
Chapter 19

Lecture 19

19.1 Properties of Einstein’s field equation

We are now going to discuss some properties of Einstein equations. We derived
them in vacuo and we are now interested in analyzing better their structure. In
particular (we already underlined this in the previous lecture) it is evident that
Einstein equations in vacuo, which we rewrite here as1

Rµ
ν −

1
2
δµ
νR = 0

are a system of ten non-linear partial differential equations of the second order
for the 10 unknown functions gµν , i.e. for the metric tensor. The Ricci tensor
comes from the Riemann tensor

Rα
µβν = ∂βΓα

νµ − ∂νΓα
βµ + Γα

βρΓ
ρ
νµ − Γα

νρΓ
ρ
βµ

through a contraction., where we also remember that

Γα
βγ =

1
2
gαµ (−∂µgβγ + ∂βgγµ + ∂γgµβ) .

Note that, from the two previous expression, the non-linearity of the equations
is quite evident, especially because of the terms containing the products of the
connection symbols in the Riemann tensor. Let us now carefully consider the
first two terms, where second derivatives of the metric tensor appear. We rewrite
these two terms, using the anti-symmetrization square brackets, as

∂[βΓα
ν]µ

and substitute inside the expression for the connection symbols, which become

∂[βΓα
ν]µ =

1
2
∂[β

[
gαρ

(
−∂ρgν]µ + ∂ν]gµρ + ∂µgρν]

)]
= [. . . ] +

1
2
gαρ

(
−∂[β∂ρgν]µ + ∂[β∂ν]gµρ + ∂[β∂µgρν]

)
,

1Note that we do not pay too much attention to which of the indices is the first and which
the second, since the expression is symmetric!
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so that

Rµνρσ =
1
2
(
∂2

νρgµσ + ∂2
µσgνρ − ∂2

νσgµρ − ∂2
µρgνσ

)
+ gαβ

(
Γα

ρνΓβ
σµ − Γα

σνΓβ
ρµ

)
.

How can the above expression contribute a second derivative with respect to
x0 of one of the components g0µ? At least we need three indices being 0, but
remembering the symmetry properties of the Riemann tensor, the corresponding
component is then zero! Thus the Riemann tensor contains second derivatives
with respect to x0 of the components

gij i = 1, 2, 3, j = 1, 2, 3

of the metric tensor, but it does not contain second derivatives with respect
to x0 of the components g0µ of the metric tensor! The same is true of the Ricci
tensor (contraction is just an algebraic operation) and of the Ricci scalar. Thus
the Einstein tensor contains second derivatives with respect to x0 only of the
gij and not of the g0µ. Thus in the Einstein equations only second derivatives
with respect to x0 of the gij appear!

Let us now analyze this situation more carefully. In particular, remember
that the Einstein tensor, Gµν obeys the Bianchi identities, Gµ

ν;µ = 0. This
relation can be rewritten as (

Rµ
ν −

1
2
δµ
νR

)
;µ

= 0

or, which is the same,(
R0

ν −
1
2
δ0νR

)
;0

= −
(
Ri

ν −
1
2
δi
νR

)
;i

.

Now, in the right-hand side we have at most second derivatives with respect to
x0. On the left-hand side then we can thus have at most first derivatives with
respect to x0 in the expression

R0
ν −

1
2
δ0νR.

Moreover this expression cannot contain derivatives with respect to x0 of the
quantities g0µ. These derivatives require two zero indices in the Riemann tensor,
i.e. they appear in components of the type R0i0j . But this components cannot
appear in the Einstein equation with one index equal to 0. We can thus split
the full set of Einstein equations in two subsets2:

1. A first one containing the six equations with spatial indices:

Ri
j −

1
2
δi
jR = 0.

These equations contain second derivatives with respect to x0 of the gij

and first derivatives with respect to x0 of the g0µ.

2Remember that Latin indices cover the spatial values 1, 2, 3, whereas Greek indices cover
the spacetime values 0, 1, 2, and 3.
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2. A second one containing the remaining four equations where at least one
index is a temporal index:

R0
j = 0 and R0

0 −
1
2
R = 0.

These equations contain first derivatives with respect to x0 of the gij , no
second derivatives with respect to x0 and no first derivatives with respect
to x0 of the g0µ.

