Chapter 6

Special Relativity

6.1 The group of Lorentz transformations

6.1.1 2-dimensional case

Let us consider the invariant interval defined in our derivation of Lorentz transformations in the previous chapter. In particular let us consider preliminarily the 2-dimensional case, in which the finite invariant interval can be written as

$$s^2 = x^2 - t^2.$$

If in \mathbb{R}^2 we take the vector $\boldsymbol{x} = (t, x)$ and we equip the vector space of all these vectors with the pseudo-Euclidean structure defined by the scalar product

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle = g_{AB} x^A x^B$$
, $A = 1, 2$, $B = 1, 2,$

where $g_{00} = -1$, $g_{01} = g_{10} = 0$ and $g_{11} = +1$. Requiring the invariance of the interval is tantamount of requiring the invariance of the pseudo-Euclidean structure, i.e. we are interesting of determining the general form of a linear transformation Λ such that

$$\boldsymbol{g} = \Lambda^T \boldsymbol{g} \Lambda.$$

From the validity of the above equation we know that the 2×2 matrix Λ is subject to the constraint

$$\det(\boldsymbol{g}) = \det(\Lambda^T \boldsymbol{g} \Lambda) = \det(\Lambda^T) \det(\boldsymbol{g}) \det(\Lambda)$$

which, since $\det(\Lambda) = \det(\Lambda^T)$, gives

$$\det(\Lambda)^2 = 1 \quad \Rightarrow \quad \det(\Lambda) = \epsilon \stackrel{\mathrm{def.}}{=} \pm 1.$$

Moreover from the invariance of \boldsymbol{g} , if we set

$$\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

we obtain:

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and performing the matrix multiplications on the right hand side

$$\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c^2 - a^2 & -ab + cd\\ -ab + cd & b^2 - d^2 \end{pmatrix},$$

which, together with the constraint on the determinant

$$\det(\Lambda) = ad - bc = \epsilon$$

we can rewrite as a system of four equations in four unknowns:

$$\begin{cases} a^{2} - c^{2} = 1 \\ cd - ab = 0 \\ b^{2} - d^{2} = 1 \\ ad - bc = \epsilon \end{cases}$$
(6.1)

Note that, of course, the last equation is dependent from the other three. Thus only three parameters can be determined independently, or more precisely, the solution is going to be a one parameter family of transformations. In what follows we will call with capital letters the signs of the four parameters a, b, c, d, so that

$$\begin{aligned} a &= A|a| \qquad,\qquad b = B|b| \\ c &= C|c| \qquad,\qquad d = D|d| \end{aligned}$$

Let us set some constraints on them, as a preliminary step:

- 1. from the first equation we see that $a \neq 0$.
- 2. from the third equation we see that $d \neq 0$.
- 3. for the signs the equations, respectively, imply:

$$\begin{cases}
A \neq 0 \\
AB = CD \\
D \neq 0 \\
AD - BC = \epsilon
\end{cases}$$
(6.2)

Let us now solve the first equation for a, the third for d and substitute in the second¹:

$$\begin{cases} a = A\sqrt{1+c^{2}} \\ AB|b|\sqrt{1+c^{2}} = CD|c|\sqrt{1+b^{2}} \\ d = D\sqrt{1+b^{2}} \\ ad - bc = \epsilon \end{cases}$$

Using the second equation in (6.2) the second equation above can be simplified an squared to obtain |b| = |c| as a solution. This can be rewritten as $b = \eta c$, where $\eta \stackrel{\text{def.}}{=} -1, 0, +1$. Using this relation in the third equation we also find |a| = |d|, so that we end up with the system:

$$\begin{cases} a = A\sqrt{1+c^2} \\ b = \eta c \\ |d| = |a| \\ ad - bc = \epsilon \end{cases}$$

¹Square roots are always *arithmetic* i.e. their sign is always positive.

^{©2004} by Stefano Ansoldi — Please, read statement on cover page

Let us now rewrite the last equation in the above system in a different way that we are going to use later on. First we have

$$ad - bc = AD|a||d| - BC|b||c|$$

= $ADa^2 - BCc^2$
= $AD(1 + c^2) - BCc^2$
= $(AD - BC)c^2 + AD$ (6.3)

Case $\eta = 0$.

In this case B = C = 0, i.e. b = c = 0. Then a = A and d = D and there can be a sign difference between a and d. This is consistent the fourth equation, which exactly gives $AD = \epsilon$. Thus we obtain

$$\Lambda = A \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}.$$

Making the signs appear explicitly we obtain 4 matrix, the identity and four discrete transformations, as follows:

$$Identity = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$Time reflection = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$Space reflection = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$Space time reflection = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Case $\eta \neq 0$.

