
Chapter 20

Lecture 20

20.1 Conservation of energy in classical mechan-
ics

Let us consider a classical system with 1 degree of freedom, described by the
generalized coordinate q. Let the system admit a Lagrangian formulation, and
let L

(
q, dq

dt , t
)

be the Lagrangian of the system. In terms of the Lagrangian the
dynamics of the system is described by the Euler-Lagrange equations, i.e.

d

dt

(
∂L

∂q̇

)
=
∂L

∂q

We now make the additional hypothesis that the Lagrangian does not ex-
plicitly depend on the time t, i.e. mathematically that

∂L

∂t
= 0.

In this case we have

dL

dt
=

∂L

∂q
q̇ +

∂L

∂q̇
q̈ +

∂L

∂t

=
∂L

∂q
q̇ +

∂L

∂q̇
q̈

=
d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈

=
d

dt

(
∂L

∂q̇
q̇

)
. (20.1)

Between the second and the third line we have used our hypothesis that the
Lagrangian does not depend explicitly from the parameter t and in the last
equality we have used that the equations of motion are satisfied. We thus get
the equality

dL

dt
=

d

dt

(
∂L

∂q̇
q̇

)
,
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i.e.
d

dt

(
q̇
∂L

∂q̇
− L

)
= 0.

Thus if the Lagrangian does not depend explicitly on time, the quantity

q̇
∂L

∂q̇
− L (20.2)

is an integral of the motion1, i.e. it is conserved by the dynamics of the sys-
tem. We reformulate this fact in the following form: the independence of the
Lagrangian from the parameter t implies the conservation of the quantity (20.2).

20.2 Conservation laws in a special relativistic
field theory

Let us consider a theory consisting of N fields {φ(i)}i=1,...,N , described by the
Lagrangian density L(xµ, φ(i), ∂νφ

(j)). As we saw in lecture 3 the dynamics of
the theory is described by the Euler-Lagrange equations,

∂µ

(
∂L

∂(∂µφ(i))

)
=

∂L
∂φ(i)

i = 1, . . . , N.

Let us now make the additional hypothesis that the Lagrangian does not depend
explicitly from xµ, i.e. that the dependence from xµ always happens through
the fields φ(i) and their derivatives ∂µφ

(i). In this case we have

∂νL =
1,N∑

i

∂L
∂φ(i)

∂νφ
(i) +

1,N∑
i

∂L
∂(∂µφ(i))

∂ν∂µφ
(i)

=
1,N∑

i

∂µ

(
∂L

∂(∂µφ(i))

)
∂νφ

(i) +
1,N∑

i

∂L
∂(∂νφ(i))

∂µ∂νφ
(i)

=
1,N∑

i

[
∂µ

(
∂L

∂(∂µφ(i))

)
(∂νφ

(i)) +
∂L

∂(∂νφ(i))
∂µ(∂νφ

(i))
]

=
1,N∑

i

∂µ

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)

= ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
. (20.3)

Again, we remember our hypothesis that the dependence of L from xµ is only
through the fields φ(i) and their derivatives in the first line. We then use the

1Actually, if we remember that

p =
∂L

∂q̇

we see that the conserved quantity is just the Hamiltonian of the system,

H = pq̇ − L.

c©2004 by Stefano Ansoldi — Please, read statement on cover page



Lecture 20 [20.3].117

field equations in the second line. The final result is then

δµ
ν ∂µL = ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
,

or, which is the same,

∂µ[δµ
νL] = ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
,

so that
∂µT

µ
ν = 0,

where we have defined

Tµ
ν =

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
− δµ

νL.

Definition 20.1 (Stress Energy Tensor)
Let us consider a Field Theory consisting of N fields φ(i) in n dimensions,
that admits a Lagrangian formulation in terms of a Lagrangian density L. The
quantity

Tµ
ν =

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
− δµ

νL

is called the Stress-Energy tensor of the fields.

Proposition 20.1 (Local conservation laws)
If in the Lagrangian formulation of a field theory of N fields φ(i) in n dimensions
the Lagrangian density does not depend explicitly on the coordinates, then the
stress-energy tensor is locally conserved,

∂µT
µ

ν = 0,

i.e. its divergence is zero.

20.3 Conservation laws and general covariance

Let us consider again a theory consisting ofN fields {φ(i)}i=1,...,N , on a Lorentzian
manifold (M ,L, 〈−,−〉). The system will be now described by a Lagrangian
density L which is again a function of the fields, their first derivatives, the
metric tensor and, eventually, the first derivatives of the metric tensor:

L = L(φ(i), ∂νφ
(j), gαβ , ∂γgαβ).

