational energies for the case of 20 holes on 50 sites (in this case thmlopti
variational wavefunction had ~ 0.2). The fact that the two different wavefunctions
converge to the same extrapolated energy suggests that this value of the ecargy ac
rately represents the true ground-state energy for this doping. In the low-doping region,
for 4 holes, even if the = 0, 1, 2 energies for the optimal variational wavefunction are
lower than the corresponding ones of the metallic wavefunction, the extraporeed e
gies of the two wavefunctions coincide within the statistical errors, fpedt6. In this

case, as shown in the inset of Fig. 4.6, the magnetic order parameter is aldeystm-

dent fromp for the optimal wavefunction, whereas it sensibly grows, by incregsing

for the metallic wavefunction, the difference between the two being Biilylt appears

that, in the low-doping region, the ground-state has short-range antiferromagnetjc orde
and its structure can be recovered from both the wavefunctions, which hmagstahe
same structure. In this doping region, both the wavefunction with a fikieend the
metallic one withA = 0, appear to converge to the same (magnetically ordered) state
by means of few Lanczos iterations.

When a symmetry breaking occurs, on large clusters, it is not possible to change
the overall structure of the starting wavefunction by the application of omlylfanc-
Zos steps, as clearly suggested for the case of 8 holes on 50 sites, shownppéehe
panel of Fig. 4.5. This failure in the convergence of the few Lanczos steps algorithm
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can be used to estimate the condensation energy, i.e. the difference of enarggroet

the superconductor and the metal. Indeed, the precursor signal, on finite systems, of a
symmetry breaking (which occurs only in the thermodynamic limit) is the existehc

two distinct minima in the energy landscape. By increasing the lattieg #iz energy
barrier between these two minima raises up and, with few Lanczos dteppsjore and

more difficult to cross it. Therefore, on large enough sizes, by starting froratallic
wavefunction and by applying = 2 Lanczos steps, we remain stuck in the local min-
imum and we do not obtain the energy of the superconducting state. In this sense, it
appears plausible that we can estimate the condensation energy.

For the case of 8 holes, both the variatiopat 0, 1, 2 and the variance extrapolated
results for the optimal variational wavefunction (with= 0.7) lie below in energy than
the corresponding results for the = 0 wavefunction, see the upper panel of Fig. 4.5.
In this case the difference in energy between the two wavefunctions is stleable,
AFE ~ 0.02, for thep = 0 variational level and is only slightly reduced by applying
a few Lanczos steps. It turns out that the difference between the two exteapoédt
ues iISAFE ~ 0.015, implying a small but finite condensation energy. Therefore, in the
intermediate hole doping, the two wavefunctions have a completely differentuisuc
and hence, by applying few Lanczos steps, itis not possible to reconstruct the supercon-
ducting order starting from a wavefunction which does not contain it. We obtain that
the condensation energy has a maximum at finite hole density and decreases when the
doping in reduced. It is remarkable that this is just what is found experimentatfty f
specific heat measurements [104].

On the other hand, the value of the variational paramé&tes found to increase by
reducing the number of holes. Even though the valu®ois certainly related to the
superconducting order parameter, the meaning of the "bare” variational parainete
is not clear. Indeed, although in the wavefunction (4.7) there are "preformed”qdairs
electrons, the Gutzwiller projector strongly affects the charge dynamicshwai half-
filling, is completely frozen. Therefore, due to the strong electron coivestA does
not have the meaning of the superconducting gap, as it happens in the standard BCS
theory. At finite doping), the holes generate a non-trivial charge dynamics, making
possible a finite superconducting order parameter of o¥ddt is worth noting that,
because of the local constrain®, is of the order of the number of holes and not of
the number of the electrons, as expected in a weakly correlated system. Bgstont
A should control the single-particle excitations and could be related to the vathe of
pseudogap. Experimentally, it is found that, in the underdoped region of cuprates, above
the superconducting critical temperature, there is a ldrge,> gap in the excitation
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Figure 4.7: Size scaling of the variance extrapolated d-wave order parafdterthe
d-wave wavefunction of Eq. (4.7) with £ 0 (full circles and long-dashed line) and
for the metallic wavefunction witl\ = 0 (empty circles and short-dashed line). The
extrapolated value aP, for A # 0 is also shown, and the lines are guide to the eye.

spectrum [6, 7], though there is not a true superconducting long-range order. The mag-
nitude of the pseudogap decreases by increasing the hole doping, exactly as found for
A. Moreover, in the slightly doped regime, the valueffis much higher than the

one of the superconducting order paramétgrand therefore we might expect that at
small but finite temperature the superconductivity is suppressed, while nnangténe
"preformed” pairs.

In order to attempt a finite size scaling of the d-wave superconducting order pa-
rameter, we have considered a 98-site lattice and we have compyfed N = 84,
corresponding to a hole doping®f= 0.133. In Fig. 4.7 the behavior aP; as a function
of the lattice size for this density is reported. In the 50 and 18-site lattechave used
a linear interpolation of the nearest densities available. Although by inocete size
from the small 18-site cluster to the 98-site one, the superconducting order paranet
decreased by 20%, the finite size scaling is consistent with a finite value in the ther-
modynamic limit, implying a superconducting ground-state at this hole density for the
t — J model. On the other hand, the superconducting order parameter of the metallic
wavefunction (withA = 0) has a completely different behavior as a function of the
system size, and it is consistent with a vanishing value in the thermodyniamticlh-
deed, although for the 18-site lattice the valué’pbf the metallic wavefunction i20%
smaller than the one of the superconducting wavefunction, by increasing the size of the
cluster, the difference becomes more and more pronounced.
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These results roughly confirm the ones of Ref.[72], though in that case a differ-
ent strategy has been followed: the simulations were performed in the graadical
ensemble in the presence of a small external field which creates a d-wapeiCpair.
Then the calculation of the superconducting order parameter was performed byhesing t
fixed-node and the stochastic reconfiguration approximations and the vaRyewats
found by extrapolating to zero field. Although this kind of calculation has been demon-
strated to be very accurate, at least on small sizes, it suffarsthie fact that a difficult
extrapolation to zero field is necessary. Indeed, although there is a qualigteement
as far as the value d?; is concerned, the method proposed in this thesis suggests that
the value ofP; monotonically decreases by increasing the accuracy (e.g. by applying
Lanczos steps), on the contrary, in Ref. [72], it is found #a enhanced, with respect
to its variational value, both by fixed-node and stochastic reconfiguration. Ti®ena
a spurious effect which derives from the large value of the d-wave suscdpiitbifinite
fields.