In this case $B = \pm 1$ and $C = \pm 1$. We can multiply the second equation in the system (6.2), relating the signs, by A and C, since now both are different from zero, to get AD = BC, i.e. AD - BC = 0. Substituting this identity in (6.3) we obtain again

 $AD = \epsilon.$

Since AD = BC and $BC = \eta$ we see that $\epsilon = \eta$ and, so that the fourth equation (6.1) is again a consequence of the three others. We are going to use ϵ in place of η in what follows, i.e. $b = \epsilon c$. The remaining three equations in (6.1) do not allow an unique solution of the system. Let us parametrize the family of solutions using $\beta = c/a$ (remember $a \neq 0$ always). Then we can rewrite the first three equations of (6.1) as

$$\begin{cases} 1 - \beta^2 = a^{-2} \\ \beta = b/d \\ b^2 - d^2 = 1 \end{cases}$$

This gives

$$\begin{cases} |a| = \left(1 - \beta^2\right)^{-\frac{1}{2}} \\ |b| = |\beta| |d| = |c| \\ |d| = |a| \end{cases}$$

so that

$$\Lambda = \begin{pmatrix} A (1 - \beta^2)^{-\frac{1}{2}} & B|\beta| (1 - \beta^2)^{-\frac{1}{2}} \\ C|\beta| (1 - \beta^2)^{-\frac{1}{2}} & D (1 - \beta^2)^{-\frac{1}{2}} \end{pmatrix}.$$

From the above relation we factor the sign of a

$$\Lambda = A \begin{pmatrix} (1 - \beta^2)^{-\frac{1}{2}} & AB|\beta| (1 - \beta^2)^{-\frac{1}{2}} \\ AC|\beta| (1 - \beta^2)^{-\frac{1}{2}} & AD (1 - \beta^2)^{-\frac{1}{2}} \end{pmatrix}.$$

We can then fix the signs using previous results with the addition that sign $(\beta) = AC$:

$$\begin{cases}
A = \epsilon D \\
B = \epsilon C \\
AB = CD \Rightarrow AD = BC \\
\operatorname{sign}(\beta) = AC
\end{cases}$$

This gives

$$\Lambda = A \begin{pmatrix} \left(1 - \beta^2\right)^{-\frac{1}{2}} & \epsilon \operatorname{sign}\left(\beta\right) |\beta| \left(1 - \beta^2\right)^{-\frac{1}{2}} \\ \operatorname{sign}\left(\beta\right) |\beta| \left(1 - \beta^2\right)^{-\frac{1}{2}} & \epsilon \left(1 - \beta^2\right)^{-\frac{1}{2}} \end{pmatrix}$$

and we can conclude

$$\Lambda = A \begin{pmatrix} (1 - \beta^2)^{-\frac{1}{2}} & \epsilon\beta (1 - \beta^2)^{-\frac{1}{2}} \\ \beta (1 - \beta^2)^{-\frac{1}{2}} & \epsilon (1 - \beta^2)^{-\frac{1}{2}} \end{pmatrix}$$

Although this result has been obtained when $\beta \neq 0$, it reproduces for $\beta = 0$ the identity matrix or the reflections obtained above. We will adhere to the convention

$$\gamma = \left(1 - \beta^2\right)^{-\frac{1}{2}}$$

The set

$$\left\{\Lambda \left| \Lambda = A \begin{pmatrix} \gamma & \epsilon \gamma \beta \\ \gamma \beta & \epsilon \gamma \end{pmatrix}, A = \pm 1, \epsilon = \pm 1, -1 \le \beta \le 1 \right\}$$

equipped with matrix multiplication is a group, the Lorentz group.

6.2 Accelerated Observers in Minkowski spacetime

Let us consider a 2-dimensional Minkowski spacetime

$$ds^2 = \boldsymbol{g} = \boldsymbol{\eta} = \eta_{\mu\nu} dx^{\mu} \otimes dx^{\nu} = -dt^2 + dx^2.$$

Let us consider an observer stationary at the origin x = 0 and let $L_{(0)}$ be his world-line. At t = 0 all the events which are simultaneous with him are those which satisfy the equation t = 0, i.e. they are the points on the *x*-axis. We will now apply to these events, $\mathbf{E}_0^{(\rho)} = (0, \rho)$, the boosts about O, which can be written as

$$\begin{cases} t' = \gamma(t + \beta x/c) \\ x = \gamma(x + \beta t) \end{cases},$$

^{©2004} by Stefano Ansoldi — Please, read statement on cover page

where as usual

$$\beta = \frac{v}{c}$$
 and $\gamma = (1 - \beta^2)^{-1/2}$.