The action for our theory is then

S =
∫

M

d4x
√
−gL.

c©2004 by Stefano Ansoldi — Please, read statement on cover page



[20.3].118 Lecture 20

Let us now consider a change of coordinates of the form

x̃µ = xµ + δxµ (20.4)

such that “δxµ are small quantities”2. The metric tensor under this change of
coordinates becomes g̃αβ(x̃µ) and can be expressed as

g̃αβ(x̃µ) = gρσ(xν)
∂xρ

∂x̃α

∂xσ

∂x̃β

= gρσ(xν) (x̃ρ − δxρ),α (x̃σ − δxσ),β

= gρσ(xν) (δρ
α − [δxρ],α)

(
δσ
β − [δxσ],β

)
≈ gαβ(xν)− gρβ(xν)[δxρ],α − gασ(xν)[δxσ],β . (20.5)

We now express the left-hand side of the above chain of equalities in such a way
that the variables xµ appear as arguments of the metric g̃alphaβ . This can be
obtained by expanding g̃alphaβ in powers of δxµ, at first order, i.e.

g̃αβ(x̃µ) = g̃αβ(xµ + δxµ)
≈ g̃αβ(xµ) + ∂γgαβ(xµ)[δxγ ]. (20.6)

We can now combine results (20.5) and (20.6) to get

g̃αβ(xµ) + ∂γgαβ(xµ)δxγ ≈ gαβ(xν)− gρβ(xν)[δxρ],α − gασ(xν)[δxσ],β

or, which is the same3,

g̃αβ ≈ gαβ − ∂γgαβδx
γ − gρβ [δxρ],α − gασ[δxσ],β .

Let us perform a further elaboration of the above result:

g̃αβ ≈ gαβ − ∂γgαβ [δxγ ]− gρβ [δxρ],α − gαρ[δxρ],β
= gαβ − ∂γgαβ [δxγ ]− gρβ [δxρ],α − gαρ[δxρ],β +

+Γρ
αγgρβ [δxγ ] + Γρ

βγgαρ[δxγ ]− Γρ
αγgρβ [δxγ ]− Γρ

βγgαρ[δxγ ]

= gαβ −
(
∂γgαβ − Γρ

αγgρβ − Γρ
βγgαρ

)
[δxγ ] +

+gρβ [δxρ],α − Γρ
αγgρβ [δxγ ] + gαρ[δxρ],β − Γρ

βγgαρ[δxγ ]
= gαβ − gαβ;γ [δxγ ] +

−gρβ

(
[δxρ],α + Γρ

αγ [δxγ ]
)
− gαρ

(
[δxρ],β + Γρ

βγ [δxγ ]
)

= gαβ − gρβ [δxρ];α − gαρ[δxρ];β
= gαβ − [δxβ ];α − [δxα];β .

If we indicate with δgαβ the variation of the metric we obtain

δgαβ = −[δxα];β − [δxβ ];α

and
δgαβ = [δxα];β + [δxβ ];α.

2Our apologies for this treatment which is not so precise in terms of the manifold concepts
we have developed before.

3We drop the difference from xµ, which is now common to all terms.
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We return now to our action principle, which we rewrite here for convenience

S =
∫

M

d4x
√
−gL;

we remember that if we consider a variation of the above actions with respect
to the fields φ, as we already saw in lecture 3 we obtain the Euler-Lagrange
equations for the fields φ. Indicating with δφ this variation we thus have

δφS[g,φ]
δφ

= 0 ⇔ ∂S
∂φk

−
1,n∑
µ

∂µ

(
∂S

∂(∂µφk)

)
= 0 k = 1, . . . , N

i.e. fields configurations that make the action stationary satisfy Euler-Lagrange
equations, our field equations.

We are now going to consider instead a different variation, which we are going
to indicate with δ and is the variation of the action under a transformation of
coordinates of the type (20.4). Since the fields φ = φ(xµ) are functions of xµ

our variation induces a change δφ. Under the assumption that the equations
for our fields are satisfied, we are nevertheless going to ignore this variation:
it would contribute a term multiplied by the Euler-Lagrange, which, we stress
that again, is going to vanish because we are assuming that the field equations
are satisfied. Then there is a variation induced by the change of coordinates in
the metric field (and its derivatives). This variation is the one we are interested
in. With the assumed convention on the meaning of δ we thus have:

δS[g,φ] =
∫

M

d4x

[
∂(
√
−gL)

∂gµν
δgµν +

∂(
√
−gL)

