
Chapter 15

Lecture 15

15.1 Riemannian (Lorentzian) geometry - 2 -

15.1.1 Interplay between connection and metric

Definition 15.1 (Compatibility condition)
Let (M ,F) be a manifold with a metric 〈−,−〉. A connection D (−,−) is com-
patible with the metric 〈−,−〉 if ∀V W , parallel vector fields along an arbitrary
given curve σ, it holds that 〈V ,W 〉 is constant along σ.

This means that ∀t for which σ is defined, the parallel translation along σ from
σ(0) to σ(t) defines an isometry between Mσ(0) and Mσ(t).

Proposition 15.1 (I characterization of compatible connections)
A connection D (−,−) on a manifold (M ,F) with metric 〈−,−〉 is compatible
with the metric if and only if ∀V , W , parallel vector fields along an arbitrary
curve σ, the equality

d

dt
〈V (t),W (t)〉 =

〈
DV

dt
,W

〉
+
〈
DW

dt
,V

〉
is identically satisfied.

Proof:

⇒) Let us choose P (1), . . ., P (m), m vector fields along σ which are
orthonormal at a given point of σ. We can assume without restriction
that they are parallel along σ (since given a vector at a point of a
curve, to parallel propagate it along the curve we have only to solve the
differential equations (10.5) = 0 with exactly the components of this
vector as initial conditions). Then they are also orthonormal along σ,
since their orthonormalization condition〈

P (i)(t),P (j)(t)
〉

= δij

is preserved along σ precisely because the P (i) are parallel along σ.
At every point of σ, we can thus write two arbitrary vector fields V ,

W in terms of the orthonormal basis composed by the m vectors P (i),
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i.e.

V (t) =

1,m∑
i

vi(t)P (i)(t)

W (t) =

1,m∑
i

wi(t)P (i)(t).

Moreover, since P (i), i = 1, . . . ,m, are parallel vector fields, we also
have

DV (t)

dt
=

1,m∑
i

dvi(t)

dt
P (i)(t) +

1,m∑
i

vi(t)
DP (i)(t)

dt

=

1,m∑
i

dvi(t)

dt
P (i)(t)

DW (t)

dt
=

1,m∑
j

dwj(t)

dt
P (j)(t) +

1,m∑
j

wj(t)
DP (j)(t)

dt

=

1,m∑
j

dwj(t)

dt
P (j)(t).

Remembering that the P i(t) are orthonormal along σ, we can now com-
pute〈

DV

dt
,W

〉
=

〈
1,m∑

i

dvi(t)

dt
P (i)(t),

1,m∑
j

wj(t)P (j)(t)

〉

=

1,m∑
i,j

dvi(t)

dt
wj(t)

〈
P (i)(t),P (j)(t)

〉
=

1,m∑
i,j

dvi(t)

dt
wj(t)δij

=

1,m∑
i

dvi(t)

dt
wi(t)

and exchanging V with W〈
V ,

DW

dt

〉
=

1,m∑
i

dwi(t)

dt
vi(t);

Summing the last two result we thus get〈
DV

dt
,W

〉
+

〈
V ,

DW

dt

〉
=

1,m∑
i

(
dvi(t)

dt
wi(t) +

dwi(t)

dt
vi(t)

)

=
d

dt

(
1,m∑

i

viwi

)

=
d

dt
〈V ,W 〉 ,

which completes the proof of this implication.
⇐) If V and W are parallel along σ then DV /dt = DW /dt = 0, i.e.

d

dt
〈V (t),W (t)〉 = 0
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so that
〈V (t),W (t)〉 = const.

and D is compatible with the metric.

�

Proposition 15.2 (II characterization of compatible connections)
A connection D (−,−) on a manifold (M ,F) with metric 〈−,−〉 is compatible
with the metric if and only if ∀V , W , Z vector fields on M it holds that

Z(〈V ,W 〉) = 〈D (Z,V ) ,W 〉+ 〈D (Z,W ) ,V 〉 . (15.1)

Proof:

Let σ be a differentiable curve on M such that

σ(0) = m ∈M

σ̇(0) = Zm ∈Mm.

Remembering these settings we preliminarily define the following quan-
tities:

Zm(〈V ,W 〉) (15.2)

d

dt

⌉
t=0

〈
V σ(t),W σ(t)

〉
(15.3)

〈
DV

dt

⌉
t=0

,W

〉
+

〈
DW

dt

⌉
t=0

,V

〉
(15.4)

〈D (Zm,V ) ,W 〉+ 〈D (Zm,W ) ,V 〉 (15.5)

⇒ ) We now start with the direct implication. We can compute the
directional derivative of the function 〈U ,V 〉 in the direction of Zm as
the derivative along the curve σ at t = 0: since this directional derivative
is a local expression it does not depend on the chosen curve, provided it
has tangent vector Zm at m. This says (15.2) = (15.3). Using proposition
15.1 we know that (15.3) = (15.4) and by definition of the covariant
derivative along a curve (15.4) = (15.5). Thus (15.2) = (15.5) ∀m ∈M ,
which is equivalent to (15.1), the result to be established.
⇐ ) To prove the converse we observe that now (15.1) holds, so that
(15.2) = (15.5) ∀m ∈M . But again, by the same considerations we made
above, (15.2) = (15.3) and (15.5) = (15.4). So we have established that
under the assumed conditions (15.3) = (15.4) i.e. that ∀V ,W vector
fields along a curve σ

d

dt
〈V ,W 〉 =

〈
DV

dt
,W

〉
+

〈
DW

dt
,V

〉
so that proposition 15.1 assures the connection is compatible.

