## Chapter 6

## Special Relativity

### 6.1 The group of Lorentz transformations

### 6.1.1 2-dimensional case

Let us consider the invariant interval defined in our derivation of Lorentz transformations in the previous chapter. In particular let us consider preliminarily the 2-dimensional case, in which the finite invariant interval can be written as

$$
s^{2}=x^{2}-t^{2}
$$

If in $\mathbb{R}^{2}$ we take the vector $\boldsymbol{x}=(t, x)$ and we equip the vector space of all these vectors with the pseudo-Euclidean structure defined by the scalar product

$$
\langle\boldsymbol{x}, \boldsymbol{x}\rangle=g_{A B} x^{A} x^{B} \quad, \quad A=1,2 \quad, \quad B=1,2
$$

where $g_{00}=-1, g_{01}=g_{10}=0$ and $g_{11}=+1$. Requiring the invariance of the interval is tantamount of requiring the invariance of the pseudo-Euclidean structure, i.e. we are interesting of determining the general form of a linear transformation $\Lambda$ such that

$$
\boldsymbol{g}=\Lambda^{T} \boldsymbol{g} \Lambda
$$

From the validity of the above equation we know that the $2 \times 2$ matrix $\Lambda$ is subject to the constraint

$$
\operatorname{det}(\boldsymbol{g})=\operatorname{det}\left(\Lambda^{T} \boldsymbol{g} \Lambda\right)=\operatorname{det}\left(\Lambda^{T}\right) \operatorname{det}(\boldsymbol{g}) \operatorname{det}(\Lambda)
$$

which, since $\operatorname{det}(\Lambda)=\operatorname{det}\left(\Lambda^{T}\right)$, gives

$$
\operatorname{det}(\Lambda)^{2}=1 \quad \Rightarrow \quad \operatorname{det}(\Lambda)=\epsilon \stackrel{\text { def. }}{=} \pm 1
$$

Moreover from the invariance of $\boldsymbol{g}$, if we set

$$
\Lambda=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we obtain:

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and performing the matrix multiplications on the right hand side

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
c^{2}-a^{2} & -a b+c d \\
-a b+c d & b^{2}-d^{2}
\end{array}\right)
$$

which, together with the constraint on the determinant

$$
\operatorname{det}(\Lambda)=a d-b c=\epsilon
$$

we can rewrite as a system of four equations in four unknowns:

$$
\left\{\begin{array}{l}
a^{2}-c^{2}=1  \tag{6.1}\\
c d-a b=0 \\
b^{2}-d^{2}=1 \\
a d-b c=\epsilon
\end{array} .\right.
$$

Note that, of course, the last equation is dependent from the other three. Thus only three parameters can be determined independently, or more precisely, the solution is going to be a one parameter family of transformations. In what follows we will call with capital letters the signs of the four parameters $a, b, c$, $d$, so that

$$
\begin{array}{lll}
a=A|a| & \quad, \quad b=B|b| \\
c=C|c| & , \quad d=D|d|
\end{array}
$$

Let us set some constraints on them, as a preliminary step:

1. from the first equation we see that $a \neq 0$.
2. from the third equation we see that $d \neq 0$.
3. for the signs the equations, respectively, imply:

$$
\left\{\begin{array}{l}
A \neq 0  \tag{6.2}\\
A B=C D \\
D \neq 0 \\
A D-B C=\epsilon
\end{array}\right.
$$

Let us now solve the first equation for $a$, the third for $d$ and substitute in the second ${ }^{1}$ :

$$
\left\{\begin{array}{l}
a=A \sqrt{1+c^{2}} \\
A B|b| \sqrt{1+c^{2}}=C D|c| \sqrt{1+b^{2}} \\
d=D \sqrt{1+b^{2}} \\
a d-b c=\epsilon
\end{array}\right.
$$

Using the second equation in (6.2) the second equation above can be simplified an squared to obtain $|b|=|c|$ as a solution. This can be rewritten as $b=\eta c$, where $\eta \stackrel{\text { def. }}{=}-1,0,+1$. Using this relation in the third equation we also find $|a|=|d|$, so that we end up with the system:

$$
\left\{\begin{array}{l}
a=A \sqrt{1+c^{2}} \\
b=\eta c \\
|d|=|a| \\
a d-b c=\epsilon
\end{array}\right.
$$

