
Chapter 3

Lecture 3

3.1 Euler-Lagrange equations in field theory

3.1.1 Preliminaries

Definition 3.1 (Field)
Let us consider two topological spaces M and N . Let us consider a linear space
F of functions defined by some proposition P, i.e.

F = {φ|φ : M−→ N , P is true for φ} .

An element φ ∈ F is called a field.

In what follows we are going to consider M a bounded domain D in the
Euclidean space Rn with Euclidean coordinates (which we will denote with
{xα}α=1,...,n). N will be R. We will denote as usual with ∂D the boundary of
D. F will be a space of functions

φj : D ⊂ Rn −→ R , j = 1, . . . , N

sufficiently regular, for example of class C2 (this is our P above).

Definition 3.2 (Functional of fields)
A functional S[φ] of the fields φ = (φj(xµ))j=1,...,N ∈ F is an integral of a
function S of φj, ∂νφ

k and, eventually, xρ:

S[φ] =
∫

D

S(xµ, φj(xν), ∂ρφ
k(xσ))dnx.

We will now see how some equations from our fields can be defined using a
stationary functional principle starting from a given functional of the fields, as
defined above. We first will give the following

Definition 3.3 (Field fluctuation (or variation))
Let us consider φ ∈ F . Let δφ be a differentiable function over D with the
following properties:

1. δφ is finite on D;
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2. there exists N ⊂ D, such that N ∪ ∂N ⊂ D and δφ ≡ 0 on D \N (thus
in particular δφ ≡ 0 on ∂D).

3. ∃ε̄ ∈ R+ such that ∀ 0 < ε < ε̄, φ + εδφ ∈ F .

Then δφ is called a fluctuation of the field φ.

3.1.2 Functional Derivatives

In terms of the fluctuations of the fields we can define the variation of a func-
tional. Intuitively this is the change in the functional due to a fluctuation in
the fields, and can be formalized as below.

Definition 3.4 (Finite variation of a functional)
Let us consider a field theory defined, according to the above notation, as a set
of fields φ ∈ F on D. Let S[φ] be a functional of the fields φ. The expression

∆S[φ] = S[φ + δφ]− S[φ]

is the variation of the functional S due to the field fluctuation δφ. In what
follows we are going to use the notation

∆εS[φ] = S[φ + εδφ]− S[φ].

With a procedure similar to the one we use for the derivative of a function we
can now define the functional derivative of a functional.

Definition 3.5 (Functional derivative of a functional)
Given a functional S[φ] of the fields φ, the first functional derivative of S[φ],

δS[φ]
δφ(x)

=
(

δS[φ]
δφj(xµ)

)
j=1,...,N

is defined as∫
D

〈
δS[φ]
δφ(x)

, δφ(x)
〉
dnx ≡

∫
D

1,N∑
j

δS[φ]
δφj(xµ)

δφj(xρ)dnx

def.= lim
ε→0

∆εS[φ]
ε

≡ dS[φ + εδφ]
dε

⌉
ε=0

. (3.1)

In terms of the first functional derivative we can define a stationary point (which
is a field configuration) for a functional S[φ]. Technically it is called an extremal.

3.1.3 Estremals and field equations

Definition 3.6 (Extremal of a functional)
A (set of) field(s) φ0 ∈ F is an extremal for the functional S[φ] if for all field
fluctuations δφ it holds

δS[φ0]
δφ

≡ 0.

Just for later convenience, analogously to what is done for finite degrees of
freedom systems, we define the Euler-Lagrange equations for the fields.
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Definition 3.7 (Euler-Lagrange equations)
Let φ be a (set of) field(s) in a theory (defined as above) described by the action
functional

S[φ] =
∫

D

S(xµ, φj(xν), ∂ρφ
k(xσ))dnx.

The differential equations

∂S
∂φk

−
1,n∑
µ

∂µ

(
∂S

∂(∂µφk)

)
= 0 (3.2)

are called the Euler-Lagrange equations for φ1.

All the above set of definitions is a premise to the following proposition, which
is crucial in setting up a relation between the Euler-Lagrange equations of a
system and the variation of the functional associated to the field theory.

