
Chapter 13

Lecture 13

13.1 Curvature - 2 -

13.1.1 Components of the Riemann tensor, symmetries
and Ricci tensor

Proposition 13.1 (Riemann tensor and coordinate basis)
In a coordinate basis, the Riemann tensor can be expressed in terms of the
connection as

Ri
jkl = ∂kΓi

lj − ∂lΓi
kj +

1,m∑
a

(
Γi

kaΓa
lj − Γi

laΓa
kj

)
. (13.1)

Proof:

When we consider a 1-form η and three vector fields X, Y and Z the
properties of the connection imply

D (X,η ⊗D (Y ,Z)) = D (X,η)⊗D (Y ,Z) + η ⊗D (X, D (Y ,Z)) .

We now remember that one of the properties of the covariant derivative
is that it preserve contractions. We will shortly apply this property to
the relation above, but first we make the following observations.

1. η is a 1-form and D (Y ,Z) is a vector field; thus the contraction of η⊗D (Y ,Z)
is the function

η (D (Y ,Z)) ;

When we consider D (X,η (D (Y ,Z))) by the properties of the covariant deriva-
tive of a tensor we get

D (X,η (D (Y ,Z))) = d(η (D (Y ,Z)))(X) = X(η (D (Y ,Z))),

where we also have used the definition of differential.

2. D (X,η) is a (0, 1)-tensor field and D (Y ,Z) is a vector field. Their contraction
is the function obtained when the (0, 1)-tensor field acts on the vector field,
which we write

(D (X,η))(D (Y ,Z)).
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3. η is a 1-form and D (X, D (Y ,Z)) is a vector field; again the contraction of
η⊗D (X, D (Y ,Z)) is the function obtained by the action of the 1-form on the
vector field, i.e.

η(D (X, D (Y ,Z))).

We can rearrange the terms in the first equation of this proof as follows,

η ⊗D (X, D (Y ,Z)) = D (X,η)⊗D (Y ,Z)−D (X,η ⊗D (Y ,Z)) ,

and use the results in 3., 2., 1. above, together with the already recalled
property that the covariant derivative preserves contractions, so that we
obtain:

η(D (X, D (Y ,Z))) = (D (X,η))(D (Y ,Z))−X(η(D (Y ,Z))). (13.2)

We can now consider the components of the Riemann tensor, i.e. our
sought Rl

ijk, which by definition can be written as

Ri
jkl = Ei(R(ek, el)ej),

after we have fixed a basis {ei}i=1,...m in the tangent space and the
corresponding dual basis {Ei}i=1,...m in the cotangent space. Using
the definition of the Riemann tensor and then applying the preliminary
result (13.2), we then have

Ei(R(ek, el)ej) = Ei(D (ek, D (el, ej)))−Ei(D (el, D (ek, ej))) +

−Ei(D ([ek, el] , ej))

= ek(Ei(D (el, ej)))− (D
(
ek,E

i
)
)(D (el, ej)) +

−el(E
i(D (ek, ej))) + (D

(
el,E

i
)
)(D (ek, ej))

−Ei(D ([ek, el] , ej)).

If we specialize to a coordinate basis {∂a}a=1,...,n in the tangent space
and to its dual {dxa}a=1,...,n, the last term vanishes, because so do the
Lie Brackets, and the above turns into

Ri
jkl = ∂xk(dxi(

1,m∑
a

Γa
lj∂xa))− (−

1,m∑
a

Γi
kadx

a)(

1,m∑
b

Γb
lj∂xb) +

−∂xl(dx
i(

1,m∑
a

Γa
kj∂xa)) + (−

1,m∑
a

Γi
ladx

a)(

1,m∑
b

Γb
kj∂xb)

= ∂xk(Γi
lj) +

1,m∑
a

Γi
kaΓa

lj +

−∂xl(Γ
i
kj)−

1,m∑
a

Γi
laΓa

kj

= ∂kΓi
lj − ∂lΓ

i
kj +

1,m∑
a

[
Γi

kaΓa
lj − Γi

laΓa
kj

]
as stated.
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Proposition 13.2 (Properties of the Riemann tensor)
The Riemann tensor has the following symmetries:

Ri
jab = −Ri

jba

Ri
abc +Ri

bca +Ri
cab = 0. (13.3)

Moreover it satisfies the Bianchi identities, i.e.

Ri
jab;c +Ri

jbc;a +Ri
jca;b = 0.

The above can also be shortly written as

Ri
j(ab) = 0

Ri
[abc] = 0

Ri
j[ab;c] = 0 (13.4)

Definition 13.1 (Ricci tensor)
The Ricci Rij tensor is the 1− 2 contraction of the Riemann tensor, i.e.

Rij =
1,m∑
k

Rk
ikj .
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