Chapter 1

Preliminaries

1.1 Linear Algebra preliminaries

1.2 Structures over a vector space

In this section V is a vector space of dimension $\operatorname{dim}(V)=n .\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V and $\left\{E_{1}, \ldots, E_{n}\right\}$ a basis of V^{*}.

1.2.1 Exterior algebra

Let V be a vector space of dimension $\operatorname{dim}(V)=n$.
Definition 1.1 (k-linear alternating maps)
The space of k-linear alternating maps over V is the set

$$
\begin{aligned}
\Lambda^{k}(V)=\{\boldsymbol{\omega} \mid \boldsymbol{\omega}: & V^{k} \longrightarrow \mathbb{R} \quad \text { with } \\
& \left.\boldsymbol{\omega}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)=(-)^{\pi} \boldsymbol{\omega}\left(\boldsymbol{v}_{\pi(1)}, \ldots, \boldsymbol{v}_{\pi(k)}\right) \quad \text { if } \quad \omega \in \mathscr{S}_{n}\right\}
\end{aligned}
$$

Proposition 1.1 (Vector space structure of $\Lambda^{k}(V)$)
$\Lambda^{k}(V)$ has a vector space structure. Let $\mathcal{B}=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)$ be a basis of V and $\mathrm{c}=\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{k}}\right)$, with $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ a subsystem extracted from the basis \mathcal{B}. There is exactly one k-linear alternating map

$$
\boldsymbol{\omega}_{c}: V^{k} \longrightarrow \mathbb{R}
$$

such that

1. $\boldsymbol{\omega}_{\mathrm{c}}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{k}}\right)=1$;
2. $\boldsymbol{\omega}_{\mathrm{c}}\left(\boldsymbol{e}_{j_{1}}, \ldots, \boldsymbol{e}_{j_{k}}\right)=0$ if $\left\{j_{1}, \ldots, j_{k}\right\} \neq\left\{j_{1}, \ldots, j_{k}\right\}$;

Proposition 1.2 (Basis of $\Lambda^{k}(V)$)
Let

$$
\mathcal{B}_{\Lambda^{k}}=\left\{\boldsymbol{\omega}_{\mathrm{c}} \mid \mathbf{c}=\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{k}}\right)\right\}
$$

$\mathcal{B}_{\Lambda^{k}}$ is a basis of $\Lambda^{k}(V)$. The dimension of $\Lambda^{k}(V)$ is given by the binomial coefficient $\binom{n}{k}$.

We set $\Lambda^{0} \stackrel{\text { def. }}{=} \mathbb{R}$. Then $\Lambda^{1}=V^{*}$ and $\Lambda^{n}=\mathbb{R}$. Moreover $\Lambda^{j}=0$ for $j>n$.
Definition 1.2 (Exterior product in $\Lambda^{k}(V)$)
Let $\kappa \in \Lambda^{k}(V)$ and $\lambda \in \Lambda^{l}(V)$.

$$
\Lambda: \Lambda^{k}(V) \times \Lambda^{l}(V) \longrightarrow \Lambda^{k+l}(V)
$$

such that

$$
\begin{aligned}
& (\boldsymbol{\kappa} \wedge \boldsymbol{\lambda})\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}, \boldsymbol{v}_{k+1}, \ldots, \boldsymbol{v}_{k+l}\right) \stackrel{\text { def. }}{=} \\
& \quad=\frac{1}{(k+l)!} \sum_{\pi \in \mathscr{S}_{k+l}}(-1)^{\pi} \boldsymbol{\kappa}\left(\boldsymbol{v}_{\pi(1)}, \ldots, \boldsymbol{v}_{\pi(k)}\right) \boldsymbol{\lambda}\left(\boldsymbol{v}_{\pi(k+1)}, \ldots, \boldsymbol{v}_{\pi(k+l)}\right)
\end{aligned}
$$

is called the exterior product.
The exterior product has the following properties:

1. if $\boldsymbol{\kappa} \in \Lambda^{k}(V)$ and $\boldsymbol{\lambda} \in \Lambda^{l}(V)$ then $\boldsymbol{\kappa} \wedge \boldsymbol{\tau}=(-1)^{k l} \boldsymbol{\tau} \wedge \boldsymbol{\kappa}$;
2. if $\boldsymbol{\omega} \in \Lambda^{2 k+1}(V)$ then $\boldsymbol{\omega} \wedge \boldsymbol{\omega}=0$.

Definition 1.3 (Graßmann Algebra of V)

The set

$$
\mathcal{G}(V)=\bigoplus_{k}^{0, n} \Lambda^{k}(V)
$$

together with the operations $(+, \cdot, \wedge)$ (vector space sum, vector space product by a scalar and exterior product) is an algebra with unity $1 \in \mathbb{R} \equiv \Lambda^{0}(V)(1 \wedge \omega=$ $\omega \wedge 1=\omega)$, the Graßmann Algebra over V.

