Chapter 21

Problems

Problem 21.1 (Change of coordinates and tensor components)

Let us consider $\boldsymbol{T} \in T_{1}^{2}(V)$ with V a vector space of dimension n. Let us fix a basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1, \ldots, n}$ in V and let $\left\{\boldsymbol{E}^{i}\right\}_{i=1, \ldots, n}$ be the dual basis in V^{*}. Let us consider a change of basis in V and let $\left\{\tilde{\boldsymbol{e}}_{i}\right\}_{i=1, \ldots, n}$ and $\left\{\tilde{\boldsymbol{E}}^{i}\right\}_{i=1, \ldots, n}$ be the new basis of V and of V^{*}. Let us denote the change of basis as $\tilde{\boldsymbol{e}}_{i}=\Lambda_{i}{ }^{j} \boldsymbol{e}_{j}$. Write the relation between $T_{k}^{i j}$, the components of \boldsymbol{T} in the first basis, and $\tilde{T}_{c}^{a b}$, the components of \boldsymbol{T} in the second basis. Generalize this result for a general tensor $\boldsymbol{T} \in T_{s}^{r}(V)$.

Problem 21.2 (Contraction of a tensor in coordinates)

Let us consider $\boldsymbol{T} \in T_{1}^{2}(V)$ with V a vector space of dimension n. Let us fix a basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1, \ldots, n}$ in V and let $\left\{\boldsymbol{E}^{i}\right\}_{i=1, \ldots, n}$ be the dual basis in V^{*}. Consider the contraction C_{1}^{1}. Write the components of the tensor $C_{1}^{1} \boldsymbol{T}$. Express now the tensor T in a new basis $\tilde{\boldsymbol{e}}_{i}=\Lambda_{i}{ }^{j} \boldsymbol{e}_{j}$ and in the corresponding dual basis. Write the components of the tensor $C_{1}^{1} \boldsymbol{T}$ in the new basis. Generalize the above result to the C_{j}^{i} contraction of a generic tensor $\boldsymbol{T} \in T_{s}^{r}(\mathscr{M})$.

Problem 21.3 (Covariant derivative: component expression)

Let us consider a vector field \boldsymbol{V}, a vector field \boldsymbol{W} on a manifold \mathscr{M} and a coordinate system (U, ϕ) associated to coordinates $\left(x^{1}, \ldots, x^{m}\right)$.

1. Write the components of $D(\boldsymbol{V}, \boldsymbol{W})$ in the given coordinate system.
2. Consider a second coordinate system (V, ψ) associated to coordinates $\left(y^{1}\right.$, $\left.\ldots, y^{m}\right)$ and with $U \cap V \neq 0$. Write then the change in the components of \boldsymbol{V} and \boldsymbol{W} in $U \cap V$. Write also the change in the components of $D(\boldsymbol{V}, \boldsymbol{W})$ in $U \cap V$.

Do the same computations for a tensor $\boldsymbol{\omega} \in T_{1}^{0}(\mathscr{M})$ and for a tensor $\boldsymbol{T} \in$ $T_{2}^{1}(\mathscr{M})$. Generalize all the results for a generic $\boldsymbol{T} \in T_{s}^{r}(\mathscr{M})$.

Solution:

Let us consider a basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1, \ldots, n}$ and the corresponding dual basis $\left\{\boldsymbol{E}^{j}\right\}_{j=1, \ldots, n}$. By the definition of covariant derivative of a tensor field we have

$$
D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k} \otimes \boldsymbol{e}_{j}\right)=\boldsymbol{E}^{k} \otimes D\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)+D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k}\right) \otimes \boldsymbol{e}_{j} .
$$

But covariant derivative preserves contractions. Contracting the above equality we obtain

$$
\boldsymbol{e}_{i}\left(\boldsymbol{E}^{k}\left(\boldsymbol{e}_{j}\right)\right)=\boldsymbol{E}^{k}\left(\sum_{a}^{1, m} \Gamma_{i j}^{a} \boldsymbol{e}_{a}\right)+D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k}\right)\left(\boldsymbol{e}_{j}\right),
$$

which gives

$$
\boldsymbol{e}_{i}\left(\delta_{j}^{k}\right)=\sum_{a}^{1, m} \Gamma_{i j}^{a} \boldsymbol{E}^{k}\left(\boldsymbol{e}_{a}\right)+\boldsymbol{e}_{j}\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k}\right)\right) .
$$

In turn this implies

$$
0=\sum_{a}^{1, m} \Gamma_{i j}^{a} \delta_{a}^{k}+\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k}\right)\right)_{j},
$$

from which we get

$$
\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{k}\right)\right)_{j}=-\Gamma_{i j}^{k} .
$$

Let us now consider a generic $(0,1)$-tensor $\boldsymbol{\omega}=\sum_{i}^{1, m} \omega_{i} \boldsymbol{E}^{i}$. Then we have

$$
\begin{aligned}
\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{\omega}\right)\right)_{k} & =\boldsymbol{e}_{k}\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{\omega}\right)\right) \\
& =\boldsymbol{e}_{k}\left(D\left(\boldsymbol{e}_{i}, \sum_{j}^{1, m} \omega_{j} \boldsymbol{E}^{j}\right)\right) \\
& =\boldsymbol{e}_{k}\left(\sum_{j}^{1, m}\left[\boldsymbol{e}_{i}\left(\omega_{j}\right) \boldsymbol{E}^{j}+\omega_{j} D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{j}\right)\right]\right) \\
& =\sum_{j}^{1, m} \boldsymbol{e}_{k}\left(\boldsymbol{e}_{i}\left(\omega_{j}\right) \boldsymbol{E}^{j}+\omega_{j} D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{j}\right)\right) \\
& =\sum_{j}^{1, m}\left(\boldsymbol{e}_{i}\left(\omega_{j}\right) \boldsymbol{e}_{k}\left(\boldsymbol{E}^{j}\right)+\omega_{j} \boldsymbol{e}_{k}\left(D\left(\boldsymbol{e}_{i}, \boldsymbol{E}^{j}\right)\right)\right) \\
& =\sum_{j}^{1, m}\left(\boldsymbol{e}_{i}\left(\omega_{j}\right) \delta_{k}^{j}-\omega_{j} \Gamma_{i k}^{j}\right) \\
& =\boldsymbol{e}_{i}\left(\omega_{k}\right)-\sum_{j}^{1, m} \omega_{j} \Gamma_{i k}^{j} .
\end{aligned}
$$

We are going to denote with a semicolon the covariant derivative also in this case, i.e.

$$
\omega_{k ; i}=\boldsymbol{e}_{i}\left(\omega_{k}\right)-\sum_{j}^{1, m} \omega_{j} \Gamma_{i k}^{j} .
$$

In a coordinate basis $\left\{\partial_{i}\right\}_{i=1, \ldots, m}$ the above becomes

$$
\omega_{k ; i}=\partial_{i} \omega_{k}-\sum_{j}^{1, m} \omega_{j} \Gamma_{i k}^{j} .
$$

