next up previous
Next: Bibliography Up: p-branesFromGenYangMills Previous: 2 Generalized Yang-Mills theories

3 Summary

We can summarize the results we have obtained in the ``flow chart'' below.

             
$A_\mu{}^i_j\left( x \right)$ $\Rightarrow$ ${\mbox{\boldmath {$A$}}}_\mu{}^i_j$ $\mapsto$ ${\mathcal{A}}_\mu\left( \sigma \right)$ $\hookrightarrow$ $X_\mu\left( \sigma \right)$
             
gauge field $\Rightarrow$ matrix $\mapsto$ Weyl symbol $\hookrightarrow$ brane coordinate
             
$ S^{\mathrm{GYM}}$ $\Rightarrow$ $S^{\mathrm{q, GYM}}_{\mathrm{red.}}$ $\mapsto$ $W^{\mathrm{GYM}}$ $\hookrightarrow$ $S^{p=4k-1}_{\mathrm{DT}}=$volume term
             
$S^\theta$ $\Rightarrow$ $S^{q, \theta}_{\mathrm{red.}}$ $\mapsto$ $W^\theta$ $\hookrightarrow$ $S^{p=4k-2}_{\mathrm{CS}}=$boundary term
             
The various arrows respectively represent:
$\Rightarrow$
quenching and zero volume limit;
$\mapsto$
Weyl-Wigner-Moyal mapping;
$\hookrightarrow$
large-$N$ limit.
Through all these operations we transformed the generalized Yang-Mills theory, described by equation 1 and equation 2 into an effective theory for higher dimensional, $(4k-1)$-dimensional, vacuuh domain of large-$N$, generalized Yang-Mills theory, bounded bd a $(4k-2)$-dimensional Chern-Simons brane.


next up previous
Next: Bibliography Up: p-branesFromGenYangMills Previous: 2 Generalized Yang-Mills theories

Stefano Ansoldi