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Preface

This is the text of a course delivered in the second semester of the second year to
undergraduate students majoring in physics in Italy.

It should expose students for the first time to some aspects of theoretical physics.
The aspects that we have chosen are Analytical Mechanics and Introductory Quantum
Mechanics.

We used to tell the students to whom we deliver these lectures that “this booklet
is like the one they may have used to get the driving licence”. The meaning of this
sentence is that this booklet wants to give an introductory working knowledge of Classical
Analytical Mechanics (CM) and of Quantum Mechanics (QM) like the introductory
working knowledge that students get from the driving -licence booklet they buy when
they enroll in a driving school. From that booklet they do not get too many technical
details of how the engine, the clutch or the brakes work. They get some knowledge of
these technical details but not to the point of becoming engineers able to design the
engine, the clutch or the brakes. Analogously for the the readers of this book. They will
get further skills and deeper knowledge , especially in QM, in more advanced courses
where more mathematical structures will be presented and in a more rigorous way.

When a student learns how to drive a car he usually practices on his parents old car
along some country lanes with the help of the parents or of older brothers, likewise here
there are a lot of exercises worked out by us in class in order to help the student.He
should anyhow practice later on at home by himself, and we listed below some very good
exercise books.The most important part of the exam will be the written one with 2-3
problems to solve in 3-4 hours.

This book, besides being not too rigorous from the mathematical point of view, does
not contain everything on CM and QM. In CM, for example, advanced problems on the
Hamilton-Jacobi methods, integrability concepts, ergodicity, chaos, classical scattering
theory, classical perturbation theory, and in QM , for example the full operator theory,
angular momentum, spin, systems of identical particles, perturbation theory, variational
methods, quantum scattering etc. are left for more advanced courses, but we think that
the essence of CM and QM is nevertheless captured here together with a good working
practice on basic problems. Most books on CM and QM are 400 pages long plus a second
300 page book on exercises for a total weight of at least 4 Kg. We wanted instead to
create a book which was “lighter” in every sense...... Our ideal was the slim book by
Landau on Classical Mechanics and the handwritten lecture notes on QM by E. Fermi
(recently republished by the Chicago University Press: E. Fermi, “Notes on Quantum
Mechanics” (Chicago, University Press, 1995)). For sure our result is not comparable
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scientifically to these ones. In common we may only have the weight.

A lot of material, and especially the exercises, are taken from several books:

• L.D. Landau and E.M. Lisfitz, “Course of Theoretical Physics, vol.1: Mechanics”,
(London, Pergamon Press,1976);

• H. Goldtstein, “Classical Mechanics”, (Reading, MA, Addison-Wesley. Pub.Co.
1980);

• Y.K.Lim, “Problems and solutions on Mechanics”, Singapore, World Scientific,
1994;

• Dare Wells, “Theory and Problems of Lagrangian Dynamics: with a treatment of
Euler’s equations of motion, Hamilton’s equation and Hamilton’s principle.”Schaum’s
outline series, New York, MacGraw Hill 1967;

• R. Eisberg and R. Resnick, “Quantum Physics of Atoms, Molecules, Solids, Nuclei
and Particles” (New York, Wiley, 1989);

• A. Messiah, “Quantum Mechanics” (Amsterdam, North-Holland, 1961);

• L.I. Schiff, “Quantum Mechanics” (New York, McGraw-Hill, 1968);

• V. Galitski, B. Karnakov and V. Kogan, “Problemes de Mecanique Quantique”
(Moscow, MIR);

• Y.-K. Lim, “Problems and Solutions on Quantum Mechanics” (Singapore, World
Scientific, 1997).

Mistakes that we may have done in adapting the material from the books above are
entirely our responsibility. We hope anyhow to have assembled the material taken from
those books in a manner useful for the student. Besides the notes presented here there
is, on the same home-page, an appendix on the Noether theorem and one on the WKB
method which is part of the course.In the future we may add other appendices.

The book is addressed not only to physics students who want to learn the basics of
analytical CM and introductory QM but it is also addressed to engineering, chemistry
and biology students for whom QM is becoming an increasingly important subject in
their field of study and research.

We would like to thank all those from whom we learned CM and QM: they are M.
Berry, S.Fubini, G.Furlan, G.C. Ghirardi, C.Orzalesi, M. Pauri, M. Reuter and B. Sakita.

This book is dedicated to all those future students who maybe, by having learned to
drive the car and to bring it to its speed limits, will find out that the “engine” has some
problems in the most extreme regimes. Maybe they will find a way to fix it or improve
the ”engine”, that means improve Quantum Mechanics, or find new experiments that
will shed further light on QM. In that manner they will implement the dream of J. Bell
who, for all his life, wanted to be a “quantum engineer”.
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Chapter 1

Classical mechanics

1.1 Least Action Principle

According to Newton, the acceleration ~ai of a particle of mass mi is given by the formula

mi~ai = ~F source
i + ~F const

i (1.1.1)

where ~F source
i are the forces exerted by internal sources like a potential (gravitational,

electromagnetic etc.) and the ~F const
i are those exerted by constraints like for example a

table on which the particle rests and so on.

It is often difficult to solve Eq. (1.1.1) because it is hard to figure out the ~F const
i .

Usually constraints are given by relations like

Ca(~r1, ~r2, . . .) = 0, a = 1, . . . , k, (1.1.2)

where Ca are functions of the positions ~r1, ~r2, . . . of the various particles and to find
out from (1.1.2) the ~F const

i may be hard. So people (Bernoulli, d’Alambert, Maupertuis,
Lagrange, Hamilton) tried to develop methods to get the equations of motion without
knowing the force exerted by the constraints. These methods are known as variational
methods and work also for systems without constraints. We will work out first these
systems and later on we shall show how the same methods work also in case constraints
are present.

Let us introduce the following function of q, q̇, known as Lagrangian, for a point
particle of mass m = 1 in a potential U(q)

L(q, q̇) =
q̇2

2
− U(q). (1.1.3)

Next let us introduce the following functional called the action

S[q(t)] =

∫ t2q2

t1q1

dtL (q(t), q̇(t)) (1.1.4)

where [q(t)] is a trajectory (any) between t1, q1 and t2, q2:
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q1, t1

q2, t2

Fig. 1.1: Trajectories between q1, t1 and q2, t2.

So S[q(t)] gives you a number once you insert a “particular trajectory” in (1.1.4). A
particular trajectory is a function q(t), so once you insert it in (1.1.4), the integrand
L (q(t), q̇(t)) becomes a function of t and you can perform explicitly the integration in t.

The classical trajectory is just a particular one among the many present in Fig. 1.1.
which one? We know that to solve the equation of Newton

q̈ = −∂U
∂q

(1.1.5)

we have to give two conditions that are either the initial position q(t1) and the initial
velocity q̇(t1) or the initial position q(t1) and the final one q(t2). Once these are given
there is only one solution of the equation of motion (1.1.5), i.e. just one trajectory among
those of Fig. 1.1 .

The principle of least action tells us that the classical trajectory is the one that “min-
imize” the action functional S[q(t)].1. Basically we look where the first variation is zero,
or where the functional derivative of the functional S[q(t)] is zero. It is the “analog” of
looking where the first derivative of a function is zero. These points are “minima” if the
second derivative is positive. This is the case in CM unless there are “focal points”, i.e.
two trajectories with the same q1, t1 and q2, t2.

Let us do a first variation of S, that means let us calculate S on q(t) + δq(t) and on
q(t)

δS = S[q(t) + δq(t)]− S[q(t)] (1.1.6)

where the δq(t) have the properties pictured in Fig. 1.1.6 that δq(t1) = δq(t2) = 0, i.e.
the trajectories have the same initial and final points. We will expand (1.1.6) in powers
of δϕ and put the first term to zero

δS = S[q(t) + δq(t)]− S[q(t)] =
δS

δq
δq +

δ2S

δq2
δ2q + · · · .

The variation of the action expressed in terms of the Lagrangian L is given by:

δS = δ

∫ t2q2

t1q1

dtL(q, q̇) =

∫ t2q2

t1q1

dt

[
∂L
∂q
δq(t) +

∂L
∂q̇
δq̇(t)

]
.

If we integrate by parts the last term of the previous equation we get

δS =

[
∂L
∂q̇
δq

]t2

t1

+

∫ t2

t1

dt

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq(t). (1.1.7)

1Actually one does not talk about “minimization” but “extremization” or “stationarity”
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The first term on the RHS is zero because of the boundary conditions δq(t1) = δq(t2) = 0.
As δq(t) is arbitrary, for δS to be zero in the first order in δq, we need the integrand to
be zero. This gives the following:

1.2 Lagrange equations

∂L
∂q
− d

dt

∂L
∂q̇

= 0. (1.2.1)

Now if we use the explicit form of L, i.e. L =
q̇2

2
− U(q), we get

−∂U
∂q
− d

dt
q̇ = 0 =⇒ q̈ = −∂U

∂q
,

which are the standard equations of motion of classical mechanics.2 Are these minima
of the action or not? Up to now we have only proved that they are extremals of the

action. We should prove that
δ2S

δq(t)δq(t)
> 0. Actually it is possible to prove this if

there is noconjugate point along the classical trajectory. A conjugate point is a point
where two classical trajectories meet. It happens in fact that for some system it is not
true anymore that giving an initial and a final point there is only one solution. It is
true if you give the initial position and the initial velocity but not if you give the initial
position and the final one. The point where two trajectories meet again is called focal
point. For infinitesimal times t1 − t2 ∼ dt then it is impossible to get focal points and
we are sure the trajectory is a minimum, see Schulman, “Techniques and application of
path integration” (Wiley, 1981).

Why is the Lagrangian useful? Because for systems with constraints we do not need
to insert in L the forces exerted by the constraints but just add the constraints Ca via
suitable Lagrangian multipliers λa:

L → L+
∑

a

λaC
a(r1, r2).

The variation with respect to λa gives the constraints:

Ca(r1, r2) = 0

and the equations of motion get modified by

d

dt

∂L
∂q̇
− ∂L
∂q

+
∑

a

λa
∂Ca

∂q
= 0.

The constraints which depend only on the configuration variables are called holonomic.
The constraints which depend on the velocities are called unholonomic. The simple
constraints like for example

aq̇1 = bq̇2 (1.2.2)

2As we will prove at the end of this section the Lagrangian is not uniquely determined by this principle.
We can in fact add the derivative of any function F (q, t) to L.
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can be inserted directly in the variation of the action. In particular, the infinitesimal
version of (1.2.2)

a
dq1
dt

= b
dq2
dt

=⇒ aδq1 = bδq2

can be inserted into

δS′ = δS + λ [aδq1 − bδq2] .

This is possible because δS contains only the variations of δq1, δq2 when we do

δS′

δq1
=

δS

∂q1
+ λa,

δS′

δq2
=

δS

∂q2
− λb.

There is then a procedure to determine the Lagrange multipliers etc. (Dirac method)
without even inserting the associated forces (see the problems).

Another approach is to pass from the 3N Cartesian coordinates to the 3N − k uncon-
strained variables qi by solving the constraints:

Ca(r1, r2, . . .) = 0, a = 1, . . . k.

We get

r1 = r1(q1, · · · , q3N−k)

r2 = r2(q1, · · · , q3N−k)

· · · · · ·
r3N = r3N (q1, · · · , q3N−k)

and then write L(r, ṙ) in terms of q1, · · · , q3N−k where in L(r, ṙ) we consider only the
external potential and not the constraints (because we have already taken care of the
constraints by solving their equations).

Example. Study the motion of this double pendulum under the gravitational force.

m1

m2

l2

l1
θ1

θ2

There are constraints among the six degrees of freedom: the ~r1 describing the mass
m1 and the ~r2 describing the mass m2. If we are on a plane the six degrees of freedom
becomes 4, then we have also 2 constraints |r1|2 = l21 and |r2 − r1|2 = l22, so effectively
there are just 2 degrees of freedom. The forces on m1 are its gravitational pull, plus the
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force of the ropes l1 and l2. To calculate these forces is hard. Instead let us find out the
2 independent variables which are θ1 and θ2. Now the kinetic energy for the particle 1 is

T1 =
1

2
m1ṙ

2
1 =

1

2
m1l

2
1θ̇

2
1.

The potential energy for the particle 1 is U1 = −m1gl1 cos θ1. The Cartesian coordinates
of the particle 2 are:

x2 = l1 sin θ1 + l2 sin θ2, y2 = l1 cos θ1 + l2 cos θ2.

So the kinetic energy of the particle 2 is

T2 =
1

2
m2(ẋ

2
2 + ẏ2

2)

=
1

2
m2

[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

]
.

The potential energy is

U2 = −m2gy2 = −m2g [l1 cos θ1 + l2 cos θ2] .

Summing up everything we get

L =
1

2
(m1 +m2)l

2
1θ̇

2
1 +

1

2
m2l2θ̇

2
2 +m2l1l

2
2θ̇1θ̇2 cos(θ1 − θ2) +

+(m1 +m2)gl1 cos θ1 +m2gl2 cos θ2.

So one sees that we avoided introducing the forces of the constraint but we consider only
the external forces. The trick is

• Write the kinetic and potential terms in terms of the Cartesian coordinates without
constraints.

• Write the Cartesian coordinates in terms of the unconstrained variables.

Question: Given the equations of motion is there one and only one Lagrangian which
reproduces them?

No! Two Lagrangians which differ by a total derivative of a function of q, t, i.e. F (q, t)
gives the same equations of motion.

Proof. Let us define the following Lagrangian:

L′(q, q̇) ≡ L(q, q̇) +
dF (q, t)

dt
.

The action is

S′ =

∫ t2q2

t1q1

dtL′(q, q̇) =

∫ t2q2

t1q1

dtL(q, q̇) +

∫ t2q2

t1q1

dt
dF (q, t)

dt
,

which implies S′ = S + F (q2t2)− F (q1t1). Now when we do the variation of S′ we get

δS′ = δ

∫
dtL+ δ [F (q1t1)− F (q2t2)] = δ

∫
dtL+

∂F

∂q1
δq1 −

∂F

∂q2
δq2,
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We know that the variation is such that the end points are fixed, so δq1 = δq2 = 0. so
we get zero that means

δS′ = δS

This implies δS′ = δS and if δS = 0 then the same is for δS′. So also from L′ we can
reproduce the same equations of motion (1.2.1).

1.3 Hamilton equations of motion

The Lagrange equations are second order in the time derivative. One wonders if, like
many second order equations, they can be turned into two equations each first order in
the derivative w.r.t. t. The answer is yes. The procedure is the following. Define the
momentum:

p(t) ≡ ∂L(q, q̇)

∂q̇
(1.3.1)

which is a function of q and q̇, i.e.: p = F (q̇, q). Eq. (1.3.1) can be inverted and we have

q̇ = G(p, q). (1.3.2)

Let us now build the function of q, p given by the Lagrangian with q̇ replaced by (1.3.2)

L(q, q̇) = L (q,G(q, p)) = L′(q, p).

We can derive the following equations of motion:





d

dt

∂L
∂q̇
− ∂L
∂q

= 0

d

dt
p− ∂L

∂q
= 0

The second equation implies

ṗ =
∂L
∂q

= U(q, q̇).

Now if we replace q̇ with (1.3.2) we have

ṗ = U (q,G(q, p)) .

We need also an equation for q̇ which is (1.3.2)

q̇ = G(q, p).

Instead of this procedure, it is possible to get a simpler one introducing a function already
of p and q, the Hamiltonian. We get it this way: consider the differential of L

dL =
∂L
∂q

dq +
∂L
∂q̇

dq̇

which can be written as

dL = ṗdq + pdq̇

= ṗdq + d(pq̇)− q̇dp



1.3 Hamilton equations of motion 7

which implies

d(pq̇ − L) = −ṗdq + q̇dp. (1.3.3)

On the LHS we have the differential of something which can be expressed in terms of
the differentials of dq and dp, so it must be a function of q, p

pq̇ − L ≡ H(q, p). (1.3.4)

One obtains it by replacing the q̇ appearing on the LHS of (1.3.4) with q̇ = G(q, p) of
(1.3.2). H is called the Hamiltonian. So (1.3.3) can be rewritten as

dH(q, p) = −ṗdq + q̇dp.

So we get from here the equations





ṗ = −dH

dq

q̇ =
dH

dp

(1.3.5)

These are the 2 Hamilton first order equations equivalent to the 1 second order equation
of Lagrange. Replacing (1.3.2) into (1.3.4) and using the explicit expression of the
Lagrangian (1.1.3) we get

H(q, p) =
p2

2
+ U(q)

and the equations (1.3.5) can be rewritten as:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

H can be identified with the energy and it is a conserved quantity:

dH

dt
=

dH

dq
q̇ +

dH

dp
ṗ

=
dH

dq

dH

dp
− dH

dp

dH

dq
= 0.

We can derive the Hamilton equations from a variational principle. Let us start by
rewriting the action in terms of the differentials in q and t:

S =

∫
Ldt =

∫
(pq̇ −H)dt

=

∫
p
dq

dt
dt−Hdt =

∫
(pdq −Hdt)

Let us now make the variation in p, q with again δq(t1) = δq(t2) = 0. The δp instead
can vary at both end points.

δS =

∫ (
δpdq + pd(δq)− ∂H

∂q
δqdt− ∂H

∂p
δpdt

)
.



8 1. Classical mechanics

Integrating by parts the piece pd(δq) we get

δS =

∫
δp

[
dq − ∂H

∂p
dt

]
−

∫
δq

[
dp+

∂H

∂q
dt

]
+ pδq|t1t2 .

The last term is zero and so, as δp and δq are arbitrary in between, we get that, in order
for δS to be zero, we need the integrands to be zero:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
.

Minimal Coupling There are forces, like the Lorentz force, which depend on the
velocity. There is a manner to provide a Hamiltonian formulation for them. The rule is
to substitute ~p in H with ~p− e

c
~A where ~A is the gauge vector potential associated to the

fields present in the system

H =
p2

2m
+ U(q) −→ H ′ =

(
~p− e

c
~A
)2

2m
+ U(q) + eϕ(q)

where ϕ(q) is the electric potential.

Exercise Prove that fromH ′ one can get the usual Lorentz force generated by a magnetic
field ~F = 1

c~v ∧ ~B.

1.4 The action functional

Up to now we have defined the action functional S[q(t)] on a particular subset of trajec-
tories that are those with fixed end points (q1, q2) at initial and final times (t1, t2). They
are represented in the figure below:

q1, t1

q2, t2

The variation of the action δS on these set of paths was given in Eq. (1.1.7):

δS =

∫ t2

t1

dt

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq(t). (1.4.1)

We got this expression because the end points q1, q2 and times t1, t2 were fixed so

{
δq1 = δq2 = 0
δt1 = δt2 = 0.

(1.4.2)

Let us now enlarge the set of paths on which the action functional is defined as those for
which t1 and t2 are fixed but q1, q2 are not fixed:
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q′′1 , t1

q′1, t1

q1, t1 q2, t2

q′2, t2

q′′2 , t2

Fig. 1.2: Paths without fixed end points.

The variation of S[q(t)] is now different and given by3

δS =

[
∂L
∂q̇
δq

]t2

t1

+

∫ t2

t1

dt

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq(t). (1.4.3)

Finally we could ask what is the variation of S if we work on all possible paths, that
means those for which even t1 and t2 are not fixed. Basically to the variation (1.4.3) we
have to add the piece which comes from the variation of t1 and t2. This is the following

δt1S + δt2S =

∫ t2

t1+∆t1

dtL −
∫ t2

t1

dtL+

∫ t2+∆t2

t1

dtL −
∫ t2

t1

dtL (1.4.4)

= −L∆t1 + L∆t2 = L∆t
∣∣∣
t2

t1
. (1.4.5)

This is clearly the most general variation that S can undergo. We could write it in a
slightly different form noting that q at the end points undergoes two types of variation,
one indicated as δq that we performed without changing time, i.e.

{
δq1 = q′(t1)− q(t1)
δq2 = q′(t2)− q(t2)

(1.4.6)

and another one due to the change of time t1 → t1 + ∆t1, t2 → t2 + ∆t2. This is q̇∆t, so
the overall change in q at the end points is

{
∆q1 ≡ δq1 + q̇1∆t1

∆q2 ≡ δq2 + q̇2∆t2.
(1.4.7)

We indicated it with ∆ instead of δ. ∆ is the following variation defined not at the same
time {

∆q1 = q′(t′1)− q(t1)
∆q2 = q′(t′2)− q(t2).

(1.4.8)

Using (1.4.7) in the form {
δq1 = ∆q1 − q̇1∆t1
δq2 = ∆q2 − q̇2∆t2

we get

δS =

∫ t2

t1

dt

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq +

[(
L − ∂L

∂q̇
q̇

)
∆t+

∂L
∂q̇

∆q

]t2

t1

3The first term on the RHS of (1.4.3) was zero in (1.4.1) because δq1 = δq2 = 0.
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which can be rewritten as:

δS =

∫ t2

t1

dt

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq + (p∆q −H∆t)

∣∣∣
t2

t1
. (1.4.9)

Note that if we restrict the paths in Fig. 1.2 to be the classical ones, i.e. those for which
∂L
∂q
− d

dt

∂L
∂q̇

= 0 we get from4 (1.4.9)

δScl = (p∆q −H∆t)|t2t1 . (1.4.10)

The “cl” is for classical. Note that this expression is not anymore a functional because
there is no integration over the paths (while the δS in (1.4.9) was still a functional).
From (1.4.10) if we restrict the paths further, to be the classical ones which start from
q1 at time t1 (so δq1 = δt1 = 0) we get

δScl = p2∆q2 −H∆t2 (1.4.11)

and from here we obtain 



δScl

∆q2
= p2

δScl

∆t2
= −H.