If we restrict our attention to one of the $E_0^{(\rho)},$ the locus of the points that can be obtained by all possible boosts is given by the points of the hyperbola

$$x^2 - t^2 = \rho^2$$

with x > 0. The reason for this is that the interval

$$\Delta s^2 = \Delta x^2 - \Delta t^2$$

is invariant under a Lorentz transformation and it equals ρ^2 for the segment OE_0^{ρ} . Thus all the points on the curve

$$L^{(\rho)} = \{(t,x) | x^2 - t^2 = \rho^2, x > 0\}$$

can be parametrized by the quantity β which appears in the Lorentz transformation and are of the form $(\gamma \beta \rho / c, \gamma \rho)$. Note that only for $\rho > 0$ the Lorentz transformation defines a world-line starting from $\mathbf{E}_{0}^{(\rho)}$, since if rho = 0, (0,0)is a fixed point of them. We want now study some properties of Minkowski spacetime, with respect to observers with world-lines $L^{(\rho)}$.

Observers on $L^{(\rho)}$ are at constant distance from each other. To prove this fact let us choose two events, $E_0^{(\rho_1)}$ and $E_0^{(\rho_2)}$ at t = 0. As seen from O they are separated by a distance $\Delta l = |\rho_2 - \rho_1|$. For an observer on $L^{(\rho)}$ which has speed proportional to the parameter β at $E_0^{(\rho)}$ which is $\beta = 0$, the distance between the two events is the same. Now we consider the points which are obtained for a β parameter distance $\Delta\beta$, i.e. $E_{\Delta\beta}^{(\rho_1)}$ and $E_{\Delta\beta}^{(\rho_2)}$. For these points we have

$$\mathsf{E}_{\Delta\beta}^{(\rho_1)} = (\gamma_{\Delta\beta}(\Delta\beta)\rho_1/c, \gamma_{\Delta\beta}\rho_1) \quad \text{and} \quad \mathsf{E}_{\Delta\beta}^{(\rho_1)} = (\gamma_{\Delta\beta}(\Delta\beta)\rho_2/c, \gamma_{\Delta\beta}\rho_2).$$

There distance for the observer $L^{(0)}$ is now

$$\Delta l = \gamma_{\Delta\beta} |\rho^2 - \rho^1|$$

but for the observer on $L^{(\rho)}$, which is characterized by a velocity proportional to $\Delta\beta$, the distance Δl is contracted by a factor $1/\gamma_{\Delta\beta}$, i.e. it is $|\rho_2 - \rho_1|$ again.

Observers on $L^{(\rho)}$ are uniformly accelerated. Let us choose two events $E_{\beta}^{\prime(\rho)}$ and $E_{\beta+\Delta\beta}^{(\rho)}$, on the world-line of the observer $L^{(\rho)}$. Let the two events be characterized by the following coordinate sets,

$$E^{(\rho)}_{\beta+\Delta\beta} = (t,x)$$
$$E^{\prime(\rho)}_{\beta} = (t',x')$$

where by definition of the world-line $L^{(\rho)}$, i.e. of the fundamental observer on it, $(t' + r' \wedge \theta)$ and r = r + (r' + r)

$$t = \gamma_{\Delta\beta}(t' + x'\Delta\beta)$$
 and $x = \gamma_{\Delta\beta}(x' + t'\Delta\beta)$.