[^0]Let us now rewrite the last equation in the above system in a different way that we are going to use later on. First we have

$$
\begin{align*}
a d-b c & =A D|a||d|-B C|b||c| \\
& =A D a^{2}-B C c^{2} \\
& =A D\left(1+c^{2}\right)-B C c^{2} \\
& =(A D-B C) c^{2}+A D \tag{6.3}
\end{align*}
$$

Case $\eta=0$.
In this case $B=C=0$, i.e. $b=c=0$. Then $a=A$ and $d=D$ and there can be a sign difference between $a$ and $d$. This is consistent the fourth equation, which exactly gives $A D=\epsilon$. Thus we obtain

$$
\Lambda=A\left(\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right) .
$$

Making the signs appear explicitly we obtain 4 matrix, the identity and four discrete transformations, as follows:

$$
\begin{aligned}
\text { Identity } & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\text { Time reflection } & =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\text { Space reflection } & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\text { Space time reflection } & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Case $\eta \neq 0$.
In this case $B= \pm 1$ and $C= \pm 1$. We can multiply the second equation in the system (6.2), relating the signs, by $A$ and $C$, since now both are different from zero, to get $A D=B C$, i.e. $A D-B C=0$. Substituting this identity in (6.3) we obtain again

$$
A D=\epsilon .
$$

Since $A D=B C$ and $B C=\eta$ we see that $\epsilon=\eta$ and, so that the fourth equation (6.1) is again a consequence of the three others. We are going to use $\epsilon$ in place of $\eta$ in what follows, i.e. $b=\epsilon c$. The remaining three equations in (6.1) do not allow an unique solution of the system. Let us parametrize the family of solutions using $\beta=c / a$ (remember $a \neq 0$ always). Then we can rewrite the first three equations of (6.1) as

$$
\left\{\begin{array}{l}
1-\beta^{2}=a^{-2} \\
\beta=b / d \\
b^{2}-d^{2}=1
\end{array}\right.
$$

This gives

$$
\left\{\begin{array}{l}
|a|=\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
|b|=|\beta||d|=|c| \\
|d|=|a|
\end{array}\right.
$$

so that

$$
\Lambda=\left(\begin{array}{cc}
A\left(1-\beta^{2}\right)^{-\frac{1}{2}} & B|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
C|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} & D\left(1-\beta^{2}\right)^{-\frac{1}{2}}
\end{array}\right)
$$

From the above relation we factor the sign of $a$

$$
\Lambda=A\left(\begin{array}{cc}
\left(1-\beta^{2}\right)^{-\frac{1}{2}} & A B|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
A C|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} & A D\left(1-\beta^{2}\right)^{-\frac{1}{2}}
\end{array}\right) .
$$

We can then fix the signs using previous results with the addition that $\operatorname{sign}(\beta)=$ $A C$ :

$$
\left\{\begin{array}{l}
A=\epsilon D \\
B=\epsilon C \\
A B=C D \quad \Rightarrow \quad A D=B C \\
\operatorname{sign}(\beta)=A C
\end{array}\right.
$$

This gives

$$
\Lambda=A\left(\begin{array}{cc}
\left(1-\beta^{2}\right)^{-\frac{1}{2}} & \epsilon \operatorname{sign}(\beta)|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
\operatorname{sign}(\beta)|\beta|\left(1-\beta^{2}\right)^{-\frac{1}{2}} & \epsilon\left(1-\beta^{2}\right)^{-\frac{1}{2}}
\end{array}\right)
$$

and we can conclude

$$
\Lambda=A\left(\begin{array}{cc}
\left(1-\beta^{2}\right)^{-\frac{1}{2}} & \epsilon \beta\left(1-\beta^{2}\right)^{-\frac{1}{2}} \\
\beta\left(1-\beta^{2}\right)^{-\frac{1}{2}} & \epsilon\left(1-\beta^{2}\right)^{-\frac{1}{2}}
\end{array}\right)
$$

Although this result has been obtained when $\beta \neq 0$, it reproduces for $\beta=0$ the identity matrix or the reflections obtained above. We will adhere to the convention

$$
\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}
$$

The set

$$
\left\{\Lambda \left\lvert\, \Lambda=A\left(\begin{array}{cc}
\gamma & \epsilon \gamma \beta \\
\gamma \beta & \epsilon \gamma
\end{array}\right)\right., A= \pm 1, \epsilon= \pm 1,-1 \leq \beta \leq 1\right\}
$$

equipped with matrix multiplication is a group, the Lorentz group.

