Chapter 10

Lecture 10

10.1 Connections on manifolds - 2 -

10.1.1 Characterization of symmetric connections

Proposition 10.1 (Characterization of symmetric connections)

Let $D(-,-)$ be a connection on a manifold \mathscr{M}, \mathcal{F} and $(U, \phi) \in \mathcal{F}$ a chart of \mathscr{M} with coordinate functions $\left(x^{1}, \ldots, x^{m}\right)$. The following conditions are equivalent:

1. $D(-,-)$ is symmetric;
2. $D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=D\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{i}}\right)$;
3. $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.

Proof:
$1 \Rightarrow 2$ Let us consider a symmetric connection. In a coordinate basis of \mathscr{M}_{m}, as is the one induced by the given chart, the Lie Brackets of two arbitrary basis vectors vanish, i.e.

$$
\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0 .
$$

Thus

$$
D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)-D\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{i}}\right)=0
$$

or

$$
D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=D\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{i}}\right) .
$$

$2 \Rightarrow 3$ If we express

$$
D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=D\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{i}}\right)
$$

in terms of the connection symbols, the above equality becomes

$$
\sum_{k}^{1, m}\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \frac{\partial}{\partial x^{k}}=0 .
$$

But, since $\left\{\partial / \partial x^{k}\right\}_{k=1, \ldots, m}$ is a basis of \mathscr{M}_{m} at each point $\mathrm{m} \in U \subset \mathscr{M}$, the $\partial / \partial x^{k}$ are linearly independent, i.e.

$$
\Gamma_{i j}^{k}-\Gamma_{j i}^{k}=0 \Rightarrow \Gamma_{i j}^{k}=\Gamma_{j i}^{k} .
$$

$3 \Rightarrow 1$ We consider to arbitrary vector fields \boldsymbol{V} and \boldsymbol{W} and write them in a coordinate basis associated to a given chart (U, ϕ) with coordinate functions $\left(x_{1}, \ldots, x_{m}\right)$:

$$
\begin{align*}
\boldsymbol{V} & =\sum_{i}^{1, m} v_{i} \frac{\partial}{\partial x_{i}} \\
\boldsymbol{W} & =\sum_{j}^{1, m} w_{j} \frac{\partial}{\partial x_{j}} \tag{10.1}
\end{align*}
$$

We first compute

$$
\begin{aligned}
D(\boldsymbol{V}, \boldsymbol{W}) & =D\left(\sum_{i}^{1, m} v^{i} \frac{\partial}{\partial x^{i}}, \sum_{j}^{1, m} w^{j} \frac{\partial}{\partial x^{j}}\right) \\
& =\sum_{i, j}^{1, m} D\left(v^{i} \frac{\partial}{\partial x^{i}}, w^{j} \frac{\partial}{\partial x^{j}}\right) \\
& =\sum_{i, j}^{1, m} v^{i} D\left(\frac{\partial}{\partial x^{i}}, w^{j} \frac{\partial}{\partial x^{j}}\right) \\
& =\sum_{i, j}^{1, m}\left[v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}+v^{i} w^{j} D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)\right] \\
& =\sum_{i, j}^{1, m} v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}+\sum_{i, j, k}^{1, m} \Gamma_{i j}^{k} v^{i} w^{j} \frac{\partial}{\partial x^{k}} .
\end{aligned}
$$

Then, by exchanging \boldsymbol{V} and \boldsymbol{W} we also obtain

$$
D(\boldsymbol{W}, \boldsymbol{V})=\sum_{i, j}^{1, m} w^{j} \frac{\partial v^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}+\sum_{i, j, k}^{1, m} \Gamma_{j i}^{k} v^{i} w^{j} \frac{\partial}{\partial x^{k}},
$$

so that

$$
\begin{align*}
D(\boldsymbol{V}, \boldsymbol{W}) & -D(\boldsymbol{W}, \boldsymbol{V})= \\
= & \sum_{i, j}^{1, m}\left[v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-w^{j} \frac{\partial v^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}\right]+ \\
& \quad+\sum_{i, j, k}^{1, m}\left(\Gamma_{j i}^{k}-\Gamma_{j i}^{k}\right) v^{i} w^{j} \frac{\partial}{\partial x^{k}} \\
= & \sum_{i, j}^{1, m}\left[v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-w^{j} \frac{\partial v^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}\right] \tag{10.2}
\end{align*}
$$

since by the assumptions, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$. We now compute the commutator, remembering in the first step result 1. of proposition 8.4:

$$
\begin{align*}
{[\boldsymbol{V}, \boldsymbol{W}]=} & {\left[\sum_{i}^{1, m} v^{i} \frac{\partial}{\partial x^{i}}, \sum_{j}^{1, m} w^{j} \frac{\partial}{\partial x^{j}}\right] } \\
= & \sum_{i, j}^{1, m} v^{i} w^{j}\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]+ \\
& \quad+\sum_{i, j}^{1, m} v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-\sum_{i, j}^{1, m} w^{j} \frac{\partial v^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}} \\
= & \sum_{i, j}^{1, m}\left[v^{i} \frac{\partial w^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-w^{j} \frac{\partial v^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}\right] \tag{10.3}
\end{align*}
$$