A basis of $\Lambda^{k}(V)$ can be written as

$$
\mathcal{B}_{\Lambda^{k}}=\left\{\boldsymbol{E}_{i_{1}} \wedge \ldots \wedge \boldsymbol{E}_{i_{k}} \mid 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n\right\} .
$$

We can extend the exterior product as an operation on the Graßman algebra over a vector space V.

1.2.2 Tensor algebra

In this subsection let V, W, U be finite dimensional vector spaces over a field \mathbb{F} (for definiteness \mathbb{F} can be taught as \mathbb{R} or \mathbb{C}). Let $F(V, W)$ be the free vector space generated by all couples (v, w) with $v \in V$ and $w \in W$: thus $F(V, W)$ is the set of all finite linear combinations of couples $(v, w) . R(V, W)$ will be the subspace of $F(V, W)$ spanned by the following elements:

$$
\begin{aligned}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) & v_{1}, v_{2} \in V, \quad w \in W \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right) & v \in V, \quad w_{1}, w_{2} \in W \\
(\alpha v, w)-\alpha(v, w) & v \in V, \quad w \in W, \quad \alpha \in \mathbb{F} \\
(v, \alpha w)-\alpha(v, w) & v \in V, \quad w \in W, \quad \alpha \in \mathbb{F}
\end{aligned}
$$

Definition 1.4 (Tensor product)
The tensor product of two vector spaces V and W is the vector space $V \otimes W$ defined as

$$
V \otimes W \stackrel{\text { def. }}{=} F(V, W) \backslash R(V, W)
$$

The equivalence class in $V \otimes W$ containing the element (v, w) is denoted as $v \otimes w$. We will call ϕ the canonical bilinear map

$$
\phi: V \times W \longrightarrow V \otimes W
$$

such that $\phi(v, w)=v \otimes w$.

Definition 1.5 (Universal factorization property)

Let ψ be a bilinear map

$$
\psi: V \times W \longrightarrow U
$$

We will say that the couple (U, ψ) has the universal factorization property for $V \times W$ if $\forall S$, S vector space, and

$$
\forall f, f: V \times W \longrightarrow S
$$

f bilinear, there exists a unique \tilde{f}

$$
\tilde{f}: U \longrightarrow S
$$

such that $f=\tilde{f} \circ \psi$.

Proposition 1.3 (Universal factorization property of the tensor product)

The couple $(V \otimes W, \phi)$ has the universal factorization property for $V \times W$. Moreover the couple $(V \otimes W, \phi)$ is unique in the sense that if another couple (Z, ζ) has the universal factorization property for $V \times W$, then there exists an isomorphism α

$$
\alpha: V \otimes W \longrightarrow Z
$$

such that $\zeta=\alpha \circ \phi$.

Proof:

Let S be any vector space and f a bilinear map

$$
f: V \times W \longrightarrow S
$$

Since $V \times W$ is a basis for $F(V, W), f$ can be extended by linearity to a unique map

$$
f^{\prime}: F(V, W) \longrightarrow S
$$

by the rule

$$
f^{\prime}\left(\sum_{i}^{1, N} \lambda_{i}\left(v_{i}, w_{i}\right)\right)=\sum_{i}^{1, N} \lambda_{i} f\left(v_{i}, w_{i}\right) .
$$

Since f is bilinear $\operatorname{ker}\left(f^{\prime}\right) \supset R(V, W)^{1}$. This means that f^{\prime} induces a well defined map $f^{\prime \prime}$

$$
f^{\prime \prime}: V \otimes W \longrightarrow S
$$

such that ${ }^{2} f^{\prime \prime}(v \otimes w)=f^{\prime}((v, w))$. By construction $f^{\prime \prime} \circ \phi=f$ and $f^{\prime \prime}$ is unique since $\phi(V \times W)$ spans $V \otimes W$. This shows that the couple $(V \otimes W, \phi)$ has the universal factorization property for $V \times W$.
Let us consider another couple (Z, ζ) having the universal factorization property for $V \times W$. When in the definition of the universal factorization property we use the following identifications

$$
\begin{array}{ll}
\psi \longleftrightarrow \phi & U \longleftrightarrow V \otimes W \\
f \longleftrightarrow \zeta & S \longleftrightarrow Z
\end{array}
$$

we obtain the existence of a unique map σ_{1},

$$
\sigma_{1}: V \otimes W \longrightarrow Z
$$

such that $\zeta=\sigma_{1} \circ \phi$.
At the same time we can exchange the roles of $(U \otimes V, \phi)$ and (Z, ζ). This means that in the definition of the universal factorization property we can also use the following identifications