4.4 Charge and spin modulations

In this Section we study the dependence of the charge and spin distribution from the
shape of the lattice. The motivation for this study is given by the fact thatrate
density matrix renormalization group calculations applied to rectangulaters with
cylindrical boundary conditions find huge charge and spin modulations in the ground-
state of the — J model for.J ~ 0.4t [73, 91]. The main limitation of this technique is
that, up to very recently [105], it was not possible to consider a translayanaariant
system, i.e. a lattice with periodic boundary conditions in both the directions, or suf
ficiently large clusters, such that the boundary effects are negligible. Thkibgeof

the translational symmetry introduces huge spurious effects and may complegely a
the nature of the ground-state. Indeed, as shown in the Chapter 3 by the analysis of the
density-density structure factor, fdr~ 0.4¢, there are incommensurate charge fluctu-
ations, which can be easily enhanced by some external imposition. Within théydensi
matrix renormalization group, stripes are found to be stable in a wide range of dopings
and antiferromagnetic couplings [91], whereas the superconducting order parameter i
found to be strongly suppressed [73].

By contrast, quantum Monte Carlo techniques, applied to square lattices with pe
riodic boundary conditions, find that the finigeeharge fluctuations are strongly sup-
pressed if compared to the ones found within the density matrix renormahzgoup.
Moreover, the Monte Carlo method applied to clusters with cylindrical bounctargi-
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Figure 4.8: Density-density structure fact¥fq) for 8 holes on & x 8 lattice andJ =
0.4t. The variational withp = 0 (empty triangles)y = 1 (empty squares) = 2 (empty
circles), fixed-node (full triangles) and stochastic reconfiguration (fodles) results
are reported. In the inset: the same for the spin-spin structure fa¢ior ' = (0, 0),
X = (m,7), M = (m,0).

tions has shown a very weak charge modulation [106]. Nevertheless, though thg densit
matrix renormalization group -4 times more accurate in the variational energy than
the quantum Monte Carlo, it is not clear whether the same is valid for the dwrela
functions. The discrepancy between these two numerical methods drives usgt-inv
gate, within the quantum Monte Carlo, the dependence of the charge distribution upon
the anisotropies of the lattice. The simplest way to introduce the anisotrajnut/
breaking the translational symmetry, is to consider rectangular clustdrspetiodic
boundary conditions in both directions. In this way, only the rotational symmetry is
explicitly broken and a translational invariant wavefunction is expeaechprove the
accuracy of our quantum Monte Carlo calculation. The choice of rectangular $attice
with periodic boundary conditions represents the mildest way to introduce an external
perturbation to the square lattice without breaking the translational symrieiryect-
angular lattices, we consider the wavefunction of Eq. (4.7) with a differenevair A
in z andy directions.

We compute the density-density structure factor

1

N(q) = (ngn_q) = 7 Zeiq(Ri_Rj)mmj), (4.17)
i\j
and the spin-spin structure factor
1 ; i—R; z Q2
S(q) = (5553q> — 7 ZeuﬂRz R]><Sz' 5j>, (4.18)

i’j
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Figure 4.9: Density-density structure factdi(q) for 4 holes on & x 4 lattice and
J = 0.4t. The variational wittp = 0 (a),p = 1 andp = 2 (b), the fixed-node applied
to thep = 0 (empty circles, c¢) and to the = 1 (full circles, c) wavefunction, and the
stochastic reconfiguration (d) results are reporiee: (0,0), X = (7, 7), M = (7,0),
M = (0,7).

Figure 4.10: Spin-spin structure fact8(q) for 4 holes on & x 4 lattice andJ = 0.4t.
The variational withp = 0 (a),p = 1 andp = 2 (b), the fixed-node applied to the= 0
(empty circles, c) and to the = 1 (full circles, c) wavefunction, and the stochastic
reconfiguration (d) results are reported.= (0,0), X = (m,7), M = (7,0), M =
(0,7).
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Figure 4.11: Density-density structure facfétq) for 4 holes on 8 x 4 lattice and 16
holes on a6 x 8 lattice andJ = 0.4¢. The empty symbols refer to tlex 4 cluster, the
full ones to thel6 x 8 lattice. The variational witp = 0 (triangles) and the stochastic
reconfiguration (circles) results are reported. In the inset it is showedhgarison
between the&d x 8 lattice (empty squares) and thé x 8 one (full circles), along the

I' — M direction.T’ = (0,0), X = (7, 7), M = (7,0), M = (0, 7).

for a rectangula8 x 4 and a squarg x 8 lattice with 4 and 8 holes respectively: in this
way both the clusters have the same hole derﬁs'ttay%. We find that, for the square lat-
tice, the variational results fa¥ (¢) andS(¢) are not modified by increasing the accuracy
of the wavefunction: even within the most accurate approximation, the stoctrexsiic
figuration, the structure of botN (¢) andS(¢) is qualitatively, and also quantitatively,
in agreement with the one of the= 0 variational calculation. The direct inspection of
the N (¢) does not reveal any trace of phase separation, and the only structure is a small
peak in thel' — M direction forq = (7/2,0), see Fig. 4.8. Moreover, the spin-spin
structure factor reveals a large peak for the commensurate wavegeetdrr, ), indi-
cating that the ground-state has a strong short range antiferromagnetic ordeforEhere
for this cluster, the d-wave wavefunction (4.7) represents a very good appraxinodti
the ground-state and contains accurately the charge and spin correlations.

The situation is completely different for the rectangular cludgter8. In this case,
although at the variational level the wavefunction does not show any kind of charge or
spin order, a huge charge density wave is recovered within the stochaetifigecation
and the fixed-node schemes. In Fig. 4.9, we report the calculatiof( @f for various
approximations. For this kind of cluster and the chosen hole dehs'tt%, we find that
the most accurate methods are able to produce a peak=atr /2, 0), not present in the
variational wavefunction, where the density-density correlations are abtrosture-
less. In this case, the improvement given by the Lanczos steps is not suffeclauild
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Figure 4.12: The stochastic reconfiguration results for the spin-spin structweSégt
for 4 holes on & x 4 lattice (empty circles) and 16 holes o@x 8 lattice andJ = 0.4¢
(full circles). Thep = 0 variational results for thé6 x 8 lattice (full triangles) are also
reportedI’ = (0,0), X = (m,7), M = (m,0), M = (0, ).

Ep:O/L Apzl Ap:Q Abest
8 x4 -0.64144(5) 0.0306(1) 0.0400(1) 0.0437(4)
16 x 8 -0.64074(5) 0.0219(1) 0.0296(2) 0.0329(6)

Table 4.3: Variational energy per site with= 0, E,—,/L, and energy accuracy, =
(E, — Ep—o)/Ep—o, Withp = 1,2. Apesy = (Esr — Ep—0)/E,— is related to the best
variational energy obtained with the stochastic reconfiguration method.

up the incommensurate charge peak. Indeed, the application of few Lanczos iterations
is not enough to completely change the structure of the starting wavefunction, and some
more involved scheme, like the stochastic reconfiguration, is needed [87].

Furthermore, as shown in Fig. 4.10, a similar situation occurs also for thespjpin-
structure factorS(q): in this case the variational wavefunction has a broad maximum
around@ = (m, ), and the structure is only slightly changed by the application of one
and two Lanczos steps. By contrast, within the fixed-node and the stochastic rec
figuration approximations, a sharp incommensurate peak risgs=at(37/4, 7). Itis
remarkable that the wavevectgrandg, for which theN (¢) and theS(q) have the peaks
are exactly the ones that are found experimentally (see Section 4.1). These far@ings
in good qualitative agreement with the ones obtained with the density matoxmel-
ization approach [73, 91], where however cylindrical boundary conditions enhance even
more the stripe features of the ground-state.

