
Chapter 8

General Relativity

8.1 Einstein’s Equations: intuitive derivation

8.2 Einstein’s Equations: structure

8.3 Einstein’s Equations, geodesics and the clas-
sical limit

8.4 Basics of Causal Structure

We have seen that a solution of Einstein’s equations of General Relativity is a
metric (tensor), gµν , associated with a 4-dimensional manifold (spacetime), M :
this is way we adhere to the convention of denoting spacetime with a couple
(M , g).

8.4.1 Characters of vectors and curves

We have also stressed more than once that at any given point m ∈ M (event) the
metric defines the result of the scalar product between any two vectors in the
tangent space Mm to M at p and thus also the norm of any single vector in Mm.
According to the sign of the norm, we also have classified vectors as timelike
(future or past directed), null (future or past directed) or spacelike.
A few remarks on time-orientability
Since a tangent vector v0 at a given event p0 ∈ M can be taught as the velocity
vector of a test particle passing through p0 = γ(t0) at a given instant of time
t0 of its evolution along the trajectory γ(t), the curve γ(t) can be identified as
timelike (past or future directed), null (past or future directed) or
spacelike at a given event as follows.

Definition 8.1 (Character of a curve at a point)
A curve γ(t) is timelike (past or future directed), null (past or future directed)
or spacelike at p0 = γ(t0), if its tangent vector γ̇(t0) at p0 is timelike (past or
future directed) or null (past or future directed) or spacelike.
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Since often we need curves which maintain their character, the definition above
can be restricted.

Definition 8.2 (Global character of curves)
A curve γT which is timelike at every event is a timelike curve, a curve γL

which is null at every event is a null curve, a curve γS which is spacelike at
every event is a spacelike curve and finally a curve γC which is timelike or null
at every event (i.e. which is nowhere spacelike) is a causal curve.

These last definitions are of a global character (whereas those associated with
the behaviour at a single spacetime event are local ones).

8.4.2 Causal relations between events

With the concepts introduced so far it is possible to precisely define the causal
relation between two arbitrary spacetime events and particular definitions are
reserved for the sets of events which are in a one of the above defined relations
with a chosen reference event.

Definition 8.3 (Chronological past and future of an event)
In particular given an event p ∈ M , the chronological future (resp. past) of p,
is the set I+(p) (resp. I−(p)) of all points that can be reached by a future (resp.
past) directed timelike curve starting at p.

In an analogous way the causal past and future of an event can be defined.

Definition 8.4 (Causal past and future of an event)
The causal future (resp. past) of p ∈ M , is the set J+(p) (resp. J−(p)) of all
points that can be reached by a future (resp. past) directed causal curve starting
at p.

If instead of focusing our attention on a single event we consider a subset U ⊂
M the above definitions are generalized in a natural way by the union of the
corresponding sets for all q ∈ U .

Definition 8.5 (Chronological and causal future (past) of a set)
The sets

I±(U) ≡
⋃
q∈U

I±(q) and J±(U) ≡
⋃
q∈U

J±(q)

are the chronological and causal
future
past of U respectively.

8.4.3 Causality, initial conditions, domains of dependence
and Cauchy surfaces

With the above definitions we are now in a position to rigorously speak about the
structure of spacetime with respect to given (sets of) events. Of course, many
pathological situation could occur in a general case, i.e. we could be easily con-
fronted with spacetime structures which do not satisfy some natural properties
which we understand under the word “causality” in its intuitive meaning. Even
if this structures can be quite stimulating from the point of view of present day
research in what follows we will restrict our attention to spacetime manifolds
which are commonly referred as strongly causal spacetimes.
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Definition 8.6 (Strongly causal spacetime)
A spacetime M is strongly causal if given an arbitrarily chosen event p ∈ M
for each U ⊂ M open neighborhood of p there exist another open neighborhood
of p, V ⊂ U , such that no casual curve intersects it more than once.