$$
\begin{array}{ll}
\psi \longleftrightarrow \zeta & U \longleftrightarrow Z \\
f \longleftrightarrow \phi & S \longleftrightarrow V \otimes W
\end{array}
$$

so that it exists a unique map σ_{2},

$$
\sigma_{2}: Z \longrightarrow V \otimes W
$$

such that $\phi=\sigma_{2} \circ \zeta$.
We thus have

$$
\begin{aligned}
\zeta & =\sigma_{1} \circ \sigma_{2} \circ \zeta \\
\phi & =\sigma_{2} \circ \sigma_{1} \circ \phi
\end{aligned}
$$

and by the uniqueness of the map in the definition of the universal factorization property we obtain

$$
\begin{aligned}
\sigma_{1} \circ \sigma_{2} & =\mathbb{I}_{Z} \\
\sigma_{2} \circ \sigma_{1} & =\mathbb{I}_{V \otimes W}
\end{aligned}
$$

so that Z and $V \otimes W$ are isomorphic.

$$
\begin{align*}
& { }^{1} \text { To understand this fact consider for example the action of } f^{\prime} \text { on an element of the form } \\
& \begin{aligned}
&\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) . \text { We have } \\
& f^{\prime}\left(\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)\right)=f^{\prime}\left(\left(v_{1}+v_{2}, w\right)\right)-f^{\prime}\left(\left(v_{1}, w\right)\right)-f^{\prime}\left(\left(v_{2}, w\right)\right) \\
&=f\left(v_{1}+v_{2}, w\right)-f\left(v_{1}, w\right)-f\left(v_{2}, w\right) \\
&=f\left(v_{1}, w\right)+f\left(v_{2}, w\right)-f\left(v_{1}, w\right)-f\left(v_{2}, w\right) \\
&=0 \quad, \quad \forall v_{1}, v_{2} \in V, \quad \forall w \in W,
\end{aligned}
\end{align*}
$$

where we used the bilinearity of f. With analogous calculations we see that f^{\prime} vanishes on the other combinations that are used to span $R(V, W)$ so by linearity it vanishes on all $R(V, W)$.
${ }^{2}$ This can be seen by writing the class $v \otimes w$ as $(v, w)+R(V, W)$. But then

$$
f^{\prime}((v, w)+R(V, W))=f^{\prime}((v, w))+f^{\prime}(R(V, W))=f^{\prime}((v, w))+0=f^{\prime}((v, w))
$$

because we remember that $\operatorname{ker}\left(f^{\prime}\right) \supset R(V, W)$.
© 2004 by Stefano Ansoldi - Please, read statement on cover page

Proposition 1.4 (Isomorphism of $V \otimes W$ into $W \otimes V$)
There exists only one isomorphism of $V \otimes W$ onto $W \otimes V$ which $\forall v, w$ sends $v \otimes w$ into $w \otimes v$.

Proof:

Let us consider the universal factorization property of $\left(V \otimes W, \phi_{V W}\right)$ for $V \times W$ with respect to the map f

$$
f: V \times W \longrightarrow W \otimes V
$$

defined as $f(v, w) \stackrel{\text { def. }}{=} w \otimes v$. Then we know that there exists only one map $f^{\prime \prime}$ such that

$$
f^{\prime \prime}: V \otimes W \longrightarrow W \otimes V
$$

and $f^{\prime \prime}(v \otimes w)=w \otimes v$.
At the same time we can consider the universal factorization property of $\left(W \otimes V, \phi_{W V}\right)$ for $W \times V$ with respect to the map g

$$
g: W \times V \longrightarrow V \otimes W
$$

defined as $g(w, v) \stackrel{\text { def. }}{=} v \otimes w$. Then we know that there exists only one map $g^{\prime \prime}$ such that

$$
g^{\prime \prime}: W \otimes V \longrightarrow V \otimes W
$$

and $g^{\prime \prime}(w \otimes v)=v \otimes w$.
If we pay attention at how the maps $f^{\prime \prime}$ and $g^{\prime \prime}$ work we have

$$
\begin{aligned}
f^{\prime \prime} \circ g^{\prime \prime} & =\mathbb{I}_{W \otimes V} \\
g^{\prime \prime} \circ f^{\prime \prime} & =\mathbb{I}_{V \otimes W}
\end{aligned}
$$

so that $W \otimes V$ and $V \otimes W$ are isomorphic.

Proposition 1.5 (Isomorphism of $\mathbb{F} \otimes U$ onto U)

Let us consider \mathbb{F} as a 1-dimensional vector space over \mathbb{F}. There exists only one isomorphism of $\mathbb{F} \otimes U$ onto U which sends $\rho \otimes u$ into $\rho u, \forall \rho \in \mathbb{F}$ and $\forall u \in U$. The same holds for $U \otimes \mathbb{F}$ and U.