^{©2004} by Stefano Ansoldi — Please, read statement on cover page

The proper time $\Delta \tau$ between the two events satisfies

$$-\Delta\tau^2 = -\Delta t^2 + \Delta x^2$$

where

$$\Delta t = t - t'$$
 and $\Delta x = x - x'$

Thus

$$\begin{aligned} \Delta \tau^2 &= (t' - \gamma_{\Delta\beta}(t' + x'\Delta\beta))^2 - (x' - \gamma_{\Delta\beta}(x' + t'\Delta\beta))^2 \\ &= (t')^2 - 2(t')\gamma_{\Delta\beta}(t' + x'\Delta\beta) + (\gamma_{\Delta\beta})^2(t' + x'\Delta\beta)^2 + \\ &- (x')^2 + 2(x')\gamma_{\Delta\beta}(x' + t'\Delta\beta) - (\gamma_{\Delta\beta})^2(x' + t'\Delta\beta)^2 \\ &= (t')^2 - (x')^2 - 2(t')^2\gamma_{\Delta\beta} - 2t'x'\Delta\beta\gamma_{\Delta\beta} + 2(x')^2\gamma_{\Delta\beta} + 2t'x'\Delta\beta\gamma_{\Delta\beta} \\ &+ (\gamma_{\Delta\beta})^2 \left[(t')^2 + 2x't'\Delta\beta + (x')^2(\Delta\beta)^2 - (x')^2 - 2x't'\Delta\beta - (t')^2(\Delta\beta)^2 \right] \\ &= \left[(t')^2 - (x')^2 \right] - 2\gamma_{\Delta\beta} \left[(t')^2 - (x')^2 \right] + (\gamma_{\Delta\beta})^2 \left[1 - (\Delta\beta)^2 \right] \left[(t')^2 - (x')^2 \right] \\ &= \left[(t')^2 - (x')^2 \right] \left(1 - 2\gamma_{\Delta\beta} + (\gamma_{\Delta\beta})^2 - (\gamma_{\Delta\beta})^2(\Delta\beta)^2 \right) \\ &= \left[(t')^2 - (x')^2 \right] \left(1 - 2\gamma_{\Delta\beta} + (\gamma_{\Delta\beta})^2 (1 - (\Delta\beta)^2) \right) \\ &= 2 \left[(x')^2 - (t')^2 \right] (\gamma_{\Delta\beta} - 1) \\ &= 2\rho^2(\gamma_{\Delta\beta} - 1), \end{aligned}$$

where, since $\mathbf{E}_{\beta}^{(\rho)}$ is on $L^{(\rho)}$, we have used that $(x')^2 - (t')^2 = \rho^2$. When $\Delta\beta \ll 1$ we have $\gamma_{\Delta\beta} \approx 1 - \Delta v^2/2$ and the above relation can be written as

$$\Delta \tau^2 \approx 2\rho^2 \frac{1}{2} \Delta \beta^2$$

or in infinitesimal form

$$d\tau^2 = \rho^2 \delta\beta^2$$

In this expression $\Delta\beta$ is the increase in velocity that takes place between two infinitesimally close events, between which the observer on $L^{(\rho)}$ measures a time lapse $d\tau$. Thus an observer on $L^{(\rho)}$ measures an instantaneous acceleration

$$a = \frac{d\beta}{d\tau} = \frac{1}{\rho}$$

i.e. it is uniformly accelerated.

Red-shift by fundamental observers.

We will now compute the red-shift due to the relative acceleration of two observers moving on world lines $L^{(\rho_1)}$ and $L^{(\rho_2)}$ respectively. We remember that the red-shift is defined as

$$z = rac{\lambda_{ ext{Received}} - \lambda_{ ext{Emitted}}}{\lambda_{ ext{Emitted}}}$$

with

$$\lambda = c \Delta \tau.$$

Thus we have $_{\sim} - \lambda_{\text{Received}}$

$$z = \frac{\lambda_{\text{Received}}}{\lambda_{\text{Emitted}}} - 1 = \frac{\Delta \tau_{\text{Receiver}}}{\Delta \tau_{\text{Emitter}}} - 1,$$

©2004 by Stefano Ansoldi — Please, read statement on cover page

Figure 6.1: Red-shift between fundamental observers.

and we see that what really matters is how a time interval on the emitter world-line is measured from the receiver one. In our case a signal emitted in a parameter lapse $\Delta\beta$ from $L^{(\rho_1)}$ is such that

$$\Delta \tau_1^2 = 2\rho_1^2(\gamma_{\Delta\beta} - 1)$$

whereas on the receiver world-line $L^{(\rho_2)}$ we have

$$\Delta \tau_2^2 = 2\rho_2^2(\gamma_{\Delta\beta} - 1).$$

Thus

$$1 + z = \frac{\Delta \tau_{\text{Receiver}}}{\Delta \tau_{\text{Emitter}}} = \frac{\Delta \tau_2}{\Delta \tau_1} = \frac{\rho_2}{\rho_1}.$$

Red-shift by a stationary observer.

