
Chapter 16

Lecture 16

16.1 Notation, Greek indices, . . .

We are going now to set up some notation for vectors, covectors and tensors
that is commonly used in General Relativity. As an exercise, it is suggested to
rewrite the results in the previous lectures about differential geometry with the
following notation.

1. Greek indices µ, ν, ρ, σ, α, β, γ, . . . (four dimensional or spacetime indices)
always take the values 0, 1, 2, 3, unless something else is explicitly stated
or indicated by an explicit “

∑
” sign.

2. Latin indices i, j, k, l, a, b, c, . . . (three dimensional or space indices)
always take the values 1, 2, 3, unless something else is explicitly stated or
indicated by an explicit “

∑
” sign.

3. For all summation on Greek and Latin indices we are going to suppress
the “

∑
” sign, i.e. we adhere to Einstein convention on repeated indices:

repeated indices (one of them up and the other down) always implicitly
understand a summation on the values 0, 1, 2, 3 if they are Greek and on
the values 1, 2, 3 if they are Latin. This means that in place of

0,3∑
α,β

Γµ
αβẋ

αẋβ

we are going to write
Γµ

αβẋ
αẋβ .

Similarly, in place of
0,3∑
α

Rα
µαν = Rµν

we are going to write
Rα

µαν = Rµν .

4. We are going to use the symbol ∇µ− interchangeably with the notation
−;µ to express the covariant derivative with respect to the unique sym-
metric connection compatible with the Riemannian metric; i.e.

∇µ∇νZ
α = Zα

;νµ.
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5. In a given coordinate system we are going to indicate the metric with
gµν . Thus given two vectors V and W , with components vµ and wν

respectively, we are going to write

〈V ,W 〉 = gµνv
µwν

for their scalar product.

6. As we quickly discussed in section 9.1.1 the metric naturally gives an
isomorphism between vectors and covectors. This isomorphisms (that can
be naturally extended to the tangent and cotangent bundle of a manifold)
associates to the vector w ∈ Mm the covector ω ∈ M ∗

m defined as

ω(−) = 〈w,−〉 .

Let us consider a vector v. The action of ω on v in terms of the respective
components in a chosen basis (and dual basis) is given by

ω(v) = ωµv
µ.

On the other hand in the same basis (and dual basis)

〈w,v〉 = gνµw
νvµ.

From the last three equations we obtain that in a chosen basis (and dual
basis) the components of the covector ω associated to the vector w by the
isomorphism induced by the metric satisfy the following identity1:

ωµ = gµνw
ν .

Since the application induced by the metric is an isomorphism we are not
going to distinguish any more between vectors and covectors, i.e. we are
going to consider a vector and the associated covector the same geometrical
object. This identification is reproduced in the notation by using the same
name for the components of a vector and of the associated covector, but
with the component index in a different place (respectively up and down).
We are going thus to write in place of the last equation the following one:

wµ = gµνw
ν .

In this sense the metric tensor can be used to lower the index of a vector
(or in general the upper indices of a tensor).

7. Since the metric is non-degenerate, the associated matrix (when we fix
basis), which we represent by gµν , has an inverse, i.e. a matrix (g−1)µν

such that (without any summation convention)

0,3∑
µ

(g−1)αµgµβ =
0,3∑
µ

gαµ(g−1)µβ = δαβ .

We are going to write gµν for the inverse matrix of gµν , i.e. gµν def.= (g−1)µν

so that the last equation will be written (summation convention now!)

gαµgµβ = gβµg
µα = δα

β .

1Remember that gµν is symmetric, i.e. gµν = gνµ
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In the same way in which gµν can be used to lower indices, gµν can be
used to raise indices. This means that given any tensor, by the natural
extension of the isomorphism we defined in the previous point, we are going
to consider Tαβ

µν
γ

ρσ and Tλ
βξτ

δρσ, for example, as the components of
the same geometric object (the tensor, indeed). These components are
related as

Tαβ
µν

γ
ρσ = gαλgξµgτνg

γδTλ
βξτ

δρσ,

i.e. by raising and lowering indices.