(1.4.12)

As the Scl is now a function we can turn the δ into a partial derivative, and, calling
p2, q2, t2 as p, q, t, we can write (1.4.12) as





∂Scl

∂q
= p

∂Scl

∂t
= −H.

(1.4.13)

From here we get that Scl is a function of q, t. These are the only things that can change,
as all the classical paths start from q1, t1 as in the figure below:

qcl
q′clq1, t1

q2, t2

q′′cl

q′2, t2

q′′2 , t2

Fig. 1.3: Classical paths starting from q1, t1.

From (1.4.13) we get also that

dScl(q, t)

dt
=

∂Scl

∂t
+
∂Scl

∂q
q̇

= −H + pq̇,

4“cl” stands for classical.
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i.e.
dScl

dt
= L. (1.4.14)

So the total derivative of Scl with respect to t is the Lagrangian while the partial deriv-

ative is minus the Hamiltonian. Note from (1.4.14) that it is not:
dS

dt
= L with S the

general functional we started from, but
dScl

dt
= L where Scl is the “functional”

Scl =

∫ tq

t1q1

L[qcl(t), q̇cl(t)]dt. (1.4.15)

obtained by inserting in the integrand the classical trajectory which starts from (q1, t1)
and ends up in (q, t). Scl can be calculated this way or by solving a differential equation
because, after all, Scl turns out to be a function. The differential equation can be built
from (1.4.13):

∂Scl(q, t)

∂t
= −H = −

(
p2

2
+ U(q)

)
.

Replacing p above with ∂Scl
∂q we get

∂Scl(q, t)

∂t
= −

(
∂Scl

∂q

)2

/2− U(q). (1.4.16)

This partial differential equation is called Hamilton-Jacobi (HJ) equation. It is possible
to show that if we write the wave function of the Schroedinger equation as

ψ(q, t) = A(q, t)ei/~S(q,t) (1.4.17)

then in the limit of ~ → 0 the Schroedinger equation goes into the Hamilton-Jacobi
equation where the S in (1.4.17) becomes the Scl of (1.4.16).

1.4.1 Use of the Hamilton-Jacobi equation to get the solution of the
equations of motion

We said that the HJ is a third way to get the classical motion of a particle, the other
two being the Lagrange equation and the Hamilton equation. But while in these two
equations we get directly q(t) and q̇(t) by solving the associated differential equation,
i.e.:

∂L
∂q
− d

dt

∂L
∂q̇

= 0

or 



q̇ =
∂H

∂p

ṗ = −∂H
∂q

in the HJ equation we get the function S(q, t) as solution of the equation

∂S

∂t
+

1

2

(
∂S

∂q

)2

+ U(q) = 0. (1.4.18)
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How do we get the trajectories q(t) and q̇(t)? To solve (1.4.18) we have to give S(q, 0).

As
∂S(q, 0)

∂q
= p(0) we immediately see that giving S(q, 0) is equivalent to giving p(0).

If we then get a complete solution of (1.4.18) at any time t, i.e. S(q, t) we know that

∂S(q, t)

∂q
= p(t),

i.e.
∂S(q, t)

∂q
= q̇(t).

The LHS will be a function F (q, t) i.e. F (q, t) = q̇(t). We can solve this equation by
giving q(0), as it is a first order equation. So we get the trajectory and all we have given
is q(0) and p(0), like in the Hamilton equations.

The S(q, t) actually must contain the constants q(0) because Scl was built from L
calculated along the classical solutions which started from q(0) and ended up in a q
which could change. So S(q, t) should actually be S(q, q(0), t). In general we can replace
q(0) with another constant α to get something like S(q, α, t). In fact, actually, the
“complete solution” of the partial HJ differential equation for a theory of n degrees of
freedom (q1, q2, · · · qn) is of the form S(q1, q2, · · · qn;α1 · · ·αn+1, t) with n + 1 constants.
One of the constants is an additive constant. In fact if S is a solution also S = W − αt
is a solution of the equation:

∂S

∂t
+

(
∂S

∂q

)2 1

2
+ V (q) = 0

provided we fix the value of α as follows:

α =

(
∂W

∂q

)2 1

2
+ V (q).

α is basically the constant energy. W is called restricted characteristic function and S
characteristic function.

Let us represent in q space the surfaces S(q, α, t):

S(q, α, t)

t1 t2 t3

Fig. 1.4: Surfaces S(q, α, t) in q space.

The trajectories of the point particle have momenta p =
∂S

∂q
or, in more than one

dimension ~p = ~∇qS. So ~p is perpendicular to S, or, in other words, S describes a family
of trajectories all perpendicular to S. The end point q can change, so the trajectories
are more than one. S is like a wave-front. We will return on this at the end of the course
once you have done optics in order to draw an analogy with that discipline.
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1.5 Poisson brackets

If we take an observable O(p, q, t) and make its evolution in time5

dO

dt
=

∂O

∂t
+
∂O

∂q
q̇ +

∂O

∂p
ṗ (1.5.1)

=
∂O

∂t
+
∂O

∂q

∂H

∂p
− ∂O

∂p

∂H

∂q
(1.5.2)

=
∂O

∂t
+ {O,H}pb, (1.5.3)

where {O,H}pb =
∂O

∂q

∂H

∂p
− ∂O

∂p

∂H

∂q
. If O is just p or q we get the equations of motion

for p and q:
{
q̇ = {q,H}pb

ṗ = {p,H}pb.
(1.5.4)

One sees that they are identical in form and one should not worry where to put the -
sign which appears in the Hamilton equations. In general, the pb between two functions
f and g are defined as:

{f, g} ≡ ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

They have the following properties:

• {f, g} = −{g, f}

• If C is a constant than {f, C} = 0

• {f1 + f2, g} = {f1, g}+ {f2, g}

• {f1f2, g} = f1{f2, g}+ f2{f1, g}

• ∂

∂t
{f, g} =

{
∂f

∂t
, g

}
+

{
f,
∂g

∂t

}
.

• Constant of motion: If O does not depend explicitly on t we have
dO

dt
= {O,H}.

So if
dO

dt
= 0 we get {O,H} = 0.

• qi, qj = 0, {qi, pj} = δij , {pi, pj} = 0.

•





{f, q} = −∂f
∂p

{f, p} =
∂f

∂q

⇒





{q, f} =
∂f

∂p

{p, f} = −∂f
∂q
.

• Jacobi identity: As an exercise prove the following identity:

{f, {g, p}}+ {p, {f, g}}+ {g, {p, f}} = 0.

5pb stands for Poisson brackets.
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• If O1 and O2 are constants of motion, also {O1, O2} is a constant. In fact, using
the Jacobi identity

{H, {O1, O2}}+ {O2, {H,O1}}+ {O1, {O2, H}} = 0

which implies {H, {O1, O2}} = 0, so {O1, O2} is a constant of motion.

• On the space of functions O(p, q) the Poisson brackets introduce the structure of
an algebra.

1.5.1 Constants of motion

In the previous section we talked about constants of motion and we would like here to
give some more details. These are quantities O(p, q, t) which are constant in t once, and
only once, we insert in them the classical trajectories for p and q. So a classical constant
of motion is of the form O(pcl, qcl(t), t) and not of the form O(p(t), q(t), t) where p(t)
q(t) are generic trajectories and not classical ones. In fact if O does not depend on t
explicitly we do the following steps to check whether it is a constant of motion or not:
start from O(p(t), q(t)), do the time derivative:

dO

dt
=
∂O

∂q

∂q

∂t
+
∂O

∂p

∂p

∂t
.

Now we insert in place of
∂q

∂t
and

∂p

∂t
the Hamiltonian equations and we get

∂O

∂q

∂q

∂t
+
∂O

∂p

∂p

∂t
=
∂O

∂q

∂H

∂p
− ∂O

∂p

∂H

∂q
.

This step implies that the q(t) and p(t) in O are classical trajectories because they satisfy
the equations of motion. This means that if we calculate O along a classical trajectory
(see Fig. 1) at different instants of times, we get the same constant quantity, for example
25. This constant changes if we calculate it along a different classical trajectory:

t1 t2(q0, p0)

(q′0, p
′
0) ϕ

(2)
cl

O = 25
O = 25

O = 37 O = 37

ϕ
(1)
cl

Fig. 1.5: Values of a constant along different classical trajectories.

For example it is a different number like for example 37, but it remains the same

along this different trajectory ϕ
(2)
cl . One could ask why does it change the number in

passing from one classical trajectory to another. The reason is the following: the only
constant things we have on a trajectory are its initial positions and momenta q0, p0 and
it is possible to prove that any other constant of motion O(q(t), p(t)) can be reduced to
a function Õ(q0, p0) of the initial positions and momenta

O(pcl, qcl) = Õ(q0, p0).



1.6 Canonical transformations 15

This happens at least for those systems which are called “exactly integrable” (on which
we will give more details later in the course). Because of (1.5.1) it is clear that if we
change the initial conditions (q0, p0) the value of Õ(q0, p0) changes and as a consequence
also the value of O(pcl(t), qcl(t)). This explains Fig. 1.5.

Let us instead consider a non-classical trajectory like in the figure below.

t1 t2(q0, p0)

(q′0, p
′
0) ϕ

(2)
cl

O = 25
O = 25

O = 7
O = 71

ϕ
(1)
cl

Fig. 1.6: Comparison between a classical and a non-classical trajectory.

The non-classical trajectory, indicated with ϕnon cl, which starts from (q′0, p
′
0), has

different values along its evolution: for example O = 7 at t = t1, and O = 22 at time
t2 and O = 71 at time t3, while on the classical trajectory it is always O = 25. The
non-classical trajectories play a role in quantum mechanics as we will see at the end of
this course.

1.6 Canonical transformations

Usually one considers, at the Lagrangian level, only the point canonical transformations:
Q = Q(q, t) like for example a change of coordinates or similar. At the phase space
level the number of coordinates is doubled (p, q) and so we could consider a generalized
change of variables of the form

{
Q = Q(q, p, t)

P = P (q, p, t).
(1.6.1)

The point is that we would like that the equations of motion retain the same form, i.e.




q̇ =
∂H

∂p

ṗ = −∂H
∂q

=⇒





Q̇ =
∂H(q(Q,P ), p(Q,P )

∂P

ṗ = −∂H(q(Q,P ), p(Q,P )

∂Q
.

(1.6.2)

This is not the feature of all set of transformations of the form (1.6.1) but only of a
subset called canonical transformations. Actually we could be a little more flexible and
require not that the new H is the old one with q and p replaced by their expression in
terms of Q,P , but that is some function K(Q,P )





q̇ =
∂H

∂p

ṗ = −∂H
∂q

=⇒





Q̇ =
∂K

∂P

ṗ = −∂K
∂Q

.

(1.6.3)
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Let us see which feature those transformations have. Let us remember that the two sets
of equations can be derived from the variational principles

δ

∫ t2

t1

dt (pq̇ −H) = 0, δ

∫ t2

t1

dt (PQ̇−K) = 0.

In order to describe the same physics it is not necessary that the two integrands are the
same but that they differ at most by a total derivative of a function F of the end points
which are not varied (so of q, Q)

PQ̇−K +
dF (q,Q)

dt
= pq̇ −H. (1.6.4)

In that manner

δ

[∫ t2

t1

dt
dF

dt

]
= δ [F (q2, Q2)− F (q1Q1)]

but the last variation is zero and the total derivative does not contribute to the variation.
From (1.6.4) we get

PQ̇−K +
∂F

∂t
+
∂F

∂q
q̇ +

∂F

∂Q
Q̇ = pq̇ −H.

Since the old and new coordinates are independent, this equation holds if the coefficients
of q̇ and Q̇ vanish 




∂F

∂q
= p

∂F

∂Q
= −P.

(1.6.5)

The other terms give:

H = K − ∂F

∂t
. (1.6.6)

So one sees that K is not just H with q and p replaced by their expression in terms of Q
and P , but it can have an extra piece. If we take F non explicitly dependent on t then we
get H = K, which means that K(Q,P ) is obtained from H replacing q and p with their
expression in terms of Q, P . F (q,Q) is called the generating function of the canonical
transformation. This is not the only type of generating function: we could build others
depending on other sets of variables, like q and P . We can proceed as follows: start from
(1.6.4) and write it in the form:

PdQ−Kdt+ dF = pdq −Hdt. (1.6.7)

Let us add to F the expression PQ we get from (1.6.7)

d(F + PQ) = pdq +QdP + (K −H)dt.

This means that the LHS is effectively a function Φ of q and P because its differential
depends only on q and P so it can be written as

dΦ(q, P, t) = pdq +QdP + (K −H)dt



1.6 Canonical transformations 17

which brings to

∂Φ

∂q
dq +

∂Φ

∂P
dP +

∂Φ

∂t
dt = pdq +QdP + (K −H)dt.

So the transformations are 



∂Φ

∂q
= p

∂Φ

∂P
= Q

∂Φ

∂t
= K −H.

(1.6.8)

Φ is another generating function different from F . In the literature Φ is also indicated
with F2(q, P ). All together, proceeding in the same manner, we can find two other types
of generating functions F3(p,Q) and F4(p, P ). Their manner to generate the “new”
variables is different from (1.6.4) and (1.6.7). Exercise Find out the analog expressions
to (1.6.4) and (1.6.7) for F3 and F4.

1.6.1 Example of canonical transformations

Let us consider F1(q,Q) = qQ. We get from (1.6.5) and (1.6.6)

∂F

∂q
= p⇒ Q = p

∂F

∂Q
= −P ⇒ P = −q

H(p, q) = K(Q,P ).

So one see that this canonical transformation exchange q with p; what in one coordinate
system was q becomes the momentum in the new system and vice versa. So, instead of
talking about position and momenta we talk about conjugate variables.

1.6.2 Identity transformation

A generating functional of the type F2(q, P ) can be used to generate the identity trans-
formation. Take F2(q, P ) = qP then from (1.6.8) we get

p =
∂F2

∂q
= P, Q =

∂F2

∂P
= q.

A simple generalization of this is the infinitesimal transformation

F2(q, P ) = qP + ǫG(q, P )

with ǫ an infinitesimal parameter. The transformations analogous of (1.6.7) gives




p = P + ǫ
∂G

∂q
(q, P )

Q = q + ǫ
∂G

∂P
(q, P )
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which can be written, to order ǫ, as:




P = p− ǫ∂G
∂q

(q, p)

Q = q + ǫ
∂G

∂p
(q, p).

(1.6.9)

In (1.6.9) we have put in the argument of G the small p because we consider things at
the first order in ǫ. (1.6.9) can also be written as





P = p− ǫ∂G
∂q

(q, p) = p− ǫ{G, p}pb

Q = q + ǫ
∂G

∂p
(q, p) = q − ǫ{G, q}pb.

(1.6.10)

From this we immediately derive that the time evolution is a particular canonical trans-
formation, in fact take Eq. (1.4.14)

{
q̇ = {q,H}
ṗ = {p,H}

⇒
{

dq = dt{q,H} = −dt{H, q}
dp = dt{p,H} = −dt{H, p}

which implies
{
q(t+ dt)− q(t) = −dt{H, q}
p(t+ dt)− p(t) = −dt{H, p}

⇒
{
q(t+ dt) = q(t)− dt{H, q}
p(t+ dt) = p(t)− dt{H, p}

(1.6.11)

If we compare (1.6.11) with (1.6.10) we see that we can identify ǫ with dt and G with
H. So the time evolution for (1.6.11) is a canonical transformation, like (1.6.10).

1.6.3 Invariance of the pb under canonical transformations

In what follows we will prove that the Poisson brackets of two observables O1 and O2

are independent of which canonical variables we use to evaluate the pb, i.e.:

{O1, O2}(q,p)
pb = {O1, O2}(Q,P )

pb . (1.6.12)

Let us restrict ourselves to time-independent canonical transformations, i.e.
{
Q = Q(q, p)

P = P (q, p)

or the inverse {
q = q(Q,P )

p = p(Q,P ).

Let us first introduce the symplectic matrix ωab. Let us introduce a compact notation
for the phase space variables ϕa = (q1, · · · qn, p1, · · · pn), where a = 1 · · · 2n. Then the
Hamilton equations can be written as:

ϕ̇a = ωab ∂H

∂ϕb
. (1.6.13)
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Let us now perform a canonical transformation independent of t

ϕ′a = ϕ′a(ϕ)

As it is independent of t, we know that the new Hamiltonian is

K(ϕ′) = H(ϕ(ϕ′)).

First of all let us prove that the symplectic matrix is left invariant by the canonical
transformation ϕ′a = ϕ′a(ϕ). As the transformation is canonical we must have the same
equations of motion in the transformed variables:

ϕ̇′a = ωab ∂H

∂ϕ′b . (1.6.14)

The LHS of (1.6.14) can be rewritten as:

ϕ̇′a = Ca
bϕ̇

b.

where Ca
b is the following matrix:

Ca
b ≡

∂ϕ′a

∂ϕb
.

Using (1.6.13) we get:

ϕ̇′a = Ca
bω

bd ∂H

∂ϕd
. (1.6.15)

Now
∂H

∂ϕd
=

∂H

∂ϕ′a
∂ϕ′a

∂ϕd
=
∂H

∂ϕa
Ca

d = CT ∂H

∂ϕ′ .

Replacing the previous equation into (1.6.15) we get

ϕ̇′ = CωCT ∂H

∂ϕ′ . (1.6.16)

Comparing this with (1.6.14) we get

ω = CωCT ⇒ C−1ω(CT )−1 = ω. (1.6.17)

Let us now see the Poisson brackets of the observables O1O2

{O1, O2}(q,p)
pb =

∂O1

∂q

∂O2

∂p
− ∂O1

∂p

∂O2

∂q

=
∂O1

∂ϕa
ωab∂O2

∂ϕb
.

Analogously:

{O1, O2}(Q,P )
pb =

∂O1

∂ϕ′aω
ab ∂O2

∂ϕ′b . (1.6.18)
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Now

∂O1

∂ϕ′a =
∂O1

∂ϕc

∂ϕc

∂ϕ′a =
∂O1

∂ϕc
(C−1)c

a

∂O2

∂ϕ′b =
∂O2

∂ϕk

∂ϕk

∂ϕ′b =
∂O2

∂ϕk
(C−1)k

b = (C−1)T ∂O2

∂ϕ
.

So replacing in (1.6.18) we have

{O1, O2}(Q,P )
pb =

∂O1

∂ϕ
C−1ω(C−1)T ∂O2

∂ϕ
.

Using (1.6.17) we get:

{O1, O2}(Q,P )
pb =

∂O1

∂ϕ
ω
∂O2

∂ϕ
= {O1, O2}(q,p)

pb

which proves (1.6.12).

Now the equations of motion can be written via Poisson brackets

dq

dt
= {q,H} dp

dt
= {p,H}

and the RHS can be calculated in any system of canonical coordinates, so we can use
the best one. Using the invariance we get also that the new canonical variables have the
same brackets as the old ones

{Q,P}(q,p) = {Q,P}(Q,P )

but the RHS is one so also
{Q,P}(Q,P ) = 1.

The same holds for the other Poisson brackets:

{Q,Q}(q,p) = {Q,Q}(Q,P ) = 0

{P, P}(q,p) = {P, P}(Q,P ) = 0.

1.7 Liouville theorem

Let us take a volume Γ in phase space

∫

Γ

2n∏

a=1

dϕa. (1.7.1)

We will now prove that this volume remains invariant under a canonical change of vari-
ables

ϕa −→ ϕ′a.

We have proved before, Eq. (1.6.17) that the symplectic matrix ω does not change as
follows under a canonical transformation, i.e.:

ω = CωCT (1.7.2)
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where C is the matrix given by

Ca
b ≡

∂ϕ′a

∂ϕb
. (1.7.3)

If we take the determinant on the right and left hand side of (1.7.2) we have

detω = det(CωCT ) = detCdetω detCT

= (detω)(detC)2

which implies

detC = ±1. (1.7.4)

In the above derivation we have used the fact that detCT = detC.

Now, if the canonical transformation can be infinitesimally reduced to the identity
with a continuous transformation, then detC = 1. In fact, if we continuously deform
the transformation to the identity, the determinant must also change continuously and
as the identity transformation has detC = 1, it means that also our canonical transfor-
mation has determinant 1. It cannot have det = −1 otherwise it would have to change
discontinuously in approaching the identity from -1 to +1.

Let us now go back to the volume of (1.7.1)

∫

Γ

2n∏

a=1

dϕa and let us make a canonical

change of variables

ϕa → ϕ′a(ϕ).

In the new variables ϕ′a the volume becomes

∫

Γ′

2n∏

a=1

dϕ′a. If we write this in terms of the

old variables ϕ we get (Γ′ is the transformed surface surrounding the volume)

∫

Γ′

2n∏

a=1

dϕ′a =

∫

Γ

2n∏

a=1

dϕa

∣∣∣∣
∂ϕ′b

∂ϕa

∣∣∣∣ , (1.7.5)

where

∣∣∣∣
∂ϕ′b

∂ϕa

∣∣∣∣ is the determinant of the matrix
∂ϕ′b

∂ϕa
. This matrix is the CT of (1.7.3).

We have proved before that detCT = detC = 1. So (1.7.5) reduces to

∫

Γ′

2n∏

a=1

dϕ′a =

∫

Γ

2n∏

a=1

dϕadetC =

∫

Γ

2n∏

a=1

dϕa (1.7.6)

that is ∫

Γ′

2n∏

a=1

dϕ′a =

∫

Γ

2n∏

a=1

dϕa. (1.7.7)

This means that phase space volumes are left invariant by canonical transformations. We
have proved in (1.6.11) that the Hamiltonian evolution is a canonical transformation, so
if the ϕ′ variables in (1.7.7) are just the time-evolved variables with respect to ϕ

ϕ′(t) = ϕ(t+ dt)
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then from (1.7.7) we get:

∫

Γ′

2n∏

a=1

dϕa(t+ dt) =

∫

Γ

2n∏

a=1

dϕa(t).

