next up previous
Next: B. Three Basic Formulae Up: ParticlePropagator Previous: 4 Concluding Remarks


A. Particle in an External Potential: Short Distance Limit

The results obtained in the previous sections for a free particle are, of course, exact. However, the same approach can be used to derive the short distance approximation for the particle's kernel in an arbitrary potential $V({\vec{\mbox{\boldmath {$x$}}}})$.
If $\vert{\vec{\mbox{\boldmath {$x$}}}}-{\vec{\mbox{\boldmath {$x$}}}}_0\vert$ is much smaller than the range over which $V({\vec{\mbox{\boldmath {$x$}}}})$ varies significantly, then we can Taylor expand $V({\vec{\mbox{\boldmath {$x$}}}})$ in the neighborhood of ${\vec{\mbox{\boldmath {$x$}}}}_0$:

$\displaystyle V({\vec{\mbox{\boldmath {$x$}}}})$ $\textstyle \approx$ $\displaystyle V_0 -{\vec{\mbox{\boldmath {$F$}}}}\cdot ({\vec{\mbox{\boldmath {$x$}}}}-{\vec{\mbox{\boldmath {$x$}}}}_0)+\dots$ (52)
$\displaystyle {\vec{\mbox{\boldmath {$F$}}}}$ $\textstyle =$ $\displaystyle -\left[ \vec{\nabla} V({\vec{\mbox{\boldmath {$x$}}}}) \right \rceil _{{\vec{\mbox{\boldmath {$x$}}}}={\vec{\mbox{\boldmath {$x$}}}}_0}
\quad .$ (53)

In this case, the path integral reads
    $\displaystyle K(  {\vec{\mbox{\boldmath {$x$}}}}- {\vec{\mbox{\boldmath {$x$}}...
...}^{{\vec{\mbox{\boldmath {$x$}}}}}[{\mathcal{D}}y(t)]
[{\mathcal{D}}p(t)]\times$  
    $\displaystyle \quad \times \exp\left\{ {i\over\hbar}\left[ 
\int_{{\vec{\mbox...
...{$y$}}}}-{\vec{\mbox{\boldmath {$y$}}}}_0) \right) \right]
 \right\}
\quad ,$ (54)

where $H\equiv H_0+V_0$. Integration over the particle trajectory gives a ``Dirac-delta'' whose argument yields the classical equation of motion
\begin{displaymath}
{d{\vec{\mbox{\boldmath {$p$}}}}\over dt}={\vec{\mbox{\boldmath {$F$}}}}
\end{displaymath} (55)

which leads, in turn, to the expression for the classical momentum
\begin{displaymath}
{\vec{\mbox{\boldmath {$p$}}}}(t)={\vec{\mbox{\boldmath {$F$}}}}t + {\vec{\mbox{\boldmath {$q$}}}}\quad .
\end{displaymath} (56)

Thus, the integration over the momentum trajectory can be defined as follows
\begin{displaymath}
\int [{\mathcal{D}}p(t)] \delta\left[ {d{\vec{\mbox{\bold...
...t - {\vec{\mbox{\boldmath {$q$}}}} \right]
\left(\dots\right)
\end{displaymath} (57)

and the resulting path integral takes the form
$\displaystyle K(  {\vec{\mbox{\boldmath {$x$}}}}-{\vec{\mbox{\boldmath {$x$}}}}_0   ;   T  )$ $\textstyle =$ $\displaystyle \left(  {1\over 2\pi\hbar^2}  \right)^{3/2}
\exp {i   T\over \...
... {$x$}}}}+
{{\vec{\mbox{\boldmath {$F$}}}} {}^2 T{}^2\over 6m}  \right)\times$  
    $\displaystyle \qquad \qquad \times
\int d^3 q \exp\left(-{i  T  {\vec{\mbox{\...
...x$}}}}_0 +{T^2\over 2\hbar m}
{\vec{\mbox{\boldmath {$F$}}}}  \right) \right]$  
  $\textstyle =$ $\displaystyle \left(  {m\over 2i\pi\hbar T}  \right)^{3/2}
\exp {i  T\over \...
...{$x$}}}}+
{{\vec{\mbox{\boldmath {$F$}}}} {}^2 T{}^2\over 6m}  \right)
\times$  
    $\displaystyle \qquad \qquad \times
\exp\left[-{i  m  T\over 2\hbar  T}
\left...
...}^2\over 2\hbar  m}{\vec{\mbox{\boldmath {$F$}}}} \right)^2  \right]
\quad ,$ (58)

where the normalization constant has been chosen in such a way as to reproduce equation (36) once the potential is switched off.


next up previous
Next: B. Three Basic Formulae Up: ParticlePropagator Previous: 4 Concluding Remarks

Stefano Ansoldi