Chapter 4

Lecture 4

4.1 Reflections on space and time

“Ok, see you tomorrow, 6 p.m. o’clock, at the restaurant”. Just a simple
sentence, certainly with a clear meaning for the persons speaking and hearing.
But what if we reflect carefully about how well defined are the space and time
determination that we find in it? Has that sentence a precise meaning for
everyone? In all fairness we have to answer no! In all fairness that sentence
perhaps will have a precise meaning only for the two persons speaking: they
(hopefully )have the required common background knowledge to make the very
vague space and time determinations in the sentence, precise enough for them.
At least they need a common background knowledge, which is not explicit in
the sentence, if they are going to meet, not by chance, on the next day. For
what we are interested in, they have some common assumptions on the meaning
of the space and time determinations, that make them meaningful to them and
useful.

In some way, space and time determinations in pre-relativistic physics were
suffering from a similar problem. Scientists were giving for granted some prop-
erties of space and time, without a deep reflection about how much this was
justified or not. In this perspective it is worth to emphasize that most of the
mathematical tools required for a to be developed new theory of spacetime (which
turned out to be special relativity first and general relativity then) were already
at hand. What was missing was a deep reflection about the nature of the
concepts of space and time from the point of view of their definitions in precise
mathematical and physical terms. It is this reflection that we are going to shortly
develop in what follows with the confidence that it is not so important which
stipulations we are making (for example about the concepts of space and time,
but also in more general situations) as much as it is important to be aware
we are making some stipulations (for example about the concepts of space and
time, but also in more general situations). From the point of view of scientific
knowledge a clear statement about the assumptions beyond a theory makes an
easier task the development of a newer and better theory.

According to the above reflections we will quickly picture the concepts of
space and time in pre-relativistic physics: this will give us the possibility to
better appreciate the difference with Einstein’s framework.
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4.1.1 Classical mechanics and its framework

The pre-relativistic concepts of space and time have been developed together
with one branch of science, namely mechanics. As Einstein itself says, mechanics
is usually defined as having the scope of defining as bodies change their position
in space with time, but the above definition need to be carefully discussed.
Especially we need a characterization of the ideas of position, space and time.

Position and space

Since the recognition of Galilean invariance to the idea of motion in space no
absolute meaning is associated. Instead we are used to speak about motion with
respect to a given reference system (rigid body). Already Berkley observed that
the concept of absolute motion cannot be conceived: motion is relative, which
means we always have to ask ourselves, relatively to what we are describing
motion. Thus positions and trajectories are necessarily defined in connection
with a given reference system. If we want to free ourselves from the linkage
with a ones and forever chosen reference system it is important to know how
to translate our description of relative motion when we refer the motion itself
to a different reference system.

The principle of special relativity

In classical mechanics we acknowledge that some particular reference systems
can be singled out, the class of inertial systems: these systems have the common
property of being in uniform translational motion one with respect to the other.
In these systems it is easy to formulate the classical laws of mechanics, since the
group of transformations that connect these reference systems, the Galilei group,
leaves Newton’s equations (i.e. the equations of motions) invariant. In first
Newton’s law, a body sufficiently far away from other bodies keeps its state of no
motion or of uniform translational motion, there is not only a characterization
of motion, but mainly of the class of reference systems that allow a description
of motion in the terms given by classical mechanics, i.e. in which the laws
of Newtonian mechanics are valid. The fact that if some natural phenomena
respect some general laws in a given reference system, then they respect the same
laws in a reference system which is uniformly translating with respect to the first
one is called the principle of relativity in the restricted sense.

The law of addition of velocities

In the framework of classical mechanics we obtain the following law of compo-
sition of velocities.

Proposition 4.1 (Galilean law of composition of velocities)

Let K be a Galilean reference system and K another Galilean reference systems
in motion with uniform velocity V' with respect to K. If a body has a velocity v
with respect to K then its velocity with respect to K isd withdo=v+V.
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4.1.2 A fundamental law of electrodynamics
The law of propagation of light

What we have shortly discussed above is quite well verified experimentally in
the domain of classical mechanics. Unfortunately there is a phenomenon that
creates a crucial problem in the above considered framework: it is the experi-
mentally as well verified fact that light propagates in vacuum rectilinearly with
constant velocity c. Einstein calls this the law of propagation of light.

Many experiments have been conducted to test this property, and in the
limits of measurement uncertainties no violation of this law has been found.
Nevertheless this law is in contrast with the principle of relativity in the re-
stricted sense.