Incidentally, note that spacetimes in which there are closed causal curves, so that
events can influence their past, do not satisfy this condition: strong causality,
at least from this point of view, seems thus a sensible physical requirement.

We now remember what we have already discussed when confronted with
the structure of Einstein’s equations: we have seen how and on which quantities
some suitable initial conditions have to be imposed. It is also interesting to
understand how it is possible to characterize in a convenient way subsets of
spacetime on which these boundary conditions are to be given. These subsets
should be considered adequate as “generators” from the viewpoint of causal
relations among events, i.e. from the viewpoint of spacetime structure.

As a preliminary consideration we note that from one of these subsets of
M we would like to be able to determine the structure of spacetime for an
arbitrary time interval in the future. This is the reason for which we need a
further characterization of the definition of causal curve given above.

Definition 8.7 (Inextendible causal curve)
A causal curve γC is called future (resp. past) inextendible if it is impossible
to find an event p ∈ M such that for all U ⊂ M , U neighborhood of p, there
exist a t′ such that γC(t) ∈ U for all t > t′ (resp t < t′)

In more concrete words, this means that γC has no future (resp. past) endpoint.
Then we observe that initial conditions are usually given at a fixed “initial

time”, i.e. on a subset of events which are simultaneous in some sense. Since
from the causal viewpoint simultaneity can be understood as the absence of any
kind of time ordering relation, we will single subsets of M with this property
in the following definition.

Definition 8.8 (Achronal sets)
Subsets, A ⊂ M of spacetime characterized by the property that A ∩I+(A ) = ∅
are called achronal sets.

The physical meaning of this definition is that in these sets no event is in the
future of another one and thus no concept of future (or past) causal relationship
can be established among the events in the set.

If we add some particular events to an achronal set, i.e. if we make an
achronal set A a little bit larger by adding some particular points, then the
obtained set could contain some events causally related to some other events in
the set, so that the new set would be not achronal any more. This particular
events are thus singled out by the following definition.

Definition 8.9 (Edge of an achronal set)
Let A be an achronal set. The edge of A , E(A ), is the subsets of all the events
p ∈ A such that every neighborhood of p, U ⊂ M , contains at least a point
p+ ∈ I+(p), a point p− ∈ I−(p) and a timelike curve γT, connecting p− and
p+, such that γT ∩A = ∅.

We can now merge the last two concepts that we have defined.
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Definition 8.10 (Domains of dependence)
Let A be a closed achronal set. The set D+(A ) (resp. D−(A )) of all spacetime
events p such that every past (resp. future) inextendible causal curve passing
through p intersects A is called the future (resp. past) domain of dependence
of A . The set D(A ) = D+(A ) ∪D−(A ), union of the past and of the future
domains of dependence is the domain of dependence of A .

From the physical point of view all events in D+(A) (resp. D−(A)) can be
considered as effects (resp. causes) of the events in A and a special important
case is the one in whichD(A ) is all of M , since starting from the “simultaneous”
events of the achronal set, the future evolution of all spacetime can be predicted
(since all the events that constitute it are causally determined by the ones in
A ). Moreover we also have a complete knowledge of its past history. This
motivates the following definition.

Definition 8.11 (Cauchy surface and global hyperbolicity)
Let A ⊂ M be an achronal set such that D(A ) = M . Then A is called a
Cauchy surface (we instead use the denomination partial Cauchy surface for
a closed achronal set without edge). A spacetime M which admits a Cauchy
surface is called globally hyperbolic.

We observe, without proof, that a Cauchy surface is an achronal set with empty
edge.

