... Shells1
To appear in the Proceedings of the 6th International Symposium on Frontiers in Fundamental and Computational Physics (FFP6), September 26-29, Udine, ITALY
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Ansoldi2
Email: ansoldi@trieste.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Ansoldi2 3
Webpage: http://www-dft.ts.infn.it/$\sim$ansoldi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Sindoni4
Email: potenzo17@yahoo.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... equation5
Following a standard notation, quantities in the two spacetime regions separated by the shell are identified by $\pm$ subscripts. We use square brackets ``$[\dots{}]$'' to denote their jump in going from the ``$-$'' to the ``$+$'' side of the shell and an overdot, ``$\dot{\quad}$'', to indicate the derivative with respect to the proper time measured by a shell-comoving observer.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... trajectory6
Our formulation here is far too synthetic and we refer the reader to the literature on the subject (for example [5,6]) for extended background material.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... means7
This is a strong argument in favor of an expression for the effective momentum that, when evaluated along a classically forbidden trajectory, differs from (2), also evaluated on a classically forbidden trajectory, by a total derivative of a function of $R$, at most.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.