Proposition 1.6 (Isomorphism of $(U \otimes V) \otimes W$ onto $U \otimes(V \otimes W)$)
There exists only one isomorphism of $(U \otimes V) \otimes W$ onto $U \otimes(V \otimes W)$ that sends $(u \otimes v) \otimes w$ into $u \otimes(v \otimes w), \forall u \in U, \forall v \in V$ and $\forall w \in W$.

We add now some additional observations.

1. The above property implies that it is meaningful to write $U \otimes V \otimes W$ without brackets.
2. By generalizing proposition (1.3) starting from k vector spaces U_{1}, \ldots, U_{k} we can define $U_{1} \otimes \ldots \otimes U_{k}$.
3. By generalizing proposition (1.4) to the case of the k-fold tensor product ${ }^{3}$ $\forall \pi \in S_{k}$ there exists only one isomorphism of $U_{1} \otimes \ldots \otimes U_{k}$ onto $U_{\pi(1)} \otimes$ $\ldots \otimes U_{\pi(k)}$ that sends $u_{1} \otimes \ldots \otimes u_{k}$ into $u_{\pi(1)} \otimes \ldots \otimes u_{\pi(k)}$.
4. Without proof we are also going to state the following results:

Proposition 1.7 (Tensor product of functions)

Given vector spaces $U_{j}, V_{j}, j=1,2$, and given maps

$$
f_{j}: U_{j} \longrightarrow V_{j} \quad, \quad j=1,2
$$

there exists only one map f,

$$
f: U_{1} \otimes U_{2} \longrightarrow V_{1} \otimes V_{2}
$$

such that $f\left(u_{1} \otimes u_{2}\right)=f\left(u_{1}\right) \otimes f\left(u_{2}\right)$ for all $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$. By definition we will write

$$
f \stackrel{\text { def. }}{=} f_{1} \otimes f_{2}
$$

Proposition 1.8 (Distributive properties of \otimes with respects to + .)
Given vector spaces $U, V, U_{i}, V_{i}, i=1, \ldots, k$, the following properties hold:

$$
\begin{align*}
\left(U_{1}+\ldots+U_{k}\right) \otimes V & =U_{1} \otimes V+\ldots+U_{k} \otimes V \\
U \otimes\left(V_{1}+\ldots+V_{k}\right) & =U \otimes V_{1}+\ldots+U \otimes V_{k} \tag{1.2}
\end{align*}
$$

Proposition 1.9 (Basis of tensor product)

Let $\left\{v_{i}\right\}_{i=1, \ldots, m}$ be a basis of V and $\left\{w_{j}\right\}_{j=1, \ldots, n}$ be a basis of W. Then $\left\{v_{i} \otimes\right.$ $\left.w_{j}\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ is basis $U \otimes V$. In particular $\operatorname{dim}(U \otimes V)=\operatorname{dim}(U) \operatorname{dim}(V)$.

Proof:

Let U_{i} be the subspace of U spanned by u_{i} and V_{j} the subspace of V spanned by v_{j}. By proposition (1.8)

$$
U \otimes V=\sum_{i=1, \ldots m}^{j=1, \ldots, n} U_{i} \times V_{j}
$$

At the same time by proposition (1.5) $U_{i} \otimes V_{j}$ is a one dimensional vector space spanned by $u_{i} \otimes v_{j}$. This completes the proof.

Proposition 1.10 () Let

$$
L\left(U^{*}, V\right)=\left\{l: U^{*} \longrightarrow V, l \quad \text { linear }\right\}
$$

There exists only one isomorphism,

$$
g: U \otimes V \longrightarrow L\left(U^{*}, V\right)
$$

[^0]© 2004 by Stefano Ansoldi - Please, read statement on cover page

Proof:

Let us define a function f,

$$
f: U \times V \longrightarrow L\left(U^{*}, V\right)
$$

such that ${ }^{4}$

$$
(f(u, v))\left(u^{*}\right)=u^{*}(u) v \quad, \quad \forall u \in U \quad, \quad \forall u^{*} \in U^{*} \quad, \quad \forall v \in V
$$