4.1.3 The consistency problem

This contradiction can be easily seen.

1. Let us assume that the principle of relativity holds in the context of classi-
cal mechanics: then the Galilean law of the composition of velocities also
holds.

2. Let us then consider a light ray, that we experimentally measure as prop-
agating in vacuum with velocity ¢ in the direction of the z axis of a given
reference system K.

3. Let us consider another reference system K oriented as K and translating
uniformly with velocity V' in the direction of the 2 axis of K (which is the
Z axis of K).

4. With respect to K the light ray has a velocity directed as the & axis which
is ¢ = ¢+ V, since we use a particularly simple case of the law of the
composition of velocity. But according to the principle of relativity, the
law of propagation of light should hold also in K, ie. we should have
¢ = ¢, which is of course impossible for V' # 0.

We apparently face the dichotomic choice of denying or the law of propagation
of light in vacuum or the principle of relativity.

4.2 Einstein solution: a reflection about time

Einstein’s original idea about the above presented problem starts with a reflec-
tion on it and on the exact terms in which it is posed. In particular Einstein
calls the contradiction between the principle of relativity and the law of propa-
gation of light an apparent contradiction. It stems from the fact that both, the
principle of relativity and the law of propagation of light, are quite well verified
experimentally. We have seen they conflict according to the classical law of
composition of velocity, of which we assume the validity in the framework of
our knowledge of classical mechanics. This result, as well as many others, are
nevertheless based on our assumptions about the structure of space and time.
This is why Einstein re-analyzes these concepts, particularly the time concept,
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to see if in the framework of classical mechanics there are some implicit assump-
tions that are not so justified on the basis of the two well verified and apparently
contradicting principles we have discussed above.

4.2.1 Simultaneity

Einstein’s reasoning starts from the idea of simultaneity. How can we define
this concept? To obtain an operative definition let us imagine we want to
define a procedure to decide if two lighting hit two far away places A and B
simultaneously®.

‘[...]JAfter thinking the matter over for some time you then offer
the following suggestion with which to test simultaneity. By mea-
suring [...] the connecting line AB should be measured up and an
observer placed at the mid-point M of the distance AB. This ob-
server should be supplied with an arrangement (e.g. two mirrors
inclined at 90°) which allows him visually to observe both places A
and B at the same time. If the observer perceives the two flashes of
lighting at the same time, then they are simultaneous.|...]’

Their is an objection we can rise to this definition. It seems that to know that
the two events at A and B are simultaneous we need to know that light moves
on the two halves of the segment with the same speed. But to measure this
speed we already need a way to measure time, so we are in a vicious circle. To
fight this objection Einstein himself writes:

‘[...]JAfter further consideration you cast a somewhat disdainful
glance at me —and rightly so— and you declare:

“I maintain my previous definition nevertheless, because
in reality it assumes absolutely nothing about light. There
is only one demand to be made of the definition of simul-
taneity, namely, that in every real case it must supply
us with an empirical decision as to whether or not the
conception that has to be defined is fulfilled. That my
definition satisfies this demand is indisputable. That light
requires the same time to transverse the path A — M as
for the path B — M is in reality neither a supposition
nor a hypothesis about the physical nature of light, but a
stipulation which I can make of my own freewill to arrive
at a definition of simultaneity.”]...]’

From the above quotation we see the original point in Einstein‘s thoughts. Si-
multaneity at different places is not something on which we just agree according
to a universally accepted definition of universal time (as in classical physics). It
is a concept that we define operationally according to a well defined procedure.
These procedure gives us the possibility of synchronizing clocks at different
places by sending light signals from one place to the other. Note the peculiar
role that light (more generally electromagnetic phenomena) have in this def-
inition. Nevertheless we want to stress out that about the speed of light we

IWe give for granted that simultaneity at the same place can be easily defined by an
observer according to an intuitive idea.
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have nothing more than a stipulation that we make to arrive at a definition of
simultaneity. What are the consequences of this definitions on some everyday
concepts like simultaneity and spatial distance? We are going to answer to this
question in what follows.