In order to clarify the relevance of the stripes in large size systemgonsider the
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Figure 4.13: The = 0 variational results for the density-density structure facidy)

for 8 holes on & x 8 lattice (full circles) and 32 holes onl& x 16 lattice andJ = 0.4¢

(empty circles) are reported. In the inset: the same for the spin-spirts&uactor
S(q). T =1(0,0), X = (m,7), M = (7,0).

16 x 8 lattice with the same hole density= % By increasing the system size from the

8 x 4 lattice to thel6 x 8 one, we have only a slight loss in the accuracy. Indeed, as
shown in Table 4.4, our best variational energy for the largest system i@ @iilyorse
than the one for the smalle&ix 4 cluster. Therefore, we expect that the accuracy on the
density-density and spin-spin structure factor is sufficient to detect possduatonic
fluctuations at incommensurate wavevectors. We find that, as shown in Fig. #ell, t
structure ofN(q) for this large rectangular lattice is completely different from the one of
the small x 4 cluster. In particular, in th€ — M direction, the results of the= 0 vari-
ational wavefunction are much more similar to the ones oBtke8 lattice. This feature

is preserved also within the fixed-node and the stochastic reconfigurationgeebni
Moreover, the incommensurate peak in the spin-spin structure factor siwfisds the
commensurate wavevectQr= (r, ) atg, = (77/8,0), see Fig. 4.12, suggesting that
the particular stripe-like feature of tiex 4 lattice disappears by increasing the size of
the cluster. It is noticeable that the incommensurate peak of theat ¢, is a genuine
non-perturbative feature of the most accurate techniques (fixed-node and sto@hastic
configuration), and does not appear in a simple,p.e: 0, calculation (see Fig. 4.12).

It is also remarkable that, within the forward walking technique of both thelfhade

and the stochastic reconfiguration, there is a considerable enhancement of the density-
density structure factaV (¢q) for ¢, = (7/4,0), exactly the momentum. related tog;.

The fact that the structure of tl##¢), and partially of theV(q), is substantially changed
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by the stochastic reconfiguration (and by the fixed-node) strongly indicates that our most
accurate methods are able to detect the tendency towards stripe-formédienefore,
these results strongly indicate that, in the large size limit, whatéeeshape of the lat-
tice is, the projected d-wave wavefunction gives an exceptionally good apprtoxima
of the true ground-state, and that the stripe-like features found within the ylereitix
renormalization group are size effects due to the smallness of the clostgdered,
further enhanced by the fact that in one direction there are open boundary conditions.
A particular important point is that there is a very singular convergence tdéne t
modynamic limit. Our results suggest that, as shown in Fig. 4.13, for squaresattic
the size scaling is smooth and, by increasing the lattice size up t6tkel 6 cluster,
there are no important modifications in the structure of the charge and spin ton®la
By contrast, for rectangular lattices, the size scaling is much moreesaliticky, for
example theN (¢) along thel’ — M direction changes dramatically by increasing the
size, even at the = 0 variational level (see Fig. 4.11), indicating that for rectangular
clusters there are huge size effects.

4.5 Conclusions

In this Chapter we have performed a study of the superconducting order inthe
model atJ = 0.4t and low hole densities. Moreover, in the last Section, we have
addressed the question of charge and spin ordering, recently raised by density mat
renormalization group calculations [73, 91].

The projected d-wave wavefunction is found to be an excellent approximation of the
ground-state of the — J model. Furthermore, the accuracy of the variational ansatz
can be further improved by the exact applicationpdfanczos steps. In this way, as
demonstrated in Section 2.4.1, it is possible to extract information about the energy
and the correlation functions of the exact ground-state. This method turns out to be
exceptionally reliable and unbiased whenever it is possible to have an efaence
to compare with. It is noticeable that the variance extrapolation gives asyrate
results even on rather large size systems and, dp~o100 sites, it is safely possible to
estimate the exact ground-state energy. Indeed, for the projected d-wave nciost
on square lattices witlh, < 100, each Lanczos step reduces both the energy and the
variance by about a factor of two, making possible a very stable linear extriapolat

The estimate of the condensation energy, i.e. the difference in energy betveeen t
superconductor and the metal is also possible by the same method. Motivated by a fi-
nite condensation energy at dopifig~ 0.15 we calculated the superconducting order
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parameter”, for this hole density. A finite size scaling of this quantity shows ais

finite in the thermodynamic limit, indicating the superconducting nature of the ground-
state of the — .J model. For this value of the doping and on square lattices, the charge
and spin structures of the variational wavefunction is found to describe velhtive

ones of the ground-state, and they do not qualitatively change by increasing the degree
of accuracy. By contrast, on a smallx 4 rectangular cluster with periodic boundary
conditions, the projected d-wave wavefunction does not contain the stripe-likengrde
characteristic of the ground-state. These charge and spin correlations casilpele-
tected by the fixed-node and the stochastic reconfiguration approaches. Hoheser, t
effects are restricted to small sizes: indeed, by considering a laégers lattice, the
stripe order vanishes and the density-density structure factor becomes sirttila one

of square clusters. These results suggest that the d-wave superconducting wenrefunc
is a very stable state for thte- / model even at moderately small couplingsHowever,

it is possible that small anisotropies in the Hamiltonian, like different hoppangsan-
tiferromagnetic couplings in the two directionts & ¢,, .J, # .J,) can drive the system
towards a stripe-like instability.
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Chapter 5

Ferromagnetism from strong local
repulsion

5.1 Introduction

The theory of magnetic ordering in crystals is one of the oldest problems in sdkd sta
physics. A theory of magnetism based on a free electron gas is hopelessly inadequat
as an approach to real metals: to explain the magnetic ordering, in the gagaityn
of cases, it is necessary to go beyond the independent electron approximation. The
development of a tractable model of magnetic metal, capable of describing boghrthe s
correlations and the electronic transport properties, remains one of the majoraghsol
problem in solid state theory.

Although a theory of magnetism based on a free electron approximation does not
give a satisfactory interpretation of the phenomenon, it provides a very singalelnm
which the magnetic structure is implied in the absence of an explicit spin-detanede
teraction. Bloch [107] first pointed out that the Hartree-Fock approximatiompieadict
ferromagnetism in a gas of electrons interacting only through the Coulomb potential.
Within this approximation, if every one-electron level with a given wagetor less than
kr is occupied by two electrons of opposite spin, then the ground-state enekgfred

electrons is

3 3 e?
E =N |=(kpag)? — —(k —
5( FCLO) 27r( Fao) 2%,

(5.2)
whereaq, is the Bohr radius anélis the electron charge. The first term in Eq. (5.1) is the
total kinetic energy, and the second is the Hartree-Fock approximation of tteoale
electron Coulomb interaction (the exchange part only). Instead of assuming ¢ngat ev

one-electron energy level is occupied by two particles of opposite spin, a monalgene
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possibility is to fill each one-electron level with< k4 with spin-up electrons and each
level with & < k| with spin-down electrons, leading to a net spin imbalance. Since in
the Hartree-Fock approximation the exchange interaction is only betweerigswith
opposite spin, we have an equation of the form (5.1) for each spin population

E —Jv§waf—iwa)fi (5.2)
L SR 2| 24, '
3 3 e2
E, = N |= 2 = — :
) i [5(k¢a0) Zﬂ(/ﬁ%)} 20 (5.3)

where the total energy and number of particles are given by

E = E.+E, (5.4)
N N, N k3 k3 3
N_ M N_& 8 _ K (5.5)
\% Vv Vv 672 672 672

If we take N # N, and we find an energy lower than the one of Eq. (5.1), the ground-
state has a non-vanishing magnetization and the electron gas will be pddrdilyly)
polarized.