8. A Riemannian manifold has a natural, volume element. In terms of the
determinant of the metric, which we will call g, we will write it as

√
−gd4x.

This volume element is associated to a volume form, ε: this is a totally
antisymmetric tensor of rank 4, whose components are εµνρσ =

√
−gεµνρσ,

where ε0123 = +1 and επ(0)π(1)π(2)π(3) = sign (π) where π is a permutation
of the set {0, 1, 2, 3}.

9. As a standard convention vectors, which are (1, 0)-tensors, are called con-
travariant vectors since their components transform according to the in-
verse Jacobean of a coordinate transformation. (0, 1)-tensors are instead
called covariant vectors, since their components transform according to
the Jacobean of a coordinate transformation. The metric tensor and its
inverse perform the passage between covariant and contravariant compo-
nents of a tensor object. The same terminology applies to indices in com-
ponents. Upper indices are called contravariant indices, whereas lower
indices are called covariant indices.

16.2 General Relativity

In this section we are going to quickly cover the basic principles underlying
the theory of General Relativity. Additional material can be found in many
textbooks and we are mainly going to concentrate on the basic, fundamental
principles. As we did in the case of Special Relativity, we will mostly quote
Einstein directly. We will recognize a similar pattern, in the discussion, as
we found in the discussion leading to the special theory. Two problems, i) the
generalization of special relativity to arbitrary, not necessarily inertial, reference
systems and ii) the description of the gravitational field (impossible in the special
theory) will be solved at once and, again, using an experimentally very well
established principle, the equivalence principle. This principle, as witnessed by
Einstein words, is the crucial link between inertial and gravitational effects.

16.2.1 Problems of the special theory

We have seen that the origin of Special Relativity was mainly related to the
difficulties that classical mechanics faced at the appearance of Electrodynamics
on the scenario of Physics. These difficulties were summarized by Einstein in
what he called the apparent incompatibility between the principle of special
relativity and the law of propagation of light in vacuum. Special Relativity
solved this apparent contradiction by a deep reflection about the concepts of
space and time, as we have seen. Although this was already a big step, if
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compared with the situation present in pre-relativistic physics, the new theory
was not free of problems. We are going to discuss this in what follows, although
it is our idea that the effort made by Einstein to generalize the theory of Special
Relativity were also justified (also by himself) as the effort to complete the
theory with the passage from a theory valid in inertial reference system to a
theory valid in whatever reference system one could choose. Indeed in pre-
relativistic physics, as well as Special Relativity, we have to make a clear cut
distinction between inertial reference systems, in which laws of nature are valid,
and all other reference system, in which the same laws of nature do not hold.

But no person whose mode of thought is logical can rest satisfied
with this condition of things. [. . . . There is not] a real something in
classical mechanics (or in the special theory of relativity) to which
we can attribute the different behavior of bodies considered with
respect to [two different reference systems].

Inertial reference systems

The above reflections are more and more reinforced if we think at the first law
of motion in Newtonian mechanics. This law, which defines the free motion of
a non-interacting body as rectilinear and uniform, at the same time singles out
the class of inertial reference systems: this are defined as the class of systems in
which Newton first law holds. We do not want to enter into the details of this
problem, just we stress out that the goal of the first law is a too heavy duty for it.
From our point of view we want just to stress that this laws makes the concept
of free motion and of inertial reference system, conceptually equivalent. This
law could have had a strong motivation in a physical realm, as the Newtonian
one, where absolute space and time where the preferred arena for dynamics.
But with the advent of special Relativity and of the new interpretation of space
and time as relative, the weakness of the concept of inertial systems also comes
to light.

The principle of general covariance

This is why the requirement of invariance with respect to the class of inertial
systems becomes not well funded. The easiest conceptual way to overcome all
these problems is to enlarge the class of admissible reference systems. Or, better,
to make it as big as possible. This is the content of the
Principle of General Covariance: all reference systems are equivalent for
the description of natural phenomena.