The first term in the equation before the last vanishes since we are in a coordinate basis and we thus see from (10.2) and (10.3) that

$$
D(\boldsymbol{V}, \boldsymbol{W})-D(\boldsymbol{W}, \boldsymbol{V})=[\boldsymbol{V}, \boldsymbol{W}],
$$

i.e. the connection is symmetric.

This completes the proof.

10.1.2 Smooth curves and covariant derivative along a curve

Definition 10.1 (Smooth curve on a manifold)

Let us consider a manifold $(\mathscr{M}, \mathcal{F})$. A smooth curve on \mathscr{M} is a differentiable map

$$
\sigma:[a, b] \longrightarrow \mathscr{M}
$$

such that $\sigma(t) \in \mathscr{M}$. The tangent vector to the curve is denoted by $\dot{\boldsymbol{\sigma}}(t)$, which is defined as

$$
\left.\dot{\boldsymbol{\sigma}}(t)=d \sigma\rceil_{t}\left(\frac{d}{d r}\right\rceil_{t}\right)
$$

Remember that the differential of $\sigma(t)$ is a map

$$
d \sigma\rceil_{t}: \mathbb{R}_{t} \cong \mathbb{R} \longrightarrow \mathscr{M}_{\sigma(t)}
$$

which maps tangent vectors in \mathbb{R}_{t} into tangent vectors of $\mathscr{M}_{\sigma(t)}$. This helps us in giving a precise characterization of the tangent vector $\dot{\boldsymbol{\sigma}}(t)$. Indeed let us consider a coordinate neighborhood (U, ϕ) on \mathscr{M}, where ϕ is associated to the coordinates $\left(x^{1}, \ldots, x^{m}\right)$. We fix as usual the coordinate basis on the tangent spaces of points in U. The components of the vector $\dot{\boldsymbol{\sigma}}(t)$ (which is a map from $C^{\infty}(\mathscr{M})$ into $\left.\mathbb{R}\right)$ are

$$
\left.\left.\left.\left.(\dot{\boldsymbol{\sigma}}(t))\left(x^{i}\right)=(d \sigma\rceil_{t}\left(\frac{d}{d r}\right\rceil_{t}\right)\right)\left(x^{i}\right)=\frac{d}{d r}\right\rceil_{t}\left(x^{i} \circ \sigma\right)=\frac{d \sigma^{i}}{d r}\right\rceil_{t} \stackrel{d \sigma^{i}(t)}{d t}
$$

where $\sigma^{i}=x^{i} \circ \sigma$ is the i-th coordinate component of the map σ defining the curve. We can thus write

$$
\left.\left.\left.\dot{\boldsymbol{\sigma}}(t)=\sum_{i}^{1, m} \frac{d \sigma^{i}}{d r}\right\rceil_{t} \frac{\partial}{\partial x^{i}}\right\rceil_{\sigma(t)} \stackrel{\sum_{i}^{1, m}}{=d^{i}(t)} \frac{\partial}{d t} \frac{\partial x^{i}}{}\right\rceil_{\sigma(t)}
$$

In what follows we are also going to use the notation $x^{i}(t)$ in place of $\sigma^{i}(t)$ for the components of the curve.

Proposition 10.2 (Covariant derivative along a curve)

Let $\sigma(t):[a, b] \longrightarrow \mathscr{M}$ be a differentiable curve on a manifold $(\mathscr{M}, \mathcal{F})$ with connection $D(-,-)$. Let $\boldsymbol{V}(t)$ be a differentiable vector field along σ. There exists one and only one map which associates to a vector field \boldsymbol{V} along σ another vector field $D \boldsymbol{V} / d t$ along σ, the covariant derivative of \boldsymbol{V} along σ, such that:

1. $\frac{D(\boldsymbol{V}+\boldsymbol{W})}{d t}=\frac{D \boldsymbol{V}}{d t}+\frac{D \boldsymbol{W}}{d t}$;
2. $\forall f:[a, b] \longrightarrow \mathbb{R}$ we have $\frac{D(f \boldsymbol{V})}{d t}=\frac{d f}{d t} \boldsymbol{V}+f \frac{D \boldsymbol{V}}{d t}$;
3. if $\boldsymbol{Y} \in \mathcal{V}(\mathscr{M})$ is a vector field on \mathscr{M} such that $\boldsymbol{V}(t)=Y(\sigma(t))$ then

$$
\begin{equation*}
\frac{D \boldsymbol{V}}{d t}=D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{Y})_{\sigma(t)} \tag{10.4}
\end{equation*}
$$

