Chapter 11

Lecture 11

11.1 Tensors - 4 -

11.1.1 A few more concepts about tensors

We are going to make a short interlude to define a couple of additional concepts
about tensors T' € T7 (V') on a given vector space V of dimension n. Of course,
as before our interest is in the application of these concepts to the tensor bundle,
which follows naturally. We start defining the tensor algebra over V.

Definition 11.1 (Tensor algebra)
Let us consider the set

0,00
Te(V) =P TI(V).

Given Ty € TT(V) and T € TP (V') we will call T1®T the element of Toy P (V)
that is obtained through the extension by linearity of the map that sends the
couple

MQ... 0,V ®@... Vs, w1 ® ... QUW, QU] & ... ®w;),
mto
VM. QUWIR... 0Ww,®V] ... BU; QW ® ... ®wy.
As usual this map is unique by the universal factorization property. The couple

(Te(V),®) is an associative algebra over F, the tensor algebra of V.

Definition 11.2 (Contractions of a tensor)
Let us consider (r,s) € Nx N with r > 1 and s > 1. Y(i,j) € N x N with
1<i<randl<j<s we define the contraction C;: as the map

CiiTI(V) — TI2H (V)

that sends
MR... 0, QU] Q... QUi

mnto

(0 (i) V1®... ®V—1®V41® ... BV V] ® ... QVj_1 BV 1 ®... QU
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Remember that in our notation the action of a covector v;

written as v} (v;) and, of course, v} (v;) € F.

We end this section with an additional intuitive characterization of tensors,
that can be useful in some formulations. Let T' € T7 (V') be an (r, s)-tensor. We
can see it as a multilinear applications that maps r covectors, {v; }i=1,...», and
s vectors, {v;‘ }j=1,...s into an element of F. Let us consider the object

on a vector v; is

T(_7U;7' e 71]:71}17 s 7US)'
It maps linearly a covector w* into
T(w*, vy, ...,u5v1,...,05) EF |
i.e. it is a linear application from V* into F. Thus

T(_vvza“' vy ’Ul,...,’Us) € T(Jl(v)

Y Ery
Similarly we have, for example,
1
T(—,v5,...,05,—, va,...,0s) € T} (V),
or
0
T(v],v5, ..., 08—, —,03,...,0s) € Ty (V),

and so on.

11.2 Connections on manifolds - 3 -

11.2.1 Parallel vector fields and parallel translation

Definition 11.3 (Parallel vector field along a curve)
Let (A ,F) be a manifold with connection D (—,—) and let o(t) be a curve on
A . A vector field V (t) along o is parallel along o if

DV
-
dt

Proposition 11.1 (Characterization of parallel vector field)

Let (A ,F) be a manifold of dimension dim (.#) = m with connection D (—, —).
Let (U, ¢) € F be a chart for M with coordinate functions (x',...,2™) and let
a(t) = (z(t),...,2™(t)) be a curve on M. A vector field V() = Z}m vi(t)
d/0z" along o is parallel along o if and only if

dok(t) 2 dri(t)
dt — dt

]

IEoi(ty=0  k=1,...,m. (11.1)

Proposition 11.2 (Existence of parallel vector fields)

Let M, F be a manifold and o(t) = (z'(t),...,2™(t)) be a curve on 4. Let
vY € M) be a tangent vector to M at o(0). There exists one and only one
parallel vector field V' along o with V (c(0)) = vg.

Proposition 11.3 (Parallel translation is an isomorphism)
The parallel translation ¢ along a curve is an isomorphism

P ///0(0) — j/o(t) , Vte€|a,bl.
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11.2.2 Extension of covariant derivative to tensors

The connection and its properties have been defined above as operations on
vector fields. They can be extended in a natural way to tensors of whatever
type. We will give this extension below using also the interpretation of tensors
(tensor fields on a manifold) that we have quickly developed at the end of the
previous section.

Let us start with a preliminary observation on the operation of covariant
derivative that we already know. Given two vector fields, V' and W, we know
that D (V,W) is again a vector field. Let us re-express the above sentence
by substituting some words with equivalent ones (in particular we are going to
substitute vector field with (1,0)-tensor field): given a vector field, V| and a
(1,0)-tensor field, W, then D (V, W) is again a (1, 0)-tensor field. Let us then
consider D (—, W). This is a linear application that associates to each vector
field V' a (1,0)-tensor field, D (V,W). Thus D (—, W) is a (1, 1)-tensor field.

From the above considerations the following definition stems:

Definition 11.4 (Covariant derivative of vector fields)

Given a manifold (A ,F) with connection D(—,—) the covariant derivative as-
sociated to the given connection is the linear map that associates to each vec-
tor field W the (1,1)-tensor field D(—, W) such that for each vector field V,
D(V, W) is the vector field, which associates to each point m€ M the covariant
derivative of W in the direction of V 5 at m.

The above definition can be extended to any tensor field as follows.

Definition 11.5 (Extension of covariant derivative)

Given a manifold (A ,F) with connection D(—,—) the covariant derivative of
a tensor is the map that associates to each (r,s)-tensor field T € TT (#) the
(r,s + 1)-tensor field D(—,T) € T, (#) such that:

1. D(—,—) is linear;

2. D(—,—) commutes with contractions;

8. D(—, T, ®Ty) =T, ®D(—,Ty) + D(—,T) ®Ts;
4. VfeC=(A), D(—, f) =df.
5

VX e V(M) 2Ty (M), then D(—, X) is the covariant derivative of the
vector field as defined in definition 11.4.
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