
Chapter 6

Special Relativity

6.1 The group of Lorentz transformations

6.1.1 2-dimensional case

Let us consider the invariant interval defined in our derivation of Lorentz trans-
formations in the previous chapter. In particular let us consider preliminarily
the 2-dimensional case, in which the finite invariant interval can be written as

s2 = x2 − t2.

If in R2 we take the vector x = (t, x) and we equip the vector space of all these
vectors with the pseudo-Euclidean structure defined by the scalar product

〈x,x〉 = gABx
AxB , A = 1, 2 , B = 1, 2,

where g00 = −1, g01 = g10 = 0 and g11 = +1. Requiring the invariance of
the interval is tantamount of requiring the invariance of the pseudo-Euclidean
structure, i.e. we are interesting of determining the general form of a linear
transformation Λ such that

g = ΛT gΛ.

From the validity of the above equation we know that the 2 × 2 matrix Λ is
subject to the constraint

det(g) = det(ΛT gΛ) = det(ΛT ) det(g) det(Λ)

which, since det(Λ) = det(ΛT ), gives

det(Λ)2 = 1 ⇒ det(Λ) = ε
def.= ±1.

Moreover from the invariance of g, if we set

Λ =
(
a b
c d

)
we obtain: (

−1 0
0 1

)
=
(
a c
b d

)(
−1 0
0 1

)(
a b
c d

)
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and performing the matrix multiplications on the right hand side(
−1 0
0 1

)
=
(

c2 − a2 −ab+ cd
−ab+ cd b2 − d2

)
,

which, together with the constraint on the determinant

det(Λ) = ad− bc = ε,

we can rewrite as a system of four equations in four unknowns:
a2 − c2 = 1
cd− ab = 0
b2 − d2 = 1
ad− bc = ε

. (6.1)

Note that, of course, the last equation is dependent from the other three. Thus
only three parameters can be determined independently, or more precisely, the
solution is going to be a one parameter family of transformations. In what
follows we will call with capital letters the signs of the four parameters a, b, c,
d, so that

a = A|a| , b = B|b|
c = C|c| , d = D|d|

Let us set some constraints on them, as a preliminary step:

1. from the first equation we see that a 6= 0.

2. from the third equation we see that d 6= 0.

3. for the signs the equations, respectively, imply:
A 6= 0
AB = CD
D 6= 0
AD −BC = ε

. (6.2)

Let us now solve the first equation for a, the third for d and substitute in the
second1: 

a = A
√

1 + c2

AB|b|
√

1 + c2 = CD|c|
√

1 + b2

d = D
√

1 + b2

ad− bc = ε

Using the second equation in (6.2) the second equation above can be simplified
an squared to obtain |b| = |c| as a solution. This can be rewritten as b = ηc,
where η def.= −1, 0,+1. Using this relation in the third equation we also find
|a| = |d|, so that we end up with the system:

a = A
√

1 + c2

b = ηc
|d| = |a|
ad− bc = ε

1Square roots are always arithmetic i.e. their sign is always positive.
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Let us now rewrite the last equation in the above system in a different way that
we are going to use later on. First we have

ad− bc = AD|a||d| −BC|b||c|
= ADa2 −BCc2

= AD(1 + c2)−BCc2

= (AD −BC)c2 +AD (6.3)

Case η = 0.

In this case B = C = 0, i.e. b = c = 0. Then a = A and d = D and there can
be a sign difference between a and d. This is consistent the fourth equation,
which exactly gives AD = ε. Thus we obtain

Λ = A

(
1 0
0 ε

)
.

Making the signs appear explicitly we obtain 4 matrix, the identity and four
discrete transformations, as follows:

Identity =
(

1 0
0 1

)
Time reflection =

(
−1 0
0 1

)
Space reflection =

(
1 0
0 −1

)
Space time reflection =

(
1 0
0 −1

)
.

Case η 6= 0.

