
Chapter 2

Lecture 2

2.1 From discrete to continuous systems

Let us consider the following discrete system: N + 1 particles in 1 space di-
mension, connected by N springs. Let all the particle masses be identical and
equal to m, all the spring constants also identical and equal to k and all the
spring rest lengths also identical and equal to ∆l. Let qi(t) be the position of
the i-th particle of the system (we choose the {qi(t)}i=1,...,N+1 as the canonical
coordinates of the system). Let us also define another specific set of generalized
coordinates, which we will call {θi(t)}i=1,...,N+1 in such a way that:

qj(t) = j∆l + θj(t) , j = 1, . . . , N + 1. (2.1)

Since we assume that the rest length of all the springs is ∆l, note that if we
number particles in such a way that they are in the order of the index of the
corresponding generalized coordinates when the springs are all at rest, then the
{θi(t)}i=1,...,N+1 represent the displacements of the particles from the position
they would occupy when all springs have their rest length.

In terms of the first set of canonical coordinates the kinetic energy of the
system is

Tq =
m

2

1,N+1∑
i

q̇i(t)2.

In the same coordinates the potential energy turns out to be

Vq =
k

2

1,N∑
i

(qi+1(t)− qi(t)−∆l)2 ,

where k is a constant that can be expressed as

k =
κ

∆l
(2.2)

in terms of a constant κ, with the units of a force, and ∆l, the rest length of
the spring. The Lagrangian of the system is thus

Lq = Tq − Vq =
1
2

[
m

1,N+1∑
i

q̇i(t)2 − k

1,N∑
i

(qi+1(t)− qi(t)−∆l)2
]
.
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[2.1].6 Lecture 2

The corresponding conjugate momenta are the derivatives of the Lagrangian
with respect to the generalized velocities, i.e.

pj(t) =
∂Lq

∂q̇j(t)
= mq̇j(t).

We now turn to the equations of motion of the system. The potential is the
only part of the Lagrangian depending on the generalized coordinates, so that

∂Lq

∂qj(t)
= −∂qj(t)Vq

= −k
2
∂qj(t)

[
1,N∑

i

(qi+1(t)− qi(t)−∆l)2
]

= −k
2

[
1,N∑

i

∂qj(t) (qi+1(t)− qi(t)−∆l)2
]

= −k
2

[
1,N∑

i

2 (qi+1(t)− qi(t)−∆l) ∂qj(t) (qi+1(t)− qi(t)−∆l)

]

= −k
2

[
1,N∑

i

2 (qi+1(t)− qi(t)−∆l) (δj,i+1 − δj,i)

]
= −k [(qj(t)− qj−1(t)−∆l)− (qj+1(t)− qj(t)−∆l)]
= k [qj+1(t)− 2qj(t) + qj−1(t)] . (2.3)

Thus the Euler-Lagrange equations

d

dt

(
∂Lq

∂q̇j(t)

)
− ∂Lq

∂qj(t)
= 0 , j = 1, . . . , N + 1

turn out to be

mq̈j(t) = k [qj+1(t)− 2qj(t) + qj−1(t)] , j = 1, . . . , N + 1.

A last quantity we are interested in is the Hamiltonian of the system. Legendre
transforming the Lagrangian description we obtain

Hq =
1,N+1∑

i

q̇i(t)pi(t)− L

=
1

2m

1,N+1∑
i

pi(t)2 +
k

2

1,N∑
i

(qi+1(t)− qi(t)−∆l)2 .

We will now rewrite the same quantities in terms of the canonical variables
{θi(t)}i=1,...,N+1. From the definition (2.1) we see that

q̇j(t) = dt (j∆l + θj(t)) = θ̇j(t)

and that

qj+1(t)− qj(t)−∆l = (j + 1)∆l + θj+1(t)− j∆l − θj(t)−∆l
= θj+1(t)− θj(t).
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Lecture 2 [2.1].7

Thus no dramatic changes occur in the expressions for the kinetic energy, po-
tential energy and Lagrangian, which turn out to be1

Tθ =
m

2

1,N+1∑
i

θ̇i(t)2

Vθ =
k

2

1,N∑
i

(θi+1(t)− θi(t))
2

Lθ = Tθ − Vθ =
1
2

[
m

1,N+1∑
i

θ̇i(t)2 − k

1,N∑
i

(θi+1(t)− θi(t))
2

]
. (2.4)