Gravitation and the weak equivalence principle

To come to an understanding of the relevance of the theory of General Relativ-
ity as both a theory that realizes the principle of general covariance and as a
theory of gravitational phenomena, we give here a quick remind about a very
important property of gravitation. In particular, a remind of what is called
The weak equivalence principle: the inertial mass of a body equals its grav-
itational mass.
This principle needs a reformulation, to make the statement more clear in the
context of what will be General Relativity, but we are going to discuss it shortly
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here in this form. In particular we want to make more precise what is the in-
ertial mass of a body and what is its gravitational mass. We also remember,
referring the reader to the specialized literature on the subject, that the equiv-
alence principle expressed in this form is one of the experimentally better
established results in physics.

Let us consider a body, which we will label by a “b” in round brackets (b),
sometimes as a superscript, (b).
The Inertial mass, indicated by m(b)

I , is a property that describes how the body
(b) behaves when we try to change its velocity. It is the mass that appears in
Newton second law, i.e. the constant of proportionality between the force ~F
applied to the body (b) and the change in velocity, i.e. the acceleration ~a, that
(b) acquires because of the force that is acting on it. In an equation this is
expressed in the well known Newton second law:

~F = m
(b)
I ~a. (16.1)

Its gravitational mass, indicated by m(b)
G , is a property of the body (b) that

describes how it responds to a gravitational force. In modern language we could
call it the coupling constant of the body (b) with the gravitational field. If we
consider our body (b) close to the Earth’s surface the force acting on it can be
expressed in terms of its gravitational mass and of the acceleration ~g, which for
a motion close enough to the Earth surface is a constant. Thus the gravitational
force on our body (b) is

~FG = m
(b)
G ~g. (16.2)

Now let us apply Newton second law to our body (b) to find its equation of
motion. Let us assume that on (b) only the gravitational force is acting. Then
the total force ~F in equation (16.1) is nothing but the gravitational force given
by equation (16.2), so that we obtain

m
(b)
G ~g = m

(b)
I ~a,

or, which is the same,

~a =
m

(b)
G

m
(b)
I

~g. (16.3)

Now the equivalence principle states that, by choosing properly the units of
measurement, we can always have the equalitymI = mG, so that (16.3) simplifies
to

~a = ~g. (16.4)

This is the equation of motion of our body (b), acted upon by the gravitational
field close to Earth surface. What if we choose another body (b′)? Since in
(16.4) no reference to the body appears anymore (because of the equivalence
principle!) the equation of motion for (b′) will be again (16.4)! The gravitational
force treats all body in the same way, whatever their mass (gravitational or
inertial is the same, so we do not have to specify which). This crucial property
of the gravitational field that gives (16.4) for all bodies, will be used by Einstein
to tackle the problem of generalizing special relativity to a general covariant
theory and, at the same time, provide a theory for the gravitational field.
We stress again that this possibility has its foundation on both a very well
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established physical law (the equivalence principle) and on a very strong logical
necessity (principle of general covariance). The mix of this two principles is
done, in the next section, following (literally) Einstein’s teaching in the elevator
thought experiment.

16.2.2 Einstein’s elevator thought experiment

We imagine a large portion of empty space, so far removed from stars
and other appreciable masses, that we have before us approximately
the conditions required by the fundamental law of Galilei. 1 It is1 Note from this sentence

that Einstein strongly feels
the difficulty of defining an
inertial reference system, as
we tried to quickly discuss
above.

then possible to choose a Galilean reference-body for this part of
space (world), relative to which points at rest remain at rest and
points in motion continue permanently in uniform rectilinear motion.
As reference-body let us imagine a spacious chest resembling a room
with an observer inside who is equipped with apparatus. Gravitation
naturally does not exist for this observer. He must fasten himself
with strings to the floor, otherwise the slightest impact against the
floor will cause him to rise slowly towards the ceiling of the room.

To the middle of the lid of the chest is fixed externally a hook with
rope attached, and now a “being” (what kind of a being is imma-
terial to us) begins pulling at this with a constant force. The chest
together with the observer then begin to move “upwards” with a
uniformly accelerated motion. In course of time their velocity will
reach unheard-of values — provided that we are viewing all this from
another reference-body which is not being pulled with a rope.