So we can say that during the time evolution the volume can change its shape (from Γ
to Γ′) but not its total value. This is the Liouville theorem.

Another form of the Liouville theorem is the following one: let us suppose we introduce
a “probability density in phase space” ρ(ϕa). Let us suppose we evaluate

∫
ρ(ϕa)

2n∏

a=1

dϕa. (1.7.8)

Next let us change variables from ϕa(t) to ϕa(t+ dt)

∫
ρ (ϕa(t+ dt))

2n∏

a=1

dϕa(t+ dt).

As the variables are integrated over, we can change them without changing the value of
the integral (1.7.8) so

∫
ρ(ϕa(t))

2n∏

a=1

dϕa(t) =

∫
ρ(ϕa(t+ dt))

2n∏

a=1

dϕa(t+ dt).

As the volume is invariant we can write this as

∫
ρ(ϕa(t))

2n∏

a=1

dϕa(t) = ρ(ϕa(t+ dt))
2n∏

a=1

dϕa(t).

This means ∫
[ρ(ϕa(t))− ρ(ϕa(t+ dt)]

2n∏

a=1

dϕa = 0

which implies that
ρ(ϕa(t)) = ρ(ϕa(t+ dt))

or
dρ

dt
= 0.

This can be written as

dρ

dt
=

∂ρ

∂t
+
∂ρ

∂q

∂q

∂t
+
∂ρ

∂p

∂p

∂t

=
∂ρ

∂t
+
∂ρ

∂q

∂H

∂p
− ∂ρ

∂p

∂H

∂q
= 0.

This equation can be written as

∂ρ

∂t
=

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
ρ
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and is called the Liouville equation. It can also be written as

∂ρ

∂t
= iL̂ρ

where

L̂ ≡ i
(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)

is called the Liouville operator.

1.8 Symmetries and their generators
(Hyper-simplified treatment)

A symmetry is a set of transformations of q and p which leaves the equations of motion
invariant. Associated to any symmetry of the system there is a conserved quantity
(Noether theorem). Let us work out some simple examples. Suppose our Hamiltonian
H does not depend on one of the generalized coordinates q1, · · · , qk, suppose q3. Then,
if we do an infinitesimal transformation of q3, H does not change. That implies that
the equations of motion remain invariant under an infinitesimal transformation of q3.
The transformation is δq3 = ǫ. This can be put into the form (1.6.10) of a canonical
transformation

δq3 = ǫ{q3, G}pb.

In our example G is nothing else than p3 and it is called the generator of the transfor-
mation. We will now show that the conserved quantity under this symmetry is G, i.e.
p3. In fact we have

∂H

∂q3
= 0

that can be written as
∂H

∂q3
= {H, p3} = 0.

Now
dp3

dt
=
∂p3

∂t
+ {p3, H} = 0

so p3 is conserved.

In general we can prove that any generator of a symmetry transformation is conserved.
The proof goes as follows: if δϕ = ǫ{ϕ,G} is a symmetry it means that δH = 0 under
that transformation i.e.

∂H

∂ϕ
δϕ = 0 =⇒ ∂H

∂ϕ
ǫ{ϕ,G} = 0 =⇒

ǫ
∂H

∂ϕa
{ϕa, G} = ǫ

∂H

∂ϕa
ωab ∂G

∂ϕb
= ǫ{H,G} = 0,

which implies:
dG

dt
=
∂G

∂t
+ {G,H} = 0
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Examples of generators. The generator of the translation in q is p. The generators
of rotations are the angular momenta. The generator of the time translations is H.
The first statement above was proved above. The third one was also prove, see Eq.
(1.6.11). From this we derive that the conservation of energy is related to the symmetry
of translation in time.

Let us now proceed to prove the second statement. Let us do a rotation of dθ along
the z axis. We get 




δx = −ydθ
δy = xdθ

δz = 0

(1.8.1)





δpx = −pydθ

δpy = pxdθ

δpz = 0.

(1.8.2)

Let us now see if we can find a generator G such that (1.8.1) and (1.8.2) can be written
as

δϕ = dθ{ϕ,G}.
It is easy to see that G = xpy − ypx, which is the angular momentum along z.

Problem. Find the generator of the boosts in the Galilean transformation.

Another important symmetry is given by the charge conservation which is implied by
the gauge invariance.

Note: Most of the time the symmetries are not related to the fact that some variables
are missing from H, like for q3 in our first case. Most of the times there are combinations
of variables like (q3−q2) which are missing and this kind of symmetries are more difficult
to detect.





Chapter 2

Crisis of Classical Physics

2.1 Introduction

The interplay between theories and experiments in physics, as well as in all other fields
of science, is the following:

1. The need to go beyond an established theory starts when such a theory cannot
explain or justify some experimental data;

2. In this case it is necessary to look for a new theory able to explain the phenomena
which cannot be set in the framework of the old theory;

3. The new theory must also predict new experimental facts;

4. Then such new experimental facts must be tested in laboratories.

Usually a lot of experimental data are already explained by old theories. Therefore it is
crucial for the new theories to include the old ones as limiting cases. For example:

1) non-relativistic Newton’s mechanics can be seen as a limiting case of relativistic me-
chanics when the speeds involved are very small compared with the speed of light, i.e.
v << c;

2) geometrical optics can be seen as a limiting case of optics when the wavelengths
involved are much smaller than the dimensions of the equipment used for their study.

The situation of physics at the end of the 19th century was more or less the following:
there were three well-established theories, Newton’s mechanics, statistical mechanics
and thermodynamics, Maxwell’s electromagnetism, which were able to describe a huge
amount of experimental data and there was a clear distinction between the theory of
particles on one side and the theory of waves on the other one. For example in those
years experiments of diffractions by crystals proved the wavelike nature of x-rays. The
particlelike nature of electrons instead emerged by the analysis of their trajectories in
electric and magnetic fields which led Thompson to the well-known measurement of the
ratio e/m between the electric charge and the mass of the electron. Nevertheless the
problems began at the end of the 19th century when physicists realized that some new
phenomena could not be explained by the three theories mentioned above. The main set
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of these phenomena concerned the interaction of matter with radiation, e.g. the black
body spectrum and the emission and absorption of radiation from atoms.

2.2 Black Body Radiation

Every body at temperature T emits radiation. The energy emitted per unit of time and
surface, within a cone of solid angle dΩ whose axis forms an angle θ with the normal to
the surface, and in the interval of frequencies (ν, ν+dν), is given by e(ν, T, x) cosθ dΩ dν
where e(ν, T, x) is called the rate of emission of the body. Such a quantity changes from
point to point of the body and depends on some parameters x of the body (material,
form, internal structure, etc.). One can define also the rate of absorption of the body

Fig. 2.1: A cavity in a body with a small hole. The hole emits like a black body

a(ν, T, x) as the ratio between the energy absorbed by the body (in a fixed interval of
time and frequency and per unit of surface) and the associated incident energy. Also
a(ν, T, x) depends on the parameters x of the body and from the definition itself it is
easy to realize that a(ν, T, x) ≤ 1. The property which defines a black body is that its
rate of absorption is just equal to one: a(ν, T, x) = 1, i.e. a black body absorbs all the
incident radiation at every frequency ν and at very temperature T . A typical example
of a black body is given by a very small hole of a cavity heated to temperature T . We
want to stress the fact that the hole itself, and not the cavity, has the property of being
a black body.

From thermodynamics Kirchoff in 1859 proved that the ratio

e(ν, T, x)

a(ν, T, x)
=

c

4π
u(ν, T ) (2.2.1)

is a universal function, i.e. it does not depend on the variable x which is linked to
particular features of the body. In particular in the case of a black body a = 1 and
therefore Eq. (2.2.1) becomes

e(ν, T ) =
c

4π
u(ν, T ). (2.2.2)
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This equation tells us that the rate of emission of a black body e(ν, T ) does not depend
on the features x of the body and therefore can be identified with the universal function
u(ν, T ), modulo the conventional factor c

4π . If we heat the body, it will emit radiation
via the hole and what will escape from the cavity is just the radiation inside which is in
equilibrium with the walls. If we integrate the RHS of (2.2.2) over all the emission angles
we find out the total energy irradiated from the hole per unit surface and frequency at
temperature T :

E(ν, T ) = 2π

∫ π/2

0
dθ sinθ cosθ

c

4π
u(ν, T ) =

c

4
u(ν, T ). (2.2.3)

The plot of E as a function of the wave length λ = c/ν is given in Fig. 2.2 for different
values of the temperature T . As it is clear from Fig. 2.2 the maximum in the emission of

Fig. 2.2: Plot of the energy E emitted from the hole for different values of the temper-
ature T .

the black body corresponds to a particular value of the wavelength λmax which changes
with the temperature T . The position of this maximum obeys the following Wien’s
displacement law (which is a phenomenological law):

λmaxT = const = 0.290 cm ·K. (2.2.4)

Therefore the hotter the black body is, the smaller the wavelength of the maximum is.
This means that, by increasing the temperature, the colour of the black body shifts from
red to blue.

The total energy irradiated from the hole per unit surface and time will be given by
the integral of the function E(ν, T ) over all the frequencies ν:

∫ ∞

0
dν E(ν, T ) = σT 4, σ = 5.66 · 10−5 erg · cm−2 · sec−1. (2.2.5)
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This is the Stefan-Boltzmann’s law which was derived experimentally by Stefan in 1879
and derived from the thermodynamical laws five years later by Boltzmann. The Stefan-
Boltzmann’s law can be derived from the following phenomenological law discovered by
Wien:

E(ν, T ) = ν3F

(
ν

T

)
. (2.2.6)

Even if the explicit form of the function F is not known the Stefan-Boltzmann’s law
(2.2.5) can be derived from (2.2.6). In fact:

∫ ∞

0
dν E(ν, T ) =

∫ ∞

0
dν ν3F

(
ν

T

)
(2.2.7)

and if we perform the following change of variables ν/T = x we obtain, for the total
energy, the correct dependence on T :

∫
dν E(ν, T ) = T 4

∫ ∞

0
dxx3F (x) = T 4σ. (2.2.8)

2.3 Classical Derivation of the Black Body Radiation

If we want to derive from classical statistical mechanics the spectrum of a black body
we have to calculate the energy density E(ν, T ) within a cavity heated to temperature T .
Since this energy density cannot depend on x we can choose a cubic cavity with metallic
walls, like the one of Fig. 2.3. The thermal motion of the electrons of the walls causes

Fig. 2.3: A metallic walled cubic cavity filled with electromagnetic radiation.

the emission of electromagnetic waves. In particular the radiation inside the cavity is in
form of standing waves. The electric field E is perpendicular to the propagation direction
of the wave and therefore it is parallel to the walls. At the walls E must be zero because
otherwise the flow of charges always neutralizes the electric field.
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Let us limit ourselves to the one-dimensional case. The electric field will be described
by the following function

E(x, t) = E0 sin

(
2πx

λ

)
sin 2πνt, ν =

c

λ
. (2.3.1)

Besides the origin, the electric field (2.3.1) is zero at every point x satisfying
2x

λ
= n

where n = 1, 2, 3, · · · . Now let us suppose the distance between the walls is a; since
E(a, t) must be zero for every time t, the standing waves will be characterized by a

wavelength given by
2a

λ
= n or, equivalently, by a frequency ν =

c

λ
=
cn

2a
.

Fig. 2.4: Standing waves in a one-dimensional cavity.

Therefore there is a standing wave for each number n ∈ N. Now the questions is:

how many waves are there between the frequencies ν and ν + dν? Since
2aν

c
= n in the

interval (ν, ν + dν) there are N(ν)dν =
2a

c
dν waves as it is clear from Fig. 2.5. If we

take into account that for each frequency there are two independent polarizations of the
electric field, the total number of waves per unit of frequency is given by:

N(ν)dν =
4a

c
dν. (2.3.2)

Fig. 2.5: Allowed values of frequency in a one-dimensional cavity.

In three dimensions Eq. (2.3.2) becomes:

N(ν)dν =
8πa3

c3
ν2dν. (2.3.3)

Note that in (2.3.3) there appears a crucial factor ν2. It arises because, while in one
dimension the number of waves with frequency between ν and ν + dν is proportional
to the length of the interval (ν, ν + dν) in three dimensions such a number will be
proportional to the volume contained between the shells of radii ν + dν and ν. Now
every wave has an energy proportional to the square of the amplitude of the electric field
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E2
0 . Nevertheless since there is a great number of waves in equilibrium at temperature T

we have to use the laws of statistical mechanics in order to compute the energy density.
In particular the theorem of equipartition of energy tells us that each molecule of a gas

in thermal equilibrium at temperature T has an average kinetic energy K̄ =
kT

2
where

k = 1.38 · 10−23 joule/◦K is the Boltzmann’s constant. In our case the entities of the
ensemble are not molecules of a gas but sinusoidal waves which behave like harmonic
oscillators and whose energy is not only kinetic but also potential. Therefore the average
total energy per standing wave is given by Ē = kT and the average energy density per
unit volume becomes

u(ν, T )dν =
ĒN(ν)

a3
dν =

8πkT

c3
ν2dν. (2.3.4)

Consequently the E(ν, T ) of Eq. (2.2.3) is given by:

E(ν, T ) =
c

4
u(ν, T ) =

2π

c2
kTν2. (2.3.5)

This is the Rayleigh-Jeans law for the black body radiation.

The difference from the experimental data can be appreciated from Fig. 2.6. We can

Fig. 2.6: Comparison of the Rayleigh-Jeans law with the experimental data.

see how the Rayleigh-Jeans law agrees with the experimental data for the low frequencies
ν ≈ 0 but not for the high ones. Moreover if we integrate the E(ν, T ) of (2.3.5) over
all the frequencies we obtain

∫
dνE(ν, T ) = ∞ for every temperature T instead of the

Stefan-Boltzmann’s law (2.2.5). This is the so called ultraviolet catastrophe. Somehow
this indicates that classical mechanics has problems in the high frequency regime which
is also the regime of smaller and smaller intervals of time.

2.4 Planck’s Hypothesis

A possible way to avoid the ultraviolet catastrophe mentioned above is to assume that
the equipartition law is true only for low frequencies, i.e. Ē

−→
ν→0 kT , while, for higher
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frequencies, the average energy of a standing wave varies with the frequency itself. In
particular in the limiting case ν →∞ the average energy Ē must tend to zero in order to
reproduce the experimental data of Fig. 2.6. Now the equipartition theorem was derived
from the Boltzmann or canonical distribution. According to this distribution if a system
contains a large number of entities in equilibrium at temperature T then the probability
of finding a particular entity at energy E is:

p(E) =
e−E/kT

kT
(2.4.1)

from which we derive that the average value of energy is just given by

Ē =

∫
∞

0

dE Ep(E)
∫

∞

0

dE p(E)

= kT. (2.4.2)

Fig. 2.7: Plot of the Boltzmann’s distribution p(E) and of the curve Ep(E).

In December 1900 Planck presented at a meeting of the German Physical Society his
idea or trick, as he called it, that solves the ultraviolet catastrophe. He assumed that,
in calculating Ē, the energy should have been treated as a discrete and not a continuous
variable. In other words E can assume only some discrete values:

E = 0,∆E, 2∆E, · · · , n∆E, · · · . (2.4.3)

If energy is discretized when we calculate its average value we must replace in (2.4.2)



2.4 Planck’s Hypothesis 33

integrals with sums according to the formula:

Ē =

∫
dE Ep(E)

∫
dE p(E)

=

∑

n

n∆E p(n∆E)

∑

n

p(n∆E)
. (2.4.4)

If ∆ is sufficiently small, i.e. if ∆E << kT , then the area under the curve Ep(E) is more

or less equal to the sum of the areas of the rectangles
∑

n

n∆Ep(n∆E), i.e. the average

energy Ē is more or less equal to kT , as predicted by the equipartition theorem, see Fig.
2.8.

Fig. 2.8: Evaluation of the mean value of energy when energy can assume only discrete
values in the three cases ∆E << kT , ∆E ≃ kT and ∆E >> kT .

If instead the rectangles are larger because ∆E ∼ kT we have that the average value
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Ē calculated via the sum is smaller than kT . Planck’s choice was to identify ∆E = hν
where h = 6.63× 10−34 joule · sec is called Planck’s constant. With this choice the only
possible values of energy are given by En = nhν. If we replace Planck’s choice into Eq.
(2.4.4) we obtain that the average energy of a standing wave is:

Ē =

∞∑

n=0

Enp(En)

∞∑

n=0

p(En)

=

∞∑

n=0

nhν

kT
e−nhν/kT

∞∑

n=0

1

kT
e−nhν/kT

= kT

∞∑

n=0

nα e−nα

∞∑

n=0

e−nα

. (2.4.5)

where we have put α ≡ hν

kT
. Eq. (2.4.5) can be evaluated by noting that

−α d

dα
ln

∞∑

n=0

e−nα =

−α d

dα

∞∑

n=0

e−nα

∞∑

n=0

e−nα

=

∞∑

n=0

nα e−nα

∞∑

n=0

e−nα

. (2.4.6)

Therefore

Ē = kT

(
−α d

dα
ln

∞∑

n=0

e−nα

)
= −hν d

dα
ln

∞∑

n=0

e−nα. (2.4.7)

The series in (2.4.7) is the geometric one and therefore it can be evaluated explicitly:

∞∑

n=0

e−nα = 1 + e−α + (e−α)2 + . . . =
1

1− e−α
. (2.4.8)

By replacing (2.4.8) into (2.4.7) we obtain, for the average energy, the following distrib-
ution which is called Planck distribution:

Ē = −hν d

dα
ln

1

1− e−α
=

hν

ehν/kT − 1
. (2.4.9)

The energy density per unit of frequency would be given by

E(ν, T )dν =
c

4

ĒN(ν)

a3
dν =

2π

c2
hν3

ehν/kT − 1
dν (2.4.10)

or, using the wavelengths instead of the frequencies:

E(λ, T )dλ =
2πhc2

λ5

1

ehc/λkT − 1
dλ (2.4.11)

which fits exactly with the experimental data plotted in Fig. 2.2.

In a letter to R. W. Wood Planck called his act of discretizing energy “an act of
despair” and for ten years he tried to set his idea within the framework of classical
physics. In that same letter he wrote: “I knew that the problem (of the equilibrium of
matter and radiation) is of fundamental significance for physics; I knew the formula that
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reproduces the energy distribution in the normal spectrum; a theoretical interpretation
had to be found at any cost, no matter how high.”

Homework: exercise 1. Prove that for ν → 0 Eq. (2.4.9) reproduces the equipartition
law Ē = kT and that Ē

ν→∞−−−→ 0.

Homework: exercise 2. Derive the Stefan’s law (2.2.5) and the Wien displacement’s
law (2.2.4) from the Planck’s distribution (2.4.11).

Problem 1. A pendulum is made up of a mass m = 0.01 Kg hanged from a string
of length l = 0.1 m. The amplitude of an oscillation is such that the string in its
starting position forms an angle θ = 0.1 rad with the vertical direction. The energy of
the pendulum decreases because of the friction. Does the energy decrease continuously or
not?

Solution. The oscillation frequency of the pendulum is:

ν =
1

2π

√
g

l
=

1

2π

√
9.8 m/sec2

0.1 m
= 1.6 sec−1. (2.4.12)

The energy of the pendulum is its initial potential energy:

E = mgl(1− cos θ) = 0.01 Kg · 9.8 m/sec2 · 0.1 m · (1− cos 0.1)

= 5 · 10−5 joule. (2.4.13)

The gap between two consecutive energy levels is given by

∆E = hν = 6.63 · 10−34 joule · sec · 1.6 sec−1 = 10−33 joule. (2.4.14)

Therefore the ratio between ∆E and E is
∆E

E
= 2 · 10−29. This means that in order

to appreciate the discreteness of the quantum jumps we should measure the energy
with a precision of at least two parts in 1029. None of the most precise measurement
instruments can give such a resolution. Therefore we cannot determine with a pendulum
whether the Planck law is true or not. It is necessary to study regimes where E ∼ ∆E,
i.e. E ∼ hν. This will happen for very high frequencies ν, i.e. for very small wavelengths
λ = c/ν (order of magnitude 10−8 cm).

2.5 Photoelectric Effect

Hertz, who had already shown the electromagnetic nature of light, performed, together
with Lenard, the experiment which proved that light can have also a particlelike nature.
Hertz realized that between the two electrodes of Fig. 2.10 a jump spark is more likely
if we send ultraviolet radiation over the electrode A. This is so because, when the
electromagnetic radiation arrives at the plate A of the electrode, it causes the emission
of electrons from the surface. Those electrons are attracted towards B by the potential
difference V present between A and B. The ammeter G will measure a current which is
called photoelectric current and which has the features shown in Fig. 2.9.
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Fig. 2.9: The apparatus used to study the photoelectric effect.

By increasing the potential we soon obtain a saturation current, which means that
all the electrons emitted from A reach B. If we change the sign of the potential V the
current I does not tend to zero immediately. This suggests that the electrons emitted
from the surface of A have a kinetic energy and some of them reach B even if there
is a potential against them. If we increase the potential furthermore then the current
becomes zero, i.e. all the electrons stop. The particular value of the potential V0 which
produces this situation is called stopping potential. If we multiply this quantity by e we
can measure the maximum kinetic energy of the electrons:

Kmax = eV0. (2.5.1)

Fig. 2.10: Intensity of the photoelectric current as a function of the potential V .
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In Fig. 2.10 we have plotted two different curves which correspond to two different
intensities of the incident light. From this figure we can see that the value of the stopping
potential V0 is independent of the intensity of the radiation. Millikan, after having
noticed that Kmax, or equivalently V0, did not depend on the intensity, tried to see
whether it depended on the frequency of the incident radiation and he obtained the
graphic plotted in Fig. 2.11 which shows that there exists a frequency ν0 below which
no electron is emitted.