Accordingly we can calculate the conjugate momenta as

πj(t) =
∂Lθ

∂θ̇j(t)
= mθ̇j(t) (2.5)

and the Euler-Lagrange equations as

mθ̈j(t) = k (θj+1(t)− 2θj(t) + θj−1(t)) , j = 1, . . . , N + 1. (2.6)

Finally the Hamiltonian is

Hθ =
1,N+1∑

i

θ̇i(t)πi(t)− L

=
1

2m

1,N+1∑
i

πi(t)2 +
k

2

1,N∑
i

(θi+1(t)− θi(t))
2
. (2.7)

We carried on the computations until this point in the two different general-
ized coordinate systems: the notation of the first one is more usual but for the
interpretation we are going to develop in what follows the second one is more
meaningful. As we have shown all the relevant quantities maintain the same
form, since we are simply doing a specific constant translation of the origin
for each particle’s coordinate. As we anticipated above, our coming interpreta-
tion requires the second set of generalized coordinates, so from now on we are
going to stich with the description of the system in term of the displacements
{θi(t)}i=1,...,N+1. In particular we want to consider the situation in which keep-
ing the total length and total mass of the system fixed , we increase the
number of masses (and, consequently, of springs): N →∞. Let

M = (N + 1)m and L = N∆l

be the fixed total mass and total length of the system. We can rewrite the
Lagrangian (2.4) as

L
(N,∆l)
θ =

1
2

[
m(N + 1)
∆l(N + 1)

1,N+1∑
i

θ̇i(t)2∆l − k∆l
1,N∑

i

(
θi+1(t)− θi(t)

∆l

)2

∆l

]
1As we used a subscript q to identify some quantities written in terms of the {qi(t)}i=1,...,n

coordinate system, we are going to use a subscript θ to identify quantities written in terms of
the {θi(t)i=1,...n coordinate system.
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[2.1].8 Lecture 2

=
1
2

[
M

L+ ∆l

1,N+1∑
i

θ̇i(t)2∆l − k∆l
1,N∑

i

(
θi+1(t)− θi(t)

∆l

)2

∆l

]

=
M

2(L+ ∆l)

1,N+1∑
i

θ̇i(t)2∆l −
κ

2

1,N∑
i

(
θi+1(t)− θi(t)

∆l

)2

∆l, (2.8)

where we emphasize that it explicitly depends on the number of masses, N , and
on the spring length ∆l. Let us now define a function Θ(l; t) in such a way that
for j = 1, . . . , N the following relations are satisfied:

θj(t)
def.= Θ(j∆l; t) which we will identify with Θ(l; t). (2.9)

Then we also have for j = 1, . . . , N :

dtθj(t) = ∂tΘ(j∆l; t) which we will identify with ∂tΘ(l; t).

According to the above relations and identifications the Lagrangian (2.8) be-
comes

L
(N,∆l)
θ =

M

2(L+ ∆l)

1,N+1∑
i

(∂tΘ(l; t))2 ∆l︸ ︷︷ ︸−
κ

2

1,N∑
i

(
Θ(l + ∆l; t)−Θ(l; t)

∆l

)2

∆l︸ ︷︷ ︸ .
We now heuristically take the limit N → ∞, ∆l → 0 by keeping, as we said
above, M and L fixed. In this limit2

M

L+ ∆l
→ M

L
=

m

∆l
def.= µ (2.10)

and we define3

L(Θ, ∂Θ) def.
 lim

N→∞
∆l→0

L
(N,∆l)
θ ,

which turns out to be

L(Θ, ∂Θ) =
µ

2

∫ L

0

(∂tΘ(l; t))2 dl︸ ︷︷ ︸−
κ

2

∫ L

0

(∂lΘ(l; t))2 dl︸ ︷︷ ︸ . (2.11)

After performing the above (not always well defined) computations, we have
to look back to see which kind of meaning we can associate to the expression
(2.11). We can consider, one by one, all the quantities that appear in it. As a
preliminary observation we note that in the limit we have considered we have
passed from a discrete system (containing a finite number of particles indexed
by an index i ∈ N) to a continuous system (containing an infinity of particles
indexed by an index l ∈ R). Then let us analyze in turn the µ and κ parameters
and the Θ function.

2We are going to use an arrow, “→” to identify quantities for which the considered limit
procedure is mathematically rigorously defined. When it is not, so that we just have a corre-
spondence using heuristic arguments, we are going to put this in clear evidence by using the
symbol “ ”.