### 6.2 Accelerated Observers in Minkowski spacetime

Let us consider a 2-dimensional Minkowski spacetime

$$
d s^{2}=\boldsymbol{g}=\boldsymbol{\eta}=\eta_{\mu \nu} d x^{\mu} \otimes d x^{\nu}=-d t^{2}+d x^{2}
$$

Let us consider an observer stationary at the origin $x=0$ and let $L_{(0)}$ be his world-line. At $t=0$ all the events which are simultaneous with him are those which satisfy the equation $t=0$, i.e. they are the points on the $x$-axis. We will now apply to these events, $\mathrm{E}_{0}^{(\rho)}=(0, \rho)$, the boosts about $O$, which can be written as

$$
\left\{\begin{aligned}
t^{\prime} & =\gamma(t+\beta x / c) \\
x & =\gamma(x+\beta t)
\end{aligned}\right.
$$

where as usual

$$
\beta=\frac{v}{c} \quad \text { and } \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}
$$

If we restrict our attention to one of the $\mathrm{E}_{0}^{(\rho)}$, the locus of the points that can be obtained by all possible boosts is given by the points of the hyperbola

$$
x^{2}-t^{2}=\rho^{2}
$$

with $x>0$. The reason for this is that the interval

$$
\Delta s^{2}=\Delta x^{2}-\Delta t^{2}
$$

is invariant under a Lorentz transformation and it equals $\rho^{2}$ for the segment $\overline{\mathrm{OE}_{0}^{\rho}}$. Thus all the points on the curve

$$
L^{(\rho)}=\left\{(t, x) \mid x^{2}-t^{2}=\rho^{2}, x>0\right\}
$$

can be parametrized by the quantity $\beta$ which appears in the Lorentz transformation and are of the form $(\gamma \beta \rho / c, \gamma \rho)$. Note that only for $\rho>0$ the Lorentz transformation defines a world-line starting from $\mathrm{E}_{0}^{(\rho)}$, since if rho $=0,(0,0)$ is a fixed point of them. We want now study some properties of Minkowski spacetime, with respect to observers with world-lines $L^{(\rho)}$.

Observers on $L^{(\rho)}$ are at constant distance from each other.
To prove this fact let us choose two events, $\mathrm{E}_{0}^{\left(\rho_{1}\right)}$ and $\mathrm{E}_{0}^{\left(\rho_{2}\right)}$ at $t=0$. As seen from $O$ they are separated by a distance $\Delta l=\left|\rho_{2}-\rho_{1}\right|$. For an observer on $L^{(\rho)}$ which has speed proportional to the parameter $\beta$ at $\mathrm{E}_{0}^{(\rho)}$ which is $\beta=0$, the distance between the two events is the same. Now we consider the points which are obtained for a $\beta$ parameter distance $\Delta \beta$, i.e. $\mathrm{E}_{\Delta \beta}^{\left(\rho_{1}\right)}$ and $\mathrm{E}_{\Delta \beta}^{\left(\rho_{2}\right)}$. For these points we have

$$
\mathrm{E}_{\Delta \beta}^{\left(\rho_{1}\right)}=\left(\gamma_{\Delta \beta}(\Delta \beta) \rho_{1} / c, \gamma_{\Delta \beta} \rho_{1}\right) \quad \text { and } \quad \mathrm{E}_{\Delta \beta}^{\left(\rho_{1}\right)}=\left(\gamma_{\Delta \beta}(\Delta \beta) \rho_{2} / c, \gamma_{\Delta \beta} \rho_{2}\right)
$$

There distance for the observer $L^{(0)}$ is now

$$
\Delta l=\gamma_{\Delta \beta}\left|\rho^{2}-\rho^{1}\right|
$$

but for the observer on $L^{(\rho)}$, which is characterized by a velocity proportional to $\Delta \beta$, the distance $\Delta l$ is contracted by a factor $1 / \gamma_{\Delta \beta}$, i.e. it is $\left|\rho_{2}-\rho_{1}\right|$ again.