4.3 Lorentz transformations

4.3.1 The algebraic derivation

Let us consider two reference systems K and K. Let the coordinates on K be z,
y, z and let ¢ be the time shown by a clock in the origin O of K. Correspondingly
let the coordinates on K be Z, 7, Z and let { be the time shown by a clock in
the origin O of K. Moreover let K and K be such that corresponding axes
are parallel (with the 2 and # axes collinear) and such that K is moving with
velocity V' with respect to K in the common direction of the axes z, . Every
event is represented in K by the four numbers (z,y, z,t) and in K by other four
numbers (gﬁ,g],é,f). To begin let us restrict our attention to the x, & and t, £
coordinates. A light ray propagating along the x axis in K satisfies the law of
propagation of light, i.e. it can be described by the equation

r=c = z—ct=0, (4.1)

where ¢ is the speed of light. Because of the relativity principle the law of
propagation of light at the same speed c also holds in K, where the propagation
of the light ray will be defined by the equation

T—ct=0. (4.2)
All events satisfying (4.1) must satisfy also (4.2), which is the case if
(Z—ct) =X (z—ct). (4.3)

Let us now apply the same considerations to a light ray propagating along the
negative x or Z direction. We obtain

(4 ct) =X (z+ct). (4.4)
Let us sum the two equations above, after setting
A1+ A2 AL+ A2
al = a5 b a? = - a
2 2
to obtain
T = —aoct+ onx
{ cd = oaict—asxr (4.5)

We haye to determine now the constants oy and ay. Let us consider the origin
O of K. O is identified by & = 0 so that from the first equation in (4.5) we
obtain

Q2
xr = —ct.
g

But x/t is the velocity of the reference system K as seen by K, which is V, so

that from the above
O YV _ @

x
ct ¢ ay
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Let us now consider a rod of length AL. Applying the principle of relativity to
the measurement of the length of the rod, we know that its length when at rest
in K as seen by K must be the same as its length when at rest in K as seen by
K. Let us call these two lengths ALz and ALk respectively.

ALf) Let us put the rod at rest in K with one end in x; = 0 and the other
in xo = AL at the time ¢ = 0 of K. Transforming to K using the first of
equations (4.5) we obtain as the start and end positions of the rods

Iy =0 5 i’Q :OélAl,

so that
ALR = .i‘g - 531 = OélAl.

ALk) Let us put the rod at rest in K at £ = 0 with one end in Z1 = 0 and the
other in #3 = AL. Using equations (4.5) we obtain for the first end

0 = —agct+aqry

0 = ajct— asxy
or, which is the same,

0 = —agct+ a1y

ct = agryi/og

i.e. 1 = 0. For the second end we have

Al
0

and again, obtaining ct from the second equation and substituting into

—aoct + a1y
aqct — sy

the first,
Al = 701%501/0[1 + 121
ct = /g
so that the two end points in K are
Al 1
T = 0 s X9 = — )
a1 _ %
(%)
and we obtain Al )
ALg = —

As we said above, because of the relativity principle we have
ALp = ALg,

i.e. Al )
(651 Al = —

o a3\’
af
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o\ —1
5 2

a1 = - 5 .
a7

1
V2 % def.
ap=(1-— = =".

We conclude

Then

and the transformation equations can be written as
ct = ~(ct— Bx)
- . 4.6
{ = y(=Pct+ ) (46)
These transformation laws are called Lorentz transformations. We observe that
the quantity
22 — 22 4 g2 (4.7
is left invariant by the Lorentz transformations. If we extend this transforma-
tions to the full system of coordinates we have

ct = ~(ct—Bx)

T = ~v(—Pct+x) (4.8)
= '
Z = z

from which we see that axes orthogonal to the relative motion direction are not
affected by the transformation.

4.4 Synopsis

Some assumptions in the definitions of space time given in pre-relativistic physics
were quite implicit in the mind of scientists. As in our naive example at the
beginning of this section, there where no doubts that the Newtonian structure
of space and time (where time was an universally defined concepts, flowing
uniformly everywhere and simultaneity was the same for all observers)was a
proper framework for the description of physical phenomena. We must admit
that many success in science and technology could be effectively achieved in-
side the above framework. Nevertheless the pre-relativistic ideas about space
and time where not connected to an operational idea (we are not speaking of
the units of measurement of space and time, which were defined according to
some world-wide accepted operative definitions, but of the real essence of the
concepts of space and time themselves). The deepest meaning of special relativ-
ity can be traced back to a re-interpretation of these concepts according to an
operational point of view. This is a great advantage, not only because it gave
us the opportunity to develop a completely new and important framework for
the description of physical phenomena, but also because its assumptions about
founding principles are clearly stated. This is a basic aspect that can help us in
further developing our understanding of the concepts of space and time.
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