3We comprehensively denote as ∂Θ a generic (or the set of all) partial derivative(s) of the
function Θ.
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Lecture 2 [2.3].9

The parameter µ: the meaning of the parameter µ can be read off from equa-
tion (2.10); it is the total mass of the system, which is kept constant in
the considered limit, divided by the total length of the system, which we
also kept constant in the limit process. It is thus the density of mass of
the continuous system.

The parameter κ: our procedure does not affect this parameter which has the
dimensions of a force.

The function Θ(l; t): the function Θ(l; t) is defined in such a way that the
functions of t singled out as the values Θ(j∆l; t) agree with the functions
θi(t), that describe the displacement of the i-th particle from the position
i∆l on the “l-axis”. We want to observe that the l variable is just an index,
although continuous, which corresponds to the index i, in the discrete case.
It is not a dynamical variable of the system. The functions Θ(l; t), one for
each value of l, are the dynamical variables of the system. This is witnessed
by the fact that the Lagrangian becomes a functional of these functions:
it will be used to describe the dynamics of the system represented by the
continuous set of coordinates Θ(l; t) with l ∈ [0, L] ⊂ R.

2.2 Some naming conventions

In many books and in the literature the following naming conventions apply:

Θ , i.e. the set of variables, is called a field (fields if there are more than one);

L(Θ, ∂Θ) , is the Lagrangian of the system; it is a functional, since

L(Θ, ∂Θ) =
∫ L

0

L(Θ, ∂Θ)dl.

Another important functional is the action functional∫
dtL(Θ, ∂Θ) =

∫
L(Θ, ∂Θ)dldt.

L(Θ, ∂Θ), defined above, is called the Lagrangian density of the system.

As we have seen from our heuristic derivation, the role of l and t in the field is
different (this is because we are working in a non-relativistic theory) and this is
the reason why we use a semicolon to separate them, when we explicitly write
the dependence of Θ. As we will see, in relativistic theories space and time have
not a distinguished character and no such distinction will appear in our way of
writing the field dependence, which usually looks like φ(x), Ψ(x), gµν(x), etc.,
where x represents a set of spacetime coordinates.

2.3 The equations of motion

We are now interested in understanding what equations are obeyed by the field
Θ(l, t). We will derive these equations now by the application of the heuristic
limit procedure to the equations of motion (2.6) for the discrete system. In
a forthcoming lecture we are going to obtain them as a the Euler-Lagrange
equations directly from the Lagrangian density of the field.
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[2.3].10 Lecture 2

2.3.1 Field equations

Let us consider the equations of motion (2.6) and the definition (2.9) of the field
Θ(l; t). Starting from this definition, the terms in the right-hand side of (2.6)
can be expressed as

θj−1(t) = Θ(j∆l −∆l; t)
θj(t) = Θ(j∆l; t)

θj+1(t) = Θ(j∆l + ∆l; t)

The terms in the middle line does not look awkward, but the first and last lines
need a careful treatment. We are going to expand them in Taylor series:

θj−1(t) = Θ(j∆l −∆l; t)

 Θ(l; t)− ∂lΘ(l; t)∆l +
1
2
∂2

l Θ(l; t)(∆l)2 +O((∆l)3)

−2θj(t)  −2Θ(l; t)
θj+1(t) = Θ(l + ∆l; t)

 Θ(l) + ∂lΘ(l; t)∆l +
1
2
∂2

l Θ(l; t)(∆l)2 +O((∆l)3).

Summing the above contributions we get

θj+1(t)− 2θj(t) + θj−1(t) ∂2
l Θ(l; t)(∆l)2 +O((∆l)3).

This deals with the right-hand side of (2.6). For the left-hand side we have more
simply

θ̈j(t) ∂2
t Θ(l; t),

so that, when taking into account (2.10) and (2.2) the equations of motion
become

µ∂2
t Θ(l; t)− κ∂2

l Θ(l; t) = 0. (2.12)

All the N+1 equations of motion of the system, when N →∞, become a single
equation (by the way, the wave equation in this case). There is, of course, an
evident difference when we pay a closer attention at the kind of equation(s)
that we obtain in the two cases: the N + 1 equations for the discrete system
are ordinary differential equations of the second order in the unknown functions
{θi(t)}i=1,...,N+1. To solve them we have to specify, together with the equations,
2(N + 1) initial conditions, (N + 1) for the initial positions θ(0)i = θi(t0) of the
masses at time t = t0, say, and (N+1) for the initial velocities ω(0)

i = θ̇i(t0). The
field equation (2.12) is instead a partial differential equation for the unknown
function Θ(l; t) of the two variables l and t (where we stress again that l is just
a continuous label for the degrees of freedom of the system): it is of the second
order in l and of the second order in t. What are the initial conditions? The
initial conditions can be inferred with the same heuristic procedure above and
according to the correspondence