Observers on $L^{(\rho)}$ are uniformly accelerated.
Let us choose two events $\mathrm{E}_{\beta}^{\prime(\rho)}$ and $\mathrm{E}_{\beta+\Delta \beta}^{(\rho)}$, on the world-line of the observer $L^{(\rho)}$. Let the two events be characterized by the following coordinate sets,

$$
\begin{aligned}
E_{\beta+\Delta \beta}^{(\rho)} & =(t, x) \\
E_{\beta}^{\prime(\rho)} & =\left(t^{\prime}, x^{\prime}\right),
\end{aligned}
$$

where by definition of the world-line $L^{(\rho)}$, i.e. of the fundamental observer on it,

$$
t=\gamma_{\Delta \beta}\left(t^{\prime}+x^{\prime} \Delta \beta\right) \quad \text { and } \quad x=\gamma_{\Delta \beta}\left(x^{\prime}+t^{\prime} \Delta \beta\right) .
$$

The proper time $\Delta \tau$ between the two events satisfies

$$
-\Delta \tau^{2}=-\Delta t^{2}+\Delta x^{2}
$$

where

$$
\Delta t=t-t^{\prime} \quad \text { and } \quad \Delta x=x-x^{\prime}
$$

Thus

$$
\begin{aligned}
\Delta \tau^{2}= & \left(t^{\prime}-\gamma_{\Delta \beta}\left(t^{\prime}+x^{\prime} \Delta \beta\right)\right)^{2}-\left(x^{\prime}-\gamma_{\Delta \beta}\left(x^{\prime}+t^{\prime} \Delta \beta\right)\right)^{2} \\
= & \left(t^{\prime}\right)^{2}-2\left(t^{\prime}\right) \gamma_{\Delta \beta}\left(t^{\prime}+x^{\prime} \Delta \beta\right)+\left(\gamma_{\Delta \beta}\right)^{2}\left(t^{\prime}+x^{\prime} \Delta \beta\right)^{2}+ \\
& \quad-\left(x^{\prime}\right)^{2}+2\left(x^{\prime}\right) \gamma_{\Delta \beta}\left(x^{\prime}+t^{\prime} \Delta \beta\right)-\left(\gamma_{\Delta \beta}\right)^{2}\left(x^{\prime}+t^{\prime} \Delta \beta\right)^{2} \\
= & \left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}-2\left(t^{\prime}\right)^{2} \gamma_{\Delta \beta}-2 t^{\prime} x^{\prime} \Delta \beta \gamma_{\Delta \beta}+2\left(x^{\prime}\right)^{2} \gamma_{\Delta \beta}+2 t^{\prime} x^{\prime} \Delta \beta \gamma_{\Delta \beta} \\
& \quad+\left(\gamma_{\Delta \beta}\right)^{2}\left[\left(t^{\prime}\right)^{2}+2 x^{\prime} t^{\prime} \Delta \beta+\left(x^{\prime}\right)^{2}(\Delta \beta)^{2}-\left(x^{\prime}\right)^{2}-2 x^{\prime} t^{\prime} \Delta \beta-\left(t^{\prime}\right)^{2}(\Delta \beta)^{2}\right] \\
= & {\left[\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}\right]-2 \gamma_{\Delta \beta}\left[\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}\right]+\left(\gamma_{\Delta \beta}\right)^{2}\left[1-(\Delta \beta)^{2}\right]\left[\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}\right] } \\
= & {\left[\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}\right]\left(1-2 \gamma_{\Delta \beta}+\left(\gamma_{\Delta \beta}\right)^{2}-\left(\gamma_{\Delta \beta}\right)^{2}(\Delta \beta)^{2}\right) } \\
= & {\left[\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}\right]\left(1-2 \gamma_{\Delta \beta}+\left(\gamma_{\Delta \beta}\right)^{2}\left(1-(\Delta \beta)^{2}\right)\right) } \\
= & 2\left[\left(x^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}\right]\left(\gamma_{\Delta \beta}-1\right) \\
= & 2 \rho^{2}\left(\gamma_{\Delta \beta}-1\right),
\end{aligned}
$$