For simplicity, if we consider the limiting case &f, = N and N, = 0, then we
have that, = 2!/%k, and the total energy is

2
EzN%?W@%V—%TW@%)%; (5.6)

If we compare the energy of the non-magnetic case, Eq. (5.1), with the one of the fully
polarized case, Eg. (5.6), we have that in the former case the kinetic endegyeas
by a factor2?/?, whereas the exchange energy is smaller by a fat6r Therefore
the ground-state will be fully polarized if the exchange energy dominates the kinetic
energy. This situation happens for smajl, i.e. at low densities. Therefore, as the
density decreases, a transition from a non-magnetic to a fully polarized grtated-s
occurs within this approximation.

Unfortunately, these simple arguments for the magnetic instability aréidated
by different considerations. First, even within the Hartree-Fock apprdiomthere are
other more complicated solutions for the one-electron levels that lead & Ewvergies
than the one of the fully polarized state [108]. Moreover if the Hartree-Fppkoi-
mation is improved by introducing a screening in the electron interactiorsddreario
changes drastically. For example, in the extreme limit of a delta-functi@mpat, ferro-
magnetism in the high density limit is found, whereas at low densities the non-tiagne
phase is stable. Indeed, at very low electron densities, the ground-stateetédtren
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gas can be shown to crystallize intd&\agner crystal whose description is outside the
reach of the independent electron approximation.

Furthermore, although the best Hartree-Fock ground-state is by no means obvious,
the correlations between electrons can drastically alter its predgctiFerromagnetism
has been observed experimentally in metals whose free ions contain pditted| d of
f shells, which are well beyond a free electron description. Indeed, a simplesado
explain ferromagnetism in these compounds is obtained by combining the free electron
picture of itinerant ferromagnetism with the band theory, i.e. by calculatidifer-
ent self-consistent field for electrons of opposite spins. However this appi®aci
satisfactory at all, and a more complete theory, which takes into accouafations
between itinerant electrons is needed.

In 1963 Hubbard [12] proposed a highly oversimplified model to describe the in-
terplay between the band-like and localized behavior of these materialsis Imodel
the vast set of bound and continuum electron levels of each ion is reduced to a single
localized orbital level. The non trivial ingredient is that pairs of electroits opposite
spins that occupy the same ion pay an on-site enérgffor a large Coulomb interac-
tion U, electrons can prefer to occupy only a single spin sector, up or down, minimizing
therefore the strong Coulomb repulsion, leading to a magnetic ground-state. Indeed,
as Nagaoka showed in a milestone paper [80], a single hole in the irfiinttabbard
model on any finite bipartite cluster with periodic boundary conditions, for any dimen-
siond > 2 has a fully polarized ferromagnetic ground-state, i.e the ground-state has
a maximum spinS. Unfortunately the Nagaoka theorem refers to a single point in
the phase diagram, which is not thermodynamically significant. A central point in the
theory of strongly correlated electronic systems is to understand if a fagoetic Na-
gaoka ground-state can survive at finite hole densities or finite Coulomb repulsions. In
the Hartree-Fock approximation of the Hubbard model [46], a large part of the phase
diagram shows a ferromagnetic ground-state (see Fig. 1.3). However, in kiphasa
diagram, the ferromagnetic region is expected to be strongly reduced, or evertaynpl
absent.

Driven by the Nagaoka result on the infintteHubbard model (or equivalently the
t — J model atJ = 0), many authors have recently tried to answer the old ques-
tion of the ferromagnetic stability of the two-dimensional infinifeHubbard model
[20, 21, 22, 81, 82, 83], but the situation is still rather controversial. Inqadati Putikka
and co-workers [20], using the high-temperature expansion, found that the ground-state
has not a saturated magnetization for all hole densities, ruling out the poglbit
stable ferromagnetism at any finite hole concentration. However, because wider-
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tainties of their extrapolation to zero temperature, their calculaonat be considered

as a definite proof of the complete absence of a Nagaoka state at finite hole densities.
By contrast, variational calculations based on a single spin flip on the saduearo-
magnetic state [21, 22] give a doping concentradiorn 0.25 as the upper bound for the
stability of the Nagaoka state.

Another way of tackling this problem is to evaluate the spin of the ground-state
on finite small clusters, where exact diagonalizations are possible. Howeevemall
lattices, the total spin of the ground-state is strongly dependent upon the number of holes
and the chosen boundary conditions. For instance, for two holes on any finite cluster
with periodic boundary conditions it is possible to show [82] that the ground-state spin
is not maximum whereas for certain finite number of holes such that the ferronagneti
ground-state is non degenerate with periodic boundary conditions, the ground-state has
maximum spin [109]. In general, for small clusters, there is a strong dependetinee
ground-state spin on the number of holes and on boundary conditions, indicating large
shell effects [84]. Definitely, these effects become less and Igssrtamt by increasing
the size of the system, and the hope is that they are negligible for systems thm can
studied by numerical methods.

In this Chapter we study the stability of the ferromagnetism in the two-diraraki
t — J model atJ = 0, namely

H=-t)Y ¢, (5.7)
(i.f).0

where the constraint of no doubly occupied sites is enforced by the facE}mat
CZJ, (1 —n,,), beingn; = > _n,, the electron density on site The method we use

are quantum Monte Carlo techniques, i.e. variational with 0, 1, 2 Lanczos steps and
fixed-node approximation.

5.2 Results

The wavefunction used in the variational Monte Carlo and in the Green furidioorne
Carlo as a guiding wavefunction is the one described in Section 3.3.1:

) = PaPT [T (1+ fucksc 1)) 10), (5.8)
k

wherePy is the projector onto the subspaceoparticles,P is the Gutzwiller projector,
which forbids doubly occupied siteg, is a density-density Jastrow factor (3.33), gpd
is defined by Eq. (3.22). The variational paramefgref the pairing wavefunction may
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Figure 5.1: Variational energies fpr= 0, 1, 2 Lanczos steps in the singlet subspace for
10 electrons on 18 sites. The continuous line is the linear fit-efl, 2, the dashed line
is the quadratic fit op = 0,1,2. The extrapolated points with zero-variance and the

FNLS result are also shown.

also represent the Gutzwiller wavefunction in the particular casg ef O(ep — €),
whereer is the free Fermi energy; is the corresponding dispersien= —2t(cos k, +

cos k,) and© is the step function. For closed shell fillings, this wavefunction is a singlet.
For open shell, we také. with a small d-wave or s-wave symmetry in order to split the

bare degeneracy, the resulting wavefunction being a singlet. Analogously, by using

the particle-hole transformation on down spins, we are able to consider a numilger of
electrons which is different from the number of down electrons, correspondingnitea fi

total spinS > 0.