(remember that $u^{*}(u) \in \mathbb{F}$). By proposition (1.3) there exists only one g,

$$
g: U \otimes V \longrightarrow L\left(U^{*}, V\right)
$$

such that $(g(u \otimes v))\left(u^{*}\right)=u^{*}(u) v$. Let us now fix some basis, $\left\{u_{i}\right\}_{i=1, \ldots, m}$ in $U,\left\{u_{i}^{*}\right\}_{i=1, \ldots, m}$ in U^{*} and $\left\{v_{i}\right\}_{i=1, \ldots, n}$ in V. Then $\left\{g\left(u_{i} \otimes v_{j}\right)\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ is a linearly independent set in $L\left(U^{*}, V\right)$. To show this consider a linear combination of these elements
$\sum_{i=1, \ldots, m}^{j=1, \ldots, n} a_{i j} g\left(u_{i} \otimes v_{j}\right) \quad$ with $\quad a_{i j} \in \mathbb{F}, \quad \forall i=1, \ldots, m, \quad \forall j=1, \ldots, n$,
such that

$$
\sum_{i=1, \ldots, m}^{j=1, \ldots, n} a_{i j} g\left(u_{i} \otimes v_{j}\right)=0
$$

Then we have that

$$
\forall k=1, \ldots m \sum_{i=1, \ldots, m}^{j=1, \ldots, n} a_{i j} g\left(u_{i} \otimes v_{j}\right)\left(u_{k}^{*}\right)=\sum_{j} a_{k j} v_{j}=0
$$

which, since the $\left\{v_{i}\right\}_{i=1, \ldots, n}$ are linearly independents, implies

$$
\forall k=1, \ldots, m, \quad \forall j=1, \ldots, n \quad a_{k j}=0 .
$$

Since the dimensions of $U \otimes V$ and of $L\left(U^{*}, V\right)$ are the same g is an isomorphism and for the definition of the universal mapping property it is also unique.

Without proof we also give the additional result:

Proposition 1.11 (Tensor product and duals)

Given vector spaces U and V there exists only one isomorphism g

$$
g: U^{*} \otimes V^{*} \longrightarrow(U \otimes V)^{*}
$$

such that

$$
\left(g\left(u^{*} \otimes v^{*}\right)\right)(u \otimes v)=u^{*}(u) v^{*}(v), \quad \forall u \in U, \forall u^{*} \in U^{*}, \forall v \in V, \forall v^{*} \in V^{*}
$$

This result can be generalized to r-fold tensor products.

[^1](c) 2004 by Stefano Ansoldi - Please, read statement on cover page

Notation 1.1 We set up the following notation:

$$
V_{r}^{s} \stackrel{\text { not. }}{=} V^{*} \times \ldots \times \stackrel{r}{V}^{*} \times \stackrel{1}{V} \times \ldots \times \stackrel{s}{V}
$$

Moreover we set

$$
V^{s} \stackrel{\text { not. }}{=} V_{0}^{s}
$$

and

$$
V_{r} \stackrel{\text { not. }}{=} V_{r}^{0} .
$$

Concerning tensor spaces we set

$$
T^{r}(V) \stackrel{\text { not. }}{=} V^{1} \otimes \ldots \otimes V_{V}^{r}
$$

and

$$
T_{s}(V) \stackrel{\text { not. }}{=} \cdot V^{*} \otimes \ldots \otimes V^{*}
$$

Then

$$
T_{s}^{r}(V) \stackrel{\text { not. }}{=} T^{r}(V) \otimes T_{s}(V)
$$

with

$$
T_{0}^{0}=\mathbb{F}
$$

Proposition 1.12 (Tensor product and linear mappings)

$T_{s}(V)$ is isomorphic to the space of s-linear mappings from V^{s} into \mathbb{F}. $T^{r}(V)$ is isomorphic to the space of r-linear mappings from V_{r} into \mathbb{F}. $T_{s}^{r}(V)$ is isomorphic to the space of (r, s)-linear mappings from V_{r}^{s} into \mathbb{F}.

Proof:

We prove only the first result using the generalized result of (1.11). We then see that $T_{s}(V)$ is the dual vector space of $T^{s}(V)$. But from the universal factorization property of the tensor product the linear space of mappings of $T^{s}(V)$ into \mathbb{F} is isomorphic to the space of s-linear mappings of V^{s} into \mathbb{F}. As simple proofs can be given in the other cases.

Definition 1.6 (Tensors on V)

We define

$$
T_{s}^{r}(V)=\left\{\boldsymbol{T} \mid \boldsymbol{T}: V_{s}^{r} \longrightarrow \mathbb{R}, \boldsymbol{T} \text { linear }\right\}
$$

the set of tensors over V.

Proposition 1.13 (Vector space structure of $T_{s}^{r}(V)$)
$T_{s}^{r}(V)$ is a vector space of dimension n^{r+s} over \mathbb{R}.