Fig. 2.11: Stopping potential as a function of the frequency.

This photoelectric effect cannot be explained via the wavelike and continuous theory
of light. In fact

1. The classical theory predicts that if we increase the intensity of light, i.e. if we
increase the electric field ~E, the force e ~E acting over the electrons should increase
as well as their kinetic energy and the stopping potential, but it is not so.

2. According to the wavelike nature of light there should be emission of electrons at
every frequency provided the intensity is sufficiently large but it is not so.

3. The energy is uniformly spreaded along the wavefront and, if the intensity is low,
the time necessary to extract the electrons is long, but it not so: in fact the emission
of electrons is instantaneous.

Let us now see the explanation of the photoelectric effect given by Einstein. He
proposed that the electromagnetic waves at microscopic scales appear as particles called
photons. Interference and diffraction of electromagnetic waves can then be explained
as statistical effects due to the presence of a large number of photons. In the case
of the photoelectric effect every photon has an energy proportional to its frequency
E = hν. Part of this energy is given to an electron of the plate A when the photon hits
it. Consequently the kinetic energy of the electron reaches its maximum when all the
energy of the photon is given to the electron. In such a case:

Kmax = hν −W0 (2.5.2)
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where W0 is the work required to extract the electron from the metal. This hypothesis
explains the three open problems:

1. An increase of intensity of the incident radiation implies an increase of the number
of photons and consequently of the electrons which are extracted from the metal.
Therefore the current intensity I increases, but the kinetic energy and the stopping
potential do not increase because they depend only on the frequency of the incident
radiation: Kmax = hν −W0.

2. There is a limiting frequency below which electrons cannot be extracted from the
metal: this is the frequency for which Kmax = 0, i.e. ν0 = W0/h.

3. Since the energy is not spreaded over a front but it appears in packets the emission
is instantaneous and there is no response time.

Since Kmax = eV0 from (2.5.2) we can derive that the stopping potential V0 is given
by:

V0 =
h

e
ν − W0

e
. (2.5.3)

So V0 as a function of ν is a straight line with slope h/e. In 1914 Millikan measured
the charge of the electron e and therefore from Eq. (2.5.3) he could derive h. Not only,
but the value he obtained agreed perfectly with the Planck’s one from the black body
spectrum. It is remarkable that two different phenomena give the same value of h.

Problem 2. Calculate the energy of a photon of yellow light and the number of photons
which corresponds to an intensity of light I = 5 · 1017 eV/m2sec.

Solution. The wavelength of a photon of yellow light is λ = 5.89 · 10−7 m = 5890 Å.
Consequently the energy of the photon is:

E = hν =
hc

λ
=

6.63 · 10−34 joule sec · 3 · 108 m/sec

5.89 · 10−7 m
= 3.4 · 10−19 joule = 2.1 eV. (2.5.4)

This energy is sufficient to win the work function necessary to extract electrons from
the surface of a metal, e.g. of potassium. If we used microwaves the wavelength would
be 10 cm and the energy of the photons E = 10−5 eV would be too low to extract the
electrons from the surface. Even if the light intensity is I = 5 · 1017 eV/m2sec (which
is a low intensity of the order of 0.1 Watt/m2), the number N of photons per unit time
and surface is very large:

N =
I

hν
=

5 · 1017

2.1
= 2.4 · 1017photons/m2 · sec. (2.5.5)

2.6 Compton Effect

In 1923 Compton performed an experiment which confirmed the particlelike nature of
electromagnetic radiation. In an experiment of scattering of x-rays by a plate of graphite
he noticed the presence of two different final frequencies for the x-rays.
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Fig. 2.12: Compton’s experimental arrangement.

According to the wavelike classical theory there should be only one frequency because
electrons in graphite oscillate with the same frequency of the incident photons and emit
at the same frequency. If instead we consider photons as particles we can explain the
phenomenon as an elastic collision between electrons and photons, dealing with them
just as they were billiard balls, see Fig. 2.13.

Fig. 2.13: Compton’s interpretation.

From the conservation of the momentum we obtain:

{
p0 = p1 cos θ + p cosϕ

p1 sin θ = p sinϕ
(2.6.1)

where p0 (p1) is the initial (final) momentum of the photon, p is the final momentum of
the electron, θ is the angle of deflection of the photon and ϕ is the recoil angle of the
electron. The square of the two equations of (2.6.1) gives:

{
(p0 − p1 cos θ)2 = p2 cos2 ϕ

p2
1 sin2 θ = p2 sin2 ϕ.

(2.6.2)

By summing the two equations above we obtain

p2
0 + p2

1 − 2p0p1 cos θ = p2. (2.6.3)
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Fig. 2.14: Compton’s wavelength shift.

For the conservation of energy we have instead

E0 +m0c
2 = E1 +K +m0c

2 (2.6.4)

where E0 (E1) is the initial (final) energy of the photon, m0c
2 is the energy of the electron

at rest and K is its kinetic energy. From (2.6.4) we derive that

E0 − E1 = K. (2.6.5)

Remember that for a relativistic particle

E2 = c2p2 + (m0c
2)2 (2.6.6)

but in the case of photons m0 = 0 and therefore

E = cp =⇒ p =
E

c
=
hν

c
=
h

λ
. (2.6.7)

Using (2.6.7) we can rewrite Eq. (2.6.5) as:

c(p0 − p1) = K. (2.6.8)

Since the photon gives some of its energy to the electron it changes its frequency from
ν0 = E0/h to ν1 = E1/h. The scattered frequency ν1 is independent of the material.
This confirms that the process of scattering does not involve the atoms of the material
but only its electrons. Now replacing E = K +m0c

2 into (2.6.6) we obtain

(K +m0c
2)2 = c2p2 + (m0c

2)2 (2.6.9)

which gives K2 + 2Km0c
2 = c2p2 or

K2

c2
+ 2Km0 = p2. (2.6.10)
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Now we can take p2 from (2.6.3) and K from (2.6.8) and put them in (2.6.10). What we
obtain is:

(p0 − p1)
2 + 2m0c(p0 − p1) = p2

0 + p2
1 − 2p0p1 cos θ (2.6.11)

which reduces to

m0c(p0 − p1) = p0p1(1− cos θ) ⇒ 1

p1
− 1

p0
=

1

m0c
(1− cos θ), (2.6.12)

which, written in terms of the wavelengths λ = h/p, becomes:

∆λ = λ1 − λ0 = λC(1− cos θ) (2.6.13)

where λC ≡ h/m0c is the Compton wavelength. Let us notice that the Compton shift
∆λ depends on the scattering angle θ but not on λ0.

The experiments showed also the appearance, together with the scattered photons of
wavelength given by (2.6.13), of some photons with the same frequency of the incident
radiation, see Fig. 2.15.

Fig. 2.15: Compton’s experimental results.

This phenomenon is due to the so-called Rayleigh scattering: some photons are scat-
tered by atoms or heavy ions which do not recoil at all. In this case the mass m0 of
the targets of the scattering process is very large, the associated Compton wavelength is
approximately zero and, from Eq. (2.6.13), the Compton shift is ∆λ = 0. The Rayleigh
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scattering is the most common process for very large wavelengths λ→∞, while Comp-
ton effects make their appearance at low wavelengths λ → 0, i.e. at high frequencies
ν →∞. In this regime the energy of the x-rays is sufficiently large to free the electrons
in the collisions. It is just in this regime that we can observe quantum effects such as
the granularity of energy.

2.7 Spectral Lines of an Atom; Rutherford’s and Bohr’s
Models

The dimensions of the atoms (r ∼ 10−8m) were first calculated starting from the
measurement of the mean free path λ in experiments of diffusion of molecules in a gas.
In experiments such as the photoelectric effect and the x-rays diffusion it was seen that
inside the atoms there were electrons with a negative charge. Nevertheless the atoms
were neutral and therefore there should be also positive charges. Thomson proposed
the so-called plum pudding model of atom in which electrons are uniformly distributed
inside a sphere of positive charge.

Fig. 2.16: Thomson’s model of the atom-a sphere of positive charge embedded with
electrons.

According to this classical model the electron of a hydrogen atom would move like
a harmonic oscillator with only one frequency associated with a ultraviolet wavelength
λ = 1200 Å, see Problem 3. Unfortunately it is possible to show experimentally that the
spectra of the hydrogen atoms have many lines.

Problem 3. Prove that the electrons in Thomson’s model of the atom move like har-
monic oscillators.

Solution. If ρ is the density of the positive charge of the atom, then the total positive

charge inside a sphere of radius a is given by e =
4

3
πa3ρ. Therefore the Coulomb force

felt by the electron is

F ∼= − 1

4πǫ0

(
4

3
πa3ρ

)
e

a2
= −ρea

3ǫ0
. (2.7.1)
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So the force F over the electron of the hydrogen atom is proportional to the distance

F = −ka. The electrons moves like a harmonic oscillator with k =
ρe

3ǫ0
. If the total

positive charge is given by the charge of an electron e and it is distributed over a sphere

of radius r′ = 10−10 m then the charge density is ρ =
e

4

3
πr′3

and the frequency of the

harmonic oscillations becomes:

ν =
1

2π

√
k

m
=

1

2π

√
ρe

3ǫ0m
=

1

2π

√
e2

4πǫ0r′3m
= 2.5 · 1015 sec−1. (2.7.2)

The associated wavelength becomes:

λ =
c

ν
= 1200 Å (2.7.3)

which corresponds to the wavelength of ultraviolet radiation.

Fig. 2.17: Arrangement of an α-particle scattering experiment.

Rutherford in 1911 performed his well-known experiment of scattering of α-particles
by a thin golden foil. He realized that the motion of the α-particles could be explained
by a Coulomb scattering with pointlike sources of positive charges. Let us suppose the
beam has an intensity of n α-particles per second and unit surface and that N is the
number of atoms reached by the beam. Then the number of particles dn deflected with
angles between θ and θ + dθ is:

dn = nN
Z2e40
4E2

1

sin4 θ
2

dΩ (2.7.4)

where dΩ = 2π sin θ dθ, Ze0 is the charge of the nucleus and E is the energy of the
incident α-particle. Eq. (2.7.4) holds if particles are pointlike and the interaction is
Coulombian.

Nevertheless in his experiment Rutherford saw that when the impact parameter was
b ∼ 10−13 cm there were deviations from the law (2.7.4) and there were even α-particles
rebounding towards the source. This can be justified by admitting that the positive
charge was concentrated in an almost pointlike region of radius 10−13 cm.

After Rutherford’s experiment the picture of the atom was the following one: there is
a central nucleus of radius 10−13 cm and positive charge Ze0 and there are Z electrons
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Fig. 2.18: Two hyperbolic Rutherford trajectories for two different values of the impact
parameters.

at a mean distance of about 10−8 cm. The electrons have a kinetic energy and move
following an orbit like planets around the Sun. Also this picture of the atom suffered a
big problem: in fact the electrons are charged objects and, consequently, they irradiate
energy while accelerating. The energy irradiated per unit time is given by the so-called
Hertz’s formula:

dE

dt
=

2

3

e2

c3
ẍ2. (2.7.5)

So electrons should lose their energy and in about 10−8 sec they should fall down on the
nucleus.

According to classical mechanics the radiation emitted from the electrons should have
the same frequency of the electrons themselves. If we equate the Coulomb force to the
centrifugal one:

me
v2

r
=
e20
r2

(2.7.6)

we obtain that the angular frequency is:

ω ≡ v

r
=

e0√
me

1

r3/2
. (2.7.7)

Therefore the wavelength of the emitted radiation is given by:

λ =
2πc

ω
=

2π

(e20/mec2)1/2
r3/2. (2.7.8)

If the electron changes the radius of its orbit from r ≈ 5 · 10−8 cm to r ≈ 10−10 cm
the emitted radiation is between λ = 104 Å (infrared radiation) and λ = 1 Å (x-rays).
Therefore according to classical mechanics the spectrum of emission should contain all
the possible frequencies. Now the continuous spectrum of emission and the non-stability
of the atoms predicted by classical mechanics did not agree at all with experiments.

In fact in the absorption and emission spectra of the hydrogen atom there were not
all the frequencies but only some fixed and discrete ones. The emitted lines had the

following wave numbers ν̃ ≡ ν

c
=

1

λ
:

ν̃ = RH

(
1

n′2
− 1

n2

)
(2.7.9)
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where
RH = 109 678 cm−1 (2.7.10)

is the Rydberg constant. By varying n and n′ we obtain the following series:

• n′ = 1, n = 2, 3, 4, · · · , Lyman series (ultraviolet radiation);

• n′ = 2, n = 3, 4, 5, · · · , Balmer series (visible radiation);

• n′ = 3, n = 4, 5, 6, · · · , Paschen series (infrared radiation);

• n′ = 4, n = 5, 6, 7, · · · , Brackett series (infrared radiation).

By increasing the number n the lines are thickening around the line
RH

n′2
. Therefore every

series have its limiting line. Behind this regularity there should be a beautiful model or
theory.

Fig. 2.19: Spectrum of the hydrogen atom.

A first attempt to explain such a regularity is given by the Bohr’s model of atom. This
is an abstract model with ad hoc rules which violate the principles of classical mechanics.
These rules are:

1. The electrons choose some allowed orbits on which they do not irradiate.

2. The emission and absorption happen when there is a transition of an electron from
an allowed orbit to another one.

3. The frequency ν of the emitted and absorbed radiation is given by the Bohr’s
formula:

En − E′
n = hν (2.7.11)

which agrees with the quantization rule for the energy given by Planck.

It remains the problem of finding the rule which selects the allowed orbits. If energy is
quantized also other physical quantities, like for example the angular momentum, can be
quantized. Therefore for a hydrogen atom Bohr postulated that the angular momentum
is quantized according to the rule:

mevr = n~ (2.7.12)

where ~ = h/2π. Therefore if we put the centrifugal force equal to the Coulomb one:

me
v2

r
=
e20
r2

(2.7.13)
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and we eliminate the velocity v using (2.7.12), we obtain that:

rn = n2 h2

4π2e20me
. (2.7.14)

Now, using Eq. (2.7.13), the total energy becomes:

En =
1

2
mev

2 − e20
rn

= −1

2

e20
rn

(2.7.15)

and, if we use Eq. (2.7.14) for rn, we get that the energy levels are related with the
quantum numbers n = 1, 2, 3, . . . by:

En =
−Rhc
n2

(2.7.16)

where R =
2π2e40me

h3c
= 109 700 cm−1 which is in quite good agreement with the experi-

mental value given by (2.7.10). This agreement can be improved further by taking into
account the mass of the nucleus mN and by replacing in all the formulas the mass of the

electron me with its reduced mass
memN

me +mN
.

Using Eq. (2.7.16) in (2.7.11) we can reproduce the Balmer’s formula (2.7.9):

hν = En′ − En = −Rhc
[

1

n′2
− 1

n2

]
. (2.7.17)

Bohr’s model is an ad hoc phenomenological model which reproduces all the experimental
data. Just to give some numerical values, the first orbit has energy

E1 = −Rhc = −13.6 eV (2.7.18)

and radius:

r1 =
h2

4π2e20me
= 0.5 Å. (2.7.19)

This is the Bohr’s radius which is usually indicated with a0.

Actually the Bohr’s rules worked well only in the case of hydrogen; for more compli-
cated atoms Sommerfeld imposed other quantization rules such as, for example:

Ji(E) ≡
∮
pi(E)dri = nih (2.7.20)

where the variables Ji are called action variables and can be defined every time we have
a periodic orbit. Since there is an action variable for every degree of freedom there
are 3k quantum numbers where k is the total number of degrees of freedom. Also this
model did not work very well. Furthermore was it possible to justify the Bohr’s or
Sommerfeld’s quantization rules? How was it possible that a particle did not irradiate
while accelerating? Why only some particular orbits were allowed?
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2.8 De Broglie’s idea

A first attempt to answer the previous questions was given in 1924 by Louis de Broglie
(who had done undergraduate studies in history and whose brother, Maurice, was an
experimental physicist). In his Ph.D. thesis (which was sent by Langevin to Einstein
and accepted by him) de Broglie proposed that, as light has a particlelike nature besides
the wavelike one, so matter should have a wavelike nature besides the particlelike one.
For a photon, since E = hν = pc, the momentum p can be written as:

p = h
ν

c
=
h

λ
. (2.8.1)

De Broglie proposed to use Eq. (2.8.1) also for particles, that means he associated to
every particle of momentum p a wavelength:

λ =
h

p
(2.8.2)

which is called de Broglie wavelength.

Problem 4. Calculate the de Broglie wavelength for a ball of mass m = 1 Kg and speed
v = 10 m/sec. Calculate the wavelength of an electron of energy E = 100 eV.

Solution. It is sufficient to apply Eq. (2.8.2):

λ =
h

p
=

h

mv
=

6.6× 10−34 joule · sec
1 kg× 10 m/sec

= 6.6× 10−35 m ∼ 6.6× 10−25 Å. (2.8.3)

For an electron of energy E = 100 eV we have instead:

λ =
h

p
=

h√
2mE

=
6.6× 10−34 joule · sec√

2× 9.1× 10−31 × 100 · 1.6 · 10−19 Kg ·m/sec

= 1.2 Å. (2.8.4)

Just to give a term of comparison for the results of Problem 4, the wavelength of
x-rays is 1 Å, while the one of γ-rays is 10−12 cm = 10−2 Å. Remember that in order to
see diffraction phenomena the slits must have a width a ∼ λ. In the case of the ball of
Problem 4 the wavelength is λ ≈ 10−25 Å. This means that in order to see diffraction
with such a macroscopic baseball we should use slits of width a ∼ 10−25Å!

Elsasser realized in 1926 that it should be possible to observe the wavelike nature of
electrons with the same kind of experiments used to show the wavelike nature of x-rays,
which have approximately the same wavelength, i.e. by diffraction from a crystalline
solid. In 1927 Davisson and Germer in the USA and G. P. Thomson (son of J. J. Thomson
who had proved in 1897 the particlelike nature of electrons) in Scotland obtained a figure
of diffraction by experiments with electrons scattered by golden crystals, confirming in
this way the de Broglie’s hypothesis.



48 1. Crisis of Classical Physics

Fig. 2.20: Diffraction of x-rays or electrons by a polycrystalline material.

These experiments were difficult to realize because the intensities of the atomic rays
were very small. In order to describe these diffraction effects physicists began to associate
to every particle of energy E and momentum p a wave:

ψ(x, t) = Ae
2πi
h

(px−Et). (2.8.5)

It is interesting to note that Bohr’s rules can be obtained from de Broglie’s hypothesis.

Fig. 2.21: A standing de Broglie wave in a Bohr orbit.

From Fig. 2.21 it is easy to get convinced that, in order to have a periodic wave, it is
necessary for the length of the circular orbit of radius r to be an integer multiple of the
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wavelength:

2πr = nλ = n
h

pe
(2.8.6)

from which we derive that

per = n~ (2.8.7)

which is just the Bohr’s quantization rule (2.7.12).

As we said before the first experiments confirming the wavelike nature of electrons were
obtained by diffraction from a slit or from a crystal lattice. This last experiment pictured
in Fig. 2.22 had already been used by Bragg in order to prove the wavelike nature of
x-rays. Note that there is a constructive interference between the two diffracted waves
if 2d sin θ = nλ. In the case of electrons this interference is between different parts of
the same wave (2.8.5) describing the system. Diffraction effects with molecules were
seen for the first time by Esterman, Stern e Frisch; diffraction effects with slow neutrons
were seen for the first time by Fermi. If instead we want to see the particlelike nature
of matter we have to decrease the intensity of the beam (it is even possible to have the
emission of only one electron at once) and to use a detector.

Fig. 2.22: Diffraction from a crystal lattice.

2.9 Wave-Particle Duality

In the previous sections we have shown how the quantum description of nature is char-
acterized by a sort of wave-particle duality in the sense that both matter and radiation
have both a wavelike and a particlelike nature.

1. For what concerns particles we have seen that every particle of momentum p has an
associated wavelength given by λ = h/p. Now the Planck’s constant is small, so if
we want to observe the wavelike features of matter it is necessary to have particles
with small momenta p. The momentum of the electrons is usually sufficiently
small in order to see, e.g., interference and diffraction phenomena. For macroscopic
objects instead the masses m and the momenta p are so large that the associated
wavelength is practically zero. We can also say that, since in classical mechanics
h = 0, classical particles cannot show their wavelike nature.
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2. Waves show their particlelike nature when they are emitted or absorbed. Their
wavelike nature instead manifests itself when waves are transmitted. This phenom-
enon occurs also for matter: for example in the detectors we can see the particlelike
nature of electrons.