Proposition 3.1 (Conditions for an extremal)
A field φ0 is an extremal of the functional S[φ] if and only if it satisfies the
system of Euler-Lagrange equations for φ.

Proof:

Let us consider the ε-finite variation of the functional S[φ], that we write
with the explicit dependence from the fields and their derivatives:

∆εS[φ] =

∫
D

[
S(xµ;φj + εδφj ; ∂νφ

k + ε∂αδφ
k)− S(xµ;φj ; ∂νφ

k)
]
dnx.

We will now develop the first term in square brackets, which is a function
of ε, as a Taylor series in ε, stopping at first order. We thus get

S(xµ;φj + εδφj ; ∂νφ
k + ε∂αδφ

k) =

= S(xµ;φj ; ∂αφ
k) +

+

1,N∑
j

∂S
∂φj

(δφj)ε

+

1,N∑
k

1,n∑
µ

∂S
∂(∂µφk)

(∂µδφ
k)ε+O(ε).

Then

∆εS[φ] = ε

∫
D

[
1,N∑

j

∂S
∂φj

δφj +

1,N∑
k

1,n∑
µ

∂S
∂(∂µφk)

∂µδφ
k +O(ε)

]
dnx.

We can now perform an integration by parts on the second term:∫
D

1,N∑
k

1,n∑
µ

∂S
∂(∂µφk)

∂µδφ
kdnx =

=

1,N∑
k

1,n∑
µ

∫
D

∂S
∂(∂µφk)

∂µδφ
kdnx

1Please, note the difference between S and S
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=

1,N∑
k

1,n∑
µ

∫
D

∂µ

((
∂S

∂(∂µφk)

)
δφk

)
dnx+

−
1,N∑

k

1,n∑
µ

∫
D

∂µ

(
∂S

∂(∂µφk)

)
δφkdnx

and rewrite ∆εS[φ] as

∆εS[φ] = ε

∫
D

[
1,N∑

j

(
∂S
∂φj
−

1,n∑
µ

∂µ

(
∂S

∂(∂µφj)

))
δφj

]
dnx+

∫
D

O(ε)dxn

+ε

1,N∑
k

1,n∑
µ

∫
D

∂µ

((
∂S

∂(∂µφk)

)
δφk

)
dnx.

We have to deal now with the last contribution: in particular we see
that the integrand is a derivative with respect to xµ integrated on the
volume of D. We can separate the xµ integration from the others and
we obtain∫
D

∂µ

((
∂S

∂(∂µφk)

)
δφk

)
dnx =

=

∫
D

∂µ

((
∂S

∂(∂µφk)

)
δφk

)
dnx

=

∫
dx1 . . . dxµ−1 . . . dxµ+1 . . . dxn

∫ x̄
µ
(1)

x̄
µ
(0)

∂µ

((
∂S

∂(∂µφk)

)
δφk

)
dxµ

=

∫
dxn−1

( ∂S
∂(∂µφk)

)
δφk

⌉
x̄

µ
(1)

−
(

∂S
∂(∂µφk)

)
δφk

⌉
x̄

µ
(0)

 .
We note that the integration limits x̄µ

(0/1) are functions of the remaining
coordinates. Moreover they are on the boundary of ∂D of D. So the two
terms inside the square brackets have to be calculated on the boundary
of D, where the fluctuations of the fields vanish by definition. Thus
the integrand function above, a function of x1, . . . , xµ−1, xµ+1, . . . , xn,
vanishes identically. The integral then also vanishes, so that the Taylor
expansion from which we started is simply

∆εS[φ] = ε

∫
D

[
1,N∑

j

(
∂S
∂φj
−

1,n∑
µ

∂µ

(
∂S

∂(∂µφj)

))
δφj

]
dnx+

∫
D

O(ε)dxn.

From the above expression is easier to calculate limε→0 (∆εS[φ] /ε):

lim
ε→0

∆εS[φ]

ε
=

∫
D

[
1,N∑

j

(
∂S
∂φj
−

1,n∑
µ

∂µ

(
∂S

∂(∂µφj)

))
δφj

]
dnx

=

∫
D

[〈(
∂S
∂φ
−

1,n∑
µ

∂µ

(
∂S

∂(∂µφ)

))
, δφ

〉]
dnx.