where, since $\mathrm{E}_{\beta}^{(\rho)}$ is on $L^{(\rho)}$, we have used that $\left(x^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}=\rho^{2}$. When $\Delta \beta \ll 1$ we have $\gamma_{\Delta \beta} \approx 1-\Delta v^{2} / 2$ and the above relation can be written as

$$
\Delta \tau^{2} \approx 2 \rho^{2} \frac{1}{2} \Delta \beta^{2}
$$

or in infinitesimal form

$$
d \tau^{2}=\rho^{2} \delta \beta^{2}
$$

In this expression $\Delta \beta$ is the increase in velocity that takes place between two infinitesimally close events, between which the observer on $L^{(\rho)}$ measures a time lapse $d \tau$. Thus an observer on $L^{(\rho)}$ measures an instantaneous acceleration

$$
a=\frac{d \beta}{d \tau}=\frac{1}{\rho}
$$

i.e. it is uniformly accelerated.

## Red-shift by fundamental observers.

We will now compute the red-shift due to the relative acceleration of two observers moving on world lines $L^{\left(\rho_{1}\right)}$ and $L^{\left(\rho_{2}\right)}$ respectively. We remember that the red-shift is defined as

$$
z=\frac{\lambda_{\text {Received }}-\lambda_{\text {Emitted }}}{\lambda_{\text {Emitted }}}
$$

with

$$
\lambda=c \Delta \tau
$$

Thus we have

$$
z=\frac{\lambda_{\text {Received }}}{\lambda_{\text {Emitted }}}-1=\frac{\Delta \tau_{\text {Receiver }}}{\Delta \tau_{\text {Emitter }}}-1
$$



Figure 6.1: Red-shift between fundamental observers.
and we see that what really matters is how a time interval on the emitter world-line is measured from the receiver one. In our case a signal emitted in a parameter lapse $\Delta \beta$ from $L^{\left(\rho_{1}\right)}$ is such that

$$
\Delta \tau_{1}^{2}=2 \rho_{1}^{2}\left(\gamma_{\Delta \beta}-1\right)
$$

whereas on the receiver world-line $L^{\left(\rho_{2}\right)}$ we have

$$
\Delta \tau_{2}^{2}=2 \rho_{2}^{2}\left(\gamma_{\Delta \beta}-1\right)
$$

Thus

$$
1+z=\frac{\Delta \tau_{\text {Receiver }}}{\Delta \tau_{\text {Emitter }}}=\frac{\Delta \tau_{2}}{\Delta \tau_{1}}=\frac{\rho_{2}}{\rho_{1}} .
$$

## Red-shift by a stationary observer.

We are now interested in the shift experienced by the stationary observer on $L^{(0)}$ when he receives a signal from an observer $L^{(\rho)}$. Of course a parameter lapse $\Delta \beta$ again corresponds on $L^{(\rho)}$ to a proper time interval

$$
\Delta \tau^{2}=2 \rho^{2}\left(\gamma_{\Delta \beta}-1\right)
$$

We need now to know how is the $\Delta \tau^{\prime}$ measured on $L^{(0)}$. With reference to figure 6.2 we see this interval can be computed as (in units where $c \equiv 1$ )

$$
\Delta \tau^{\prime}=\overline{A B}=\left(t_{B^{\prime \prime}}-\overline{B^{\prime} B^{\prime \prime}}\right)-\left(t_{A^{\prime \prime}}-\overline{A^{\prime} A^{\prime \prime}}\right)
$$

We set

$$
A^{\prime}=\left(t, x_{A^{\prime}}\right)=(\gamma \beta \rho, \gamma \rho)
$$

where as usual $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$ and $t$ is the time at which the signal arrives at $A^{\prime}$. Moreover $B^{\prime}$ is a parameter distance $\Delta \beta$ along $L^{(\rho)}$, which means it can be obtained with a Lorentz transformation from $A^{\prime}$ with velocity $\Delta \beta$ :

$$
B^{\prime}=\left(\gamma_{\Delta \beta}(\gamma \beta \rho+\Delta \beta \gamma \rho), \gamma_{\Delta \beta}(\gamma \rho+\Delta \beta \gamma \beta \rho)\right) .
$$

From the definition of $A^{\prime}$, since we have $\gamma \beta \rho=t$, using the definition of