∂(∂λgµν)
δ(∂λg

µν)
]

= d4x

∫
M

[
∂(
√
−gL)

∂gµν
δgµν +

∂(
√
−gL)

∂(∂λgµν)
∂λ(δgµν)

]
=

∫
M

d4x

[
∂(
√
−gL)

∂gµν
− ∂λ

(
∂(
√
−gL)

∂(∂λgµν)

)]
δgµν +

+
∫

M

d4x∂λ

(
∂(
√
−gL)

∂(∂λgµν)
δgµν

)
=

∫
M

d4x

[
∂(
√
−gL)

∂gµν
− ∂λ

(
∂(
√
−gL)

∂(∂λgµν)

)]
δgµν +

+
∫

∂M

d3y
∂(
√
−gL)

∂(∂λgµν)
δgµν

=
∫

M

d4x

[
∂(
√
−gL)

∂gµν
− ∂λ

(
∂(
√
−gL)

∂(∂λgµν)

)]
δgµν

Let us now set

1
2
√
−gTµν =

∂(
√
−gL)

∂gµν
− ∂λ

(
∂(
√
−gL)

∂(∂λgµν)

)
, (20.7)

which is clearly a symmetric tensor. Then we have

δS[g,φ] =
1
2

∫
M

d4x
√
−gTµνδg

µν
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=
1
2

∫
M

d4x
√
−gTµν([δxµ];ν + [δxν ];µ)

=
∫

M

d4x
√
−gTµν [δxµ];ν

=
∫

M

d4x
√
−g {(Tµν [δxµ]);ν − Tµν

;ν [δxµ]}

=
∫

M

d4x
√
−g
{

(Tµν [δxµ]);ν − Tµν
;ν [δxµ]

}
=

∫
M

d4x
√
−g 1√

−g
(√
−gTµν [δxµ]

)
,ν
−
∫

M

d4x
√
−gTµν

;ν [δxµ]

=
∫

M

d4x
(√
−gTµν [δxµ]

)
,ν
−
∫

M

d4x
√
−gTµν

;ν [δxµ]

=
∫

∂M

d3y
(√
−gTµν [δxµ]

)
,ν
−
∫

M

d4x
√
−gTµν

;ν [δxµ]

= −
∫

M

d4x
√
−gTµν

;ν [δxµ]. (20.8)

From the arbitrariness of the [δxµ] we obtain that the stationarity of the action
with respect to the variation defined by δ implies

Tµν
;ν = 0.

From the analogy of this equation with the one in definition 20.1 we are going to
call Tµν the energy momentum tensor and the equation above its conservation
law. The stress energy tensor has the following physical interpretation:

T 00: energy density;

T i0: momentum density;

T ij: stress tensor (pressure tensor);

T 00: energy current density (energy density flow).

In the special relativistic case the stress-energy tensor does not appear explicitly
symmetric as in the case of general covariance. It can nevertheless easily seen
that the definition of the stress-energy tensor in this case is not unique. In
particular, without invalidating the local conservation law, it is always possible
to add to the stress-energy tensor of a theory with Lorentz invariance a tensor
of the form

∂α∆αµν ,

where
∆αµν = −∆ανµ;

exploiting this arbitrariness we can put always the stress-energy tensor in a
symmetric form, without changing the momentum density and without affect-
ing the conservation law. Moreover, the symmetry of the stress-energy tensor
in a Lorentz invariant theory is equivalent to the conservation of the angular
momentum of the fields.
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20.4 Einstein equations

The stress energy tensor defined above acts as a source for the full set of Einstein
equations, when matter content is present. In particular let us consider the
action

S[g,φ] = SG[g] + SM[g,φ]

If we perform a variation of the above action, reproducing the computations
we already did in the previous lectures, we obtain that the stationary action
principle gives

Gµν = κTµν ,

where κ is a suitable constant that can be determined by requiring the correct
Newtonian limit. Explicitly the above equations can be also written as

Rµ
ν −

1
2
δµ
νR = κTµ

ν

or, which is the same,
Rµ

ν = κ (Tµ
ν − δµ

νT ) ,

where T is the trace of the stress-energy tensor. The above set of equations is
the set of Einstein field equations. Note that when there is a matter content
(matter fields) the full system of differential equations is the coupled system of
Einstein field equations and of the Euler-Lagrange equations for the fields. We
also quote that the set of field equations for the other (i.e. non-gravitational)
fields, is implied by the conservation law Tµν

;ν = 0 or, which is the same, by
Gµν

;ν = 0.
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