We use thet5° tilted squares with, = [v/2 x [\/2 sites with periodic boundary
conditions, which possess the full spatial symmetries of the infinite latfieeindicate
with VMC the variational Monte Carlo results obtained with the wavefumc(5.8),
with 1LS and 2LS the results obtained wijth= 1,2 Lanczos steps applied to (5.8),
respectively. Moreover, the results obtained by fixed-node using (5.8) with orezas
step as a guiding wavefunction are indicated with FNLS.

For large doping the ground-state is believed to be a paramagnetic liquid, and in this

region the Gutzwiller wavefunction, with the density-density Jastrovofagives a very
good approximation. We report in Fig. 5.1 variational and FNLS results for 10 etexctr
on 18 sites in the subspacedf = N,. Although the FNLS is rather accurate, on this
small cluster the 2LS has a better energy. Moreover, using the variatesats with
different number of Lanczos steps, it is possible to extrapolate to the zeameatimit,



100  Ferromagnetism from strong local repulsion

-0.54

-0.56

-0.58

-0.6

Energy per site

-0.62

-0.64 - —
I 1 1 I 1 1 I 1 1 I 1 1

0 0.001 0.002 0.003 0.004
Variance

Figure 5.2: Variational energies fpr= 0, 1, 2 Lanczos steps for 28 electrons on a one-
dimensional lattice of 50 sites. The continuous line is the quadratic fit-ef0, 1, 2.
The extrapolated point with zero-variance is also shown.

and estimate the exact ground-state energy.JFer0 the variational wavefunction (5.8)

is not as accurate as in the case of finitg, and using the = 0, 1,2 Lanczos steps,

the energy as a function of the variangénas a finite curvature and the extrapolated
value slightly overestimates the exact ground-state energy. Becausededehavior

of the energy as a function of the variance is expectearfor— 0, we can use the

p = 1,2 points to linearly extrapolate the value of the exact energy, which actually
gives a very accurate estimate. The 2LS represents our best variageulland the
extrapolation our best, non-variational, estimation of the exact value. In tlsetel8-
lattice with periodic boundary conditions, the fully polarized ferromagnet [Hestanly

for one hole, while even for two holes the spin is not maximum. As noted by Riera and
Young [84] in the4 x 4 lattice, the total spin of the ground-state is strongly dependent
upon the number of holes, at least in the low-doping region. This is due to the fact that,
for small sizes and periodic boundary conditions, the ferromagnetic state ifeast

for a number of holes which is not a closed shell. Therefore it is crucial to canside
larger systems, where shell effects, induced by boundary conditions, are vileaker

for 18 sites. Indeed the difference in energy using different boundary conditions goes to
zero by increasing the number of lattice sites.

The method of the variance extrapolation gives exceptionally good results also for
large size systems. For example in one dimension.ard 0, where the exact solu-
tion is known by the Bhete ansatz [110], it is possible to obtain the exact reshihw
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Figure 5.3: FNLS results for the 50-site(full circles) and the 98-site (emyares)
cluster in the singlet subspace. The ferromagnetic energy for 50 sites (shioeddas
line), 98 sites (long dashed line) and th& x 100 lattice (continuous line) are also
reported.

the statistical errors, even starting from a very poor variationakfuenction, i.e. the
Gutzwiller one (see Fig. 5.2). In this case the= 0 variational energy is rather poor,
E/L = —0.5398(1), with respect to the exact ong,, /L = —0.62575, and it is largely
improved by one and two Lanczos steps. Moreover it is worth noting that, althbagh t
energy difference between the best variational result and the exact oflgaghstr size-

able, the extrapolated value gives the exact value of the energy. Since thegeowes

of the Lanczos technique is not particularly dependent upon dimensionality and type of
interaction, it is safely assumed that similar performances can benettaven for the
much more interesting and complicated problem of the two-dimensional lattice.

In order to perform a systematic study of the spin instability, we consider tts#&0-
and the 98-site lattices. The results in the singlet subspace for these temsyse al-
most in quantitative agreement, suggesting that/fe¥ 100, the finite size corrections
are small compared to the energy difference between the singlet and tregeshfarro-
magnet. In Fig. 5.3 we show the energies for the fully polarized and the singketlsya
using FNLS results, for these two lattices. Contrary to the very wesikly dependent
singlet energies, the ferromagnetic energies for 50 and 98 sites are sidiffaoét in
the delicate region.2 < § < 0.3, where there is the level crossing at the variational
level between the singlet state and the fully polarized state. Howkeeralue of the
ferromagnetic energy for the 98-site lattice almost coincides with the on&0of:a 100
lattice, which is expected to represent the thermodynamic limit.

In Fig. 5.4 we report the difference in energy between the singlet and the fully po-
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Figure 5.4: Differences between the singlet energy petsitg and the fully polarized
oneer), for the 98-site lattice as a function of the hole concentration for different ap-
proximations: 1LS (open triangles), 2LS (full squares), and FNLS (open Qirdhes
extrapolated value (full circles) is also reported.

larized state for different hole densities and Monte Carlo techniques for thiée38 For

large doping the homogeneous singlet state is well below in energy than the ferromag-
net but by decreasing the number of holes there is a sharp evidence for a fully gblarize
ground-state in the low-doping region. All the Monte Carlo methods give a very large
critical dopingo. ~ 0.28 = 0.30 for the transition between the two states. Of course this

Is a variational estimate and gives an upper bound for the transition. By coiftrast
consider the extrapolated value of the enedgys strongly pushed at much lower dop-

ing. Although, in this case, the large statistical errors prevent us to exteatransition

point, it is clear that at low doping the homogeneous singlet state is higher in energy
than the fully polarized state. This feature is also clear in the 5Qadttee.

In Fig. 5.5 we show the variational energies for 42 electrons on 50 sites, which
corresponds té = 0.16. For this number of electrons the singlet is a closed shell. Here
we consider all the possible values of the spin leading to a closed shell\\e.=
N; — Ny, = 0,16, 32. As found for the 98-site lattice, for this doping the singlet is well
above in energy than the fully polarized ferromagnet, although in this case tHeenum
of holes is such that the singlet is a closed shell, and therefore the configusation i
frustrated. Instead, for this number of holes the ferromagnetic state is noea closl!
and hence its configuration is unfavorable. Moreover, from Fig. 5.5, the energy is found
to be monotonically decreasing by increasing the total spin.