Proposition 1.14 (Algebra structure of $T_{s}^{r}(V)$)
Let V be a vector space of dimension $\operatorname{dim}(V)=n$.
© 2004 by Stefano Ansoldi - Please, read statement on cover page

1. $T_{s}^{r}(V)$ together with the operations $(+, \cdot, \otimes)$ (vector space sum, vector space product by a scalar and tensor product) is an algebra over \mathbb{R}.
2. $\mathcal{B}_{T_{s}^{r}}$ defined as

$$
\begin{aligned}
& \mathcal{B}_{T_{s}^{r}} \stackrel{\text { def. }}{=}\left\{\boldsymbol{e}_{a_{1}} \otimes \ldots \otimes \boldsymbol{e}_{a_{r}} \otimes \boldsymbol{E}_{b_{1}} \otimes \ldots \otimes \boldsymbol{E}_{b_{s}} \mid\right. \\
&\left.1 \leq a_{i} \leq n, i=1, \ldots, r, 1 \leq b_{j} \leq n, j=1, \ldots, s,\right\}
\end{aligned}
$$

is a basis of $T_{s}^{r}(V)$.

Definition 1.7 (Tensor algebra)

We will call

$$
T(V) \stackrel{\text { def. }}{=} \bigoplus_{r, s \leq 0} T_{s}^{r}(V)
$$

the tensor algebra over V.

Definition 1.8 (Symmetrized tensor)

Let \boldsymbol{T} be an (r, s) tensor, i.e.

$$
\boldsymbol{T}=\sum_{\substack{i_{1}, \ldots, i_{r} \\ j_{1}, \ldots, j_{s}}}^{1, m} \boldsymbol{T}_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} \frac{\partial}{\partial x_{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x_{i_{r}}} \otimes d x_{j_{1}} \otimes \ldots \otimes d x_{j_{s}}
$$

The symmetrization of \boldsymbol{T} with respect to the a given subset of vector slots, let us say the $k_{1}-t h, \ldots, k_{n}$-th is the (r, s) tensor (\boldsymbol{T}) defined as

$$
\begin{aligned}
& (\boldsymbol{T})\left(\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{r}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{s}\right)= \\
& \quad=\frac{1}{n!} \sum_{\sigma \in \mathscr{S}_{n}} \boldsymbol{T}\left(\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{r}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\sigma\left(k_{1}\right)}, \ldots, \boldsymbol{v}_{\sigma\left(k_{n}\right)}, \ldots, \boldsymbol{v}_{s}\right)
\end{aligned}
$$

Definition 1.9 (Antisymmetrized tensor)

The antisymmetrization of a tensor \boldsymbol{T} with respect to the a given subset of vector slots, let us say the $k_{1}-t h, \ldots, k_{n}$-th is the (r, s) tensor ${ }_{[} \boldsymbol{T}_{]}$defined as

$$
\begin{aligned}
& {\left[\boldsymbol{T}_{]}\left(\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{r}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{s}\right)=\right.} \\
& \quad=\frac{1}{n!} \sum_{\sigma \in \mathscr{S}_{n}}(-1)^{\sigma} \boldsymbol{T}\left(\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{r}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\sigma\left(k_{1}\right)}, \ldots, \boldsymbol{v}_{\sigma\left(k_{n}\right)}, \ldots, \boldsymbol{v}_{s}\right) .
\end{aligned}
$$

Similar definitions can be given for 1-form slots, but in general no meaning can be given to symmetrization or antisymmetrization of mixed 1-form and vector slots.

1.2.3 Orientation

Let us consider $\Lambda^{n}(V)$. Since we have $\Lambda^{n}(V) \cong \mathbb{R}$, then $\Lambda^{n}(V) /\{0\}$ consists of two connected components.

Definition 1.10 (Orientation on V)
A choice of a connected component of $\Lambda^{n}(V) /\{0\}$ is an orientation of V.

Proposition 1.15 (Choice of an orientation of V)

The choice of a basis in V is a choice of an orientation on V. This choice is invariant under all endomorphisms of V with positive determinant.

Proof:

If we consider a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V, then $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ is a basis of V^{*} (in fact the dual basis) and $v_{1}^{*} \wedge \ldots \wedge v_{m}^{*}$ is a basis in $\Lambda^{n}(V)$, i.e. it is in $\Lambda^{n}(V) /\{0\}$. Thus it selects one of the connected components of $\Lambda^{n}(V) /\{0\}$, i.e. it defines an orientation on V.