In this case B = ±1 and C = ±1. We can multiply the second equation in the
system (6.2), relating the signs, by A and C, since now both are different from
zero, to get AD = BC, i.e. AD − BC = 0. Substituting this identity in (6.3)
we obtain again

AD = ε.

Since AD = BC and BC = η we see that ε = η and, so that the fourth equation
(6.1) is again a consequence of the three others. We are going to use ε in place
of η in what follows, i.e. b = εc. The remaining three equations in (6.1) do
not allow an unique solution of the system. Let us parametrize the family of
solutions using β = c/a (remember a 6= 0 always). Then we can rewrite the first
three equations of (6.1) as  1− β2 = a−2

β = b/d
b2 − d2 = 1

This gives  |a| =
(
1− β2

)− 1
2

|b| = |β||d| = |c|
|d| = |a|

,
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so that

Λ =

(
A
(
1− β2

)− 1
2 B|β|

(
1− β2

)− 1
2

C|β|
(
1− β2

)− 1
2 D

(
1− β2

)− 1
2

)
.

From the above relation we factor the sign of a

Λ = A

( (
1− β2

)− 1
2 AB|β|

(
1− β2

)− 1
2

AC|β|
(
1− β2

)− 1
2 AD

(
1− β2

)− 1
2

)
.

We can then fix the signs using previous results with the addition that sign (β) =
AC: 

A = εD
B = εC
AB = CD ⇒ AD = BC
sign (β) = AC

.

This gives

Λ = A

( (
1− β2

)− 1
2 ε sign (β) |β|

(
1− β2

)− 1
2

sign (β) |β|
(
1− β2

)− 1
2 ε

(
1− β2

)− 1
2

)

and we can conclude

Λ = A

( (
1− β2

)− 1
2 εβ

(
1− β2

)− 1
2

β
(
1− β2

)− 1
2 ε

(
1− β2

)− 1
2

)
.

Although this result has been obtained when β 6= 0, it reproduces for β = 0
the identity matrix or the reflections obtained above. We will adhere to the
convention

γ =
(
1− β2

)− 1
2 .

The set {
Λ
∣∣∣∣Λ = A

(
γ εγβ
γβ εγ

)
, A = ±1, ε = ±1,−1 ≤ β ≤ 1

}
equipped with matrix multiplication is a group, the Lorentz group.

6.2 Accelerated Observers in Minkowski space-
time

Let us consider a 2-dimensional Minkowski spacetime

ds2 = g = η = ηµνdx
µ ⊗ dxν = −dt2 + dx2.

Let us consider an observer stationary at the origin x = 0 and let L(0) be his
world-line. At t = 0 all the events which are simultaneous with him are those
which satisfy the equation t = 0, i.e. they are the points on the x-axis. We
will now apply to these events, E(ρ)

0 = (0, ρ), the boosts about O, which can be
written as {

t′ = γ(t+ βx/c)
x = γ(x+ βt) ,
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where as usual
β =

v

c
and γ =

(
1− β2

)−1/2
.

If we restrict our attention to one of the E
(ρ)
0 , the locus of the points that can

be obtained by all possible boosts is given by the points of the hyperbola

x2 − t2 = ρ2

with x > 0. The reason for this is that the interval

∆s2 = ∆x2 −∆t2

is invariant under a Lorentz transformation and it equals ρ2 for the segment
OEρ

0. Thus all the points on the curve

L(ρ) =
{
(t, x)|x2 − t2 = ρ2, x > 0

}
can be parametrized by the quantity β which appears in the Lorentz transfor-
mation and are of the form (γβρ/c, γρ). Note that only for ρ > 0 the Lorentz
transformation defines a world-line starting from E

(ρ)
0 , since if rho = 0, (0, 0)

is a fixed point of them. We want now study some properties of Minkowski
spacetime, with respect to observers with world-lines L(ρ).