The wavelike and the particlelike features are complementary. This means that every
experiment showing the wavelike nature never shows the particlelike one and vice versa.
Therefore there is no contradiction1. This principle stated by N. Bohr is called comple-
mentary principle and can be justified by the probabilistic interpretation of the wave-
particle duality. Such a probabilistic interpretation was pioneered by Einstein in the case
of waves. Since the light from a source of an electric bulb contains a very large number
of photons we can give, as in the kinetic theory of gases, only a statistical explanation
of the phenomena. In the wave picture of light the intensity I is proportional to E2

which is the average value over one temporal cycle of the square of the electric field.
In a particle picture the intensity of light is given by I = Nhν where N is the average
number of photons crossing unit surface perpendicular to the direction of propagation
per unit time. The two pictures are consistent. In fact if we have a pointlike source of
radiation emitting randomly in all the directions then the number of photons emitted
per unit time is fixed. The photons are spreaded over a sphere whose surface increases
with the square of the distance r from the source. Consequently the number of photons
N crossing the unit surface decreases as 1/r2 and the intensity of light, which is propor-
tional to N , decreases as 1/r2. This result is the same as in the wave picture where the
spherical wave spreads from the source and the intensity decreases with 1/r2. Therefore
we can say that the two different pictures of light are consistent.

If the intensity of the light is large, i.e. if the number of photons N is large, then the

fluctuations are small in the sense that the ratio
∆N

N
is approximately zero. Therefore in

this case fluctuations are not important and we can use an effective non-granular theory.

Vice versa if the intensity is low the ratio
∆N

N
is large, fluctuations become relevant; this

confirms the granular nature of light which can be directly observed in these regimes of
low intensities.

Since the complementary principle can be explained by the probabilistic interpretation
of the wave-particle duality, our theory must give the probability P (r, t) of having a
photon in r at time t. We want to prove that the knowledge of this probability is not
sufficient in order to describe the situation. Suppose we have a source of photons. If we
reduce the intensity of emission we can emit only one photon at once. The photons go
through a two-slit plate and arrive on the final plate of Fig. 2.23. Since for low intensities
the particlelike nature of light should emerge, we expect to obtain on the final plate a
total probability like the one of Fig. 2.23-(b). In particular, because of the particlelike
nature of the radiation, we should have a large probability in the region opposite the
two slits and a low probability in the middle region. We should also have that the total
probability PT must be given by the sum PT = P1 + P2 of the probabilities P1 and P2

that we would obtain by closing the hole 2 and the hole 1 separately. What we observe
instead on the final plate is an interference figure like in Fig. 2.23-(c) which implies that
the two probabilities must not be summed: PT 6= P1 + P2.

1After all physicists must give explanations of the experiments and not of “nature” of things.
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Fig. 2.23: Arrangement of a two-slit experiment.

The previous problem can be solved by considering, instead of the probability P (r, t)
of finding a particle in r at time t, its “square root” ψ(r, t):

|ψ(r, t)|2 = P (r, t) (2.9.1)

which is called wave function or probability amplitude. In general ψ(r, t) is a complex
function and from

1 =

∫
d3r P (r, t) =

∫
d3r |ψ|2 (2.9.2)

we have that ψ(r, t) ∈ L2. In order to reproduce the interference figure we must sum the
probability amplitudes instead of the probabilities:

PT = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + ψ∗
1ψ2 + ψ∗

2ψ1

= P 2
1 + P 2

2 + ψ∗
1ψ2 + ψ∗

2ψ1. (2.9.3)

It is just the extra term ψ∗
1ψ2 + ψ∗

2ψ1 appearing in (2.9.3) which causes the appearance
of the interference figure. On the space of wave functions the following superposition
principle holds: if ψ1(r) and ψ2(r) are two allowed “configurations” then also every linear
combination with complex coefficients

ψαβ(r) = αψ1(r) + βψ2(r) (2.9.4)

is an allowed configuration. Only by allowing such a combination it is possible to sum
configurations which are mutually exclusive, like the passage through the two slits in an
interference experiment. Since according to de Broglie’s idea there were waves associated
not only with radiation but also with particles, Born proposed that also for particles the
ψ(r) represents the probability amplitude of finding a particle in r. Therefore the ψ is not
a material wave but a probability wave. The interference effects of matter are due both
to the complex character of the wave functions and to the fact the probability ampli-
tudes and not the probabilities must be summed. In quantum mechanics moreover the
probabilistic ingredient does not come, like in statistical mechanics, from our ignorance
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about the initial conditions but it is somehow intrinsic of the formalism itself of quantum
mechanics.

Is it possible to relate the probability amplitudes ψ(r) with the concept of possible
paths followed by the particles? Let us consider the situation pictured in Fig. 2.24 where
we have a source of radiation and a series of slits between the source and the final plate.
Which is the probability amplitude of finding a particle in a certain point x on the final
plate? This amplitude will be given by the sum of the amplitudes each corresponding to
a configuration in which only one slit per plate is open. We indicate this as:

ψ(r) =
∑

ψA1B3C5D2 + ψA1B2C5D2 + ψA1B1C5D2 + · · · . (2.9.5)

where ψA1B3C5D2 means that the slit 1 is open in plate A, the slit 3 is open in plate B,
etc.

Fig. 2.24: A generalization of the two-slit experiment.

Finally, with a little bit of imagination, we can consider the full open space between
the source and the screen as made up of an infinite number of plates with infinite slits.
Notice from Fig. 2.24 that in such a way every amplitude ψi,j,k,... can be put in one-to-one
correspondence with a path and the total wave function:

ψ(r) ←→
∑

paths

A (2.9.6)

can be put in correspondence with a sum of the amplitudes over all the possible paths
connecting the initial and the final configuration. It is important to stress that every path
which appears in (2.9.6) must be intended only as a series of indices, corresponding to
the numbers of slits which are left open, and not as a real path followed by the quantum
particle. Nevertheless this idea is the starting point for the well-known and useful path
integral formulation of quantum mechanics proposed by R. P. Feynman.

2.10 Heisenberg’s Uncertainty Principle

As we have seen in the previous section the probabilistic features of quantum mechanics
are somehow intrinsic in the formalism of the theory. In classical mechanics the situation
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is very different: if we give the initial conditions q(0) and p(0), it is possible to reconstruct
the trajectory (q(t), p(t)) and find the point it reaches at every later instant of time t.
Even if we have a system with an infinite number of particles like in statistical mechanics,
we could measure in principle all their positions and velocities and know everything
about the system. We will not have the time to do it but in principle nothing forbids
us to measure with infinite precision all the coordinates of the particles in the phase
space and to know everything about their future. In quantum mechanics instead there is
something in principle which forbids us to know q(0) and p(0) with infinite precision even
for a single particle. Basically this is the origin of all the intrinsic statistical features of
quantum mechanics and it is related to the fact that a quantum measurement disturbs
the physical system because of the interaction between the classical instrument and the
measured quantum object. This effect is small for macroscopic objects but becomes
relevant in quantum mechanics.

The situation at the beginning of quantum mechanics was similar to the one existing
at the beginning of special relativity, when physicists spoke about simultaneity of events
without asking themselves how simultaneity could be physically established. Then Ein-
stein showed that simultaneity of events is a relative concept: two events which are
simultaneous in a certain system can be not simultaneous in another one. In quantum
mechanics instead the problem was to give a set of operative rules in order to establish
how position and momentum could be measured. In particular the question was: can
we measure with absolute precision both the position and the momentum of a particle?
The answer given by quantum mechanics is: No! The uncertainties in the measurement
of positions and momenta satisfy the following inequality:

∆x∆px ≥
~

2
(2.10.1)

where ~ = h/2π. So the precision in the measurement of the position x is inversely
proportional to the precision in the measurement of the associated momentum px. In
particular if we measure x with infinite precision then ∆x = 0 and therefore ∆px =∞,
i.e. the momentum px is totally undetermined. This is the well-known Heisenberg’s
uncertainty principle. This principle involves only canonically conjugate variables, so for
example ∆x∆py = 0, i.e. a measurement of x does not influence py while instead

∆E∆t ≥ ~

2
(2.10.2)

which means that also the precision in a measurement of energy is inversely proportional
to the time required to perform the measurement. For example we can identify the ∆E
of (2.10.2) with the energy spread of the photons emitted in a time interval ∆t by an
atom. Since Heisenberg’s relations can be derived from the wavelike nature of matter
postulated by de Broglie, they are confirmed by experiments just as the de Broglie’s
postulate. If ~ = 0 from (2.10.1) we would obtain ∆x∆px ≥ 0, i.e. it would be possible
to measure with infinite precision the position and the momentum of a particle. We can
say that is just the smallness of ~ which implies the absence of an uncertainty principle
in classical mechanics.

In order to verify (2.10.1) we can use a thought experiment proposed by N. Bohr
and which is known as the Heisenberg’s microscope. Suppose we want to measure the
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position and the momentum of an electron by illuminating it with a source of light or
photons and by using a microscope, like it is shown in Fig. 2.25.

Fig. 2.25: Bohr’s microscope thought experiment.

In order to reduce the disturbance of the measurement we can imagine of using only
one photon; we cannot do better because at least one photon is necessary in order to view
the electron. The interaction between the photon and the electron must be treated as the
Compton effect: if the incident photon has a momentum p = h/λ then the photon which

is scattered by an angle θ has an x component of the momentum given by px =
h

λ
sin θ
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which is equal and opposite to the x component of the momentum of the recoiling
electron. If 2θ′ is the angle subtended by the lens at the electron the x component
of the momentum can vary from p sin θ′ to −p sin θ′. Therefore the uncertainty in the
measurement of the momentum of the photon in the x direction is:

∆px = 2p sin θ′ = 2
h

λ
sin θ′. (2.10.3)

The electron recoils in the opposite direction and, for the conservation of the momentum,
also the x component of the electron must be uncertain by the quantity (2.10.3). Now
the image of a point at a microscope is not a point but a diffraction pattern, like shown
in Fig. (2.25). The resolving power of the microscope determines the maximum accuracy
we can reach in the measurement of the position x of the electron:

∆x =
λ

sin θ′
. (2.10.4)

Therefore the product of the two uncertainties (2.10.3) and (2.10.4) is given by:

∆x∆px =
λ

sin θ′
2h

λ
sin θ′ = 2h (2.10.5)

which is bigger than ~/2 ≈ h/12. The crucial concept behind this thought experiment
is that, due to the particlelike nature of the photon and the Compton effect, there
is a disturbance effect of the “measurement instrument” (the photon) and the observed
system (the electron). This effect is minimum in the case of the Heisenberg’s microscopic
because there is only one photon but in any case such an effect cannot be avoided. For
example if we used light with small values of λ from (2.10.4) it is clear that we would
have a better resolution ∆x ∼ 0, but at the same time ∆px would increase because λ
appears at the denominator of (2.10.3). In classical mechanics instead photons do not
show their particlelike features and so we can decrease the intensity of the light down to
zero or to arbitrary small values in order not to disturb the observed system and at the
same time we can decrease λ in order to improve the resolution. In classical mechanics
there cannot be any uncertainty relation like the one of Eq. (2.10.5).

Before concluding this section we want to prove how the uncertainty relation between
time and energy (2.10.2) can be derived from (2.10.1). If we consider a free particle the
uncertainty in the measurement of its energy can be related with the uncertainty in the
measurement of its momentum. In fact:

∆E = ∆

(
p2

x

2m

)
=

px

2m
2∆px = vx∆px. (2.10.6)

The uncertainty in the position ∆x can be related with the time interval ∆t required
for the measurement: ∆x = vx∆t. Consequently vx = ∆x

∆t which, replaced into (2.10.6),
gives:

∆E = vx∆px =
∆x

∆t
∆px =⇒ ∆E∆t = ∆x∆px ≥

~

2
. (2.10.7)

Problem 5. The velocity of a bullet (m = 50 g) and of an electron (m = 9.1 × 10−28

g) are measured to be the same, 300 m/sec, with an uncertainty of 0.01%. Which is the
accuracy in the measurement of their positions?
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Solution. For the electron:

p = mv = 9.1× 10−31 Kg× 300 m/sec = 2.7× 10−28 Kg ·m
sec

.

Its uncertainty is given by:

∆p = m∆v = 0.0001× 2.7× 10−28 Kg ·m/sec = 2.7× 10−32 Kg ·m/sec.

Therefore in this case the uncertainty principle ∆x∆p ≥ ~

2
≥ h

4π
implies immediately:

∆x ≥ h

4π∆p
=

6.6× 10−34 joule · sec
4π × 2.7× 10−32 Kg ·m/sec

= 2 · 10−3 m = 0.2 cm.

For the bullet instead:

p = mv = 0.05 Kg× 300 m/sec = 15 Kg ·m/sec

∆p = 0.0001× 15 Kg ·m/sec = 1.5× 10−3 Kg ·m/sec.

Therefore the uncertainty in the measurement of the position is given by:

∆x ≥ h

4π∆p
=

6.6× 10−34 joule · sec
4π × 1.5× 10−3 Kg ·m/sec

= 3× 10−32 m.

In this case the uncertainty in the measurement of the position is about 10−17 times the
diameter of the nucleus (which is approximately 10−15 cm) and so there is practically
no limit in the measurement precision of x for a microscopic bullet. In the case of the
electron instead we have an uncertainty in x of 0.2 cm which is 107 times the diameter
of an atom (10−8 cm).





Chapter 3

Schrödinger Equation

3.1 General Properties

In 1926 Schrödinger asked himself which was the equation of motion for the probability
amplitudes or wave functions Ψ(x). This equation had to satisfy the following properties:

1. the so called Planck-de Broglie’s relation: λ =
h

p
, ν =

E

h
;

2. the conservation of energy E =
p2

2m
+ V ;

3. the linearity: if Ψ1 and Ψ2 are two different solutions of the equation of motion
then also every linear combination Ψ = c1Ψ1 + c2Ψ2 must be a solution;

4. if the potential V (x, t) is identically zero then the solutions of the equation must
be given by the following plane waves:

Ψ(x, t) =
1√
2π
ei2π(x/λ−νt) =

1√
2π
ei

2π
h

(px−Et) =
1√
2π
e

i
~
(px−Et). (3.1.1)

Alternatively we can use the wave number k = 2π/λ and the angular frequency
ω = 2πν and the plane wave (3.1.1) can be written as:

Ψ(x, t) =
1√
2π
ei(kx−ωt). (3.1.2)

Let us consider the plane waves (3.1.2) and let us build their derivatives; we are interested
in the derivatives because the wave functions Ψ(x, t) will satisfy a differential equation,
just as the point particles in classical mechanics satisfy a differential equation of motion

given by mẍ = −∂V
∂x

. If we derive (3.1.2) with respect to x we obtain:

∂

∂x
Ψ(x, t) = ikΨ(x, t) = i

2π

λ
Ψ(x, t) = i

2πp

h
Ψ(x, t) =

ip

~
Ψ(x, t) (3.1.3)

which implies:

−i~ ∂

∂x
Ψ(x, t) = pΨ(x, t). (3.1.4)
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Let us instead derive (3.1.2) with respect to t:

∂Ψ

∂t
= −iωΨ = −i2πνΨ = −i2πE

h
Ψ = −iE

~
Ψ

from which we obtain

i~
∂

∂t
Ψ = EΨ. (3.1.5)

Multiplying the definition of energy for a free particle
p2

2m
= E by the wave function Ψ

and using (3.1.4)-(3.1.5), we obtain the equation of motion for the amplitudes Ψ in the
case of free particles:

p2

2m
Ψ = EΨ ⇒ 1

2m

(
−i~ ∂

∂x

)2

Ψ = i~
∂

∂t
Ψ

⇒ − ~
2

2m

∂2

∂x2
Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (3.1.6)

Therefore we can say that the equation of motion of the wave functions reflects somehow
the law of conservation of energy. The most general solution Ψ of Eq. (3.1.6) will be
given by a superposition of plane waves and, since the equation holds for a particular
plane wave, then it must hold also for a superposition of plane waves:

Ψ(x, t) =

∫
dk√
2π

[
eikx−iωt

]
Ψ̃(k). (3.1.7)

This is a linear combination of plane waves with coefficients Ψ̃(k) determined by the ini-
tial condition Ψ(x, 0) = Ψ0(x). Since a linear combination of solutions of the Schrödinger
equation must be itself a solution, also the wave function (3.1.7) has to satisfy the
Schrödinger equation (3.1.6). It represents a non-sinusoidal wave, i.e. a wave with a
wavelength λ which is not constant but changes with x.

Schrödinger postulated that, starting from the conservation of energy, a similar equa-
tion for Ψ(x, t) should be derived also for a particle in a potential V (x). First of all he
multiplied the definition of the conserved energy by the wave function Ψ:

p2

2m
+ V (x) = E =⇒ p2

2m
Ψ + V (x)Ψ = EΨ. (3.1.8)

Then Schrödinger postulated that also in this case p and E have to be replaced by the
following operators:

p ⇒ −i~ ∂

∂x

E ⇒ i~
∂

∂t
.

(3.1.9)

By using (3.1.9) into (3.1.8) Schrödinger obtained the equation of motion for a quantum
particle in a potential V (x):

− ~
2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = i~

∂

∂t
Ψ(x, t) (3.1.10)
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which is a differential equation with partial derivatives, linear in the wave function Ψ(x, t)
and satisfying all the four properties indicated at the beginning of this section.

The Schrödinger equation is a non-relativistic equation. In the relativistic case the
definition of energy is the following one:

E2 = p2c2 +m2
0c

4 =⇒ E = ±
√
p2c2 + (m0c2)2. (3.1.11)

The big problem with the relativistic equation is to perform and to give a sense to the
operator associated with the square root appearing in (3.1.11). This was done by Dirac
and brought to the discovery of the antiparticles.

3.2 Solution of the Time-Dependent Schrödinger Equation

In this section we want to find a method to solve the time-dependent Schrödinger
equation:

− ~
2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) = i~

∂Ψ(x, t)

∂t
. (3.2.1)

We will use the method of separation of variables, by looking for solutions of the form:

Ψ(x, t) = ψ(x)φ(t). (3.2.2)

By replacing (3.2.2) into (3.2.1) we obtain:

− ~
2

2m

∂2

∂x2

[
ψ(x)φ(t)

]
+ V (x)

[
ψ(x)φ(t)

]
= i~

∂

∂t

[
ψ(x)φ(t)

]
.

Since
∂2

∂x2

[
ψ(x)φ(t)

]
= φ(t)

d2ψ(x)

dx2
,

∂

∂t

[
ψ(x)φ(t)

]
= ψ(x)

dφ(t)

dt

the Schrödinger equation becomes the following differential equation:

− ~
2

2m
φ(t)

d2ψ(x)

dx2
+ V (x)ψ(x)φ(t) = i~ψ(x)

dφ(t)

dt

without partial derivatives. If we divide the previous equation by ψ(x)φ(t) we get:

1

ψ(x)

[
− ~

2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)

]
= i~

1

φ(t)

dφ(t)

dt
. (3.2.3)

Now the RHS of (3.2.3) depends only on t while the LHS depends only on x. Since the
two sides are the same they must be equal to a constant, so:

i~
1

φ(t)

dφ(t)

dt
= E = const (3.2.4)

1

ψ(x)

[
− ~

2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)

]
= E. (3.2.5)

From (3.2.4) we get:
φ(t) = e−iEt/~ (3.2.6)
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while from (3.2.5) we obtain:

− ~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (3.2.7)

This is the so called time-independent Schrödinger equation. Let us note that on the
LHS of (3.2.7) we have both the kinetic and the potential terms, so the constant E
appearing on the RHS is just the energy of the system. The wave functions which solve
Eq. (3.2.7) are called energy eigenfunctions. The reason is that we can introduce an

operator Ĥ = − ~
2

2m

d2

dx2 +V (x) and have it act on ψ giving the equation: Ĥψ(x) = Eψ(x)

which is the same as (3.2.7). If we look at the operator Ĥ as a matrix then the equation
Ĥψ = Eψ is like H j

i vj = Evi which is the equation which diagonalizes H. The reader
may wonder in which sense we can look at ψ(x) as a vector like the vi appearing in
H j

i vj = Evi and how we can look at the differential operator Ĥ as a matrix. Here we
will suggest an intuitive but not rigorous explanation of this fact. Let us suppose we
discretize the x-space. Then the ψ(x) becomes a collection of numbers

ψ(x) =

[
ψ(x1), ψ(x2), · · · , ψ(xn), · · ·

]

and we can consider the numbers ψ(xk) as the components of a vector with ∞ compo-
nents. We can apply the same discretization to any differential operator; for example
the first order derivative in xj becomes the following

d

dx
ψ(x)

∣∣∣∣
x=xj

=
ψ(xj)− ψ(xj−1)

xj − xj−1
= − ψ(xj−1)

xj − xj−1
+

ψ(xj)

xj − xj−1
.

If now we want to consider the derivative at every point acting on the full vector
(ψ(x1), ψ(x2), · · · ) we get:

∑

j




0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · − 1

xj−xj−1

1
xj−xj−1

· · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 0







0
0
· · ·

ψ(xj−1)
ψ(xj)
· · ·
0




. (3.2.8)

So we can say that in the discretized version of the x-space the differential operator
d

dx
acts as a matrix and its expression from (3.2.8) is:

Aij = −δi,j−1
1

xj − xj−1
+ δi,j

1

xj − xj−1
.

The same can be done for the differential operator Ĥ = −~
2 d

2

dx2
+ V (x) which will

become an ∞ matrix. In this sense the equation Ĥψ = Eψ is analogous to the equation
which diagonalizes H: H j

i vj = Evi.
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Homework: exercise 3. Calculate the discretized form of the second derivative with
respect to x.

If the reader does not like the intuitive, but non-rigorous, reasoning we have presented
above to explain why ψ(x) can be considered an ∞ vector, he could instead use the
following idea. The wave function ψ(x) can be expanded on a “basis”, given for example
by the plane waves

ψ(x) =
1√
2π

∫
dk eikxψ̃(k). (3.2.9)

In Eq. (3.2.9) the ψ̃(k) are the coefficients of the expansion of ψ(x) on the basis of the

plane waves
1√
2π
eikx. In this sense ψ(x) can be considered an ∞-dimensional vector.