Figure 6.2: Red-shift by a stationary observer.
$\gamma$ we can derive the following equalities,

$$
\begin{align*}
& v=\frac{t}{\left(t^{2}+\rho^{2}\right)^{1 / 2}}, \\
& \gamma=\frac{\left(t^{2}+\rho^{2}\right)^{1 / 2}}{\rho}, \tag{6.4}
\end{align*}
$$

which are useful to express the coordinates of $A^{\prime}$ and $B^{\prime}$ solely in terms of $t, \rho$ and $\Delta \beta$ :

$$
\begin{aligned}
& A^{\prime}=\left(t,\left(t^{2}+\rho^{2}\right)^{1 / 2}\right) \\
& \left.B^{\prime}=\left(\gamma_{\Delta \beta}\left(t+\Delta \beta\left(t^{2}+\rho^{2}\right)^{1 / 2}\right)\right), \gamma_{\Delta \beta}\left(\left(t^{2}+\rho^{2}\right)^{1 / 2}\right)+\Delta \beta t\right)
\end{aligned}
$$

Using these results we now get

$$
\begin{align*}
\overline{A B}= & \left.\gamma_{\Delta \beta}\left(t+\Delta \beta\left(t^{2}+\rho^{2}\right)^{1 / 2}\right)\right)-t+ \\
& \left.\quad-\gamma_{\Delta \beta}\left(\left(t^{2}+\rho^{2}\right)^{1 / 2}\right)+\Delta \beta t\right)+\left(t^{2}+\rho^{2}\right)^{1 / 2} \\
= & \gamma_{\Delta \beta} t+\gamma_{\Delta \beta} \Delta \beta\left(t^{2}+\rho^{2}\right)^{1 / 2}-t+ \\
& \quad-\gamma_{\Delta \beta}\left(t^{2}+\rho^{2}\right)^{1 / 2}-\gamma_{\Delta \beta} \Delta \beta t+\left(t^{2}+\rho^{2}\right)^{1 / 2} \\
= & t\left(\gamma_{\Delta \beta}-1-\gamma_{\Delta \beta} \Delta \beta\right)-\left(t^{2}+\rho^{2}\right)^{1 / 2}\left(\gamma_{\Delta \beta}-1-\gamma_{\Delta \beta} \Delta \beta\right) \\
= & \left(t-\left(t^{2}+\rho^{2}\right)^{1 / 2}\right)\left(\gamma_{\Delta \beta}-1-\gamma_{\Delta \beta} \Delta \beta\right) \\
= & \left(\gamma_{\Delta \beta}(\Delta \beta-1)\right)\left(\left(t^{2}+\rho^{2}\right)^{1 / 2}-t\right) \\
= & \frac{\left(1-(1-\Delta \beta) \gamma_{\Delta \beta}\right) \rho^{2}}{t+\left(t^{2}+\rho^{2}\right)^{1 / 2}} \tag{6.5}
\end{align*}
$$

thus

$$
\Delta \tau^{\prime}=\frac{\left(1-(1-\Delta \beta) \gamma_{\Delta \beta}\right) \rho^{2}}{t+\left(t^{2}+\rho^{2}\right)^{1 / 2}}
$$

When $\Delta \beta \ll 1$ we have the natural approximations

$$
\gamma_{\Delta \beta}=\left(1-\Delta \beta^{2}\right)^{-1 / 2} \approx 1+\frac{\Delta \beta^{2}}{2}
$$

and

$$
\left(\gamma_{\Delta \beta}-1\right)^{1 / 2} \approx \frac{\Delta \beta}{\sqrt{2}}
$$

Using them we get

$$
\begin{aligned}
1+z & =\frac{\Delta \tau}{\Delta \tau^{\prime}} \\
& =\frac{\sqrt{2} \rho\left(\gamma_{\Delta \beta}-1\right)^{1 / 2}\left[t+\left(\rho^{2}+t^{2}\right)^{1 / 2}\right]}{\rho^{2}\left[1-(1-\Delta \beta) \gamma_{\Delta \beta}\right]} \\
& \approx \frac{t+\left(\rho^{2}+t^{2}\right)^{1 / 2}}{\rho} \\
& \approx \frac{t}{\rho}+\left[1+\left(\frac{t}{\rho}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$


[^0]:    ${ }^{1}$ Square roots are always arithmetic i.e. their sign is always positive.

