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Chapter 1

Theory of the electronic ground state

1.1 Introduction

The static guantities which describe a state of matter at zero temperature aze its
guantum-mechanical ground-stale properties. For a sysitem of nuclei and elec-
trons the Born-Oppenheimer {or adiabatic) approximation allows to decouple
the electronic and ionic degrees of freedom. In most circumstances the nuclei be-
have as classical particles, while the electrons constitute a guantum many-body
system. The assumption that the electrons are in their ground state is a very
good one: for densities of interest the elecironic system is in fact close to com-
plete degeneracy at room temperature, ' and a detailed account of Fermi-Dirac
electronic distribution is seldom necessary.!

The changes in the electronic ground stale in presence of static “external” in-
fluences determine the static compressibility, elastic and piezoeleciric constants,
dielectric susceptibilities, and other linear and non-linear response functions. By
“external” I mean external to the electronic system; but the perturbation can
be nevertheless “internal” to the piece of matter. This is ¢.g. the case of strain
and of any lattice deformation.

In addition to the above genuine ground state properties, the dynamics ofe
the ionic motions can be treated in several circumstances by requiring that the
elecirons follow the ioms adiabatically, being in their ground state for every
instantaneous configuration of the ions. Therefore the theory of the elecironic
ground state suffices to describe a much larger class of properties of matter,
These include phonon dispersion curves, anharmonicity, low-freguency dieleciric
behavior, and most of finite-temperature thermodynamic properties.

In order to ensure adiabaticity of a given dynamical phenomenon one mainly
requires the frequencies of the ionic motions to be much smaller than the fre-
quencies of the lowest electronic transitions. This is easy to achieve in an insu-

TIn some cases—related to structural phase transitions in metals—the entropic contribution
of electronic excitations is nonnegligible. Z®



lator in a neighborhood of ifs ground siate; but the condifion certainly breaks
down in metals, where the elecironic spectrum has excitations of vanishingly
small energy. Despite this fact, it can be shown®® that the adiabatic approx-
imation is a very good one for ionic motion even in the lightest of metals, Li
This accounts for some decades of successes® in using the static electronic re-
sponse in the description of lattice-dynamical or finite-temperature’ properties
of simple (sp-bonded) metals in their solid and liguid state. The adiabatic ap-
proximation is generally adopted even for solids where the sero-point motion is
nonnegligible.

The field of ground-state properties of real materials has a long history, 'Y
which I will not try to skefch here. Generally speaking, theories where the
guantum many-body nature of the electronic system is accounted for, and pro-
viding sensible guantitative predictions, have first been developed for simple
metals, and only more recently for semiconductors, insulators, transition met-
als, and more complex materials. An historical breakthrough occurred in the
carly sixties, when pseudopotential perturbation theory was developed for sim-
ple metals;® an abridged account of it is given here in Chapter 5. This theory
can be considered as the archetypical “total-energy” method for solids, and sev-
eral of its features are relevant in order to discuss the modern developmenis of
electronic structure theory.

Nowadays it is possible to perform calculations for real matenals truly from
first principles (i.e. without any experimental input), and which allow meaning-
ful comparison with the experimental measurements in many inieresting situa-
tions. The relationships between theory and experiment in the last fifteen years
have changed to such an extent that it is now possible to perform “computer
experiments”, 4.e. to simalate situations not occurring, or nonmeasurable, in
real life. This gives access to physical quantities and mechanisms which counld
only be postulated in earlier ages. On several occasions, the result of a computer
experiment prompted for the existence of a new “theorem”. Modern computa-
tional physics leads to insighf, more than merely snswers.

The error bar of a given simulation can be partitioned into two contributions:
systematic error and computational noise. The former is due to some well
defined physical approximations used to make the many-body problem iraciable,
while the latter comes from truncation, finite basis-set expansions and other
numericel approximations.

The enormous know how which has been accumulated in recent years al-
lows often accurate estimates of the systematic exror. This kind of error must
be separately checked property by property, but is remarkably uniform over a
wide range of different materials. As for the computational noise, it can be kept
arbitrarily small, within affordable computer bills, for systems of moderate com-
plexity. In full analogy with laboratory physics, even in computational physics

fRef. 8&; when studying phase transitions at finite temperature, the vibronic interactions
between electronic states cannot be always neglected: this is a well known feature in e.g.
narrow-band-gap ferroelectrics {see Ch. 14 in Rel. 9 for a discussion).



it is possible to perform differential experiments, where systematic errors are
almost eliminated.
The understanding of the cooperative behavior of ~ 1024 strongly interacting

electrons and ions is possible thanks to a panacea which has been available since

the early days of condensed matter physics: symmetry. But, besides it, two
" more fundamental tools have made possible the recent spectacular advances.
The first is the enormous increase of computational power, made available to
a large scientific community. The second tool is the density-functional theory
(DFT) for exchange and correlation in many-electron systems: 11112 this is the
starting point for almost every work which concerns, at first-principle level,
ground-state properties of matter. The only few attempts outside the scope of
DFT have been within the variational Hartree-Fock method, 13
- DFTis an exact theory: as such, it would be only formal and useless to attack
real systems. Its power stems from the fact that a very natural approximation to
it, the local-density approximation (LDA), gives a workable scheme and proves
to be very accurate for a great deal of different materials and properties, 11~16
It happens that, in most of the recent work within this area, LDA is the only
uncontrolled approximation, i.e. the unique source of systematic errors.