3.3 Properties of the Solutions

Linearity. As we said in Sec 2.1 the Schrödinger equation is linear in the wave
function: this means that if Ψ1 and Ψ2 are two solutions of the Schrödinger equation
(3.1.10) then also

Ψ(x, t) = c1Ψ1 + c2Ψ2

is a solution of the same equation. In fact

− ~
2

2m

∂2Ψ

∂x2
+ V (x)Ψ− i~∂Ψ

∂t
=

= − ~
2

2m

∂2

∂x2

[
c1Ψ1 + c2Ψ2

]
+ V (x)

[
c1Ψ1 + c2Ψ2

]
− i~ ∂

∂t

[
c1Ψ1 + c2Ψ2

]
=

= c1

[
− ~

2

2m

∂2Ψ1

∂x2
+ VΨ1 − i~

∂Ψ1

∂t

]
+ c2

[
− ~

2

2m

∂2Ψ2

∂x2
+ VΨ2 − i~

∂Ψ2

∂t

]
= 0

where in the last step we have used the fact both Ψ1 and Ψ2 are solutions of the
Schrödinger equation (3.1.10).

Constant phases. What we want to prove now is that if Ψ(x, t) is a solution of the
Schrödinger equation then also Ψα(x, t) = Ψ(x, t)eiα where α is a constant phase solves
the same equation. The hypothesis is:

− ~
2

2m

∂2Ψ

∂x2
+ V (x)Ψ = i~

∂Ψ

∂t
. (3.3.1)

By replacing Ψ with Ψα = Ψeiα into (3.3.1) we obtain that:

− ~
2

2m

∂2Ψα

∂x2
+ V (x)Ψα − i~

∂Ψα

∂t
=

eiα
[
− ~

2

2m

∂2Ψ

∂x2
+ V (x)Ψ− i~∂Ψ

∂t

]
= 0.

Consequently, if Ψ is a solution of the Schrödinger equation, then also all the functions
of the form Ψα = Ψ eiα are solutions of the same equation. This set of solutions make
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a set called “ray”. Usually one takes into account only one element Ψα for each ray. In
making a sum, the representatives of the rays must not be changed anymore:

Ψ = Ψ1e
iα1 + Ψ2e

iβ2 . (3.3.2)

In fact if we modify by a phase the states in a sum like the one appearing in (3.3.2), we
obtain a different wave function:

Ψ′ = Ψ1e
iα1eiγ + Ψ2e

iβ2eiδ.

In general the new function Ψ′ does not belong to the same ray of Ψ, i.e. there does not
exist any ǫ such that Ψ′ 6= Ψ eiǫ. So the sum of two rays may not be a ray while the sum
of two states is a state.

Properties of the wave functions. Since the wave function Ψ(x, t) is related with
the probability density of finding a particle in x at time t: P (x, t) = |Ψ(x, t)|2 we must

require that Ψ be normalized, i.e.

∫
dx|Ψ|2 =

∫
dxP (x, t) = 1, and also that:

1. Ψ(x, t) be finite for every value of x.

2. Ψ(x, t) be single-valued.

3. Ψ(x, t) be continuous.

This is due to the fact that if Ψ(x, t) does not satisfy the properties above then also the
probability will not satisfy such properties but this cannot happen because the proba-
bilities must be finite in every point, single-valued and continuous.

Derivative of Ψ and probability current. The three properties mentioned above

must be satisfied also by the derivative
∂Ψ

∂x
. Such a quantity in fact is related with the

probability current. To show that let us take again the Schrödinger equation for Ψ:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ V (x)Ψ. (3.3.3)

and the one for the complex conjugate Ψ∗:

−i~∂Ψ∗

∂t
= − ~

2

2m

∂2Ψ∗

∂x2
+ V (x)Ψ∗. (3.3.4)

If we multiply (3.3.3) by Ψ∗ and (3.3.4) by Ψ and we make the difference of the results
we get:

i~Ψ∗∂Ψ

∂t
+ i~Ψ

∂Ψ∗

∂t
= − ~

2

2m
Ψ∗∂

2Ψ

∂x2
+

~
2

2m
Ψ
∂2Ψ∗

∂x2

=⇒ i~
∂

∂t
(Ψ∗Ψ) = − ~

2

2m

∂

∂x

[
Ψ∗ ∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗

]

=⇒ i~
∂

∂t
P (x, t) +

~
2

2m

∂

∂x

[
Ψ∗ ∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗

]
= 0.
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This equation of evolution for the probability density P (x, t) can be written as:

∂

∂t
P (x, t) +

∂

∂x
J(x, t) = 0 (3.3.5)

where J(x) = − i~

2m

[
Ψ∗∂Ψ

∂x
−

(∂Ψ∗

∂x

)
Ψ

]
is the probability current. Since the derivative

∂Ψ

∂x
enters into the current J(x) which, due to its physical meaning, is finite, continuous

and single-valued, we must require that also
∂Ψ

∂x
be finite, continuous and single-valued.

Sometimes however this condition is relaxed, e.g. when we have Dirac-delta kind of
potentials.

In three dimensions Eq. (3.3.5) becomes:

∂

∂t
P (~r, t) + div ~J = 0, ~J = − i~

2m
[Ψ∗~∇Ψ− (~∇Ψ∗)Ψ] = 0. (3.3.6)

This is the same equation satisfied by the charge density ρ(~r, t) in electrodynamics. In
that case, when we integrate the continuity equation over a volume V , we obtain just
the equation of evolution for the charge Q contained in the volume:

d

dt

∫

V
d3x ρ(~r, t) +

∫

V
d3xdiv ~J = 0 ⇒ dQ

dt
+

∮

S

~J · ~n = 0. (3.3.7)

With this analogy in mind Schrödinger first interpreted |Ψ(~r, t)|2 as a charge density.
However this interpretation is not correct because during the evolution the wave function
Ψ can spread considerably while such a phenomenon was never observed for electric
charges. This is the reason why Schrödinger’s interpretation of the wave function was
soon abandoned in favour of the one of Born.

Problem 6. Prove that the following wave function

Ψ(x, t) = Ae−(
√

Cm/2~)x2
e−i/2

√
C/mt (3.3.8)

solves the Schrödinger equation for a harmonic oscillator with potential V (x) = Cx2/2.
Then calculate the probability density of finding a particle in x if the system is described
by the wave function (3.3.8).

Solution. We must verify that:

− ~
2

2m

∂2Ψ

∂x2
+
C

2
x2Ψ = i~

∂Ψ

∂t
. (3.3.9)

First of all let us consider the wave function (3.3.8) and calculate its derivatives. Since
(3.3.8) is an exponential in t its derivative with respect to time gives:

∂Ψ

∂t
= − i

2

√
C

m
Ψ. (3.3.10)

Analogously the derivative with respect to x gives:

∂Ψ

∂x
= −
√
Cm

~
xΨ =⇒ ∂2Ψ

∂x2
= −
√
Cm

~
Ψ +

Cm

~2
x2Ψ. (3.3.11)
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By replacing (3.3.10) and (3.3.11) into (3.3.9) we get:

~
2

2m

√
Cm

~
Ψ− ~

2

2m

Cm

~
2 x2Ψ +

C

2
x2Ψ = i~

(
− i

2

)√
C

m
Ψ

⇓
~

2

√
C

m
Ψ− C

2
x2Ψ +

C

2
x2Ψ =

~

2

√
C

m
Ψ

which is identically satisfied.

If the wave function describing the system is (3.3.8), then the probability density of
finding a particle in x is:

P (x, t) = Ψ∗Ψ = A2exp

[
−
√
Cm

~
x2

]
. (3.3.12)

Such a probability density does not depend on t; this is a common feature of all the wave
functions corresponding to fixed values of energy. So if our system is described by the
state (3.3.8) then the position of the particle is spread. We cannot know with absolute
precision the position of the particle but only the probability of finding it at a certain
point if we perform a measurement.

Let us briefly compare the classical and the quantum harmonic oscillators. In the
classical case the probability of finding a particle in a point x is inversely proportional
to the velocity of the particle in that point:

P (x)dx ∝ dx

v(x)
. (3.3.13)

If the oscillator moves according to the law x(t) = x0 sin(ωt) where x0 =

√
2E

C
then its

velocity is

v(t) = x0ω cos(ωt) = x0ω
√

1− sin2 ωt =⇒ v(x) = ω
√
x2

0 − x2 (3.3.14)

and the probability density of finding the particle in x is given by:

P (x) ∝ 1√
x2

0 − x2
(3.3.15)

which is plotted in Fig. 3.1.

The velocity of the classical particle is maximum when it goes through the origin
and therefore the probability of finding the particle near the origin is minimum; the
probability instead is maximum at the extrema of the oscillation range ±

√
2E/C, where

the velocity is practically zero. In the quantum case the situation is just the opposite: the
particle can be found also outside the extrema of the oscillation range and the probability
is maximum just near the origin, see Fig. 3.1.
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Fig. 3.1: Quantum and classical probability densities for a harmonic oscillator.

3.4 Quantization of the Energy Levels

What we want to do now is to solve the time-independent Schrödinger equation (3.2.7)
and to prove that, for some particular values of the potential V (x), the solutions exist
only for certain values of E (energy is discretized). First of all let us make a qualitative
analysis of the solutions of the eigenvalue equation:

d2ψ

dx2
=

2m

~2
[V (x)− E]ψ (3.4.1)

for the potential plotted in Fig 3.2. . As boundary conditions we give the value of ψ(x)
and of its derivative ψ′(x) in x = x0 with x′ < x0 < x′′.

Let us suppose that ψ(x) > 0 for every point x in the interval (x0, x
′′). Therefore from

(3.4.1) we derive that in such an interval the function is concave downwards. After the
point x′′ the wave function goes into a region where V (x)− E > 0, and so from (3.4.1)
it becomes concave upwards and it remains concave upwards up to +∞. As we see from
the curve 1 of Fig. 3.3 in this case the wave function diverges towards +∞. If we change
the value of the derivative ψ′(x) in x0 we can change the initial slope of the curve. If
we decrease the slope too much we obtain the curve 2 of Fig. 3.3. In this case the wave
function ψ intersects the x axis and it becomes negative; after the point of intersection

we have that
d2ψ

dx2
< 0, i.e. the wave function is concave downwards and it diverges
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Fig. 3.2: The potential energy V(x) used in the qualitative analysis of the Schrödinger
equation, and the total energy E chosen for the analysis.

towards −∞. For a suitable initial value of the derivative ψ′(x) it is possible to have the
wave function 3 of Fig. 3.3 which is concave upwards, it remains above the x axis and
tends to zero asymptotically at +∞. Such a wave function has a behavior at +∞ that
allows it to be normalizable. Nevertheless if we plot with a dashed curve the behavior
of the curve 3 for decreasing values of x, we discover from Eq. (3.4.1) that such a curve
diverges at −∞, see Fig. 3.3. Therefore we must conclude that for the particular choice
of the energy E that we made there are no acceptable solutions of the time-independent
Schrödinger equation (3.4.1).

Fig. 3.3: Three attempts of finding an acceptable solution to the time-independent
Schrödinger equation.

By repeating this kind of reasoning for all the possible values of E we will discover
that only a discrete set of values of the energy E gives origin to acceptable solutions for
the time-independent Schrödinger equation. So we can say that the discretization of the
energy levels is just a consequence of the request of normalizability of the wave function
at ±∞ and of the continuity of the wave function and its derivative.

Let us now give a more quantitative analysis of the eigenvalue equation. First of all
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let us write the Schrödinger equation (3.4.1) as:

y′′ + [Ẽ − U(x)]y = 0 (3.4.2)

where Ẽ = 2mE/~2 and U(x) = 2mV (x)/~2. Let us take U(x) bounded from below
and continuous. Given two solutions y1(x) and y2(x) we can define the following object
known as Wronskian:

W (y1, y2) ≡ y1y
′
2 − y2y

′
1. (3.4.3)

If at a certain point x = a the Wronskian (3.4.3) is zero then y1(a)y
′
2(a) = y2(a)y

′
1(a).

This means that
y′2(a)
y2(a)

=
y′1(a)
y1(a)

, i.e. the logarithmic derivatives of the two solutions are

the same.

Wronskian theorem. If z1(x) and z2(x) are solutions of the following equations:

z′′1 + F1(x)z1 = 0 (3.4.4)

z′′2 + F2(x)z2 = 0 (3.4.5)

then the variation of the associated Wronskian in the interval (a, b) is given by:

W (z1, z2)

∣∣∣∣
b

a

=

∫ b

a
dx

[
F1(x)− F2(x)

]
z1z2. (3.4.6)

Proof. If we multiply (3.4.4) by z2 and (3.4.5) by z1 and calculate the difference of
the two results we obtain that:

[z2z
′′
1 − z1z′′2 ] + (F1 − F2)z1z2 = 0. (3.4.7)

The first term is, except for a sign, the derivative with respect to x of the Wronskian
W (z1, z2). So if we integrate (3.4.7) in x we obtain just (3.4.6).

Corollary I. If z1 and z2 are two solutions of the Schrödinger equation (3.4.2) corre-
sponding to two different energies Ẽ1 and Ẽ2 then F1(x) = Ẽ1−U(x); F2(x) = Ẽ2−U(x)
and (3.4.6) becomes:

W (z1, z2)

∣∣∣∣
b

a

= (Ẽ1 − Ẽ2)

∫ b

a
dx z1z2. (3.4.8)

Corollary II. If the solutions are associated with the same energy, i.e. Ẽ1 = Ẽ2, then
we get from (3.4.8) that the Wronskian is independent of x: W (z1, z2) = const.

Corollary III. If y(x, Ẽ) is a solution of the Schrödinger equation (3.4.2) and F
defined as

F (x, Ẽ) ≡ y′(x, Ẽ)

y(x, Ẽ)

is its logarithmic derivative assuming a particular value fa at the point a, then F (x, Ẽ)
is a monotonic function of Ẽ, increasing if x < a and decreasing if x > a. In particular
its derivative is given by:

∂F (x, Ẽ)

∂Ẽ
= − 1

y2(x; Ẽ)

∫ x

a
dξ y2(ξ; Ẽ). (3.4.9)
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From (3.4.9) we have that the derivative is negative if x > a and positive if x < a. This
confirms that F is a monotonic function of Ẽ.

Proof of Corollary III. Once we fix Ẽ a solution of (3.4.2) is determined by its value
and the value of its derivative at a given point x = a. Let us fix as boundary conditions
y(a, Ẽ) = ya and y′(a, Ẽ) = y′a and replace Ẽ with Ẽ + δẼ. There will be two nearby
solutions y and y+ δy satisfying the same boundary conditions. According to Corollary
I at first order in δ we obtain:

W (y, y + δy)

∣∣∣∣
b

a

= −δẼ
∫ b

a
dx y2. (3.4.10)

In x = a the Wronskian is W (y, y + δy) = 0 because the two solutions satisfy the same
boundary conditions. From (3.4.3) we have that for every other value of x ∈ (a, b):

W (y, y + δy) = W (y, δy) = yδy′ − y′δy = y2δ(y′/y) = y2δF. (3.4.11)

By comparing (3.4.10) and (3.4.11) we get:

−y2δF

∣∣∣∣
x=b

= δẼ

∫ b

a
dx y2. (3.4.12)

Consequently:
δF

δẼ

∣∣∣∣
x=b

= − 1

y2(b)

∫ b

a
dx y2(x). (3.4.13)

Since b is arbitrary we can conclude that F is a monotonic (increasing or decreasing)
function of Ẽ. The properties of the solution of the Schrödinger equation contained in
the three corollaries above are completely independent of the potential U(x).

Let us now take the potential U(x) plotted in Fig. 3.4 with U− > U+.

Fig. 3.4: Potential U(x) with asymptotic behavior at ±∞.

I case. If Ẽ > U− > U+ then Ẽ − U is positive at the two extrema and constant.
Therefore at +∞ Eq. (3.4.2) becomes:

y′′ + [Ẽ − U+]y = 0 =⇒ y′′ = −ky (3.4.14)
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where k = Ẽ − U+ > 0 and the asymptotic behavior of y at +∞ is given by y ∼ ei
√

kx.
At −∞ the Schrödinger equation becomes:

y′′ + [Ẽ − U−]y = 0 =⇒ y′′ = −k̃y (3.4.15)

with k̃ = Ẽ − U− > 0. So for x → −∞ the solution y is given by y ∼ ei
√

kx. We can
conclude that the solutions are bounded and oscillating everywhere. From the asymptotic
behavior of the solutions there is no constraint on energy, every value of energy is allowed
and the spectrum is continuous.

II case. If U− > Ẽ > U+ then Ẽ − U is negative for x→ −∞ and

y′′ + [Ẽ − U ]y = 0 =⇒ y′′ = −ky. (3.4.16)

Since k = Ẽ − U− < 0 the solution of (3.4.16) is:

y′′ = |k|y =⇒ y ∼ e
√

|k|x, (3.4.17)

which tends to zero for x → −∞ and therefore can be accepted. For x → +∞ we have
instead:

y′′ + [Ẽ − U ]y = 0 =⇒ y′′ = −k̃y. (3.4.18)

Since in this case k̃ = Ẽ − U+ is positive we will have

y′′ = −|k̃|y =⇒ y ∼ ei
√

kx (3.4.19)

which is an oscillating function. Also in this case the spectrum of energy is continuous
and there is no restriction on the possible values of Ẽ.

III case. If U− > U+ > Ẽ we have at both infinities that

y′′ + (Ẽ − U±)y = 0 =⇒ y′′ = −k±y =⇒ y±(x) ∼ e∓
√

k±x. (3.4.20)

So in this case the solutions of the Schrödinger equation are bounded and dumped at
both the extrema. In order to get the spectrum of energy we have to match the two
functions of Eq. (3.4.20). Let us consider the logarithmic derivatives of the two solutions
F+(x, Ẽ) and F−(x, Ẽ) and let us put them equal at a certain point x = a (this is so
because we want to have only one solution y(x) defined everywhere). Now, according to
Corollary III, for x > a we have that F+ is a decreasing function of Ẽ. For x < a instead
F− is an increasing function of Ẽ. Now F− and F+ must be equal in x = a; this can
happen only for some particular values Ẽn of Ẽ. This is the proof that the eigenvalues
of energy in this case are only certain fixed and isolated numbers Ẽ and the spectrum is
discrete.

3.5 Schrödinger Equation for a Free Particle

As a first application of the Schrödinger equation let us consider the case of a free
particle. In this case the potential is identically zero: V (x) = 0 and the Schrödinger
equation (3.2.1) becomes:

i~
∂Ψ(x, t)

∂t
= − ~

2

2m

∂2Ψ(x, t)

∂x2
.
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If we use the method of separation of the variables analyzed in Sec. 2.2, i.e. if we put
Ψ(x, t) = ψ(x)φ(t), then the Schrödinger equation decouples into an equation for ψ and
an equation for φ. The equation for φ(t) is easily solved and, according to (3.2.6), gives:

φ(t) = e−iEt/~ = e−iωt (3.5.1)

where the angular frequency ω is given by: ω = E/~. The ψ(x) satisfies instead the
following equation:

− ~
2

2m

∂2ψ

∂x2
= Eψ =⇒ ∂2ψ

∂x2
= −2mE

~2
ψ = −Ẽψ. (3.5.2)

The solutions of (3.5.2) are:

ψ1(x) = ei
√

Ex, ψ2(x) = e−i
√

Ex

and all their linear combinations:

ψ(x) = Aei
√

Ex +Be−i
√

Ex. (3.5.3)

Now
√
Ẽ is just the wave number k. In fact:

√
Ẽ =

√
2mE

~
=

1

~

√
2m

p2

2m
= p/~ = 1/λ = k.

Therefore the general solution (3.5.3) of the Schrödinger equation for a free particle
becomes:

ψ(x) = Aeikx +Be−ikx. (3.5.4)

If we include also the dependence (3.5.1) on time we get:

Ψ(x, t) = Aeikx−iωt +Be−ikx−iωt. (3.5.5)

Let us analyze separately the two terms appearing on the RHS of (3.5.5). The first one
represents a plane wave propagating towards +x. In fact it can be rewritten as:

Ψ(x, t) = A
[
cos(kx− ωt) + i sin(kx− ωt)

]
.

From the previous equation it is easy to see that the nodes of the real part, which are
the solutions of the equation:

kxn − ωt =

(
n+

1

2

)
π =⇒ xn =

(
n+

1

2

)
π

k
+ ω

t

k
,

propagate in time towards increasing values of x. For the same value of energy E = ~ω
we have also the wave propagating in the opposite direction given by the second term
on the RHS of (3.5.5):

Ψ(x, t) = B ei(−kx−ωt).

Therefore we have two different plane waves, corresponding to two different solutions
of (3.5.2) associated with the same value of the energy E. This phenomenon is called
degeneracy.
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Let us also notice that in this case the energy E can assume every continuous value,
i.e. the boundary conditions cannot limit the values of energy. In fact let us give the
value of the function and of its derivative at the point a:

ψ(a) = ψa, ψ′(a) = ψ′
a. (3.5.6)

From the expression (3.5.4) of the wave function we obtain that at the point a:

ψa = Aeika +Be−ika

ψ′
a = ikAeika − ikBe−ika.

Let us see whether we can express A and B as functions of ψa and ψ′
a:

ψa = Aeika +Be−ika

ψ′
a

ik
= Aeika −Be−ika.

By making the sum and the difference of the two equations above we can find A and
B in terms of the boundary conditions (3.5.6) independently of the values of k and,

consequently, of the energy E =
~

2k2

2m
:

A =

[
ψa +

ψ′
a

ik

]
e−ika

2

B =

[
ψa −

ψ′
a

ik

]
eika

2
. (3.5.7)

So in the case of a free particle there is no constraint in the value of energy.