Now consider another basis $\left(w_{1}, \ldots, w_{n}\right)$ in V. Then $w_{i}=\sum_{j} C_{i j} v_{j}$ and $w_{i}^{*}=\sum_{j}\left(C^{*}\right)_{i j} v_{j}^{*}$ with $\left(C^{*}\right)_{i j}=\left(C^{-1}\right)_{j i}$. Then $w_{1}^{*} \wedge \ldots \wedge w_{m}^{*}=$ $\left(\operatorname{det}\left(C^{*}\right)\right) v_{1}^{*} \wedge \ldots \wedge v_{m}^{*}$, where we are interested in the fact that

$$
\operatorname{sign}\left(\operatorname{det}\left(C^{*}\right)\right)=\operatorname{sign}(\operatorname{det}(C))
$$

C represent an endomorphism of V in the two fixed bases, and if its determinant is positive, then the orientation "chosen" by $\left(v_{1}, \ldots, v_{n}\right)$ is the same as the one "chosen" by $\left(w_{1}, \ldots, w_{n}\right)$ since $v_{1}^{*} \wedge \ldots \wedge v_{m}^{*}$ and $w_{1}^{*} \wedge \ldots \wedge w_{m}^{*}$ are in the same connected component of $\Lambda^{n}(V) /\{0\}$.

1.2.4 Scalar product

Definition 1.11 (Scalar product)

A real scalar product over V is a map

$$
\langle-,-\rangle: V \times V \longrightarrow \mathbb{R}
$$

which is

1. symmetric, i.e. $\forall \boldsymbol{v}, \boldsymbol{w} \in V$ it satisfies $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{w}, \boldsymbol{v}\rangle$;
2. linear in the first argument, i.e. $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $\lambda, \mu \in \mathbb{R}$ $\Rightarrow\langle\lambda \boldsymbol{u}+\mu \boldsymbol{v}, \boldsymbol{w}\rangle=\lambda\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\mu\langle\boldsymbol{v}, \boldsymbol{w}\rangle ;$
3. non-degenerate, i.e. such that given $\boldsymbol{v} \in V$, $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0, \forall \boldsymbol{w} \in V \Rightarrow \boldsymbol{v}=\mathbf{0}$.

Given a basis of V if we consider the matrix $g_{i j}=\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle$ the symmetry assumption implies $g_{i j}=g_{j i}$ and the non-degenerate assumption implies that the matrix $g_{i j}$ is non singular. A scalar product will be called a metric on V. When, given a vector $\boldsymbol{v}=\sum_{i}^{1, n} v^{i} \boldsymbol{e}_{i}$, we consider the map

$$
\langle\boldsymbol{v},-\rangle: V \longrightarrow V
$$

this is a linear map on V, i.e. $\langle\boldsymbol{v},-\rangle \in V^{*}=\Lambda^{1}(V)$. We can easily determine its components in the dual basis writing

$$
\langle\boldsymbol{v},-\rangle=\sum_{j}^{1, n} \tilde{v}^{j} \boldsymbol{E}_{j}
$$

and acting with both sides on $\boldsymbol{w}=\sum_{k}^{1, n} w^{k} e_{k}$:

$$
\left.\begin{array}{rl}
& =\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\sum_{j}^{1, n} \tilde{v}_{j} \boldsymbol{E}^{j}(\boldsymbol{w})
\end{array}\right)=\left\{\begin{aligned}
\sum_{i, j}^{1, n} g_{i j} v^{i} w^{j} & = \\
& =\sum_{j}^{1, n} \tilde{v}_{j} \boldsymbol{E}_{j}\left(\sum_{k}^{1, n} w^{k} \boldsymbol{e}_{k}\right) \\
\sum_{i, j}^{1, n} g_{i j} v^{i} w^{j} & = \\
& =\sum_{j, k}^{1, n} \tilde{v}_{j} w^{k} \boldsymbol{E}_{j}\left(\boldsymbol{e}_{k}\right) \\
\sum_{j}^{1, n}\left(\sum_{i}^{1, n} g_{i j} v^{i}\right) w^{j} & =
\end{aligned}\right.
$$

Thus

$$
\tilde{v}_{j}=\sum_{i}^{1, n} g_{i j} v^{i}
$$

The converse is also true: if we have a 1-form $\boldsymbol{\omega}=\sum_{i}^{1, n} \omega_{i} \boldsymbol{E}^{i} \in V^{*}$ we can associate to it a unique vector $\boldsymbol{w} \in V$, whose components are defined as $w^{i}=$ $\sum_{j}^{1, n}\left(g^{-1}\right)_{i j} \omega_{j}$. Thus the metric induces a natural isomorphisms between V and V^{*}. Since the action of an $\boldsymbol{\omega} \in V^{*}$ is independent from the definition of a metric on V, we will keep the notation $\boldsymbol{\omega}(\boldsymbol{v})$ and we will not rewrite it in terms of the scalar product.

Definition 1.12 (Signature and Lorentzian metric)

Let $\langle-,-\rangle$ be a metric on V. The signature of the metric is the number of positive eigenvalues of the matrix $g_{i j}$ minus the number of negative eigenvalues. A metric of signature $m-2$ is called a Lorentzian metric.

Definition 1.13 (Timelike, spacelike and null vectors)

Let $\langle-,-\rangle$ be a Lorentzian metric on the vector space V. A vector $\boldsymbol{v} \in V$ is timelike if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle<0$, spacelike if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0$ and null if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$.