In light of the above observations, what are then a proper set of initial con-
ditions to solve Einstein equations with respect to x0? Certainly we cannot
assign both the 10 metric fields and their derivatives, since in general such a
set of initial value data will not satisfy Einstein equations at the starting time.
We can of course give the six metric fields gij and their derivatives ∂0gij . From
these initial values we can then determine the initial values for the fields g0µ,
using the set of equation 2. above. We see that in this sense (and also from
their differential character) the set of equations 2. acts as a constraint on
the system. The quantities g0µ are not completely determined by the initial
conditions and the evolution: what is their physical meaning? They represent
the arbitrarines in the choice of the reference system as a result of the princi-
ple of general covariance. This is a crucial evidence of the interplay between
gravitation and the choice of the reference system, i.e. of the interplay between
general covariance, the equivalence principle and the theory of gravity which
we discussed in lecture 16. After having determined also the g0µ at the initial
time, we have a complete consistent set of initial data, from which we can start
to solve the equations. But note that at each tick of our time we have some
freedom in determining the g0µ, which are not fully dynamically determined.

19.2 Physical meaning of the metric fields

We are now interested, also in light of the discussion in the above section, to
discuss in more detail the physical meaning of the metric fields. As a short
preliminary summary, we will see how the metric fields are related to the mea-
surements of time intervals and of spatial distances.

19.2.1 Time measurements

Let us consider two events, at the same specetime point and the invariant inter-
val ds2 will be just −c2dτ2, where dτ is the time interval measured by a clock
that occupies the same space position dxi = 0. Thus we have

−c2dτ2 = ds2 = gµνdx
µdxν = g00(dx0)2.

We will call τ the proper time at a given point in space. From the above we get

dτ =
√
−g00
c

dx0.

g00 must then be negative. If a metric tensor of a Lorentzian manifold does
not satisfy this condition, this means that it describes a reference system that
cannot be realized by physical bodies. Thus with an appropriate change of
the reference system (i.e. passing to a realizable one) we can always fulfill the
condition g00 < 0.
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19.2.2 Space measurements

A slightly more complicated treatment is required for space measurements. This
is strictly related to the property, we just discussed, that time flows in a different
way at different points in space when a gravitational field is present. Let us thus
imagine the following setup:

A light signal is emitted from an event m ∈ M toward an event
p ∈ M and reflected from p back to m. Let us assume the spatial
coordinates at m are xi + dxi, whereas at p they are xi. Moreover,
the time required for the process as seen by m is c times twice the
spatial distance between m and P.

Let us write
ds2 = gijdx

idxj + 2g0idx
0dxi + g00dx

0dx0.

At the same time, since we are using light lays, i.e. null geodesics,

ds2 = 0

or equivalently,

[g00](dx0)2 + [2g0idx
i](dx0) + [gijdx

idxj ] = 0, (19.1)

so that from the above we find two values for dx0 for the given spatial separation
dxi, let us call them

(dx0)(−) and (dx0)(+).

This values correspond to the emission and arrival of the light signal at m. The
coordinate time interval is thus

∆0 = |(dx0)(+) − (dx0)(−)|

so that the corresponding time interval, using the result above, is

∆τ =
√
−g00
c

∆0 =
√
−g00
c

∣∣(dx0)(+) − (dx0)(−)

∣∣
and the spatial distance

∆l =
c

2
∆τ =

√
−g00
2

∆0 =
√
−g00
2

∣∣(dx0)(+) − (dx0)(−)

∣∣ .
But the difference |(dx0)(+) − (dx0)(−)| is twice the absolute value of the dis-
criminant of the second order equation (19.1) divided by 2|g00|, so that

∆l =

√
(g00gij − g0ig0j)dxidxj

g00
.

This result gives the spatial separation in terms of the spatial change of coor-
dinates, according to the definition at the beginning of this subsection. It is
crucial to note that all the quantities appearing in the expression for ∆l depend
also on the coordinate x0: thus the expression has a purely local meaning.
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19.2.3 Clock synchronization

Let us now consider the problem of synchronization of clocks. We can use
the same set up we used above, with the two events m and p. According to
this situation we will consider simultaneous with p the event on the worldline
passing through m which corresponds to

x0 + ∆x0 = x0 +
1
2
(
(dx0)(+) + (dx0)(−)

)
.