Proof:
Let us choose a chart $(U, \phi) \in \mathcal{F}$ on the manifold $(\mathscr{M}, \mathcal{F})$ with coordinate functions $\left(x^{1}, \ldots, x^{m}\right)$. and let us consider a curve $\sigma(t)=\left(x^{1}(t), \ldots\right.$, $\left.x^{m}(t)\right)$. We then have

$$
\dot{\boldsymbol{\sigma}}(t)=\sum_{i}^{1, m} \frac{d x^{i}(t)}{d t} \frac{\partial}{\partial x^{i}} .
$$

To prove the existence we use property 3. as an ansatz, i.e. we define

$$
\frac{D \boldsymbol{V}}{d t} \stackrel{\text { def. }}{=} D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{Y})_{\sigma(t)}
$$

this is a good definition since the operation defined by the connection is local, i.e. it depends only on the values of the vector fields at a given point and thus it makes sense for each vector field which is defined at that point. Moreover we have:

$$
\begin{aligned}
\frac{D(\boldsymbol{V}+\boldsymbol{W})}{d t} & =D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{V}+\boldsymbol{W})_{\sigma(t)} \\
& =D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{V})_{\sigma(t)}+D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{W})_{\sigma(t)} \\
& =\frac{D \boldsymbol{V}}{d t}+\frac{D \boldsymbol{W}}{d t}
\end{aligned}
$$

so that 1 . is satisfied. Then we have

$$
\begin{aligned}
\frac{D(f \boldsymbol{V})}{d t} & =D(\dot{\boldsymbol{\sigma}}(t), f \boldsymbol{V})_{\sigma(t)} \\
& =(\dot{\boldsymbol{\sigma}}(t))(f) \boldsymbol{V}+f D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{V})_{\sigma(t)} \\
& =\sum_{i}^{1, m} \frac{d x^{i}(t)}{d t} \frac{\partial}{\partial x^{i}}(f)+f D(\dot{\boldsymbol{\sigma}}(t), \boldsymbol{V})_{\sigma(t)} \\
& =\frac{d f}{d t} \boldsymbol{V}+f \frac{D \boldsymbol{V}}{d t}
\end{aligned}
$$

and 2. is also satisfied. 3., of course, holds by definition, so the only property we still have to prove is uniqueness. To establish it we rewrite $D \boldsymbol{V} / d t$ using the local expression above for $\boldsymbol{\boldsymbol { \sigma }}(t)$ and also writing locally the vector field along $\sigma(t)$ as

$$
\boldsymbol{V}(t)=\sum_{j}^{1, m} v^{j}(t) \frac{\partial}{\partial x^{j}}
$$

Then from equation (10.4) we can obtain the following chain of equalities:

$$
\begin{align*}
\frac{D \boldsymbol{V}}{d t} & =\frac{D\left(\sum_{j}^{1, m} v^{j}(t)\left(\partial / \partial x^{j}\right)\right)}{d t} \\
& =\sum_{j}^{1, m}\left(\frac{d v^{j}(t)}{d t} \frac{\partial}{\partial x^{j}}+v^{j}(t) \frac{D\left(\partial / \partial x^{j}\right)}{d t}\right) \\
& =\sum_{j}^{1, m}\left[\frac{d v^{j}(t)}{d t} \frac{\partial}{\partial x^{j}}+v^{j}(t) D\left(\dot{\boldsymbol{\sigma}}(t), \frac{\partial}{\partial x^{j}}\right)\right] \\
& =\sum_{j}^{1, m}\left[\frac{d v^{j}(t)}{d t} \frac{\partial}{\partial x^{j}}+v^{j}(t) D\left(\sum_{i}^{1, m} \frac{d x^{i}(t)}{d t} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)\right] \\
& =\sum_{k}^{1, m} \frac{d v^{k}(t)}{d t} \frac{\partial}{\partial x^{k}}+\sum_{i, j}^{1, m} v^{j}(t) \frac{d x^{i}(t)}{d t} D\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \\
& =\sum_{k}^{1, m} \frac{d v^{k}(t)}{d t} \frac{\partial}{\partial x^{k}}+\sum_{i, j}^{1, m} v^{j}(t) \frac{d x^{i}(t)}{d t} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}} \\
& =\sum_{k}^{1, m}\left(\frac{d v^{k}(t)}{d t}+\sum_{i, j}^{1, m} \Gamma_{i j}^{k} \frac{d x^{i}(t)}{d t} v^{j}(t)\right) \frac{\partial}{\partial x^{k}} . \tag{10.5}
\end{align*}
$$

We thus see that the covariant derivative along $\sigma(t)$ is completely determined by the connection coefficients in a unique way, i.e., given the connection, it is unique. This completes the proof.