8.4.4 Asymptotic structure

Till now we have set up some “causal language” in terms of which we can under-
stand the structure of spacetime as defined by the relations among the events,
which are its constituents. It is often useful have the possibility to compare
the results obtained in General Relativity with those of Classical Theory, for
example Newtonian gravitation. This is usually understood as the limit of weak
gravity, in which the spacetime structure is nearly that of flat Minkowski space.
It can, of course, be too restrictive a set up in which this condition is satisfied
on all spacetime, but certainly it can hold far away from the source, i.e. in
what, in flat space, we consider as infinity. We will now show as it is possible
to translate the concept of asymptotically flat and simple space in the language
used in the previous subsection. this will also give us the possibility of properly
describing a no-escape region. To get first an intuitive grasp of this concept we
observe that if, starting from a given event p, we can find only causal curves
connecting it with events in a spatially bounded proper subset of space, then
we will say that we cannot escape from some region containing p. Otherwise,
we will be free to have a causal connection with events that are outside any
bounded proper subset of space, i.e. even with events which are at “infinity”.
It is clear that in this description infinity is considered in a very broad sense
as a (part of the) boundary of spacetime, M . This very general description of
infinity will be of help to translate in the causal language of curved space the
idea, typical in classical mechanics, that a body is not bound to another if it
has enough energy to move far and far away, since we say in that case that it
can reach infinity, which we can imagine as flat because free of source and far
away from them. This motivations are behind the following definition.
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Definition 8.12 (Asymptotically empty and simple spacetime)
Let us consider a strongly causal spacetime (M , g). It is said to be asymptoti-
cally empty and simple if there exists a spacetime (M̃ , g̃) (called the associated
unphysical space) and ı, ı : M −→ M̃ , an imbedding of M as manifold with
smooth boundary ∂M in M̃ , such that:

1. a sufficiently regular function, Ω, on M̃ exists with the properties that it
is positive on ı(M ) and Ω2g = ı∗(g̃): thus ı is a conformal map;

2. Ω = 0 and dΩ 6= 0 on ∂M ;

3. every null geodesic on M has two endpoints on ∂M ;

4. Rµν = 0 on an open neighborhood of ∂M in M ∪∂M (which is the closure
M̄ of M ).

We can thus see that an asymptotically empty and simple spacetime has a
boundary that resembles the properties of infinity in Minkowski space. More-
over from the above definition, it turns out that in an asymptotically empty
and simple spacetime the boundary ∂M is a null surface: spacetime is then in
its past or in its future, so that ∂M actually consists of two connected com-
ponents, I + and I −, which of course are null. Moreover (with reference to
the preliminary observations given above) we see that ∂M can also be thought
to be at infinity, because the affine parameter t of each null geodesic γL(t) has
unbounded large values when approaching ∂M . Physically the set I + can be
characterized as that connected component of ∂M on which null geodesics have
their future endpoints, whereas on I − they have their past ones. Unfortu-
nately this very clear asymptotic structure is not general enough to cover all
physically interesting cases. For this reason it is indeed convenient to generalize
the concept.

Definition 8.13 (Weakly asymptotically empty and simple space)
A spacetime (M , g) is called weakly asymptotically empty and simple if there
exists an asymptotically empty and simple spacetime (M ′, g′) and a neighbor-
hood N ′ of ∂M ′ in M ′ such that N ′∩M ′ is isometric to an open set N ⊂ M :
in this case the region N is asymptotically empty and simple.

Of course a weakly asymptotically empty and simple spacetime can have many
(even an infinite number of) asymptotically empty and simple regions.

If (M , g) is a weakly asymptotically empty and simple space, it is thus pos-
sible to think it as conformally imbedded as M̄ (i.e. a manifold with boundary)
in a space (M̃ , g̃) in such a way that a neighborhood U of ∂M in M̃ is iso-
metric to a neighborhood U ′ of the boundary ∂M ′ of an asymptotically empty
and simple space M ′: thus ∂M in M̃ consists of the two null surfaces I + and
I −, i.e. future and past null infinity.