Observers on L(ρ) are at constant distance from each other.
To prove this fact let us choose two events, E(ρ1)

0 and E
(ρ2)
0 at t = 0. As

seen from O they are separated by a distance ∆l = |ρ2 − ρ1|. For an
observer on L(ρ) which has speed proportional to the parameter β at E(ρ)

0

which is β = 0, the distance between the two events is the same. Now we
consider the points which are obtained for a β parameter distance ∆β, i.e.
E
(ρ1)
∆β and E

(ρ2)
∆β . For these points we have

E
(ρ1)
∆β = (γ∆β(∆β)ρ1/c, γ∆βρ1) and E

(ρ1)
∆β = (γ∆β(∆β)ρ2/c, γ∆βρ2).

There distance for the observer L(0) is now

∆l = γ∆β |ρ2 − ρ1|

but for the observer on L(ρ), which is characterized by a velocity propor-
tional to ∆β, the distance ∆l is contracted by a factor 1/γ∆β , i.e. it is
|ρ2 − ρ1| again.

Observers on L(ρ) are uniformly accelerated.
Let us choose two events E′(ρ)

β and E
(ρ)
β+∆β , on the world-line of the observer

L(ρ). Let the two events be characterized by the following coordinate sets,

E
(ρ)
β+∆β = (t, x)

E
′(ρ)
β = (t′, x′),

where by definition of the world-line L(ρ), i.e. of the fundamental observer
on it,

t = γ∆β(t′ + x′∆β) and x = γ∆β(x′ + t′∆β).
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The proper time ∆τ between the two events satisfies

−∆τ2 = −∆t2 + ∆x2

where
∆t = t− t′ and ∆x = x− x′.

Thus

∆τ2 = (t′ − γ∆β(t′ + x′∆β))2 − (x′ − γ∆β(x′ + t′∆β))2

= (t′)2 − 2(t′)γ∆β(t′ + x′∆β) + (γ∆β)2(t′ + x′∆β)2 +
−(x′)2 + 2(x′)γ∆β(x′ + t′∆β)− (γ∆β)2(x′ + t′∆β)2

= (t′)2 − (x′)2 − 2(t′)2γ∆β − 2t′x′∆βγ∆β + 2(x′)2γ∆β + 2t′x′∆βγ∆β

+(γ∆β)2
[
(t′)2 + 2x′t′∆β + (x′)2(∆β)2 − (x′)2 − 2x′t′∆β − (t′)2(∆β)2

]
=

[
(t′)2 − (x′)2

]
− 2γ∆β

[
(t′)2 − (x′)2

]
+ (γ∆β)2

[
1− (∆β)2

] [
(t′)2 − (x′)2

]
=

[
(t′)2 − (x′)2

] (
1− 2γ∆β + (γ∆β)2 − (γ∆β)2(∆β)2

)
=

[
(t′)2 − (x′)2

] (
1− 2γ∆β + (γ∆β)2(1− (∆β)2)

)
= 2

[
(x′)2 − (t′)2

]
(γ∆β − 1)

= 2ρ2(γ∆β − 1),

where, since E
(ρ)
β is on L(ρ), we have used that (x′)2 − (t′)2 = ρ2. When

∆β � 1 we have γ∆β ≈ 1−∆v2/2 and the above relation can be written
as

∆τ2 ≈ 2ρ2 1
2
∆β2

or in infinitesimal form
dτ2 = ρ2δβ2.

In this expression ∆β is the increase in velocity that takes place between
two infinitesimally close events, between which the observer on L(ρ) mea-
sures a time lapse dτ . Thus an observer on L(ρ) measures an instantaneous
acceleration

a =
dβ

dτ
=

1
ρ

i.e. it is uniformly accelerated.

Red-shift by fundamental observers.
We will now compute the red-shift due to the relative acceleration of two
observers moving on world lines L(ρ1) and L(ρ2) respectively. We remember
that the red-shift is defined as

z =
λReceived − λEmitted

λEmitted

with
λ = c∆τ.

