... 1
E-mail address: ansoldi@trieste.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Castro2
E-mail address: castro@ctsps.cau.edu
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Guendelman3
E-mail address: guendel@bgumail.bgu.ac.il
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...E.Spallucci4
E-mail address: spallucci@vstst0.ts.infn.it
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... field5
For the sake of clarity, let us summarize the canonical dimensions in natural units of various quantities:
    $\displaystyle \left[\, A_\mu{}^a(x)\, \right] \equiv
[\, \mathbf{A}_\mu^{(\math...
..., ] \equiv
[\, \mathbf{F}_{\mu\nu}{}^{(\mathrm{q})}\,]=( \mathrm{length} )^{-2}$  
    $\displaystyle [ \, g_0\, ]\equiv [ \, g\, ]=( \mathrm{length} )^0=1\ ,\qquad
[\...
... ]= ( \mathrm{length} )^4 \ ,\qquad
[\, \mu_0\, ]= ( \mathrm{length} )^{-2}
\ .$  

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.