In an asymptotically empty and simple spacetime we will have a consistent
causal structure if no singular points in spacetime can be seen from future
null infinity. This motivates a further definition, with which we will merge
the asymptotically empty and simple structure defined above with the ideas of
causal evolution previously defined.
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Definition 8.14 (Strongly future asymptotically predictable space)
Let us now consider (M , g), a weakly asymptotically empty and simple space-
time, and a partial Cauchy surface, S in M . (M , g) is called strongly future
asymptotically predictable from the partial Cauchy surface S if I + is con-
tained in the closure of D+(S ) in M̃ and if J+(S ) ∩ J̄−(I +) is contained in
D+(S ).

This physically means that starting from S we can predict all the future until
I +, so that as required by the above motivation there will be no singular points
in spacetime which can be seen from future null infinity, and the same is true
for a neighborhood of ∂J−(I +).

Moreover a strongly future asymptotically predictable space has the nice
property that given a partial Cauchy surface S there exist a family S (τ) of
spacelike surfaces, homeomorphic to S , which cover D+(S )−S and intersect
I +. Each S (τ) can be interpreted as a constant-time surface so that the future
asyptotically predictable region can be foliated. Moreover the family S (τ) is
such that:

1. I+(S (τ1)) ⊃ S (τ2) if τ1 < τ2 so that, as one would expect, a spacelike
surface of the family is always in the (chronological) future of surfaces at
previous instants of time;

2. the edge of each spacelike surface S (τ) in M̃ is a 2-sphere S2(τ) in I +;

3. at all instants of time, S (τ) ∪
(
I + ∩ J−(S2(τ))

)
is a Cauchy surface for

D(S ).

We note that in this situation if ∂J−(I +) 6= ∅ then it has a nonempty inter-
section with S (τ) for sufficiently large τ (for property 2. above): then there
will be some events on S (τ), at least for sufficiently large τ , which are not
causally connected to future null infinity. We are going to use this property in
the definition of a black hole.

8.4.5 Black Hole and Event Horizon

A black hole, Loosely speaking is a region in the spacetime structure where the
pull of gravity is so strong that even light is confined inside it.

From the point of view of the Newtonian theory of gravitation, the possible
existence of such regions in space(time) was first pointed out more than two
centuries ago by John Mitchell [1], who realized that

“. . . if the semi-diameter of a sphære of the same density with the
sun were to exceed that of the sun in the proportion of 500 to 1, a
body falling from an infinite height towards it, would have acquired
at its surface a greater velocity than that of light, and consequently,
supposing light to be attracted by the same force in proportion to
its vis inertiæ, with other bodies, all light emitted from such a body
would be made to return towards it, by its own proper gravity . . . ”.

Of course we are now in a position to give to this qualitative idea of a region were
the escape velocity exceeds the speed of light (or, equivalently, the gravitational
potential exceeds the square of the speed of light) a more precise, geometrical
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meaning in a rigorous mathematical sense. Einstein’s theory of General Rela-
tivity is indeed a theory of the causal structure of spacetime in which the causal
relation between events can be described by the words and concepts defined in
the previous subsections, which we will apply to the black hole concept in the
following definition.

Definition 8.15 (Black hole and event horizon)
Let us consider a strongly future asymptotically empty and simpl spacetime
(M , g) and let S (τ) denote the family of spacelike surfaces in terms of which
an asymptotically empty and simple region in it can be foliated. A black hole
on S (τ) is a connected component of the set

B(τ) = S (τ)− J−(I +).

Moreover the spacetime region

∂J−(I +)

is called the event horizon.

This definition translates in a proper geometric language the idea of the presence
in spacetime of a “no-escape region”, which is the main intuitive property behind
the black hole concept. A black hole is indeed defined as a region from which
particles and light rays cannot escape to I + and we note that in this definition
it is a “hole” in the usual spatial sense, being contained in the constant-time
surface S (τ). The event horizon is an achronal set, the boundary of the region
from which particles and light rays can escape to infinity, and is generated by
null geodesic segments with possibly past endpoints but no future endpoints.
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