But how does the man in the chest regard the process? 2 The2 We are making a gen-
eral coordinate transforma-
tion here!

acceleration of the chest will be transmitted to him by the reaction
of the floor of the chest. He must therefore take up this pressure by
means of his legs if he does not wish to be laid out full length on
the floor. He is then standing in the chest in exactly the same way
as anyone stands in a room of a home on our earth. If he releases
a body which he previously had in his land, the acceleration of the
chest will no longer be transmitted to this body, and for this reason
the body will approach the floor of the chest with an accelerated
relative motion. The observer will further convince himself that the
acceleration of the body towards the floor of the chest is always of
the same magnitude, whatever kind of body he may happen to use
for the experiment. 33 This is a crucial obser-

vation, as emphasized in the
coming sentence.

Relying on his knowledge of the gravitational field [. . . as we dis-
cussed above], the man in the chest will thus come to the conclusion
that he and the chest are in a gravitational field which is constant
with regard to time. 4 Of course he will be puzzled for a moment as4 The weak equivalence

principle is in effect now! We
cannot distinguish between
an inertial and a gravita-
tional force!

to why the chest does not fall in this gravitational field. Just then,
however, he discovers the hook in the middle of the lid of the chest
and the rope which is attached to it, and he consequently comes to
the conclusion that the chest is suspended at rest in the gravitational
field. 55 This is the crucial

point. The person in the
chest has no reason to doubt
a gravitational field is acting
in the space around him; all
experiments he can perform
are consistent with this,
thus his explanation of the
situation is, and must be,
ok! Thus, please, do not
smile at him!

Ought we to smile at the man and say that he errs in his conclusion?
I do not believe we ought to if we wish to remain consistent; we
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must rather admit that his mode of grasping the situation violates
neither reason nor known mechanical laws. Even though it is being
accelerated with respect to the “Galilean space” first considered, we
can nevertheless regard the chest as being at rest. We have thus good
grounds for extending the principle of relativity to include bodies
of reference which are accelerated with respect to each other, and
as a result we have gained a powerful argument for a generalized
postulate of relativity.

We must note carefully that the possibility of this mode of interpre-
tation rests on the fundamental property of the gravitational field of
giving all bodies the same acceleration, or, what comes to the same
thing, on the law of the equality of inertial and gravitational mass.
If this natural law did not exist, the man in the accelerated chest
would not be able to interpret the behavior of the bodies around him
on the supposition of a gravitational field, and he would not be jus-
tified on the grounds of experience in supposing his reference-body
to be “at rest”.

From this short discussion we see that using the equivalence principle we can
trade a (uniform) gravitational field for an inertial field; We can give a unified
interpretation to inertial and gravitational phenomena, if we allow general (i.e.
also non-inertial) reference system. We can thus have the hope of dealing with
the problem of a consistent description of gravitation inside the structure of
spacetime by allowing for arbitrary reference systems, i.e. by generalizing special
relativity in the direction of general covariance.

16.3 Synopsis and a word of caution

We discussed before special relativity. But some problems still remain open in
this new theory. In particular the definition of an inertial reference system is
quite elusive, which would make us prefer a description in terms of arbitrary
coordinate systems (general covariance). At the same time, although the frame-
work of special relativity is quite well adapted to classical electrodynamics, we
cannot give in this framework a consistent description of gravitation. A pos-
sibility of a unifying solution for both problems arises when, on the basis of
the equivalence principle, we see that in a formulation that admits accelerated
systems, we can trade the uniform field of inertial acceleration for a uniform
gravitational field.

For the sake of precision we want to stress that although a uniform grav-
itational field is equivalent with a uniform inertial field of acceleration
this equivalence does not hold for general gravitational fields. I.e. although
we can always choose a reference system in which we do not experience any
effect related to a uniform gravitational field (just by choosing to “freely fall”
in the gravitational field) this is not true for generic gravitational fields. In the
general situation, as we will see, we will still be able to compensate the effects
of a gravitational field at a point or, which is empirically more significative, in a
sufficient small region of space for a sufficiently short time, i.e. in a sufficiently
small region of spacetime. Often instead of “in a sufficiently small region of
spacetime” we are going to say locally.
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