
Chapter 7

Lecture 7

7.1 Tensors - 2 -

7.1.1 Additional properties of tensor product

Proposition 7.1 (Distributive properties of ⊗ with respect to ⊕)
Given vector spaces U , V , Ui, Vi, i = 1, . . . , k, the following properties hold:

(U1 ⊕ . . .⊕ Uk)⊗ V = U1 ⊗ V ⊕ . . .⊕ Uk ⊗ V

U ⊗ (V1 ⊕ . . .⊕ Vk) = U ⊗ V1 ⊕ . . .⊕ U ⊗ Vk, (7.1)

where + is the direct sum of vector spaces.

Proposition 7.2 (Basis of tensor product)
Let {vi}i=1,...,m be a basis of V and {wj}j=1,...,n be a basis of W . Then {vi ⊗
wj}i=1,...,m

j=1,...,n
is basis U ⊗ V . In particular dim (U ⊗ V ) = dim (U) dim (V ).

Proof:

Let Ui be the subspace of U spanned by ui and Vj the subspace of V
spanned by vj . By proposition (7.1)

U ⊗ V =

j=1,...,n⊕
i=1,m

Ui ⊗ Vj .

At the same time by proposition 6.3 Ui⊗Vj is a one dimensional vector

space spanned by ui ⊗ vj . This completes the proof.

�

Proposition 7.3 (Tensor product and linear applications)
Let

L(U∗, V ) = {l : U∗ −→ V, l linear} .

There exists only one isomorphism,

g : U ⊗ V −→ L(U∗, V )
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such that
(g(u, v))(u∗) = u∗(u)v.

Proof:

Let us define a bilinear function f ,

f : U × V −→ L(U∗, V ) ,

such that1

(f(u, v))(u∗) = u∗(u)v , ∀u ∈ U , ∀u∗ ∈ U∗ , ∀v ∈ V

(remember that u∗(u) ∈ F). By proposition 6.1 there exists only one g,

g : U ⊗ V −→ L(U∗, V )

such that, when acting on u ⊗ v, it gives the same result that f gives
when acting on the couple (u, v). This means there exists only one g
such that

(g(u⊗ v))(u∗) = u∗(u)v .

Let us now fix some basis, {ui}i=1,...,m in U , {u∗i }i=1,...,m in U∗ and
{vi}i=1,...,n in V . Then {g(ui ⊗ vj)}i=1,...,m

j=1,...,n
is a linearly independent

set in L(U∗, V ). To show this consider a linear combination of these
elements

j=1,n∑
i=1,m

aijg(ui ⊗ vj) with (aij ∈ F, ∀i = 1, . . . ,m, ∀j = 1, . . . , n) ,

such that
j=1,n∑
i=1,m

aijg(ui ⊗ vj) = 0.

Then we have that

∀k = 1, . . .m,

j=1,n∑
i=1,m

aijg(ui ⊗ vj)(u
∗
k) =

1,n∑
j

akjvj = 0,

which, since the {vi}i=1,...,n are linearly independent, implies

akj = 0 ∀k = 1, . . . ,m, ∀j = 1, . . . , n .

Since the dimensions of U ⊗V and of L(U∗, V ) are the same2, it follows

that g is an isomorphism and for the definition of the universal mapping

property it is also unique.

�

Without proof we also give the additional result:

1Remember that u∗ ∈ U∗ is an application from U into F. Thus u∗(u) ∈ F. Moreover f
is a function from U × V into L(U∗, V ). Thus f(u, v) is a linear map from U∗ into V , i.e.
(f(u, v))(u∗) ∈ V .

2Remember proposition 7.2 and that from the linear algebra course dim (L(U∗, V )) =
dim (U∗) dim (V ) = dim (U) dim (V ).
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Proposition 7.4 (Tensor product and duals)
Given vector spaces U and V there exists only one isomorphism g

g : U∗ ⊗ V ∗ −→ (U ⊗ V )∗

such that

(g(u∗ ⊗ v∗))(u⊗ v) = u∗(u)v∗(v), ∀u ∈ U,∀u∗ ∈ U∗,∀v ∈ V,∀v∗ ∈ V ∗.

This result can be generalized to r-fold tensor products.

7.1.2 Isomorphism with multilinear transformations

Notation 7.1 We set up the following notation:

V s
r

not.=
1

V ∗ × . . .×
r

V ∗ ×
1

V × . . .×
s

V .

Moreover we set
V s not.= V s

0 =
1

V × . . .×
s

V

and

Vr
not.= V 0

r =
1

V ∗ × . . .×
r

V ∗ .

Concerning tensor spaces we set

T r(V ) not.=
1

V ⊗ . . .⊗
r

V

and

Ts(V ) not.=
1

V ∗ ⊗ . . .⊗
r

V ∗ .

Then
T r

s (V ) not.= T r(V )⊗ Ts(V )

with
T 0

0 = F.

Proposition 7.5 (Tensor product and linear mappings)
Ts(V ) is isomorphic to the space of s-linear mappings from V s into F.
T r(V ) is isomorphic to the space of r-linear mappings from Vr into F.
T r

s (V ) is isomorphic to the space of (r, s)-linear mappings from V s
r into F.