In the low-doping region the fully polarized state is found to be stable, implying
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for the same lattice is also reported.
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Figure 5.6: Variational energies with = 0, 1,2 Lanczos steps in different total spin
sectors for 58 electrons on 98 sités= 0 (triangles, continuous line}y = 8 (squares,
long-dashed line), and = 16 (circles, short-dashed line). In the inset: the same for
S = 0 (triangles, continuous line) arfi= 8 (squares, long-dashed line) for 42 electrons

on 98 sites.
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Figure 5.7: Upper panel: variational with= 0 (full triangles),p = 1 Lanczos steps
(full squares) and FNLS (full circles) results for the ground-state energywasction of

the total spinS for 58 electrons on 98 sites. The ferromagnetic energy is marked by the
arrow. Lower panel: the same for 74 electrons on 98 sites.

that a partially polarized ground-state for intermediate doping can exist.efptarge
doping,é 2 0.5, the ground-state is found to be paramagnetic and the energy is an in-
creasing function of the total spin, with a finite spin susceptibility. In tiset of Fig. 5.6
it is shown the case of 42 electrons on 98 sitesSoe 0 andS = 8, which are both
closed-shell configurations. For every variational calculation, the reseltsomsistent
with a singlet ground-state and a finite gap between these two spins. By diegiwes
hole concentration, the lowest spin states collapse to the singlet and elyelbécaimes
degenerate with it, implying a divergent spin susceptibility. For 58 electoré8 sites,
we found that, for all the Monte Carlo techniques used, the singlet is almost delgenera
with the S' = 8 state (see Fig. 5.6). Indeed, although in the VMC calculation there is a
small difference between the energy of the- 0 and theS = 8 state, by increasing the
accuracy withp = 1, 2 Lanczos steps, the two energies tend to become closer and closer
and even the extrapolated values give a degeneracy of these two spins. Bgtdbetra
S = 16 state remains always well above in energy.

This scenario is consistent with a second order transition between a gm@inca
liquid and a polarized state. The spin susceptibility, related to thextunerof the energy
as a function of the spin, is finite in the stable paramagnetic region and divertpes a
transition, reflecting the collapse of the low-lying states with finitel tepan.

Although within the fixed-node scheme the total spin is not defined, if the guiding
wavefunction is a good approximation of a state with total shithen the ground-state
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Figure 5.8: Upper panel: variational with= 0 (full triangles),p = 1 Lanczos steps
(full squares) and FNLS (full circles) results for the ground-state energyasction of

the total spinS for 66 electrons on 98 sites. The ferromagnetic energy is marked by the
arrow. Lower panel: the same for 68 electrons on 98 sites.

of the effective fixed-node Hamiltonian will have a large overlap withstage of spin
S. In this sense we can specify, also within the FNLS approximation, thedpitalof
the wavefunction. The degeneracy of the- 0 andS = 8 states persists also within the
FNLS approximation. In the upper panel of Fig. 5.7 we report the variational energies
with p = 0,1 and the FNLS results as a function of the spin For this lattice the
FNLS represents the best variational result, giving an energy lower thdieste = 2
variational result. It is worth noting that, even within the FNLS schewefound that
the singlet and thé = 8 state are almost degenerate, whereassthe 16 state is well
above in energy. The situation is completely different in comparison toabke of 74
electrons. Here all the variational and FNLS results are consistehtanitecreasing
behavior of the energy with increasing the spinbeing the minimum found for the
fully polarized case.

In the region of intermediate doping, all the variational and FNLS approaches give
a minimum in the energy at finite spin, in Fig. 5.8 we report the case of 66 and 68
electrons. This suggests that the total magnetization increases, varyimgetaensity,
until saturation is reached fog ~ 0.2 = 0.25.
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5.3 Conclusions

In this Chapter we have addressed the problem of the ferromagnetic ordering in.the
model atJ = 0. In this particular limit, the Hamiltonian contains only the kinetic term,
and the strong correlation is given by the fact that doubly occupied sites aréavcgal
Although there are no explicit magnetic interaction between the spins, Nagaokef30]
shown that the ground-state of one hole on every lattice size is fully polarizes. T
astonishing result has lead to the natural question of the ferromagnetictgtatiinite

hole densities. This kind of problem requires large enough systems. Indeed, on small
lattice, the choice of the boundary conditions plays a fundamental role in stabilizing a
particular value of the ground-state spin.

We have performed Monte Carlo calculations with different approximations, i.e
variational withp = 0, 1, 2 Lanczos steps and fixed-node, for fairly large clusters, where
the size effects are smaller than the energy scales we are intenestét high hole
doping,d = 0.5, the ground-state is found to be a paramagnetic liquid with a finite
spin susceptibility. Indeed for 42 electrons on 98 sites, all the approximatiedgyise
that the singlet has the lowest energy and states with finite total spinediralvove in
energy, separated by a finite spin gap. By decreasing the hole doping, the low-lying
excited states witly' > 0 collapse onto the singlet. For 58 electrons on the same cluster,
we found that, for all the approximations considered, the state $vith 8 is almost
degenerate with the singlet, and the two states become more and more dedganerate
increasing the accuracy of the approximation. By contrast the stateSwithi 6 is sep-
arated by a finite energy gap. By decreasing further the doping the singlet ewentuall
becomes higher in energy than the fully polarized state, and a clear eviderateli-of s
rated ferromagnetism at small hole dopifig; 0.2 is found. For example, in the 50-site
lattice for 42 electrons, the ground-state is found to have its maximum spin, zalde
the energy is monotonically increasing with decreasing the total spin.



Conclusions 107

Conclusions

Motivated by the recent discovery of high-temperature superconductors, imésis t
we have investigated the ground-state properties of two-dimensional systénssramg
electron-electron correlations, by using quantum Monte Carlo techniques ontite lat
The main outcome of this work is that, in the range of physically relevant amtifery-
netic couplings,J = 0.2 + 0.6¢, the ground-state of the— .J model can be described
by the d-wave superconducting state, projected in the subspace without doubly occu-
pied sites, with a long-range density-density Jastrow factor. For snzallsgistems,
where exact results are available by Lanczos diagonalization, the energy acat-the
relation functions are qualitatively reproduced, the relative error beingeobtder of
a few percent. The accuracy of the variational wavefunction can be furthpeowed
by the application of a few Lanczos steps. This can be easily done, without too much
computational effort, by using the recently developed technique of the Green function
Monte Carlo with stochastic reconfiguration [18, 19]. Moreover, since in a para-
tional calculation it is possible to compute both the energy and the variance céra giv
wavefunction, and because the ground-state has the minimum energy and zero yariance
an estimate of the ground-state energy can be extracted from the zero-eadrap-
olation. Within the variance extrapolation method and by starting from the pedjec
d-wave wavefunction, we obtain exact results, within the statisticatgrwhenever ex-
act diagonalization is possible, i.e. fbr< 26, and it is plausible that the same holds up
to L ~ 100.

This method also gives reliable results on energies down to the difficult difm
J = 0. Therefore, it is possible to gain insight into the possible ferromagneticinsta
bility. The paramagnetic phase, stable at high hole doping, becomes unstable towards a
partially polarized ferromagnetic metal at a relative high doping, 0.4. The results
are consistent with a second-order transition, with a divergent spin sustgptitn
the low-doping region, the ground-state is found to be fully polarized, as suggested in
Refs. [21, 22].