θ
(0)
i  Θ(0)(l)

ω
(0)
i  Ω(0)(l)
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Lecture 2 [2.4].11

and where the relations

θ
(0)
j = Θ(0)(j∆l)

ω
(0)
j = Ω(0)(j∆l)

hold. They are thus two functions, that describe the initial configuration Θ(l; t0)
and its time derivative ∂tΘ(l; t0) at the instant t = t0:

Θ(l; t0) = Θ(0)(l)
∂tΘ(l; t0) = Ω(0)(l).

This ends our discussion of the equations of motion for now. More about this
can be found in an exercise at the end of the next lecture.

Now we will define some additional dynamical quantities in the continuum
limit.

2.4 Other dynamical quantities in field theory

We would like to generalize the concept of momentum and Hamiltonian to the
case of the Θ field. The generalization of the momentum (2.5) can be derived
applying the above defined heuristic correspondence to the quantity

1
∆l

∂L
(N,∆l)
θ

∂θ̇j

where L(N,∆l)
θ is defined by (2.8). This can be seen by first computing

∂L
(N,∆l)
θ

∂θ̇j

=
M

2(L+ ∆l)

1,N+1∑
i

∂θ̇i(t)2

∂θ̇j(t)
∆l

=
M

(L+ ∆l)

1,N+1∑
i

˙θi(t)δi,j∆l

=
M

(L+ ∆l)
Θ̇(j∆l; t)∆l

 . . .?. (2.13)

We could be tempted to substitutes the ellipsis and the question mark in the
line above to define the momentum of the field corresponding to πj(t) using
the already employed heuristic limit procedure. Unfortunately this apparently
natural definition gives zero since a quantity finite in the limit is multiplied by
∆l, which goes to zero. We thus remove the unpleasant ∆l factor observing that
a finite result is obtained with the quantity we anticipated at the beginning of
this section, i.e. by the correspondence

1
∆l

∂L
(N,∆l)
θ

∂θ̇j

 µ∂tΘ(l; t) (2.14)

so that we will define the momentum density4 as

Π(l; t) = µ∂tΘ(l; t). (2.15)
4The word density, intuitively, is related to the fact that we divide by ∆l.
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[2.5].12 Lecture 2

It satisfies the correspondence

πj(t)
∆l

 Π(j∆l; t).

We also observe that starting from the Lagrangian density

L(Θ, ∂Θ) =
µ

2
(∂tΘ(l; t))2 − κ

2
(∂xΘ(l; t))2

we can write
Π(l; t) =

∂L
∂(∂tΘ(l; t))

(2.16)

which is the equation corresponding to the first equality in (2.5). It is then
plausible that the Hamiltonian density can be obtained just as

H(Θ;Π) = Π(l; t)∂tΘ(l; t)− L(Θ; ∂Θ), (2.17)

where in place of ∂tΘ(l; t) we use its expression in terms of Π(l; t) that can
be obtained inverting (2.15) (in our particular example) or (2.16) (in a more
general case). The Hamiltonian density above can also be obtained, using the
heuristic limit procedure, from equation (2.7) as follows

Hθ =
1,N+1∑

i

θ̇i(t)πi(t)− Lθ

=
1,N+1∑

i

θ̇i(t)
πi(t)
∆l

∆l − Lθ

=
1,N+1∑

i

∂tΘ(i∆l; t)Π(i∆l; t)∆l − Lθ

 
∫ L

0

∂tΘ(l; t)Π(l; t)dl −
∫ L

0

L(Θ, ∂Θ)dl

 
∫ L

0

[Π(l; t)∂tΘ(l; t)− L(Θ, ∂Θ)] dl;

the quantity in square brackets is then nothing but (2.17).

2.5 Synopsis

In this lecture we have seen an heuristic procedure to go from the Lagrangian or
Hamiltonian description of a discrete system to the Lagrangian or Hamiltonian
description of an associated continuous system. Although the limit procedure
employed is not rigorous, it helps understanding that the continuous variables
play the role of the discrete indices, i.e. they index a continuous set of vari-
ables. We have also seen that quantities analogous to the Hamiltonian and the
Lagrangian are functionals of the fields. They are the integrals on the space of
parameters of the corresponding densities.
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