Proof:

We prove only the first result using the s-fold generalization of propo-

sition 7.4. We then see that Ts(V ) is the dual vector space of T s(V ).

But from the universal factorization property generalized to the s-fold

tensor product, the dual vector space of T s(V ), which is the linear space

of mappings of T s(V ) into F, is isomorphic to the space of s-linear map-

pings of V s into F. Analogous proofs can be given in the other cases.

�
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7.1.3 Tensors and components

According to the above proposition we can intuitively think a tensor in T r
s (V )

as a multilinear map from V s
r into F, i.e. as a black-box that eats r-vectors of

V and s covectors of V ∗ to produce an element of F. We will stick with this
representation of a tensor T in T r

s (V ) as a multilinear map in what follows. In
this sense, given {vi}i=1,...,r in V and given {νi}i=1,...,s in V ∗, we are going to
represent the action of T on these sets of vectors and covectors as

T (ν1, . . . , νs, v1, . . . , vr) ∈ F.

Let us now fix {ei}i=1,...,m a basis in V and let {Ei}i=1,...,m be the corre-
sponding dual basis in V ∗. We know from the above results (properly general-
ized) that {

ei1 ⊗ . . .⊗ eis
⊗Ej1 ⊗ . . .⊗Ejr ,

∀(i1, . . . , is) extracted from {1, . . . , n}
and∀(j1, . . . , jr) extracted from {1, . . . , n}

}
is a basis of T r

s (V ). A generic element T ∈ T r
s (V ) will be written as

1,n∑
i1,...,ir
j1,...,js

T i1...is
j1...jr

ei1 ⊗ . . .⊗ eis ⊗Ej1 ⊗ . . .⊗Ejr

in the above basis. According to our interpretation of tensors as multilinear
functions, given some vectors {v(i)}i=1,...,s in V and some covectors {η(i)}i=1,...,r

in V ∗ we have that

T (η(1), . . . ,η(r),v(1), . . . ,v(s)) ∈ F. (7.2)

Of course we have

η(j) =
1,n∑
kj

η
(j)
kj

Ekj

and

v(j) =
1,n∑
hj

v(j)hj ehj .

Thus 1,n∑
i1,...,ir
j1,...,js

T i1...is
j1...jr

i1,...,is⊗
Ia

eIa ⊗
j1,...,js⊗

Jb

EJb

 (η(1), . . . ,η(r),v(1), . . . ,v(s)) =

=
1,n∑

i1,...,ir
j1,...,js

T i1...is
j1...jr

[(
i1,...,is∏

Ia

eIa
(η(a))×

j1,...,js∏
Jb

EJb(v(b))

)]

=
1,n∑

i1,...,ir
j1,...,js

T i1...is
j1...jr

i1,...,is∏
Ia

eIa

(
1,n∑
ki

η
(a)
ki

Eki

)
×

j1,...,js∏
Jb

EJb

 1,n∑
hj

v(b)hj ehj
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=
1,n∑

i1,...,ir
j1,...,js

T i1...is
j1...jr

[
i1,...,is∏

Ia

(
1,n∑
ki

η
(a)
ki

eIa
(Eki)

)
×

×
j1,...,js∏

Jb

 1,n∑
hj

v(b)hj EJb(ehj )


=

1,n∑
i1,...,ir
j1,...,js

T i1...is
j1...jr

i1,...,is∏
Ia

(
1,n∑
ki

η
(a)
ki
δki

Ia

)
×

j1,...,js∏
Jb

 1,n∑
hj

v(b)hjδJb

hj


=

1,n∑
i1,...,ir
j1,...,js

T i1...is
j1...jr

[
i1,...,is∏

Ia

η
(a)
Ia
×

j1,...,js∏
Jb

v(b)Jb

]

=
1,n∑

i1,...,ir
j1,...,js

T i1...is
j1...jr

η
(1)
i1
· · · η(s)

is
v(1)j1 · · · v(r)jr .

The above expression is the result (7.2) expressed through the components in
a given basis. In the same way as η(−)

i and v(−)j are the components of the
covector η(−) and of the vector v(−), respectively, we are going to call T i1...is

j1...jr

the components of the tensor T . In the final expression above the indices i1,
. . ., is and j1, . . ., jr are said to be saturated by the vectors v(−) and covectors
η(−) respectively. The final result above is thus a scalar, i.e. an element of F.
If not all the indices in the components of a tensor are saturated by vectors or
covectors, we get the components of an object which is again a tensor, although
of a different kind.

7.2 Synopsis

In the two previous lectures we have defined the tensor product of vector spaces
and given the most important properties: we have seen as the universal fac-
torization property is a key one for all subsequent derivations: it gives us the
possibility of transferring properties of multilinear maps on the cartesian prod-
uct of vector spaces into properties of tensors and maps on tensors. In what
follows we are going to be mainly interested in the (r, s)-fold tensor product of
a fixed given vector space V , i.e. on the (r-fold tensor product of V ) ⊗ (the
s-fold tensor product of V ∗). We have seen that in this case a tensor T ∈ T r

s (V )
can be thought as a multilinear map from V s

r into F. In this situation we have
given a meaning to the concept of tensor components when a preferred basis of
V is chosen and we have shortly seen the connection of components and tensor
calculus.
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