next up previous
Next: 3 A possible extension Up: NambuGotoBornInfeld Previous: 1 Introduction

2 Actions and their relations

As a starting point, let us consider an action smoothly interpolating between the ( area preserving ) Schild action and the fully ( reparametrization invariant ) Nambu-Goto action can be written by introducing an auxiliary world-sheet field $\Phi(\, \sigma\,)$ [2]:


\begin{displaymath}
I\left[\, \Phi\ , X\,\right]\equiv \frac{\mu_0}{2}\, \int_\...
..._{mn})\over
\Phi(\,\sigma\,)} + \Phi(\, \sigma\,)\,\right]
\end{displaymath} (1)

where, $\gamma_{mn}\equiv \eta_{\mu\nu}\, \partial_m\, X^\mu\,
\partial_n\, X^\nu$ is the induced metric on the string Euclidean world-sheet $x^\mu= X^\mu(\,\sigma\,)$, $\mathrm{sign}(\gamma_{mn})=(+\ ,+)$; finally, $\mu_0\equiv 1/2\pi\alpha^\prime$ is the string tension. We assigned the following dimension ( in natural units ) to the various quantities in (1):

\begin{displaymath}
\left[\, \sigma^m\,\right]= \mathrm{length} \ ,\qquad \left...
...mu\,\right]=\mathrm{length}\ ,\qquad \left[\, \Phi\,\right]=1
\end{displaymath} (2)

For later convenience, we recall the relation between $\mathrm{det}(\gamma_{mn})$ and the world manifold Poisson Bracket:


    $\displaystyle \mathrm{det}(\gamma_{mn})=\left\{\, X^\mu\ , X^\nu\,\right\}^2$ (3)
    $\displaystyle \left\{\, X^\mu\ , X^\nu\,\right\}_{\mathrm{PB}}\equiv
\epsilon^{mn}\,\partial_m\,
X^\mu\, \partial_n\, X^\nu\,$ (4)

The action (1) is reparametrization invariant provided the auxiliary field $\Phi(\, \sigma\,)$ transforms as a world-sheet scalar density:


\begin{displaymath}
\Phi(\, \sigma^\prime\,)=\left\vert {\partial \sigma\over
\partial\sigma^\prime\, }\,\right\vert\Phi(\, \sigma\,)
\end{displaymath} (5)

Thus, by implementing reparametrization invariance $\Phi(\, \sigma\,)$ can be transformed to unity and the Schild action can be recovered as a ``gauge fixed'' form of (1):


\begin{displaymath}
I\left[\, \Phi=1\ , X\,\right]=\frac{\mu_0}{2}\,
\int_\Sig...
...gamma_{mn})
+ 1\,\right]=\mathrm{Schild} + \mathrm{const.}
\end{displaymath} (6)

where, the numerical constant is proportional to the area of the integration domain $\Sigma$.
On the other hand, by solving $\Phi(\, \sigma\,)$ in terms of $X$ from (1) one recovers, ``on-shell'', the Nambu-Goto action


\begin{displaymath}
{\delta I\over \delta \Phi}=0\rightarrow \phi=\sqrt{\,
det...
...w I=\mu_0\,\int_\Sigma
d^2\sigma\,\sqrt{-det(\gamma_{mn})}
\end{displaymath} (7)

The inverse equivalence relation can be proven by starting from the Schild action [3]


\begin{displaymath}
I_S\equiv \mu_0\, \int_\Xi d^2\varphi\, \mathrm{det}\left[\,
\gamma_{ab}(\varphi)
\,\right]
\end{displaymath} (8)

and ``lifting'' the original world-sheet coordinates $\varphi^m$ to the role of dynamical variables by mean of reparametrization $\varphi^m\to \sigma^m=\sigma^m(\varphi)$ [4]:


\begin{displaymath}
I_{rep}\equiv \mu_0\, \int_\Sigma d^2\sigma\, \Phi^{-1}
\m...
...\,\epsilon^{mn}\,\partial_m\,
\phi^i\, \partial_n\, \phi^j
\end{displaymath} (9)

By variation of $I_{rep}$ with respect to $\varphi^i$ one gets the field equation


\begin{displaymath}
\epsilon_{ij}\,\epsilon^{mn} \partial_n\, \phi^j \partial_m...
...left[\, \gamma_{ab}(\sigma)\,\right] \over \Phi^2}\,\right)=0
\end{displaymath} (10)

Thus,

\begin{displaymath}
{det\left[\, \gamma_{ab}(\sigma)\,\right] \over \Phi^2}=
\mathrm{const.}\equiv
{1\over 4\mu_0}
\end{displaymath} (11)

and the Nambu-Goto action (7) is obtained again.
This second option introduces a scalar doublet $\phi^i$, $i=1\ ,2$ and expresses the scalar density $\Phi$ as a ``composite'' object, rather than a fundamental one, or as a second ``integration measure'' [5]. In any case the final result is unchanged.
The action (1) is a special case of the general two-parameter family of p-brane actions [2]


\begin{displaymath}
I^p_n\equiv \frac{\mu_0^{(p+1)/2}}{n}\, \int_\Sigma
d^{p+1...
...et}\gamma_{mn})^{n/2}\over
e(\,\sigma\,)^n} + n-1\,\right]
\end{displaymath} (12)

where, in our notation $ e(\,\sigma\,)$ has been replaced by $\Phi(\, \sigma\,)$ and $\mathrm{det}\gamma_{mn}$ is now the square of the Nambu-Poisson bracket $\left\{\, X^{\mu_1}\ ,
\dots\ ,X^{\mu_{p+1}}\,\right\}_{NPB}$.
For $n=2$ and $p=1$ we obtain (1), while for $n=1$ the auxiliary field decouples and we get the Nambu-Goto action.
In a naive, but not too much, way of thinking, one could trace back the correspondence between Yang-Mills gauge fields and Schild strings to the common quadratic form of both actions in the respective sets of ``field strengths'':


\begin{displaymath}
{1\over 4}\,\left\{\, X^\mu\ , X^\nu\,\right\}_{\mathrm{PB}...
...er 4}\, \mathrm{Tr}\mathbf{F}_{\mu\nu}\,
\mathbf{F}^{\mu\nu}
\end{displaymath} (13)


next up previous
Next: 3 A possible extension Up: NambuGotoBornInfeld Previous: 1 Introduction

Stefano Ansoldi