
Chapter 9

Lecture 9

9.1 Some algebraic preliminaries

In this section we are going to recall the idea of scalar product on a vector space.
Although the concept is well known from Algebra courses, we are going to give a
slightly different set of definitions. These are motivated by the fact that we will
be interested in pseudo-Euclidean scalar product, since they naturally arise in
relativity. Pseudo-Euclidean scalar products are non-singular and bilinear but
are not positive definite.

9.1.1 Scalar products on a vector space

Definition 9.1 (Scalar product)
A real scalar product over V is a map

〈−,−〉 : V × V −→ R

which is

1. symmetric, i.e. ∀v,w ∈ V it satisfies 〈v,w〉 = 〈w,v〉;

2. linear in the first argument, i.e. ∀u, v, w ∈ V and λ, µ ∈ R
⇒ 〈λu + µv,w〉 = λ 〈u,w〉 + µ 〈v,w〉;

3. non-degenerate, i.e. such that given v ∈ V ,
〈v,w〉 = 0, ∀w ∈ V ⇒ v = 0.

Given {ei}i=1,...,m a basis of V if we consider the matrix gij = 〈ei, ej〉 the
symmetry assumption implies gij = gji and the non-degenerate assumption
implies that the matrix gij is non singular. A scalar product will be called a
metric on V . When, given a vector v =

∑1,n
i viei, we consider the map

〈v,−〉 : V −→ V

this is a linear map on V , i.e. 〈v,−〉 ∈ V ∗ = Λ1(V ). We can easily determine
its components in the dual basis {Ej}j=1,...,m by writing

〈v,−〉 =
1,n∑
j

ṽjEj
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Figure 9.1: Timelike, spacelike and null vectors.

and acting with both sides on w =
∑1,n

k wkek:

= 〈v,w〉 =
∑1,n

j ṽjE
j(w) =

1,n∑
i,j

gijv
iwj = =

1,n∑
j

ṽjEj

(
1,n∑
k

wkek

)
1,n∑
i,j

gijv
iwj = =

1,n∑
j,k

ṽjw
kEj (ek)

1,n∑
j

(
1,n∑
i

gijv
i

)
wj = =

1,n∑
j

ṽjw
j . (9.1)

Thus

ṽj =
1,n∑
i

gijv
i.

The converse is also true: if we have a 1-form ω =
∑1,n

i ωiE
i ∈ V ∗ we can

associate to it a unique vector w ∈ V , whose components are defined as wi =∑1,n
j (g−1)ijωj . Thus the metric induces a natural isomorphisms between V

and V ∗. Since the action of an ω ∈ V ∗ is independent from the definition of a
metric on V , we will keep the notation ω(v) and we will not rewrite it in terms
of the scalar product.

Definition 9.2 (Signature and Lorentzian metric)
Let 〈−,−〉 be a metric on V . The signature of the metric is the number of
positive eigenvalues of the matrix gij minus the number of negative eigenvalues.
A metric of signature m− 2 is called a Lorentzian metric.

Definition 9.3 (Timelike, spacelike and null vectors)
Let 〈−,−〉 be a Lorentzian metric on the vector space V . A vector v ∈ V is
timelike if 〈v,v〉 < 0, spacelike if 〈v,v〉 > 0 and null if 〈v,v〉 = 0.
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9.2 Riemannian (Lorentzian) geometry - 1 -

With a procedure that mimics what we already did for tensors, we will now
apply the above framework to each tangent space in a given manifold and define
a Riemmanian/Lorentzian structure on the manifold itself.

9.2.1 Riemannian and Lorentzian manifolds

Definition 9.4 (Riemannian metric)
Let us consider a manifold (M ,F) and the set

m〈M 〉 =
⋃
m∈M

{〈−,−〉m | 〈−,−〉m a positive definite metric on Mm} .