We are now interested in the shift experienced by the stationary observer on $L^{(0)}$ when he receives a signal from an observer $L^{(\rho)}$. Of course a parameter lapse $\Delta\beta$ again corresponds on $L^{(\rho)}$ to a proper time interval

$$\Delta \tau^2 = 2\rho^2 (\gamma_{\Delta\beta} - 1)$$

We need now to know how is the $\Delta \tau'$ measured on $L^{(0)}$. With reference to figure 6.2 we see this interval can be computed as (in units where $c \equiv 1$)

$$\Delta \tau' = \overline{AB} = (t_{B''} - \overline{B'B''}) - (t_{A''} - \overline{A'A''}).$$

We set

$$A' = (t, x_{A'}) = (\gamma \beta \rho, \gamma \rho)$$

where as usual $\gamma = (1 - \beta^2)^{-1/2}$ and t is the time at which the signal arrives at A'. Moreover B' is a parameter distance $\Delta\beta$ along $L^{(\rho)}$, which means it can be obtained with a Lorentz transformation from A' with velocity $\Delta\beta$:

$$B' = (\gamma_{\Delta\beta}(\gamma\beta\rho + \Delta\beta\gamma\rho), \gamma_{\Delta\beta}(\gamma\rho + \Delta\beta\gamma\beta\rho)).$$

From the definition of A', since we have $\gamma\beta\rho = t$, using the definition of

Figure 6.2: Red-shift by a stationary observer.

 γ we can derive the following equalities,

$$v = \frac{t}{(t^2 + \rho^2)^{1/2}},$$

$$\gamma = \frac{(t^2 + \rho^2)^{1/2}}{\rho},$$
(6.4)

which are useful to express the coordinates of A' and B' solely in terms of $t,\,\rho$ and $\Delta\beta:$

$$\begin{aligned} A' &= (t, (t^2 + \rho^2)^{1/2}) \\ B' &= (\gamma_{\Delta\beta}(t + \Delta\beta(t^2 + \rho^2)^{1/2})), \gamma_{\Delta\beta}((t^2 + \rho^2)^{1/2}) + \Delta\beta t). \end{aligned}$$

Using these results we now get

$$\overline{AB} = \gamma_{\Delta\beta}(t + \Delta\beta(t^2 + \rho^2)^{1/2})) - t + -\gamma_{\Delta\beta}((t^2 + \rho^2)^{1/2}) + \Delta\beta t) + (t^2 + \rho^2)^{1/2} \\
= \gamma_{\Delta\beta}t + \gamma_{\Delta\beta}\Delta\beta(t^2 + \rho^2)^{1/2} - t + -\gamma_{\Delta\beta}(t^2 + \rho^2)^{1/2} - \gamma_{\Delta\beta}\Delta\beta t + (t^2 + \rho^2)^{1/2} \\
= t(\gamma_{\Delta\beta} - 1 - \gamma_{\Delta\beta}\Delta\beta) - (t^2 + \rho^2)^{1/2}(\gamma_{\Delta\beta} - 1 - \gamma_{\Delta\beta}\Delta\beta) \\
= (t - (t^2 + \rho^2)^{1/2})(\gamma_{\Delta\beta} - 1 - \gamma_{\Delta\beta}\Delta\beta) \\
= (\gamma_{\Delta\beta}(\Delta\beta - 1))((t^2 + \rho^2)^{1/2} - t) \\
= \frac{(1 - (1 - \Delta\beta)\gamma_{\Delta\beta})\rho^2}{t + (t^2 + \rho^2)^{1/2}};$$
(6.5)

thus

$$\Delta \tau' = \frac{(1 - (1 - \Delta\beta)\gamma_{\Delta\beta})\rho^2}{t + (t^2 + \rho^2)^{1/2}}$$

When $\Delta\beta\ll 1$ we have the natural approximations

$$\gamma_{\Delta\beta} = (1 - \Delta\beta^2)^{-1/2} \approx 1 + \frac{\Delta\beta^2}{2}$$

and

$$(\gamma_{\Delta\beta} - 1)^{1/2} \approx \frac{\Delta\beta}{\sqrt{2}}$$

©2004 by Stefano Ansoldi — Please, read statement on cover page

$$1+z = \frac{\Delta\tau}{\Delta\tau'}$$

$$= \frac{\sqrt{2}\rho(\gamma_{\Delta\beta}-1)^{1/2} \left[t+(\rho^2+t^2)^{1/2}\right]}{\rho^2 \left[1-(1-\Delta\beta)\gamma_{\Delta\beta}\right]}$$

$$\approx \frac{t+(\rho^2+t^2)^{1/2}}{\rho}$$

$$\approx \frac{t}{\rho} + \left[1+\left(\frac{t}{\rho}\right)^2\right]^{1/2}.$$

[6.2].92

©2004 by Stefano Ansoldi — Please, read statement on cover page