�
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Proposition 15.3 (∃! symmetric compatible connection)
Let (M ,F) be a manifold and 〈−,−〉 a metric on M . There exists one and
only one symmetric connection on M compatible with the given metric.

Proof:

We will prove the uniqueness: let (U, φ) ∈ F be a coordinate system
with coordinate functions x1, . . ., xm. As usual, we have that locally
the connection can be expressed as

D (∂xi, ∂xj) =

1,m∑
k

Γk
ij∂xk

and the Riemannian metric as

gmn = 〈∂xm, ∂xn〉 .

The compatibility condition implies

∂xj 〈∂xk, ∂xl〉 = 〈D (∂xj , ∂xk) , ∂xl〉+
+ 〈D (∂xj , ∂xl) , ∂xk〉 (15.6)

and permuting the indices j, k and l we also get

∂xk 〈∂xl, ∂xj〉 = 〈D (∂xk, ∂xl) , ∂xj〉+ (15.7)

+ 〈D (∂xk, ∂xj) , ∂xl〉
∂xl 〈∂xj , ∂xk〉 = 〈D (∂xl, ∂xj) , ∂xk〉+

+ 〈D (∂xl, ∂xk) , ∂xj〉
= 〈D (∂xj , ∂xl) , ∂xk〉+

+ 〈D (∂xk, ∂xl) , ∂xj〉 , (15.8)

where in the last equality we have used the fact that the connection is
symmetric and the arguments are element of a coordinate basis, so that
result 2. of proposition 10.1 applies. Summing side by side (15.6) and
(15.7) and subtracting (15.8) we get

∂xj 〈∂xk, ∂xl〉+ ∂xk 〈∂xl, ∂xj〉 − ∂xl 〈∂xj , ∂xk〉 =

= 〈D (∂xj , ∂xk) , ∂xl〉+ 〈D (∂xj , ∂xl) , ∂xk〉+
+ 〈D (∂xk, ∂xl) , ∂xj〉+ 〈D (∂xk, ∂xj) , ∂xl〉+
− 〈D (∂xj , ∂xl) , ∂xk〉 − 〈D (∂xk, ∂xl) , ∂xj〉

= 〈D (∂xj , ∂xk) , ∂xl〉+ 〈D (∂xk, ∂xj) , ∂xl〉
= 2 〈D (∂xj , ∂xk) , ∂xl〉 ,

where in the last line we again used the symmetry property of the con-
nection.
The equality coming from the first and last lines can be rewritten, using
the metric the and connection symbols in the chosen coordinate system
that we have written at the beginning of this proof, as

−∂lgjk + ∂jgkl + ∂kglj = 2

1,m∑
h

Γh
jkghl
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or, acting with the inverse of the metric1, as

Γi
jk =

1

2

1,m∑
l

(g−1)il (−∂lgjk + ∂jgkl + ∂kglj) (15.9)

We leave the proof of the existence as an exercise. This is a routine pro-

cedure, where, taking (15.9) above, we show that the connection defined

in term of exactly these connection symbols satisfies all the required

properties.

�

Notation 15.1 (Compatible Symmetric Covariant Derivative)
When we consider the unique symmetric connection compatible with a metric
on a manifold, we are going to use the following notation:

∇V W = D (V ,W ) .

15.2 Curvature - 2 -

15.2.1 Curvature on Riemannian (Lorentzian) Manifolds

We already discussed the curvature tensor, i.e. the Riemann tensor, in Lectures
12 and 13. The properties we proved are valid for a generic connection. On
the other hand we just saw that on a manifold where we can perform the scalar
product of vectors, there is a privileged connection, namely the only one which
is compatible with the metric is defined on M . We also know that when a
metric is present there is a natural isomorphism between tangent vectors and
covectors, which is nothing but the operation of lowering/raising an index by
the metric or ints inverse. Thus when a metric is present we can define

Rijkl
def.=

1,m∑
a

giaR
a

jkl.

Proposition 15.4 (More symmetries of the Riemann tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Riemann tensor then satisfies the additional symmetries

Rabij = −Rbaij(or equivalently R(ab)ij = 0)
Rabij = Rijab.

1Here we will denote the inverse metric tensor as (g−1)ik, i.e.

1,m∑
k

(g−1)ikgkj =

1,m∑
k

gik(g−1)kj = δij .

Of course we have gij = gji and (g−1)ij = (g−1)ji.
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Proposition 15.5 (Symmetries of the Ricci tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Ricci tensor is symmetric, i.e.

Rij = Rji(or equivalentlyR[ij] = 0).

Definition 15.2 (Ricci scalar)
Let us consider the unique symmetric compatible connection derived by a metric.
The Ricci scalar is the trace of the Ricci tensor, i.e.

R
def.= Ri

i =
1,m∑
i,j

gijRij .

Definition 15.3 (Einstein tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Einstein tensor is the symmetric tensor defined as

Gij
def.= Rij −

1
2
gijR.

Proposition 15.6 (Differential identities of curvature tensors)
Let us consider the unique symmetric compatible connection derived by a metric.
Then the following differential identities hold

1,m∑
a

Ra
jkl;a = Rjl;k −Rjk;l

1,m∑
a

Ra
i;a =

1
2
R;i.

In particular the Einstein tensor is divergence-less, i.e.

1,m∑
i

Gij
;i = 0.
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