Furthermore, the variance extrapolation also allows us to estimatetigesation
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energy, i.e. the difference of energy between the superconducting and the rpbtkc

At finite antiferromagnetic couplings, the condensation energy is maximum for moder-
ate hole dopings, whereas the ground-state shows a finite superconducting order param-
eter P, in the thermodynamic limit, in agreement with what is found in Refs. [72, %8]. |

is worth noting that, due to the local constraint, at small dogipgs proportional to the
number of holes and not to the number of electrons. On the other hand, the "bare” varia-
tional gapA, related to the single-particle excitations, is found to decrease byasiog

the number of holes. Although it is found that the variational gap has a sizeable value
A ~ ], the local constraint strongly renormalizes the value of the true superconducting
order parameter, and we obtat ~ 0.07. These facts suggest that, whig could be

related to the superconducting order parameter, and hence to the true superconducting
gap,A might refer to the pseudogap observed in the underdoped metallic region of the
cuprates. An interesting perspective is to find out the behavior of the charge gap as
function of the hole doping, and make a comparison with the experimental results.

The variance extrapolation scheme fails to correctly reproduce the chargpiand
correlation functions when the antiferromagnetic coupling and the hole doping are such
that strong electronic fluctuations are present, e.g. phase separation or, aimighése
ground-state is not uniform. In these cases more sophisticated methods, which rel
self-consistent approximations, like fixed-node or stochastic reconfiguratiomdees,
are needed to detect the spatial charge and spin distribution. By directtinspet
the energy per hole and the density-density structure factor, it is found that the onset
for phase separation i5 ~ 0.5 =+ 0.6¢, in agreement to what is found by other authors
[57, 58, 59], and that foy ~ 0.4t there are large charge fluctuations at small but finite
wavevectors, indicating that the system is near to a charge density wéasdgilins The
scenario is similar to what happens in the one dimensioral model, where, near to
the phase separation boundary, there is a liquid of bound pairs [111]. It is remarkable
that this effect is characteristic of thhe- J model and it is not present in the Hubbard
model, even fol/ = 10¢, where the ground-state is found to be homogeneous. In this
case, it turns out that the gain in energy by using the d-wave superconducting siate wi
a Gutzwiller projector is negligible, suggesting that in the Hubbard model the conden-
sation energy is vanishingly small. A possible way to significantly enhance thega
correlations in the Hubbard model is by adding an effective exchangetamaddition
to the Coulomb interactiofy, as found in ladder systems [112]

The charge fluctuations are further enhanced if the underlying lattice breaks the rota
tional symmetry: we showed that for a small rectangular lattice the dedsitgity and
spin-spin structure factors have huge peaks for incommensurate waveveoides|ysi
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to what is found within the density matrix renormalization group technique [73, 91],
where the rotational symmetry is broken also by considering cylindrical boundary con-
ditions. However, it turns out that the stripe-like features are araattif the boundary
conditions, i.e. they are finite size effects due to the smallness of thercidsteerthe-
less, we expect that thte- .J is near to a charge density wave instability, and that small
distortions of the underlying lattice or perturbations in the Hamiltonian could tboive
wards the same charge and spin modulations experimentally obseived if$r, CuO,

andLa; g «Ndy4Sr,CuOy. Itis likely that slight perturbations of the hopping ampli-
tudes and of the antiferromagnetic couplings £ ¢, and.J, # .J,), which introduce
small anisotropies into the original model, can lead to stripe-like crogls in the
ground-state. This possibility will be carefully considered in a forthcomiadyst
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Appendix A

Implementation of symmetries in the
Lanczos algorithm

In this Appendix we describe how to implement the symmeirigbe Lanczos algorithm. Let
lem) be the representative element of a given equivalence dasteld bym [113]. |c,,) rep-
resents a fixed electron configuration on the lattice. We tdehpg a generic element of the
symmetry group. An orthonormal basis in the symmetrizetétil space is

|m) = l¢gg|c (A1)

%
where the sum is over the symmetries which generate digttatgs, andi,, = N,/ i, is the
number of these stated, being the number of the elements of the group @ndhe multiplicity
of the stateg, are the phases defining the one dimensional representdttoe group we are
considering:

glm) = €' |m). (A.2)
Because the number of elements of this sum depends, dris convenient to write the staten)
in a different way:

|m) = %9 gl ) (A.3)
=T
where the sum is over all the symmetries and
Hm 1
—_— = . (A.4)
VBm VAm
Using this basis, we can write a generic state as
= Z Um|m>a (AS)
m

where the normalization condition gives

> lvml? =1 (A.6)
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In order to find the relation between the coefficiesfisof |¥') = H|¥) and thev,,’s of | T), we
note that

1. By applying the Hamiltonian tdc,,), we obtain state$c,) which are not necessarily
representatives: in the following,,) will identify the representative dt;)

Hlem) = hmpgnsblen)
b
where the sum ovérruns over all the configurations bhif, , selects only those configu-
rations connected tf@,,,) by a term inthe Hamiltonian.

2. Becausg's are symmetries of the Hamiltonian, we have

[H,g] =0.

Therefore

1
W) =D vmlm) = HIW) =3 > vmhms =D " ggn-nlen), (A7)
m b mog

m

where the indexn runs over the equivalence classes, whereas the indaxs overall the con-
figuration connected by to m, but not necessarily belonging to different equivalenessés.
Using the group property, it turns out that

VB, .

vl = h Lo nby,, . A.8
where now the sum ovérruns over all the elements of the equivalence class idestifjethe
representative.. The last equation is the basic one to compute the Lanczpststation in the
reduced basis of states belonging to a given symmetric agbsp
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Appendix B

An efficient calculation of the single
Lanczos step

In this Appendix we describe an efficient way to find the optimavefunction|¥,-) = (1 +
aH)| V), starting from a chosen variational stéie), i.e. to calculate the value ef for which

th
e energy <\Ij|(1_|_aH)H(1+aH)|\Ij>
(U[(1 + aH)?|W)

has a minimum. The standard method is to calculate the diffggowers of the Hamiltonian

(wjEn)
i = gy

E(a) =

(B.1)

(B.2)

using configurations generated by the Metropolis algorigtmeording tol?(z).

However, this methods is highly inefficient because smaiatistical fluctuations are ob-
tained if the configurations are generated according?a(z) = (1 + o*E,)¥(z), whereE, is
the local energy and* is the value ofx which minimizes the expectation value (B.1).