1.3 Topology preliminaries

Definition 1.14 (Topology and open sets)

Let \mathscr{S} be a set and \mathcal{T} a collection of subsets of \mathscr{S} such that:

1. $\mathscr{S} \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$;
2. given $n \in \mathbb{N}, A_{i} \in \mathcal{T}, i=1, \ldots, n \Rightarrow \bigcap_{i}^{1, n} A_{i} \in \mathcal{T}$;
3. given a collection $\left\{A_{n}\right\}_{n \in \mathbb{N}}, A_{n} \in \mathcal{T} \forall n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{T}$.
\mathcal{T} is called a topology on \mathscr{S}; its elements are called open sets.

Definition 1.15 (Topological space)

Let \mathscr{S} be a set and \mathcal{T} a topology on \mathscr{S}. The couple $(\mathscr{S}, \mathcal{T})$ is a topological space.

Figure 1.1: Timelike, spacelike and null vectors.

Definition 1.16 (Neighborhood)

Let $(\mathscr{S}, \mathcal{T})$ be a topological space and $p \in \mathscr{S}$. A neighborhood of p is an open set $P \in \mathcal{T}$ such that $p \in P$.

Definition 1.17 (Cover)

Let \mathscr{S} be a set and $\mathscr{U}=\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ a collection of subsets of \mathscr{S} indexed by a set \mathcal{A}. \mathscr{U} is called a cover of \mathscr{S} if $\bigcup_{\alpha \in \mathcal{A}} S_{\alpha}=\mathscr{S}$.

Definition 1.18 (Subcover)

Let \mathscr{S} be a set and $\mathscr{U}=\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ a cover of \mathscr{S}. Let $\mathcal{A}^{\prime} \subseteq \mathcal{A}$. Then $\mathscr{U}^{\prime}=$ $\left\{S_{\alpha^{\prime}}\right\}_{\alpha^{\prime} \in \mathcal{A}^{\prime}}$ is a subcover of the cover \mathscr{U} of \mathscr{S}.

Of course, a subcover is itself a cover.

Definition 1.19 (Refinement)

Let \mathscr{S} be a set and $\mathscr{U}=\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ a cover of \mathscr{S}. Another cover $\mathscr{V}=\left\{S_{\beta}^{\prime}\right\}_{\beta \in \mathcal{B}}$ of \mathscr{S} is called a refinement of \mathscr{U} if $\forall \beta \in \mathcal{B}, \exists \alpha \in \mathcal{A}$ such that $S_{\beta}^{\prime} \subset S_{\alpha}$.

Definition 1.20 (Open cover)

Let $(\mathscr{S}, \mathcal{T})$ be a topological space and let $\mathcal{O}=\left\{O_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be a cover of \mathscr{S}. \mathcal{O} is open cover of \mathscr{S} if $S_{\alpha} \in \mathcal{T} \forall \alpha \in \mathcal{A}$.

Definition 1.21 (Locally finite open cover)
Let $(\mathscr{S}, \mathcal{T})$ be a topological space and $\mathcal{O}=\left\{O_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ an open cover of \mathscr{S}. \mathcal{O} is a locally finite open cover of \mathscr{S} if $\forall s \in \mathscr{S}$ there exists W open neighborhood of s such that $\left\{O_{i} \mid O_{i} \cap W \neq \emptyset\right\}$ is a finite set.

Definition 1.22 (Compact topological space)

Let $(\mathscr{S}, \mathcal{T})$ be a topological space. \mathscr{S} is compact if every open cover of \mathscr{S} admits a finite subcover.

Figure 1.2: Typical example of a non-Hausdorff topological space.

Definition 1.23 (Paracompact topological space)

Let $(\mathscr{S}, \mathcal{T})$ be a topological space. \mathscr{S} is paracompact if every open cover of \mathscr{S} admits a locally finite open refinement.

Definition 1.24 (Hausdorff topological space)
Let $(\mathscr{S}, \mathcal{T})$ be a topological space. \mathscr{S} is a Hausdorff space if $\forall p, q \in \mathscr{S}$ there exist P and Q, open neighborhoods of p and q respectively, such that $P \cap Q=\emptyset$.

[^0]: ${ }^{3} S_{k}$ is the permutation group of k elements.

[^1]: ${ }^{4}$ Remember that $u^{*} \in U^{*}$ is an application from U into \mathbb{F}. Thus $u^{*}(u) \in \mathbb{F}$. Moreover f is a function from $U \times V$ into $L\left(U^{*}, V\right)$. Thus $f(u, v)$ is a linear map from U^{*} into V, i.e. $(f(u, v))\left(u^{*}\right) \in V$.