3.6 One-dimensional Problems

Problem 8. Solve the time-independent Schrödinger equation for the infinite square

well potential V (x) =

{
∞ x < −a/2 or x > a/2
0 − a/2 < x < a/2

plotted in Fig. 3.5.

Solution. At the classical level a particle in a box can assume every value of the energy.
When the particle arrives at one of the two walls it bounces back. For example at the
wall on the right the momentum changes from +p to −p in an interval of time which is
infinitely small.

Let us instead analyze the situation at the quantum level. Between the two walls
the particle behaves like if it were free and so we have the same wave function given in
(3.5.4):

ψ(x) = A′eikx +B′e−ikx = A sin kx+B cos kx (3.6.1)

with k =
√

2mE/~. The difference is that in this case the potential outside the walls is
∞. This means that the particle cannot go out the walls and therefore the wave function
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Fig. 3.5: Infinite square well potential.

must be identically zero for x < −a/2 and x > a/2. Since the wave function must be
continuous we request it to be zero not only outside but also at the walls:

{
ψ(a/2) = 0

ψ(−a/2) = 0.
(3.6.2)

If we impose the boundary conditions (3.6.2) on the wave function (3.6.1) we obtain:





A sin
ka

2
+B cos

ka

2
= 0

A sin
(
−ka

2

)
+B cos

(
−ka

2

)
= 0

which implies 



A sin
ka

2
+B cos

ka

2
= 0

−A sin
ka

2
+B cos

ka

2
= 0.

By making the sum and the difference of the two equations above we obtain:





2B cos
ka

2
= 0

2A sin
ka

2
= 0.

(3.6.3)

There is no value of k which makes both the sine and the cosine equal to zero. We cannot
put A = B = 0 because in this case the wave function would be identically zero. Then
the only possible solutions of (3.6.3) are:

A = 0, cos
ka

2
= 0 (3.6.4)

and

B = 0, sin
ka

2
= 0. (3.6.5)
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Eq. (3.6.4) implies:
ψ(x) = B cos kx

and
ka

2
=
π

2
(2n̄+ 1) =⇒ kn̄ = (2n̄+ 1)

π

a
, n̄ = 0, 1, 2, · · · . (3.6.6)

Eq. (3.6.5) instead leads to:
ψ(x) = A sin kx

and
ka

2
= 2ñ

π

2
=⇒ kñ = 2ñ

π

a
, ñ = 1, 2, · · · . (3.6.7)

In the previous case ñ = 0 would imply k = 0, i.e. an identically zero wave function
which is a non-sense. By putting (3.6.6) and (3.6.7) together we have that all the possible
values of k are of the form kn = nπ/a with n = 1, 2, · · · . Since k =

√
2mE/~ the allowed

values of the energy are given by:

En =
~

2k2
n

2m
=

~
2π2

2ma2
n2. (3.6.8)

This proves that the energy is quantized. The ground state, given by the lowest of the
allowed energies, is:

E1 =
π2

~
2

2ma2
. (3.6.9)

Therefore the particle cannot have zero energy (as we have seen before in such a case
the wave function would be zero and the wave function would not exist). The fact that
the zero point energy is not zero is just a consequence of the uncertainty principle. In
fact, since the particle is confined by the potential to be between −a/2 and a/2, it means
that we know its position with an error ∆x ≈ a. As a consequence the uncertainty in
the momentum is at least ∆p ≈ ~

2∆x ≈ ~

2a . The uncertainty principle does not allow
the particle to have zero total energy since that would mean that the uncertainty in the
momentum is zero violating the bound above. For the particular case of the first energy
level (3.6.9) the momentum is given by:

p1 =
√

2mE1 =
π~

a
. (3.6.10)

Since the particle can move in both directions the uncertainty on the momentum is
about ∆p = 2p1 ≈ 2π~/a and therefore ∆x∆p ≈ a2π~/a = 2π~ which is in quite good
agreement with the lowest limit, ~/2, set by the uncertainty principle. The existence
of a zero-point energy has a lot of important physical consequences: for example the
helium remains liquid and does not solidify at very low temperatures (about 0.001 ◦K)
just because of the zero-point motion.

The first three eigenfunctions of the infinite square well potential are plotted in Fig.
3.6. Let us notice that, since the number of half wavelengths of each eigenfunction is
given by the quantum number n, the number of nodes is n + 1. It is like having the
vibrating strings of a violin, fixed at the two extrema. The difference is that in the case
of the infinite square well, since the energies are given by (3.6.8), the allowed frequencies
increase with the square of n: ν = E/h ∼ n2. In the violin instead the frequencies follow
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Fig. 3.6: First eigenfunctions of the infinite square well potential.

a “harmonic progression”: ν ∼ n. This is due to the fact that the wave equations in the
two cases are different.

Problem 9. Before the discovery of the neutron it was thought that a nucleus of atomic
number Z and atomic weight A was composed of A protons and A − Z electrons (total
charge: A− (A− Z) = Z). The electrons were imagined as confined by a potential in a
very small region like the one occupied by the nucleus. Calculate the zero point energy
for the electrons, considering as potential the one analyzed in the previous problem.

Solution. Let us put the mass of the electron m ∼ 10−30 Kg and the width of the well
a ∼ 10−14 m. The zero point energy becomes:

E1 =
π2

~
2

2ma2
≈ 10× 10−68 joule2 · sec2

2× 10−30 Kg× 10−28 m2

≃ 10−9

2
joule ∼ 109 eV = 103 MeV. (3.6.11)

The zero point energy becomes very large because of the smallness of the mass m of the
electron. Let us see whether the binding potential is greater than the zero point energy:
only in this case an electron could be found in a nucleus with such a zero point energy.
The potential is given by the electrostatic attraction electron-protons. If we take, as
number of protons, A = 100 and as mean distance between the electron and the protons
r = 10−14 m we obtain:

Q1Q2

4πǫ0r
= − Ae2

4πǫ0r
≃ −10 MeV (3.6.12)

which is one hundred times smaller than the required binding energy. So the picture of
a nucleus composed of electrons cannot be correct. Because of its zero point energy an
electron cannot be bound in a nucleus by the electrostatic potential.

Homework: exercise 4. Check the numerical value of the potential (3.6.12).
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Problem 10. Analyze a quantum particle in a gravitational field. In particular calculate
the energy eigenfunctions and eigenvalues for a particle which is so near the surface of
the earth, that the gravitational potential can be approximated with:

U(z) =

{
mgz, z ≥ 0
∞, z < 0.

(3.6.13)

The time-independent Schrödinger equation for the potential (3.6.13) becomes:

ψ̈(z) +
2m

~2

[
E −mgz

]
ψ(z) = 0. (3.6.14)

Such an equation can be rewritten as:

ψ̈(z) +
2m2g

~2

(
E

mg
− z

)
ψ(z) = 0. (3.6.15)

Let us define a new variable:

x ≡
(

2m2g

~2

)1/3(
z − E

mg

)
. (3.6.16)

With this replacement the wave function can be written as ψ̃(x) = ψ(z(x)) and its second
derivative becomes:

ψ̈(z) =
d2ψ(z)

dz2
=

d

dz

(
dψ̃

dx

dx

dz

)
=

=
dx

dz

d

dx

(
dψ̃

dx

dx

dz

)
=
d2ψ̃

dx2

(
dx

dz

)2

. (3.6.17)

From (3.6.16) we get

(
dx

dz

)2

=

(
2m2g

~2

)2/3

=⇒ ψ̈(z) =

(
2m2g

~2

)2/3 d2ψ̃

dx2
. (3.6.18)

By inserting (3.6.16) and (3.6.18) into (3.6.15) we have:

(
2m2g

~2

)2/3d2ψ̃

dx2
−

(
2m2g

~2

)2/3

xψ̃(x) = 0 =⇒ d2ψ̃(x)

dx2
− xψ̃(x) = 0. (3.6.19)

The solution of this equation which tends to zero for x→∞ is the Airy function plotted
in Fig. 3.7; we will indicate it as Ai(x).

Consequently:

ψ̃(x) = Ai(x) = Ai

[(
2m2g

~2

)1/3(
z − E

mg

)]
.

How can we find the energy levels? For z < 0 there is an ∞ potential, so the wave
function must be zero also at z = 0:

ψ(z = 0) = 0 =⇒ Ai

[(
2m2g

~2

)1/3(
− E

mg

)]
= 0.



3.6 One-dimensional Problems 77

-10 -5 5 10

-0.4

-0.2

0.2

0.4

Fig. 3.7: Plot of the Airy function Ai(x).

So to determine the energy levels E we must find the zeros of the Airy function Ai.
These zeros are known and classified in the literature. Let us indicate them with −αn

where n = 1, 2, · · · :
(

2m2g

~2

)1/3(
− E

mg

)
= −αn =⇒ En =

(
mg2

~
2

2

)1/3

αn.

The first energy level is associated to the first zero of the Airy function α1
∼= 2.34.

Therefore:

E1 = 2.34

(
mg2

~
2

2

)1/3

∼ 10−12 eV.

Such a number has been measured very recently in the Netherlands. Just to give an
idea of the smallness of such a number remember that the energy of an electron in the
hydrogen atom is about 13 eV. So we can conclude that also in the case of a particle in
the gravitational field there is a finite zero-point energy. The particle cannot be at rest
on the ground like a classical particle. This is due to the uncertainty principle.

Problem 11. Show that in a one-dimensional problem the bound states are always
non-degenerate.

Solution. Let us prove it ab absurdo and suppose the opposite is true. Let ψ1(x) and
ψ2(x) due linearly independent solutions with the same energy E:

ψ′′
1 +

2m

~2
(E − V )ψ1 = 0, ψ′′

2 +
2m

~2
(E − V )ψ2 = 0. (3.6.20)

Let us divide the first equation by ψ1 and the second one by ψ2; what we obtain is:

ψ′′
1

ψ1
=

2m

~2
(V − E),

ψ′′
2

ψ2
=

2m

~2
(V − E). (3.6.21)

This means that:
ψ′′

1

ψ1
=
ψ′′

2

ψ2
=

2m

~2
(V − E) (3.6.22)

which implies:
ψ′′

1ψ2 − ψ′′
2ψ1 = (ψ′

1ψ2)
′ − (ψ′

2ψ1)
′ = 0.
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By integrating the previous equation we get:

ψ′
1ψ2 − ψ′

2ψ1 = const. (3.6.23)

Since the equation above is true for every x and at ∞ the wave function ψ of a bound
state must be zero, the constant appearing in (3.6.23) must also be zero, which implies:

ψ′
1ψ2 − ψ′

2ψ1 = 0 =⇒ ψ′
1

ψ1
=
ψ′

2

ψ2
. (3.6.24)

By integration we get:

logψ1 = logψ2 + log c =⇒ ψ1 = C ψ2. (3.6.25)

Therefore the two states are linearly dependent and there is no degeneracy (there can
be degeneracy only if the states are linearly independent). This is true only in one
dimension. In three dimensions the theorem above does not hold and there can be
degeneracy.

Homework: exercise 5. Prove that, since the eigenfunctions ψ corresponding to bound
states are non-degenerate, they can be chosen as real.

Problem 12. Show that the first derivative of the stationary wave functions are contin-
uous even when the potential V (x) has a finite discontinuity.

Solution. Let us suppose the discontinuity is at the point x0 and replace V (x) in the
interval (x0 − ǫ, x0 + ǫ) with a potential V1(x) linearly interpolating between V (x0 − ǫ)
and V (x0 + ǫ). In such a way we obtain a continuous potential whose eigenfunctions are
given by the solutions of:

ψ′′
1 +

2m

~2

[
E − V1(x)

]
ψ1(x) = 0. (3.6.26)

By integrating it between x0 − ǫ and x0 + ǫ we get:

∫ x0+ǫ

x0−ǫ
dxψ′′

1(x) =
2m

~2

∫ x0+ǫ

x0−ǫ
dx[V1(x)− E]ψ1(x)

which is equivalent to

(ψ′
1)

∣∣∣∣
x0+ǫ

−(ψ′
1)

∣∣∣∣
x0−ǫ

=
2m

~2

∫ x0+ǫ

x0−ǫ
dx

[
V1(x)− E

]
ψ1(x). (3.6.27)

In the limit ǫ→ 0 we have that V1(x)→ V (x) and ψ1(x) → ψ(x). Since the integrand
function on the RHS of (3.6.27) is finite, it remains finite also in the limit ǫ → 0.
According to the mean value theorem:

∫ b

a
dxf(x) = f̄ [b− a] (3.6.28)

where f̄ is the mean value. If f̄ remains finite and the interval b − a tends to zero also
the LHS of (3.6.28) must tend to zero. So in our case the mean value theorem implies
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that the RHS of (3.6.27) tends to zero for ǫ→ 0. Consequently also the LHS will go to
zero. This means that:

ψ′
∣∣∣∣
x0+0

= ψ′
∣∣∣∣
x0−0

, (3.6.29)

i.e. the derivatives of the eigenfunctions are continuous. If the potential has an ∞
discontinuity, then we cannot use the mean value theorem to say that, for ǫ → 0, the
integral in (3.6.27) is zero, so in this case the derivative ψ′ can have a finite gap. We will
see an example of this phenomenon when we will analyze the Dirac delta potentials.

The Theorem of the Zeros. The “theorem of the zeros” states that if the discrete
eigenvalues of a one-dimensional Schrödinger equation are ordered from the smallest
to the largest one: E1 < E2 < . . . < En, then the associated eigenfunctions have an
increasing number of zeros. To prove this let us show that, between two consecutive zeros
of the n-th eigenfunction, there is at least one zero of the n+ 1-th eigenfunction.

Proof. Consider the eigenfunctions ψn(x) and ψn+1(x) with eigenvalues En < En+1.
From the equations:

ψ′′
n(x) +

2m

~2
(En − V )ψn = 0, ψ′′

n+1(x) +
2m

~2
(En+1 − V )ψn+1 = 0

we get that:
ψ′′

n

ψn
=

2m

~2
(V − En),

ψ′′
n+1

ψn+1
=

2m

~2
(V − En+1).

By taking the difference of the two equations above we get:

ψ′′
n

ψn
− ψ′′

n+1

ψn+1
=

2m

~2
(En+1 − En) (3.6.30)

which implies:

ψ′′
nψn+1 − ψ′′

n+1ψn =
2m

~2
(En+1 − En)ψnψn+1

⇓
d

dx
[ψ′

nψn+1 − ψ′
n+1ψn] =

2m

~2
(En+1 − En)ψnψn+1. (3.6.31)

Let us integrate Eq. (3.6.31) between two consecutive zeros α and β of the wave function
ψn. Since the function ψn is continuous, it does not change sign between α and β. Then
we can suppose ψn > 0 which implies ψ′

n(α) > 0 and ψ′
n(β) < 0. After the integration

between α and β the LHS of (3.6.31) becomes:

ψ′
n(β)ψn+1(β)− ψ′

n+1(β)ψn(β)− ψ′
n(α)ψn+1(α) + ψ′

n+1(α)ψn(α) =

= ψ′
n(β)ψn+1(β)− ψ′

n(α)ψn+1(α) =

= −ψn+1(β)|ψ′
n(β)| − ψn+1(α)|ψ′

n(α)| (3.6.32)

where in the first step we used the fact that α and β are zeros for the function ψn and
in the second one that ψ′

n(α) > 0 and ψ′
n(β) < 0. The RHS of (3.6.31) becomes instead:

2m

~2
(En+1 − En)

∫ b

a
dxψn(x)ψn+1(x). (3.6.33)
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If, ab absurdo, ψn+1 had not changed sign between α and β, then Eq. (3.6.32) would
have an opposite sign with respect to the one of the function ψn+1; Eq.(3.6.33) would
have instead the same sign of ψn+1 and this would give a contradiction. So ψn+1 must
change sign and, being continuous, it must have at least one zero between α and β. If
ψn and ψn+1 are eigenfunctions of the discrete spectrum they both vanish exponentially
at the two boundaries of the interval (−∞,∞). The n−1 zeros of ψn divide the interval
into n partial intervals, in each of which ψn+1 has at least one zero; so, the function
ψn+1 has at least n nodes. Of course this does not prove that there is only one zero in
each partial interval, but it is actually so and the function ψn+1 has exactly n nodes.

Problem 13. Find the energy values for the bound states of a particle in the symmetric
well potential plotted in Fig. 3.8.

Fig. 3.8: Symmetric well potential.

Solution. As we have seen in Sec. 2.4 the bound states can exist only in the range
−U0 < E < 0. Let us write the eigenvalue equations in the three regions I, II, III
indicated above:

ψ′′
1(x)− 2m

~2
|E|ψ1(x) = 0 for x < −b,

ψ′′
2(x) +

2m

~2
(U0 − |E|)ψ2(x) = 0 for |x| < b, (3.6.34)

ψ′′
3(x)− 2m

~2
|E|ψ3(x) = 0 for x > b.

Let us use the following compact notation:

α ≡
(

2m

~2
|E|

)1/2

> 0, β ≡
(

2m

~2
(U0 − |E|)

)1/2

> 0. (3.6.35)

In the three regions the wave function will have the form:

ψ(x) =





ψIII(x) = Aeαx +Be−αx x > b
ψII(x) = C sinβx+D cosβx |x| < b
ψI(x) = Feαx +Ge−αx x < −b.

(3.6.36)
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The wave function of a bound state must tend to zero at ±∞ and so A = G = 0. Note
also that |ψIII |2 = B2e−2αx 6= 0 and |ψI |2 = F 2e2αx 6= 0, i.e. the particle can be found
also outside the well potential differently than in the classical case where it should move
within the well in order to have a positive kinetic energy.

Now we must impose that the wave function and its derivative be continuous also at
x = ±b, that is:

C sinβb+D cosβb = Be−αb

−C sinβb+D cosβb = Fe−αb

βC cosβb− βD sinβb = −αBe−αb

βC cosβb+ βD sinβb = Fαe−αb.

By making suitable combinations of the equations above we get:

2C sinβb = (B − F )e−αb (3.6.37)

2βC cosβb = −α(B − F )e−αb (3.6.38)

2D cosβb = (B + F )e−αb (3.6.39)

2βD sinβb = α(B + F )e−αb. (3.6.40)

If C 6= 0 then B − F 6= 0 and dividing (3.6.38) by (3.6.37) we get:

β cotgβb = −α. (3.6.41)

If D 6= 0 then B + F 6= 0 and dividing (3.6.40) by (3.6.39) we get:

β tg βb = α. (3.6.42)

Homework: exercise 6. Prove that Eqs. (3.6.41) and (3.6.42) cannot be satisfied at
the same time.

So we must distinguish two different set of solutions of Eqs. (3.6.37)-(3.6.40):

C = 0, B = F, β tgβb = α (3.6.43)

D = 0, B = −F, β cotgβb = −α. (3.6.44)

In the first case given by Eq. (3.6.43) the solution within the well is ψ(x) = D cosβx,
which is an even function. In the second case given by (3.6.44) the solution is ψ(x) =
C sinβx, which is an odd function. The energies are determined by solving the equations
β tgβb = α, β cotgβb = −α (remember that, according to (3.6.35), α and β depend on
the energy E). The equations can be solved only graphically. Putting ξ = βb and η = αb
we get:

E = − ~
2

2mb2
η2. (3.6.45)

Let us also notice that from the definition of ξ and η:

η2 + ξ2 =
2mb2

~2
U0 (3.6.46)
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while the equation β tgβb = α becomes:

ξtgξ = η. (3.6.47)

Therefore in the first case we must solve the equations:

ξtg ξ = η, ξ2 + η2 =
2mb2

~2
U0. (3.6.48)

In the second one we have instead:

−ξcotg ξ = η, ξ2 + η2 =
2mb2

~2
U0. (3.6.49)

Fig. 3.9: Solution of the symmetric square well.

The solutions of (3.6.48) and (3.6.49) are given by the intersections of the circle ξ2 +

η2 =
2mb2

~2
U0 with the curves η = ξtgξ and η = −ξcotgξ in the region ξ, η > 0. For

example in Fig. 3.9 we plotted the second case in which the intersection is between the
circle and η = −ξcotgξ. It is clear that the number of the bound states increases with
the radius of the circle, i.e. with b2U0. This means that the number of bound states

increases with the depth U0 and the width b of the well. If the radius R =

√
2m

~2
b2U0

of the circle satisfies N
π

2
< R <

N + 1

2
π with N = 0, 1, 2, · · · , then the number of

intersections between the circle and the curves, which gives the number of bound states,
is N + 1. In the particular case R < π/2 there is only one bound state.

Problem 14. Which is the parity of the energy eigenfunctions of the discrete spectrum
for a time-independent Schrödinger equation with an even potential V (x) = V (−x)?
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Solution. If ψ(x) is a solution of the time-independent Schrödinger equation with energy
E: [

− ~
2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (3.6.50)

then it is easy to prove that also ψ(−x) is a solution of the Schrödinger equation with
the same value of energy E. In fact let us replace in (3.6.50) x with −x. What we obtain
is: [

− ~
2

2m

d2

dx2
+ V (−x)

]
ψ(−x) = Eψ(−x). (3.6.51)

Since the potential is even, we have that V (−x) = V (x), which means that we can
rewrite (3.6.51) as: [

− ~
2

2m

d2

dx2
+ V (x)

]
ψ(−x) = Eψ(−x).

This proves that both ψ(x) and ψ(−x) are solutions of the Schrödinger equation associ-
ated with the same value of energy.