A differentiable map
〈−,−〉 : M −→ m〈M 〉,

defined as
〈−,−〉 (m) def.= 〈−,−〉m ,

is called a Riemannian metric on M .

Differentiability is defined, as usual, in terms of vector fields, i.e. 〈−,−〉 is
differentiable if for every choice of vector fields V and W on an open set U ⊂ M
the function

〈V ,W 〉 : U −→ R,

defined as 〈V ,W 〉 (m) def.= 〈V m,W m〉m, is differentiable.

Proposition 9.1 (Existence of Riemannian metric)
Every differentiable manifold admits a Riemannian metric.

Proof:

The proof of this statement proceeds along the same line we used for the
characterization of the orientation on a manifold. Let thus (M ,F) be a
differentiable manifold, of dimension m. Let us consider a partition of
unity (R,P) subordinated to the cover U = {U | (U, φ) ∈ F}. For each
m ∈ M , ∃V ∈ R such that m ∈ V . Moreover ∃U ∈ U such that V ⊂ U
so that ∀m ∈ V ⊂ U in Mm the coordinate map φ associated to U with
coordinate functions x1, . . ., xm induces the coordinate basis {∂/ ∂xiem
}i=1,...,m. Thus ∀m ∈ V we can define a scalar product 〈−,−〉V by〈

∂

∂xi
,
∂

∂xj

〉
V

= δij .

Then

〈−,−〉 def.
=

∑
V ∈R

fV 〈−,−〉V

is a Riemannian metric on M .

�
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Definition 9.5 (Lorentzian metric)
Let us consider a manifold (M ,F) and the set

m−2〈M 〉 =
⋃
m∈M

{〈−,−〉m | 〈−,−〉m a metric of signature m− 2 on Mm} .

A differentiable map
〈−,−〉 : M −→ m−2〈M 〉,

defined as
〈−,−〉 (m) def.= 〈−,−〉m ,

is called a Lorentzian metric on M .

In what follows if we will refer to a metric, without specifying if it is Riemannian
or Lorentzian, we will assume that the type of metric is not relevant, e.g. the
results hold for the Riemannian as well as for the Lorentzian case.

Proposition 9.2 (Existence of Lorentzian metric)
A paracompact manifold admits a Lorentzian metric if and only if it admits a
non-vanishing line element field.

Definition 9.6 (Isometry between manifolds)
Let M ,F and N ,G be two differentiable manifold and φ : M −→ N a map
between them. φ is an isometry if it is a diffeomorphism and if its differential
dφ is a vector space isometry ∀m ∈ M , i.e. if ∀m ∈ M

〈dφ(v), dφ(w)〉φ(m) = 〈v,w〉m , ∀v,w ∈ Mm.

9.3 Connections on manifolds - 1 -

In the past lectures we have seen some concepts connected to the ideas of field
in the sense of mathematical physics. Fields for us will be tensor fields on
manifolds. Remembering what we said at the very beginning our fields, are the
variables in term of which we define a theory. From what we already know from
the courses of physics, we understand that knowing the variables of a problem
is not enough. We have to define concepts that can be associated to measurable
quantities and write equations for them (equations like Newton equation, for
example). From our experience we know that these equations, are in very broad
terms, differential equations, i.e. equations relating the value of the fields and
of their derivatives. We have the fields, but how about the derivatives? We
still lack this concept on a manifold. To define it in a proper way is our next
goal. How can we possibly do that? To get a clue we think of what we do
in the Euclidean space R3. Let us consider a vector field in R3, for example
the velocity field along the line described by a moving particle. How can we
define the acceleration starting from it? The acceleration is again a vector field.
We can obtain it by taking the velocity of the particle v(t) at some instant t.
Then the velocity of the particle v(t + ∆t) at some later instant t + ∆t. Then
we compute the difference of them, we divide by ∆t and we take the limit of
∆t→ 0. We obtain

a(t) = lim
∆t→0

v(t+ ∆t)− v(t)
∆t

,
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i.e. the acceleration. Let us think carefully about what we did. There is a
difference at the numerator of the above expression, between two vectors:

1. v(t + ∆t), a vector at the point P (t + ∆t), which is the point where the
particle is at the instant t+ ∆t;

2. v(t), a vector at the point P (t), which is the point where the particle is
at the instant t.