The sum of (dx0)(+) and (dx0)(−) is given by the opposite of the coefficient of
the linear term in dx0 in equation (19.1) divided by g00, so we obtain

∆x0 = −g0idx
i

g00
.

Using this result we can always synchronize clocks along a non-closed line. But
synchronization is in general globally impossible. It becomes possible only when
all the g0i are equal to zero. From what we have seen above, studying the
structure of Einstein equations, this property of synchronization is a result of
the choice of the reference system and not of the gravitational field itself. To
show this we are going to give an intuitive idea of how it is always possible to
(locally) choose a reference system such that the components g0i of the metric
vanish (and g00 = 1). This system will be called a synchronous reference system.
The construction goes as follows.

Choose a spacelike hypersurface, i.e. an hypersurface whose nor-
mal is always a timelike vector. Starting from this hypersurface we
can always construct a family of geodesics that are normal to this
hypersurface. Moreover this geodesics are timelike. We are going
to call the proper length along one of these geodesics the temporal
coordinates, whereas the three numbers identifying a geodesic in the
family constitute the spatial coordinates.

By construction, since the geodesics are normal to the initial hypersurface, the
g0i are zero. Moreover, using the proper length along the geodesic, we can make
sure that g00 = 1.

19.3 More about the classical limit

Let us now consider again the situation we reached at the end of Lecture 17,
when we have written equation (17.3). That equation

ẍk = −Γk
00

was what we called the classical limit of the geodesic equation. It was expressing
that from the point of view of the Newtonian theory, a force per unit mass Γk

00

was acting on a test particle (following a geodesic). Now, after writing Einstein
equations, we have more clear a relation between the metric, the choice of a
reference system and the gravitational field. Now that we have at hand Einstein
equations we can give more substance to this observation.
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First of all let us consider the 00-component of Einstein equations in vacuo.
It is R00 = 0. But R00 is given by

R00 = ∂ρΓ
ρ
00 − ∂0Γ

ρ
ρ0 + Γρ

ρβΓβ
00 − Γβ

0ρΓ
ρ
β0.

Neglecting time derivatives compared to spatial derivatives and all quadratic
terms, we obtain

R00 ≈ ∂kΓk
00.

We are now going to discuss in more detail exactly the expression of Γk
00,

Γk
00 =

1
2
gkµ (−∂µg00 + ∂0g0µ + ∂0gµ0) .

Choosing a synchronous reference system and neglecting derivative with respect
to x0 we then obtain

Γk
00 = −∂kg00.

The geodesic equation and Einstein equation with indices 00, are thus simplified
to:

ẍk = −∂kg00

∂k∂
kg00 = 0.

Thus the geodesic particle is acted upon by a force per unit mass which is minus
the gradient of the potential g00. In vacuum this potential satisfies Poisson
equation: it is the analogous, in our limit, of the Newtonian potential. In
particular, as we will see later on, we will have the identification

−g00 = 1 +
2φ
c2
,

where φ is exactly the Newtonian gravitational potential.

19.4 Synopsis

We have described a framework for the description of gravitation, in the sense
that it is a proper generalization of Newtonian gravitation. The gravitational
potential is now codified by the geometrical (metric) structure of the spacetime
(manifold). The action for the gravitational field is the only invariant that can
be constructed from the curvature tensor and that gives a non-trivial dynamics.
Thanks to the fact that in this invariant second derivatives of the fields (grav-
itational potentials) appear linearly, we obtain a consistent set of second order
differential equations. Note that we have also a precise physical interpretation
of why a Lagrangian density for a gravitational field which is a scalar cannot
be obtained with only the metric field and their first derivative (the connection
symbols): in fact, because of the general covariance of the theory, we can always
choose the metric to obtain a connection which vanishes at a point in space;
thus the only scalars that can be constructed with gµν and Γα

βγ are constants.
To obtain a non-constant scalar we need at least second derivatives of the metric
tensor: they can have a coordinate independent meaning (curvature) and the
Ricci scalar is the simplest of them.

Our next task is to free ourselves from being in vacuum, i.e. to discuss how
sources of the gravitational field can be defined and what is their relationship
with the gravitational field and the geometry of spacetime.
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