If we compare this expression with the definition of the first functional
variation of S[φ], ∫ 〈

δS[φ]

δφ
, δφ

〉
dnx,
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we obtain

δS[φ]

δφ
=
∂S
∂φ
−

1,n∑
µ

∂µ

(
∂S

∂(∂µφ)

)
,

which is a shorthand for

δS[φ]

δφ
=

(
∂S
∂φk

−
1,n∑
µ

∂µ

(
∂S

∂(∂µφk)

))
k=1,...,N

. (3.3)

We have thus calculated the first functional variation of the functional
and, using this result, we can easily prove the if and only if condition:

⇒ ) Let φ0 be an extremal for S. Then by definition δS[φ0]/(δφ) = 0, which from
(3.3) implies

∂S
∂φk

−
1,n∑
µ

∂µ

(
∂S

∂(∂µφk)

)
= 0 , k = 1, . . . , N.

⇐ ) If for a given φ0 the Euler-Lagrange equations are satisfied, then δS[φ0]/ (δφ) =
0.

Note that in this proposition we are speaking of an extremal for a func-

tional, without specifying if that gives a maximum or a minimum.

�

3.2 Stationary action principle

We are now going to connect the above statements with the heuristic picture
we gave in lecture 2. Let us consider indeed our discrete system, described for
example by the Lagrangian Lθ of equation (2.4). We know from the course of
analytical mechanics that the Euler-Lagrange equations associated to Lθ can be
derived from a stationary action principle from the action

Sθ =
∫
dtLθ.

Using the heuristic limit procedure as we did before we then know that the action
functional Sθ will be transformed in an action functional with Lagrangian L
which is the integral of the Lagrangian density L, so that, as quickly anticipated
in the previous lecture close to the end of section 2.2, the action functional in
the continuous case is

S[Θ] =
∫
dt

∫
dlL(Θ, ∂Θ).

Thus as the discrete theory was described by equations that could be obtained
from the stationarity of the action Sθ, now the continuous theory will be de-
scribed by field equations that can be obtained from the stationarity of the func-
tional S[Θ]: this means that the solutions of these equations will be extremals
for S[Θ]. Thus the equations for our field are the Euler-Lagrange equations
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for the field theory described by L. We can compute them easily. The xµ

coordinates are (t, l) and we easily compute

∂L
∂Θ(l; t)

= 0

∂L
∂(∂tΘ(l; t))

= µ∂tΘ(l; t)

∂L
∂(∂lΘ(l; t))

= κ∂lΘ(l; t)

so that

∂t

(
∂L

∂(∂tΘ(l; t))

)
= µ∂2

t Θ(l; t)

∂l

(
∂L

∂(∂lΘ(l; t))

)
= κ∂2

l Θ(l; t)

and the Euler-Lagrange equations (3.2) then become

µ∂2
t Θ(l; t)− κ∂2

l Θ(l; t) = 0,

which is exactly equation (2.12) that we derived with the heuristic limit proce-
dure in the previous lecture.

If in the future we are going to develop a theory for some fields and we will
assume it admits a description in terms of an action functional and we will give
an explicit action functional for the fields, then we will be able to determine
the field equations by computing the Euler-Lagrange equations of the system,
or, equivalently, by imposing the stationarity of the action functional under a
fluctuations of the fields.

3.3 Synopsis

In this lecture we have studied how the equations of motion of a field theory
(Euler-Lagrange equations) can be obtained by using a variational principle.
The proofs given assume that the domain of definition of the field theory is
a bounded subset of Rn, but choosing properly the space of fields F suitable
generalizations can be given to situations where D is unbounded and fields
behave in a sufficiently regular way asymptotically (i.e. in such a way that all
defined quantities exist finite). All the formalism has been developed for subsets
of Rn, although the definition of field given at the beginning was in far more
general settings. It is thus important to stress that the above formulation can
be extended from the case of the Euclidean space to more general situations and
we will use, without further proofs, some generalized setups in what follows. In
particular we will apply all the above to the case in which fields are defined on
a Lorentzian manifold.
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