
Chapter 11

Lecture 11

11.1 Tensors - 4 -

11.1.1 A few more concepts about tensors

We are going to make a short interlude to define a couple of additional concepts
about tensors T ∈ T r

s (V ) on a given vector space V of dimension n. Of course,
as before our interest is in the application of these concepts to the tensor bundle,
which follows naturally. We start defining the tensor algebra over V .

Definition 11.1 (Tensor algebra)
Let us consider the set

T⊗(V ) =
0,∞⊕
r,s

T r
s (V ).

Given T 1 ∈ T r
s (V ) and T 2 ∈ T p

q (V ) we will call T 1⊗T 2 the element of T r+p
s+q (V )

that is obtained through the extension by linearity of the map that sends the
couple

(v1 ⊗ . . . ⊗ vr ⊗ v∗1 ⊗ . . . ⊗ v∗s , w1 ⊗ . . . ⊗ wp ⊗ w∗1 ⊗ . . . ⊗ w∗q ),

into

v1 ⊗ . . . ⊗ vr ⊗ w1 ⊗ . . . ⊗ wp ⊗ v∗1 ⊗ . . . ⊗ v∗s ⊗ w∗1 ⊗ . . . ⊗ w∗q .

As usual this map is unique by the universal factorization property. The couple
(T⊗(V ),⊗) is an associative algebra over F, the tensor algebra of V .

Definition 11.2 (Contractions of a tensor)
Let us consider (r, s) ∈ N × N with r ≥ 1 and s ≥ 1. ∀(i, j) ∈ N × N with
1 ≤ i ≤ r and 1 ≤ j ≤ s we define the contraction Ci

j as the map

Ci
j : T r

s (V ) −→ T r−1
s−1 (V )

that sends
v1 ⊗ . . . ⊗ vr ⊗ v∗1 ⊗ . . . ⊗ v∗s

into

(v∗j (vi)) · v1⊗ . . . ⊗ vi−1⊗ vi+1⊗ . . . ⊗ vr ⊗ v∗1 ⊗ . . . ⊗ v∗j−1⊗ v∗j+1⊗ . . . ⊗ v∗s .
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Remember that in our notation the action of a covector v∗j on a vector vi is
written as v∗j (vi) and, of course, v∗j (vi) ∈ F.

We end this section with an additional intuitive characterization of tensors,
that can be useful in some formulations. Let T ∈ T r

s (V ) be an (r, s)-tensor. We
can see it as a multilinear applications that maps r covectors, {vi}i=1,...,r, and
s vectors, {v∗j }j=1,...,s into an element of F. Let us consider the object

T (−, v∗2 , . . . , v∗r , v1, . . . , vs).

It maps linearly a covector w∗ into

T (w∗, v∗2 , . . . , v
∗
r , v1, . . . , vs) ∈ F ,

i.e. it is a linear application from V ∗ into F. Thus

T (−, v∗2 , . . . , v∗r , v1, . . . , vs) ∈ T 1
0 (V ).

Similarly we have, for example,

T (−, v∗2 , . . . , v∗r ,−, v2, . . . , vs) ∈ T 1
1 (V ),

or
T (v∗1 , v

∗
2 , . . . , v

∗
r ,−,−, v3, . . . , vs) ∈ T 0

2 (V ),

and so on.

11.2 Connections on manifolds - 3 -

11.2.1 Parallel vector fields and parallel translation

Definition 11.3 (Parallel vector field along a curve)
Let (M ,F) be a manifold with connection D (−,−) and let σ(t) be a curve on
M . A vector field V (t) along σ is parallel along σ if

DV

dt
= 0.

Proposition 11.1 (Characterization of parallel vector field)
Let (M ,F) be a manifold of dimension dim (M ) = m with connection D (−,−).
Let (U, φ) ∈ F be a chart for M with coordinate functions (x1, . . . , xm) and let
σ(t) = (x1(t), . . . , xm(t)) be a curve on M . A vector field V (t) =

∑1,m
i vi(t)

∂/∂xi along σ is parallel along σ if and only if

dvk(t)
dt

+
1,m∑
i,j

dxi(t)
dt

Γk
ijv

j(t) = 0 k = 1, . . . ,m. (11.1)

Proposition 11.2 (Existence of parallel vector fields)
Let M ,F be a manifold and σ(t) = (x1(t), . . . , xm(t)) be a curve on M . Let
v0 ∈ Mσ(0) be a tangent vector to M at σ(0). There exists one and only one
parallel vector field V along σ with V (σ(0)) = v0.

Proposition 11.3 (Parallel translation is an isomorphism)
The parallel translation ϕ along a curve is an isomorphism

ϕ : Mσ(0) −→ Mσ(t) , ∀t ∈ [a, b].
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11.2.2 Extension of covariant derivative to tensors

The connection and its properties have been defined above as operations on
vector fields. They can be extended in a natural way to tensors of whatever
type. We will give this extension below using also the interpretation of tensors
(tensor fields on a manifold) that we have quickly developed at the end of the
previous section.

Let us start with a preliminary observation on the operation of covariant
derivative that we already know. Given two vector fields, V and W , we know
that D (V ,W ) is again a vector field. Let us re-express the above sentence
by substituting some words with equivalent ones (in particular we are going to
substitute vector field with (1, 0)-tensor field): given a vector field, V , and a
(1, 0)-tensor field, W , then D (V ,W ) is again a (1, 0)-tensor field. Let us then
consider D (−,W ). This is a linear application that associates to each vector
field V a (1, 0)-tensor field, D (V ,W ). Thus D (−,W ) is a (1, 1)-tensor field.

From the above considerations the following definition stems:

Definition 11.4 (Covariant derivative of vector fields)
Given a manifold (M ,F) with connection D(−,−) the covariant derivative as-
sociated to the given connection is the linear map that associates to each vec-
tor field W the (1, 1)-tensor field D(−,W ) such that for each vector field V ,
D(V ,W ) is the vector field, which associates to each point m ∈ M the covariant
derivative of W in the direction of V m at m.

The above definition can be extended to any tensor field as follows.

Definition 11.5 (Extension of covariant derivative)
Given a manifold (M ,F) with connection D(−,−) the covariant derivative of
a tensor is the map that associates to each (r, s)-tensor field T ∈ T r

s (M ) the
(r, s+ 1)-tensor field D(−,T ) ∈ T r

s+1(M ) such that:

1. D(−,−) is linear;

2. D(−,−) commutes with contractions;

3. D(−,T 1 ⊗ T 2) = T 1 ⊗D(−,T 2) +D(−,T 1)⊗ T 2;

4. ∀f ∈ C∞(M ), D(−, f) = df .

5. ∀X ∈ V(M ) ∼= T 1
0 (M ), then D(−,X) is the covariant derivative of the

vector field as defined in definition 11.4.
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