Now let us suppose the functions ψ(x) and ψ(−x) belong to the discrete spectrum.
As we have seen in Problem 11, in this case there cannot be degeneracy. So the two
wave functions must be linearly dependent: ψ(x) = C ψ(−x). Changing x → −x, we
get ψ(−x) = Cψ(x) which implies ψ(x) = Cψ(−x) = C2ψ(x) ⇒ C = ±1. Therefore:

ψ(x) = ±ψ(−x)
which means that the eigenfunctions are even or odd. In the discrete spectrum of a
one-dimensional system the wave function ψn+1 has one zero more than ψn. Since the
even (odd) functions have an even (odd) number of zeros we can conclude that the
eigenfunctions of the discrete spectrum of an even potential are alternatively even or
odd.

In the continuous spectrum there can be degeneracy and so it is not necessary that
ψ(x) = C ψ(−x). This implies that the eigenfunctions can have a non-definite parity.

Problem 15. Study the time-independent Schrödinger equation for the step potential

V =

{
0 forx < 0
V0 > 0 forx > 0

.

Solution. The Schrödinger equation in the region x < 0 is:

− ~
2

2m

d2

dx2
ψ(x) = Eψ(x) =⇒ d2

dx2
ψ +

8π2m

h2
Eψ = 0.

In the region x ≥ 0 the equation is instead:

− ~
2

2m

d2

dx2
ψ(x) + V0ψ(x) = Eψ(x) =⇒ d2

dx2
ψ +

8π2m

h2
(E − V0)ψ = 0.

If we define k2
0 ≡

8π2m

h2
E and k2 =

8π2m

h2
(E − V0) then the two Schrödinger equations

can be written as: 



d2ψ

dx2
+ k2

0ψ = 0 x < 0

d2ψ

dx2
+ k2ψ = 0 x > 0.



84 2. Schrödinger Equation

The solutions can be written as:
{
ψ1(x) = A exp(ik0x) +B exp(−ik0x) x < 0

ψ2(x) = C exp(ikx) +D exp(−ikx) x > 0.
(3.6.52)

The boundary conditions are: {
ψ1(0) = ψ2(0)

ψ′
1(0) = ψ′

2(0)

and they give: {
A+B = C +D
k0(A−B) = k(C −D).

(3.6.53)

Let us consider the two cases:

1) E > V0

2) 0 < E < V0.

In classical mechanics in case 1) the particle slows down over the barrier because its
kinetic energy becomes smaller in order to preserve the total energy. In case 2) instead
the particle cannot go beyond the barrier because otherwise its kinetic energy would
become negative.

Let us now analyze the situation in quantum mechanics and consider a wave which at
the beginning is at x = −∞ and propagates towards greater values of x. In the case 1)
we have that both k0 and k are real numbers, so the solution (3.6.52) is given by plane
waves everywhere. Since in (3.6.53) we have two equations and four unknown quantities,
we can put D = 0. With this choice Eq. (3.6.53) becomes:

{
A+B = C
k0(A−B) = kC

=⇒ A+B

A−B =
k0

k
. (3.6.54)

Let us notice that we cannot choose also B = 0 because otherwise we would obtain
k0

k
= 1 which is false since k0 > k. Therefore we can say that, even if we consider a

wave propagating towards greater values of x, for x < 0 we cannot throw away the wave
propagating towards smaller values of x, since B must be different from zero. This means
that, even if the energy of the particle is greater than the step potential, nevertheless
the particle feels the step and is, at least in part, reflected by it.

In the case 2), 0 < E < V0, k is an imaginary number. In order to avoid a divergence
of ψ2(x) we must put either C = 0 or D = 0. If we put D = 0 and we solve Eq. (3.6.53)
we get:

A =
k0 + i|k|

k0

C

2
, B =

k0 − i|k|
k0

C

2
. (3.6.55)

Therefore there is a reflected wave but there is also a wave which goes beyond the step,
i.e. we cannot put C = 0 because otherwise from (3.6.55) we would have A = 0 but
this is not true because at the beginning we have the initial wave. So C 6= 0 and for
x > 0 we get ψ2(x) = C exp(−|k|x). This means that the wave can penetrate the step.
Also the reflected wave cannot be thrown away: in fact we cannot choose B = 0 because
otherwise we would have again that k0 = i|k| which is false.
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Homework: exercise 7. Solve the Schrödinger equation for a potential like the one
plotted in Fig. 3.10 and prove that the particles in this case can go from region I to
region III even if they have less energy than the step (tunnel effect).

Fig. 3.10: Potential for the Tunnel Effect.

Transmission and Reflection Coefficients. Let us go back to the step potential.
Remember that the probability current J in terms of the wave function ψ is given by:

J =
h

4πim
(ψ∗∂xψ− ψ∂xψ

∗). For x < 0 and in the case E > V0 the wave function which

propagates towards greater values of x gives the following probability current:

J+(x < 0) =
h

2πm
AA∗k0. (3.6.56)

The current associated with the wave function propagating towards smaller values of x
is:

J−(x < 0) =
h

2πm
BB∗k0. (3.6.57)

Combining (3.6.54), (3.6.56) and (3.6.57) it is easy to prove that the reflection coefficient

defined as R ≡ J−(x < 0)

J+(x < 0)
turns out to be:

R =
BB∗

AA∗ =

(
k0 − k
k0 + k

)2

. (3.6.58)

For x > 0 the current associated with the wave function ψ2 = Ceikx is:

J+(x > 0) =
h

2πm
CC∗k. (3.6.59)

The transmission coefficient defined as: T ≡ J+(x > 0)

J+(x < 0)
becomes:

T =
CC∗

AA∗
k

k0
=

4kk0

(k0 + k)2
. (3.6.60)

From (3.6.58) and (3.6.60) it is easy to prove that R+ T = 1. If instead the energy E is
smaller than the step potential V0, we get from (3.6.55) that:

R =
BB∗

AA∗ = 1, (3.6.61)
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i.e. it seems that the entire wave is reflected. This is not true. In fact, since C 6= 0, if
we perform a measure, we have a certain probability of finding the particle also in the
region x > 0.

Problem 16. Find the spectrum and the wave functions of the time independent

Schrödinger equation for a harmonic oscillator V =
1

2
kx2.

Solution. The Schrödinger equation is

− ~
2

2m

d2ψ

dx2
+

1

2
kx2ψ(x) = Eψ(x). (3.6.62)

With the following change of variables:

ξ ≡ αx, α =

(
mk

~2

)1/4

Eq. (3.6.62) becomes:
d2ψ

dξ2
+ (λ− ξ2)ψ = 0 (3.6.63)

where

λ ≡ 2E

~

(
m

k

)1/2

=
2E

~ωc
, with ωc =

(
k

m

)1/2

. (3.6.64)

The function ψ(ξ) = ξn exp
(
−1

2ξ
2
)

is a normalizable solution of Eq. (3.6.63) at least for
ξ → +∞. Let us calculate the derivatives:





dψ

dξ
= nξn−1e−ξ2/2 − ξn+1e−ξ2/2

d2ψ

dξ2
=

(
n(n− 1)ξn−2 − nξn − (n+ 1)ξn + ξn+2

)
e−ξ2/2.

(3.6.65)

For ξ → ∞ we get that
d2ψ

dξ2
∼ ξn+2e−ξ2/2. In the limit ξ → +∞ we can disregard λ

with respect to ξ2 and Eq. (3.6.63) is satisfied:

d2ψ

dξ2
− ξ2ψ ∼ ξn+2e−ξ2/2 − ξ2ξne−ξ2/2 = 0. (3.6.66)

Now we let us try to find a complete (and not only asymptotic) solution of (3.6.63) of
the form:

ψ(ξ) = H(ξ)e−ξ2/2 (3.6.67)

with H(ξ) polynomial in ξ. If we insert (3.6.67) into (3.6.63) we obtain the following
equation for H(ξ):

H ′′(ξ)− 2ξH ′(ξ) + (λ− 1)H(ξ) = 0. (3.6.68)

Let us make this ansatz for H(ξ):

H(ξ) = ξs[a0 + a1ξ + a2ξ
2 + . . .] (3.6.69)
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with a0 6= 0 and s ≥ 0. If we use (3.6.69) in (3.6.68) and we equate the coefficients of
the same powers of ξ we get:

s(s− 1)a0 = 0

(s+ 1) s a1 = 0

(s+ 2)(s+ 1)a2 − (2s+ 1− λ)a0 = 0

(s+ 3)(s+ 2)a3 − (2s+ 3− λ)a1 = 0 (3.6.70)

· · · · · · · · ·
(s+ ν + 2)(s+ ν + 1)aν+2 − (2s+ 2ν + 1− λ)aν = 0.

Since we have chosen a0 6= 0, we get from the first equation that s = 0 or s = 1. The
second equation gives s = 0 or a1 = 0 or both of them. The third equation gives a2 as
a function of a0; the fourth equation gives a3 as a function of a1; in general the ν-th
equation gives aν+2 as a function of aν . According to what we have seen in Problems
11 and 14, the functions ψ(x) cannot be degenerate in the discrete part of the spectrum
and, since the potential is even, they will be either even or odd: ψ(x) = ±ψ(−x). This
implies that H(ξ) must be either even or odd. From (3.6.69) we get the even or odd
H(ξ) by choosing a2ν+1 = 0 and s = 0 or a2ν+1 = 0 and s = 1 respectively.

In (3.6.70) there will be a finite or an infinite number of terms depending on how we

choose s and λ. If the series does not stop, then the ratio of the coefficients
aν+2

aν
, for

large ν, goes as:
aν+2

aν

−→
ν→∞

2s+ 2ν + 1− λ
(s+ ν + 2)(s+ ν + 1)

∼ 2

ν
. (3.6.71)

For large values of ν the aν behave just like the coefficients of the series expansion of

ξneξ
2

(3.6.72)

with n integer1. This means that the power series (3.6.69) becomes an exponential
which, combined with the factor e−ξ2/2 of (3.6.67), gives ξneξ

2/2. Such a function is not
normalizable and so it cannot be a solution for the Schrödinger equation. In order to
have an acceptable solution of the Schrödinger equation the series (3.6.69) must stop.
This means that in the last term of (3.6.70) λ must satisfy the equation:

λ = 2s+ 2ν + 1. (3.6.73)

If the previous relation holds then aν+2 = 0 and the series stops. Now if we call n = s+ν
we obtain that λ = 2n+ 1. By replacing λ with E, see Eq. (3.6.64), we get

En =

(
n+

1

2

)
~ωc (3.6.74)

which implies that the spectrum of a harmonic oscillator is discrete. The zero-point
energy is given by the n = 0 term:

E0 =
1

2
~ωc. (3.6.75)

1In fact two consecutive terms in the series expansion of (3.6.72) are given by ξn(ξ2)m 1
m!

and
ξn(ξ2)m−1 1

(m−1)!
and their ratio goes just as 1/m.
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Also in this case the zero-point energy is due to the uncertainty principle. In fact the
eigenfunction associated with E0 is ψ0(ξ) = Ne−ξ2/2, which means that the particle is
characterized by a finite uncertainty ∆x in the position. From Heisenberg’s relations the
associated uncertainty in the momentum must be finite ∆p 6= 0.

From Eq. (3.6.68) we get that the equation to solve in order to get the eigenfunctions
of a harmonic oscillator is:

H ′′
n − 2ξH ′

n + 2nHn = 0 (3.6.76)

whose solutions are the Hermite polynomials:

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2

which satisfy the following recurrence relations:

H ′
n = 2nHn+1, Hn+1 = 2ξHn − 2nHn−1.

We want to stress the fact that also in the case of the harmonic oscillator the discreteness
of the spectrum comes from the renormalizability requirement of the wave function ψn.

3.7 Dirac Delta

A function y = f(x) is a map, e.g. between R and R, between C and C or between
R and C. A functional is a map between a space of functions f and the space of real or
complex numbers and it is indicated as y = F [f ]. In other words a functional associates a
number to every function f of its domain. In particular a Dirac delta δ(x−x0) associates
to every function f(x) the number f(x0):

∫ ∞

−∞
dx δ(x− x0)f(x) = f(x0). (3.7.1)

So the Dirac delta δ(x − x0) is like a very peaked function, different from zero only for
x 6= x0. From the definition itself of the Dirac delta (3.7.1) we get:

∫ ∞

−∞
dx δ(x− x0) = 1.

This condition suggests that it is possible to “represent” the Dirac delta distribution like
a limit of a suitable sequence of functions. For example, if we choose x0 = 0, we have
that the action of the Dirac delta δ(x)

∫ +∞

−∞
dx δ(x)f(x) = f(0) (3.7.2)

is the same as the one achieved by the following limit:

δ(x) ∼ lim
l→∞

l√
π
e−l2x2

(3.7.3)

where the limit must be done within the integral. In fact, by performing the following
change of variables x̃ ≡ lx we get:

l√
π

∫ ∞

−∞
dx e−l2x2

f(x) =
1√
π

∫ ∞

−∞
dx̃e−x̃2

f(x̃/l).
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If we send l→∞ we obtain:

lim
l→∞

1√
π

∫ ∞

−∞
dx̃e−x̃2

f(x̃/l) =
1√
π

∫ ∞

−∞
dx̃ e−x̃2

f(0) = f(0).

So in the limit l → ∞ the sequence of functions
l√
π
e−l2x2

is a good approximation of

the Dirac delta distribution. Such a sequence of functions is plotted in Fig. 3.11.

Fig. 3.11: Representation of the Dirac delta.

Other representations of the Dirac delta δ(x) are given by:

1

lπ

sin2 lx

x2
,

1

lπ

1

x2 + 1
l2

,
1

π

sin lx

x
.

The Dirac delta δ(x− x0) is the generalization to the continuous case of the Kronecker
delta δi

j defined as:

δi
j =

{
1 if i = j
0 if i 6= j

i, j ∈ 1, 2, · · ·N. (3.7.4)

From the definition itself of Kronecker delta every vector f i can be rewritten as f i =∑

j

δi
jf

j . In fact if “i” is a continuous index then f i becomes a function of x, fx = f(x),

and the sum becomes an integral:

f(x) =

∫
dy δx

yf
y =

∫
dy δ(x− y)f(y) (3.7.5)

which is just the action of the Dirac delta δ(x − y). In order to get some practice with
the Dirac delta distributions we are going to perform some problems on them.

Problem 17. The potential energy of a system is U(x) = Ũ(x)+αδ(x−x0) where Ũ(x)
is a bounded function. Which is the behavior of the solution of the Schrödinger equation
ψ(x) and of its derivative near the point x0?
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Solution. The equation is

− ~
2

2m
ψ′′ + [Ũ(x) + αδ(x− x0)]ψ = Eψ. (3.7.6)

The wave function must be continuous because of its probabilistic meaning. Let us study
the behavior of the derivative by integrating Eq. (3.7.6) between x0 − ǫ and x0 + ǫ with
ǫ > 0 and let us send ǫ→ 0:

− ~
2

2m

∫ x0+ǫ

x0−ǫ
dxψ′′ = −

∫ x0+ǫ

x0−ǫ
dx [Ũ(x) + αδ(x− x0)− E]ψ(x)

⇓

− ~
2

2m
[ψ′(x0 + ǫ)− ψ′(x0 − ǫ)] = −αψ(x0)−

∫ x0+ǫ

x0−ǫ
[Ũ(x)− E]ψ(x). (3.7.7)

If ψ(x) is continuous and Ũ(x) is limited we can use the mean value theorem. In the
limit ǫ→ 0 the integral on the RHS of (3.7.7) is zero, so we get:

lim
ǫ→0
− ~

2

2m
[ψ′(x0 + ǫ)− ψ′(x0 − ǫ)] = −αψ(x0) (3.7.8)

which means

ψ′(x0 + 0)− ψ′(x0 − 0) =
2mα

~2
ψ(x0). (3.7.9)

This equation tells us that the derivative is not continuous at the point x0. Remember
what we have proved in Problem 12: for potentials with a finite gap the derivative of
the wave function must be continuous. In this case instead, since the Dirac delta at the
point x0 implies an infinite gap of the potential in x0, the results of Problem 12 cannot
hold and the derivative is discontinuous.

Problem 18. Find the energy levels and the wave functions of the discrete spectrum of
a particle in a potential U(x) = −αδ(x) with α > 0.

Solution. The Schrödinger equation

− ~
2

2m
ψ′′ − αδ(x)ψ = Eψ

for x 6= 0 becomes the usual equation of a free particle:

− ~
2

2m
ψ′′ = Eψ. (3.7.10)

In order to have normalizable solutions of (3.7.10) the wave functions must be:

ψ(x) = A exp(−kx) x > 0
ψ(x) = B exp(kx) x < 0.

(3.7.11)

For the continuity of the wave function the two coefficients A and B must be equal. The
relation between E and k can be obtained by inserting (3.7.11) into (3.7.10):

− ~
2

2m
Ak2 exp(−kx) = EA exp(−kx) =⇒ E = −~

2k2

2m
(3.7.12)
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where k must be determined. Using the results of Problem 17, the gap in the derivative
of the wave function is:

ψ′(x0 + 0)− ψ′(x0 − 0) =
−2mα

~2
ψ(x0) (3.7.13)

which in our case becomes:

−kA exp(−k · 0)− kA exp(k · 0) =
−2mα

~2
A ⇒ k =

mα

~2
. (3.7.14)

This implies that there is only one value of k which corresponds to a solution of our
problem. The associated energy level is given by:

E = − ~
2

2m
k2 = − ~

2

2m

m2α2

~4
= −mα

2

2~2
. (3.7.15)

Homework: exercise 8. Prove that the normalized eigenfunction associated with the
energy level (3.7.15) is: ψ =

√
k exp[−k|x|].

Problem 19. Prove that the mean value of a conservative force calculated in an energy
eigenstate of the discrete spectrum is zero.

Solution. Since the force is conservative it can be written in terms of a potential U as

F = −dU
dx

. The mean value of F is:

F̄ =

∫
dxF (x)P (x) =

∫
dxF (x)ψ∗

nψn = −
∫
dxψ∗

n

dU

dx
ψn =

= −
∫ ∞

−∞
dx

d

dx
(U |ψn|2) +

∫ ∞

−∞
dx (ψ∗

nUψ
′
n + ψ∗′

n Uψn). (3.7.16)

The first integral in (3.7.16) gives −U |ψn|2
∣∣∣∣
∞

−∞
= 0 since the wave function ψn tends to

zero for x→ ±∞. In order to evaluate the second integral of (3.7.16) we must remember
that ψn is a solution of the time-independent Schrödinger equation:

− ~
2

2m

∂2ψn

∂x2
+ Uψn = Enψn, − ~

2

2m

∂2ψ∗
n

∂x2
+ Uψ∗

n = Enψ
∗
n. (3.7.17)

So the second integral of (3.7.16) becomes:

∫ ∞

−∞
dx

[(
En +

~
2

2m

∂2

∂x2

)
ψ∗

nψ
′
n + ψ∗′

n

(
En +

~
2

2m

∂2

∂x2

)
ψn

]
=

=
~

2

2m

∫ ∞

−∞
dx

[
∂2ψ∗

n

∂x2
ψ′

n + ψ∗′
n

∂2

∂x2
ψn

]
+ En

∫ ∞

−∞
dx

d

dx
(ψ∗

nψn) =

=
~

2

2m

∫ ∞

−∞
dx

d

dx
(ψ∗′

n ψ
′
n) =

~
2

2m
ψ∗′

n ψ
′
n

∣∣∣∣
∞

−∞
= 0. (3.7.18)

In the proof above it is crucial that the wave function and its derivative tend to zero at
±∞.
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Homework: exercise 9. Prove that it is not true that the mean value of the force is
zero if the wave function is not an energy eigenstate.

Problem 20. Find the energy values for which a particle does not reflect on the following
potential barrier: U(x) = α[δ(x) + δ(x− a)].

Solution. Let us suppose the particle moves from left to right. If we want to avoid
reflection, the wave function must have the form:

ψk(x) =





exp ikx x < 0
A sin kx+B cos kx 0 < x < a
C exp[ik(x− a)] x > a.

(3.7.19)

In the sector x < 0 we do not have the reflected part R exp−ikx. In the sector x > a, for
symmetry, we must have only the transmitted wave because if we had a wave propagating
towards smaller values of x, we would have such a kind of wave also for x < 0. Now we
can impose the boundary conditions on the wave function and on its derivative both in
x = 0 and in x = a. We can use the results already obtained in the case of Dirac delta
potentials; the wave function will be continuous while the derivative will have a finite
gap: {

ψ′(x0 + 0)− ψ′(x0 − 0) =
2mα

~2
ψx0

ψ(x0 + 0) = ψ(x0 − 0).
(3.7.20)

Imposing (3.7.20) both on x0 and xa we get

B = 1 (3.7.21)

kA− ik = 2mα/~2 (3.7.22)

A sin ka+B cos ka = C (3.7.23)

ikC − kA cos ka+ kB sin ka = 2mαC/~2. (3.7.24)

We have four equations and A,B,C, k as unknown variables. From (3.7.22) we get

kA = ik + 2mα/~2 ⇒ A = i+ 2mα/k~
2. (3.7.25)

Using (3.7.23) and (3.7.25), Eq. (3.7.22) gives:

C =

(
i+

2mα

k~2

)
sin ka+ cos ka

while (3.7.24) becomes:

ik

[(
i+

2mα

k~2

)
sin ka+ cos ka

]
− k

(
i+

2mα

k~2

)
cos ka+ k sin ka =

=
2mα

~2

[(
i+

2mα

k~2

)
sin ka+ cos ka

]

which implies:

tg ka = −k ~
2

αm
. (3.7.26)
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Eq. (3.7.26) can be solved graphically by looking for the intersections of the line

y = −k~
2

αm
with the curve y = tg ka; the points of intersection give the values of k

and, consequently, of the energies E =
~

2k2

2m
for which there is no reflection.
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