Using the definition (B.2), the Eq. (B.1) can be written as

E(a) . hi + 2achy + 012h3
1+ 2ahy + o2hy

(B.3)

In order to minimizeE («), it is convenient to compute the energy expectation valuey gen-
erating configurations according ¥?(z). Then, instead of calculating, andhsz, we generate
configurations distributed accordinig?, (<), with a givena and we compute

(Wo|H|Wa)

N AT .
(Wl +af) )
A (AT A (69

E(«) is obtained by averaging over the chosen configuration®ta énergyF¢ corresponding
to ¥, (z), whereasy(«) is obtained by averaging over the same configurations thatigua
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(1 + aE,) ! Indeed we have that

(Wa¥) X [(Walo) P g

X [0 = =
@ = ) T S (TP
S (Walo) (ke ) .
- > (Talz)2 '
Giveny(«), it is straightforward to computk,
-1 _ -1 _
hy = XTI OO =2 (B.7)
(0%
moreover, giverh; andhs, the value ofE(«) defines the highest momenturm
E(a) (1 +2ah 2hy) — hy — 2ah
hy = (a) (1+2ahy + 6%ho) — b — 2ahy (B.8)

a2

Notice that the most difficult momentury is given by sampling an energy expectation value,
which is much more accurate compared to the direct detetioimaf ~3. Therefore it is possible
to minimize E(«), yielding

(hs — h1ha) £ \/(h3 — h1h2)?2 — 4(ha — h?)(h1hs — h3)
2(h1hg — h3) ’

af = — (B.9)

where the signt is chosen to minimize the enerdy(«). The analytical minimization o («),
given the value ohy, x(«), andE(«) itself, provides the exact value af, within the statistical
errors, which become smaller and smaller whenever o*. Typically two or three attempts are
enough to reach a very accurate determination*of
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Appendix C

Variance estimate of the error on bulk
correlation functions

In this Appendix we estimate the error on correlation fumi assuming that the ground state
|®o) is approximated with the wavefunctigw,,):

[Po) = [Wp) + &P (C.1)

where (U, |¥,) = (U'|¥') = 1, and|¥’) represents a normalized wavefunction orthogonal
to the exact one(®|¥’) = 0. We restrict our analysis to thermodynamically averaged co
relation functionsO, the ones which can be written as a bulk average of local tper@;:

O = ), 0;/L. This class of operators includes for instance the averaggi& or potential
energy or the spin-spin correlation function. If we use @eid boundary conditions the expec-
tation value ofO; on a state with given momentum does not depend amd the bulk average
does not represents an approximation

(P9]0i|Po) _ (Po|O[Po)
(Po|Po) (@o|P0) (€2
We show here that the expectation value of bulk-averagethtgge O on the approximate state

|W,) satisfy the following relation:

(U,|01T,) = C + o(€2, €,/ VL), (C.3)

thus implying that for large enough size the expectatione/é&C.3) approaches the exact corre-
lation functionC' linearly with the variance. The validity of the above stadgris very simple
to show under very general grounds. In fact by definition:

(U, |0|T,) = C — 26, (V'|0|®g) + Ce,. + ex(V'|O[T). (C.4)

The term proportional te, in the above equation can be easily bounded by use of the &zhwa
inequality:
(T'[0]@0)[* = [(¥'|(O — O)|@o)[* < (Bo|(O — C)?|®o). (C.5)



118 Variance estimate of the error on bulk correlation functions

The final term in the latter inequality can be estimated umigieigeneral assumption that corre-

lation functions
(®o](0; — C)(Oj1q — C)|®o)

(®o|Po)

decay sufficiently fast with the distangé, as a consequence of the cluster property:

C(d) = (C.6)

(@](0 — C)1%0) = (1 + )7 . 1) )
d

This concludes the proof of the statement of this Appendiayided) ", C(d) is finite for L —

Q.
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Appendix D

An important property of the projected
BCS wavefunction

Let us consider the Gutzwiller projected BCS state
Urvs) =PyP[] (uk + “kCL,TC]:m) |0). (D.1)
k

where Py projects onto the subspace of particles, P is the Gutzwiller projector, which
completely forbids doubly occupied sites, amdandwv,, are variational parameters. The non-
projected wavefunction is the exact ground-state solutfdhe BCS Hamiltonian

H = Z fkchck,J + Z Ay (CLTCT_,W + h.c) , (D.2)
k,o k
where;, = —2t (cos k, + cos ky) — p, beingyu the chemical potential and we assume that

is real and satisfieA;, = A_j. The pair amplitude is given by

Vg AV

= (D.3)
Uk g+ /€2 + A2
The effect of particle-hole symmetry
lec,a = C_k+Q,0 (D.4)

with @ = (w,7), leaves the Hamiltonian and the two project@g and P invariant, but
changes the state (D.1) into

Trve) =PnP]] (Ulc - U/chQ,TdT,HQO 10) (D.5)
k

If the ground-state is invariant under particle-hole tfarmmation, the proportionality between
Eqg. (D.1) and Eq. (D.5) implies
U@ _ Uk (D.6)
Uk+Q Vg
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which corresponds td, = —A; . However, on a square lattice there are spatial symmetries
relating the points andk + @ on the Fermi surface In particular, the reflections across the
bisectors bring: into £ + Q. Thereforef the gap is non vanishing along the Fermi surfakg
must change sign under— y andz — —y which means d-wave symmetry.

Now we investigate the signs of the projected wavefunctidd)and we show that it satisfies
the Marshall sign rule. We start from the BCS Hamiltonian2)Cand perform the particle-hole
transformation only on the down-spins

i, = cirqy (D.7)
lec,T = Ckp (D8)

followed by the canonical transformation (spin rotation):

1
a = —(dg++1d D.9
kot \/5( k1t idr,]) (D.9)
ag,— = —%(dkﬁ - idk,i) (D.lO)
The BCS Hamiltonian (D.2) acquires the form
H =Y (hy(k)+h_(k) (D.11)
k
where
ha (k) = &l pors T idgaf Loriqx (D.12)
where we have assumed thaf = —A; . The ground-state off may be written as a tensor

product of free states, ;. fermions.

If the state) |, (R --- Rn)ag,,+ - ary,+|0) is the ground-state of, h(k), then the
state) , V*(R; -+ Ry)ag, - - ary,—|0) is the ground-state oy, h_(k). Here we have
chosen an arbitrary ordering of the lattice sités., - - -, Ry. Therefore, the ground-state &f
is

S W(Ry - Ryyo) T (X - Xypo)a, oo a;Nma;(h, - a}(N/2,7|0> (D.13)
R, X

where we fixed the chemical potential so to have a ground wfittieexactly N fermions. If we
write this state in terms of the original electron operateesget, apart from a proportionality
factor,

N/2
SRy Rygo) U (X1 Xigo) T ey, 2 = i)™ e,y
R, X m=1
N/2
II [C}m + i(—)X”CXn,i} Ch o CMIO) (D.14)

n=1
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When we project over the state at fixed number of particlesaletp the number of sites, we
must chose the same number of creators and annihilatore it factors of the product. But

if we do not want double occupancies (due to the Gutzwill@jgmtor) we must create an up
spin on the same site where a down spin has been annihilakedlefdre, the only terms which
survive are those witlR;, = X;:

D NW(R - Baypa) P (=1)%0 ey gemy oy seny ity ey 0) (D.15)
R

Finally, by moving the down spin creators to the left, we cateo the operators according to
the specified ordering of sites in the lattice, indepengeottithe spin, without introducing any
further phase factor. Therefore, on this basis, the wawiom has exactly the Marshall sign. In
fact the Heisenberg hamiltonian does not move particlezllyeleaving invariant the ordering
of fermion operators on the lattice.
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