We make the difference between two vectors at two different points? This
cannot be, since the difference is not an operation defined between vectors in
two different vector spaces. If V and W are two different vector spaces and
v ∈ V , w ∈W there is no vector space operation like v−w. So what is the real
meaning of the minus sign in the expression v(t + ∆t) − v(t)? Well, actually
there is not one meaning, there are two:

1. we have to move the vector v(t+∆t) from the point P (t+∆t) to the point
P (t), i.e. move the vector v(t+ ∆t) from the vector space (R3)P (t+∆t) of
all vectors defined at P (t+ ∆t) to the vector space (R3)P (t) of all vectors
defined at P (t);

2. we then subtract from the transferred vector the vector v(t), since now
they are in the same vector space.

Another question now arises. How do we have to transfer the vector v(t+ ∆t)
from (R3)P (t+∆t) to (R3)P (t)? Well, we can just keep it parallel to itself, you
could answer, so that we have exactly the same vector at the new point. But
then what is the meaning of parallel? Maybe we implicitly give a meaning to
this expression in R3. But how we can generalize this concept on a manifold for
our tensor fields? Yes, we need a way to connect tensors at one point
to tensors at another point, to be able to appreciate the difference
between them and define derivatives! On a generic manifold we do not have
the global power of the Euclidean structure of R3. We have to find another way
(or many other ways) to meaningfully define how to parallel translate a tensor
from the vector space of tensors at one point, to the vector space of tensors at
another point. We need a concept that connects spaces of tensors at different
points; moreover, to be a good generalization of what we are already doing in
R3, it must indeed give the usual result in R3. This concept, which we are
going to study thoroughly, will be a connection. We will define the concept
for vector fields first and we will generalize it to tensor fields later on.

9.3.1 Connections and symmetric connections

Definition 9.7 (Connection at m ∈ M )
Let M be a differentiable manifold. A connection at m ∈ M is a map

D (−,−)m : Mm × V(M ) −→ M ,

such that:

1. D (vm,W )m is bilinear in vm and W ;

2. ∀f : M −→ R differentiable,

D (vm, fW )m = vm(f)W m + f(m)D (vm,W )m .
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D (vm,W )m is called the covariant derivative of the vector field W in the direc-
tion of vm at m.

Definition 9.8 (Connection on a manifold)
Let M be a differentiable manifold. A connection on M is a map

D (−,−) : V(M )× V(M ) −→ V(M ),

such that:

1. D (V ,W ) is bilinear in V and W ;

2. ∀f : M −→ R differentiable,

D (fV ,W ) = fD (V ,W ) ;

3. ∀f : M −→ R differentiable,

D (V , fW ) = V (f)W + fD (V ,W ) .

We have that ∀m ∈ M

(D (V ,W ))m = D (V ,W ) (m) def.= D (V m,W )m

where D (V m,W )m is a connection at m ∈ M .

Definition 9.9 (Symmetric connection)
Let M ,F be a manifold and D (−,−) a connection on M . D is symmetric if
∀V , W vector fields on M , then

D (V ,W )−D (W ,V ) = [V ,W ] .

Definition 9.10 (Connection in coordinates)
Let (M ,F) be a manifold of dimension dim (M ) = m with connection D (−,−)
and let (U, φ) ∈ F with coordinate functions x1, . . . , xm. Then in the chart
(U, φ) we have

D

(
∂

∂xi
,
∂

∂xj

)
=

1.m∑
k

Γk
ij

∂

∂xk

with
Γk

ij : U −→ R

differentiable functions on U ⊂ M .
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