Appendix A

Parallelism and Autoparallelism

A. 1 Autoparallel curves

We want to briefly discuss the definition of autoparallel curves we gave in Lecture 14. In particular, because of the literal meaning of the word "autoparallel", a better definition would have been that a curve $\sigma(t)$ is autoparallel if the vector field $\dot{\boldsymbol{\sigma}}(t)$, a vector field along the curve, is such that

$$
\frac{D \dot{\boldsymbol{\sigma}}(t)}{d t}=\alpha(t) \dot{\boldsymbol{\sigma}}(t)
$$

where $\alpha(t)$ is a function on the curve. According to the result of equation (14.1) then the equation for a geodesic would have been

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d t^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}(t)}{d t} \frac{d x^{\beta}(t)}{d t}=\alpha(t) \frac{d x^{\mu}(t)}{d t} . \tag{A.1}
\end{equation*}
$$

Let us now choose a new parametrization of σ, in terms of a parameter s, such that $t=t(s)$, where t is a strictly monotone function. We are going to give the following definition,

$$
\tilde{x}^{\mu}(s)=x^{\mu}(t(s)),
$$

and quote the following equalities, that can be easily proved:

$$
\begin{aligned}
\frac{d x^{\mu}(t)}{d t} & =\frac{d \tilde{x}^{\mu}(s)}{d s} \frac{d s}{d t} \\
\frac{d^{2} x^{\mu}(t)}{d t^{2}} & =\frac{d^{2} \tilde{x}^{\mu}(s)}{d s^{2}}\left(\frac{d s(t)}{d t}\right)^{2}+\frac{d \tilde{x}^{\mu}(s)}{d s} \frac{d^{2} s(t)}{d t^{2}}
\end{aligned}
$$

The function $s=s(t)$ is the inverse function of $t=t(s)$ which always exists since t is strictly monotone. Substituting the above results in (A.1) we obtain for the geodesic equation

$$
\frac{d^{2} \tilde{x}^{\mu}(s)}{d s^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d \tilde{x}^{\alpha}(s)}{d s} \frac{d \tilde{x}^{\beta}(s)}{d s}=\frac{d \tilde{x}^{\mu}(s)}{d s}\left[\alpha(t) \frac{d s}{d t}-\frac{d^{2} s(t)}{d t^{2}}\right]\left(\frac{d s(t)}{d t}\right)^{-2} .
$$

Let us concentrate un the quantity in square brackets:

$$
\alpha(t) \frac{d s}{d t}-\frac{d^{2} s(t)}{d t^{2}}
$$

We search a function $s(t)$ such that the above quantity vanishes, i.e. such that

$$
\alpha(t) \frac{d s}{d t}-\frac{d^{2} s(t)}{d t^{2}}=0
$$

In the above let us set $y(t)=d s(t) /(d t)$ to obtain

$$
\frac{d y(t)}{d t}=\alpha(t) y(t)
$$

which can be integrated by separation of variables to obtain

$$
y(t)=y_{0} \exp \left\{\int_{t_{0}}^{t} \alpha(\tau) d \tau\right\}
$$

The solution exists under very weak conditions on $\alpha(t)$ which are usually satisfied in the cases of interest. From the above result with an additional integration we can determine the function $s(t)$. Thus under non-restrictive condition on $\alpha(t)$ we can always find a reparametrization of an autoparallel curve (or geodesic) such that it satisfies the definition in Lecture 14 with the corresponding equation given by (14.1).

We are going to call a parameter under which (14.1) holds a natural parameter for the autoparallel curve.