1.2 Density-functional theory

The system of N interacting electrons is described by the Hamiltonian
H=T+ U+ V., (1.1)

where T is the electronic kinetic energy, U is the electron-electron interaction,
and V., is the one-body “external” potential

N
Vezt = Zcht(ri)y (1’2)
i=1

generated by the ions and by any possible additional source.
The theory focuses on the electronic density

n(r) = N/dr2 drz...dry [¥(r, ra, r3...r5)|2 (1.3)

as the basic independent variable for the description of the system ground state.
This is allowed by an important theorem, due to Hohenberg and Kohn, !7 stating
that n(r) uniquely determines the external potential, hence the wavefunction ¥
and all other electronic properties of the system. The uniqueness proofis a very
simple reductio ad absurdum, under the only hypothesis of a nondegenerate
ground state. We then isolate in Eq. (1.1) the terms T and U; since ¥ is a
functional of n(r), these terms define ‘

Fln(r)] = (¥|T + U|¥), (1.4)




which is fhe density functional after which the theory is named. For more
mathematical rigor in defining the functional, see the contribution of Levy and
Perdew to Ref. 12, p. 11.

Using the above resulis, the fotal energy of the piece of matter takes the
form:

Biotln(r)] = Bops + ;}f dr Ve (v)nlz) + Fla{r)], {1.5}

where F.,; is the classical energy of the ions: for an isolated sysiem, this term
amounts to the ion-ion Coulomb repulsion.

14 is customary to extract from Fln] the classical Coulomb energy of the
electronic system, known as the Hartree term:

(o’ r
Eg{ug:*fg {iﬁf{%ﬁ ! 5 | & Vir(e)m(x). (1.6)

To proceed further, we extract ancther term defined in a more complicate way.
We consider a fictitious noninteraciing system, whose density is equal to n{r):
this condition 1s realized by a differeni external potential, named after Kohn
and Sham '7 Vi 5. The orbitals of the fictitious system obey the single-particle
Schrodinger equation {in atomic units}:

;1 ;
§~§V2+¥KS}% = €, (1.7)
and are related to the density in the obvious way

n(r) = Z}i pi(x))?

e,
[
a0

ot

where the occupancy factor f; selects {in the simple cases) the N/2 lowesti-energy
doubly occupied KS orbitals. This single-particle mapping uniguely defines a
kinetic energy functional:

) 1 L et s s .
[n] = ”§Zfs‘i%i3‘}%v2%%if};f (1.9)
i
and we recast the density functional in the form

Flnl = Ty[n]+ Egln] + Fy.lnl, (1.10)

which defines F,;[n], known as the exchange-correlation functional. Despite its
name, it also involves the kinetic energy of the interacting system, since T,[n]
must not be confused with the real kinetic energy of the system [T term in
Eq. (1.4}].

If we now assign a given Vi (r), then the total energy, Eq. (1.5), as &
functional of n{r) has a variational minimum at its physical ground state value,
subject to the constraint [ dr n(r) = N: the BEuler equation is

8T [n]
énir)

4 Veg{e) + Vg {r) + Veez) — = 0, (1.1



where the exchange-correlation potential is the functional derivative

F IR

{1.12)
When using the KS orbitals—under orthonormality consirainis—as variational
parameters for the demsity, Eq. (1.8), then the Euler equations assume exactly
the form of Eq. (1.7), where the eigenvalues ¢; are identified with the Lagrange
maultipliers and the KS potentisl is

Vics = Veat + Vi + Ve (1.13)

A respelling of this main conclusion is the following: solution of the KS
equation

{ “i p. 7 ¢ 7 VY 3
{WE%«V‘E + Vet + Vg + Vo Joi = € (1.14)

provides the ezaci density of the system,

In this way we obtain a formulation where the “simple” part of the problem
assumes a familiar single-particle form, while the “difficult” many-body part is
swept under the rug of V., the exchange-correlation term in the KS potential.
Some theorems are known about the behavior of the exact KS potential {Alm-
bladh and von Barth, in Ref. 12, p. 209) as well as about the ensemble of
densities where the functional is defined (Levy and Perdew, in Ref. 12, p. 11).
From a practical viewpoint, the exchange-correlation potential is a clever place
where to condense all our ignorance about the many-body problem.