Thus we have
z =

λReceived

λEmitted
− 1 =

∆τReceiver

∆τEmitter
− 1,
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Figure 6.1: Red-shift between fundamental observers.

and we see that what really matters is how a time interval on the emitter
world-line is measured from the receiver one. In our case a signal emitted
in a parameter lapse ∆β from L(ρ1) is such that

∆τ2
1 = 2ρ2

1(γ∆β − 1)

whereas on the receiver world-line L(ρ2) we have

∆τ2
2 = 2ρ2

2(γ∆β − 1).

Thus

1 + z =
∆τReceiver

∆τEmitter
=

∆τ2
∆τ1

=
ρ2

ρ1
.

Red-shift by a stationary observer.
We are now interested in the shift experienced by the stationary observer
on L(0) when he receives a signal from an observer L(ρ). Of course a
parameter lapse ∆β again corresponds on L(ρ) to a proper time interval

∆τ2 = 2ρ2(γ∆β − 1).

We need now to know how is the ∆τ ′ measured on L(0). With reference to
figure 6.2 we see this interval can be computed as (in units where c ≡ 1)

∆τ ′ = AB = (tB′′ −B′B′′)− (tA′′ −A′A′′).

We set
A′ = (t, xA′) = (γβρ, γρ)

where as usual γ = (1 − β2)−1/2 and t is the time at which the signal
arrives at A′. Moreover B′ is a parameter distance ∆β along L(ρ), which
means it can be obtained with a Lorentz transformation from A′ with
velocity ∆β:

B′ = (γ∆β(γβρ+ ∆βγρ), γ∆β(γρ+ ∆βγβρ)).

From the definition of A′, since we have γβρ = t, using the definition of
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Figure 6.2: Red-shift by a stationary observer.

γ we can derive the following equalities,

v =
t

(t2 + ρ2)1/2
,

γ =
(t2 + ρ2)1/2

ρ
, (6.4)

which are useful to express the coordinates of A′ and B′ solely in terms
of t, ρ and ∆β:

A′ = (t, (t2 + ρ2)1/2)
B′ = (γ∆β(t+ ∆β(t2 + ρ2)1/2)), γ∆β((t2 + ρ2)1/2) + ∆βt).

Using these results we now get

AB = γ∆β(t+ ∆β(t2 + ρ2)1/2))− t+

−γ∆β((t2 + ρ2)1/2) + ∆βt) + (t2 + ρ2)1/2

= γ∆βt+ γ∆β∆β(t2 + ρ2)1/2 − t+

−γ∆β(t2 + ρ2)1/2 − γ∆β∆βt+ (t2 + ρ2)1/2

= t(γ∆β − 1− γ∆β∆β)− (t2 + ρ2)1/2(γ∆β − 1− γ∆β∆β)

= (t− (t2 + ρ2)1/2)(γ∆β − 1− γ∆β∆β)

= (γ∆β(∆β − 1))((t2 + ρ2)1/2 − t)

=
(1− (1−∆β)γ∆β)ρ2

t+ (t2 + ρ2)1/2
; (6.5)

thus

∆τ ′ =
(1− (1−∆β)γ∆β)ρ2

t+ (t2 + ρ2)1/2
.

When ∆β � 1 we have the natural approximations

γ∆β = (1−∆β2)−1/2 ≈ 1 +
∆β2

2

and
(γ∆β − 1)1/2 ≈ ∆β√

2
.

c©2004 by Stefano Ansoldi — Please, read statement on cover page



“Special Relativity”. [6.2].91

Using them we get

1 + z =
∆τ
∆τ ′

=

√
2ρ(γ∆β − 1)1/2

[
t+ (ρ2 + t2)1/2

]
ρ2 [1− (1−∆β)γ∆β ]

≈ t+ (ρ2 + t2)1/2

ρ

≈ t

ρ
+

[
1 +

(
t

ρ

)2
]1/2

.
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