Appendix A

Parallelism and Autoparallelism

A.1 Autoparallel curves

We want to briefly discuss the definition of autoparallel curves we gave in Lecture 14. In particular, because of the literal meaning of the word "autoparallel", a better definition would have been that a curve $\sigma(t)$ is autoparallel if the vector field $\dot{\sigma}(t)$, a vector field along the curve, is such that

$$\frac{D\dot{\boldsymbol{\sigma}}(t)}{dt} = \alpha(t)\dot{\boldsymbol{\sigma}}(t)$$

where $\alpha(t)$ is a function on the curve. According to the result of equation (14.1) then the equation for a geodesic would have been

$$\frac{d^2x^{\mu}}{dt^2} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}(t)}{dt}\frac{dx^{\beta}(t)}{dt} = \alpha(t)\frac{dx^{\mu}(t)}{dt}.$$
 (A.1)

Let us now choose a new parametrization of σ , in terms of a parameter s, such that t = t(s), where t is a strictly monotone function. We are going to give the following definition,

$$\tilde{x}^{\mu}(s) = x^{\mu}(t(s)),$$

and quote the following equalities, that can be easily proved:

$$\begin{aligned} \frac{dx^{\mu}(t)}{dt} &= \frac{d\tilde{x}^{\mu}(s)}{ds}\frac{ds}{dt} \\ \frac{d^2x^{\mu}(t)}{dt^2} &= \frac{d^2\tilde{x}^{\mu}(s)}{ds^2}\left(\frac{ds(t)}{dt}\right)^2 + \frac{d\tilde{x}^{\mu}(s)}{ds}\frac{d^2s(t)}{dt^2}. \end{aligned}$$

The function s = s(t) is the inverse function of t = t(s) which always exists since t is strictly monotone. Substituting the above results in (A.1) we obtain for the geodesic equation

$$\frac{d^2 \tilde{x}^{\mu}(s)}{ds^2} + \Gamma^{\mu}_{\alpha\beta} \frac{d\tilde{x}^{\alpha}(s)}{ds} \frac{d\tilde{x}^{\beta}(s)}{ds} = \frac{d\tilde{x}^{\mu}(s)}{ds} \left[\alpha(t) \frac{ds}{dt} - \frac{d^2 s(t)}{dt^2} \right] \left(\frac{ds(t)}{dt} \right)^{-2}.$$

Let us concentrate un the quantity in square brackets:

$$\alpha(t)\frac{ds}{dt} - \frac{d^2s(t)}{dt^2}.$$

We search a function s(t) such that the above quantity vanishes, i.e. such that

$$\alpha(t)\frac{ds}{dt} - \frac{d^2s(t)}{dt^2} = 0.$$

In the above let us set y(t) = ds(t)/(dt) to obtain

$$\frac{dy(t)}{dt} = \alpha(t)y(t),$$

which can be integrated by separation of variables to obtain

$$y(t) = y_0 \exp\left\{\int_{t_0}^t \alpha(\tau) d\tau\right\}.$$

The solution exists under very weak conditions on $\alpha(t)$ which are usually satisfied in the cases of interest. From the above result with an additional integration we can determine the function s(t). Thus under non-restrictive condition on $\alpha(t)$ we can always find a reparametrization of an autoparallel curve (or geodesic) such that it satisfies the definition in Lecture 14 with the corresponding equation given by (14.1).

We are going to call a parameter under which (14.1) holds a natural parameter for the autoparallel curve.