A final warning is appropriate at this point. It is tempting to identify the KS
eigenvalues ¢; with the elecironic excitation spectrum of the system: this iden-
tification is wrong in general, and in particular the KS gap in a semiconductor
does not coincide with the optical gap. '®

1.3 Local-density approximation

A very natural approximated form of DFT is obtained upon assumption that
E..[n] alocal function of

Eyon]l = fdr €zc (n{r)) nix}, (1.15)

where ¢;.(n) is the exchange and correlation energy per particle in a uniform
electron gas (alias “jellium”) of density =, 7.e. in a homogeneous and isotropic
system of interacting electrons in a uniform neutralizing background. !9-2° The
exchange-correlation potential is written, within LDA, as

Veol) = Hlere(m)m)| = e (nfr)), (1.16)

L in:?@(i’)



where p,.(n) is the exchange and correlation contribution to the chemical po-
tential of a uniform system. It fulfills the inequaliiies:

dy’:r{:(n}

#QC{%} <8, dn

<0. {(1.17)

The LDA provides, after Eq. (1,14} a selfconsisient single-particle scheme for
calculating ground-state properties; this scheme is implemented and solved—
usually in an iterative way—for real materials. The calculations are completely
ab-initio, in the sense that no empirical information is fed in at any stage. The
form of €,.(n) to be used in calculations can be borrowed from various sources;
for demsities of interest in condensed matter, the most accurate electron-gas data
on the market are those of the quantum Monte Carlo simulation of Ceperley
and Alder, ?! illustrated below in Chapter 4.

Once a selfconsistent solution of the KS equation is achieved, the total energy
of the system follows from the results of the previous Section as:

r
Eiot[n] = Begr + | dr Vigu(r)n(r) + Ty[n] + Egln] + Epoln], . (1.18)
4

Here only the term T, requires explicit knowledge of the KS orbitals, the other
terms being functions of them via the electron density only.

In some known pathological cases, ?* the electronic state of minimum total
energy is not obtained upon occupancy of the lowest-energy KS single-particle
orbitals. This fact does not invalidate anyhow the DFT formulation, since the
Euler equation leading to Eq. (1.14) only provides a set of stationary points,
and the absolute minimum has to be searched amongst them.

The LDA is exact (by construction} for a uniform system, and is expected
to be good for systems of slowly varying density: indeed, it works much better
than expected in a wide range of different materials, '*~'® provided only that
the electronic system is not too strongly correlated. Some reasons for this have
been a posteriori found, ' while some attempts within the scope of DFT, but
beyond LDA, do not seem to have opened new avenues up to date.

The outstanding performance of LDA is demonstrated very perspicuously in
a recent benchmark calculation by Ballone et al.,?® where finite (N up to 20)
Jjellium spheres are studied. For a given sphere volume V, the (positive) density
of background charge is constant, equal to —eng=—eN/V, up to the sphere
radius, and drops to zero at the boundary. In such a system, the amazing finding

o1 Ballone €f gi. is that the electron densily obiained from a fully correlated
quantum Monte Carlo calculation is practically indistinguishable from the one
obtained from LDA: remarkably, this happens everywhere, z.e. in the bulk,
surface, and tail regions. This is reported in Fig 1.1 for a 20-electron system,
whose “bulk” demsity ng is close to the valence-electron density in Al {rs=21in
jellium units, see Ch. 4).
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Figure 1.1, Eleciron density n(r) as a function of the distance from the center of
the jellium sphere, normalized to no, see text. Sold: guantum Monte Carlo; dashed:
LDA; dash-dotted: background. Unpublished figure, from the calculations of Ref. 23;
courtesy of P. Ballone.

1.4 Minimization strategies

The total energy of the system Ey,, Eq. (1.5), is variational in the trial KS
orbitals. Therefore one can directly search for the minimum of Eq. {1.18) using
the set of the occupied orbitals {p;(r)} as variational parameters, subject to the
the orthonormality constraint, and without making use of the associated Euler
equation, i.e. of the KS equation. This direct path has become in modern times
a fashionable alternative to the more traditional minimization scheme {dating
back to Hartree), where a selfconsistent solution of the KS eqguation is found
iteratively. Very efficient schemes can be obtained by adapiing the well known
method of conjugate-gradient minimization to the direct minimization of the
elecironic energy functional within LDA 2425

So far we have discussed the electronic many-body problem, at a fixed con-
figuration of ionic positions {R;}, and in the spirit of the Born-Oppenheimer ap-
proximation. However, if the aim is finding the configuration of structural equi-
librium at T=0, one can directly search for the global minimum of Eq. (1.18),
where both {¢;(r)} and {R;} are chosen on the same ground as variational pa-
rameters. The drawback of this approach is that—even for systems of moderate
size—the functional has many different minima in the parameter space, and the
traditional minimization algorithms will likely fall into a local minimum instead
than into the global one. A smart solution to complex optimization problems

10



comes from the simulated-annealing concept, introduced in 1983 by Kirkpatrick
et al.?%. Basically, an objective function E(A) is minimized by generating a
succession of configurations A’s (i.e. points in the parameter space) with a
Boltzmann-type probability exp(-#E(A)), via a standard Monte Carlo sampling
procedure. 27 At high values of 8 (7.e. of the inverse fictitions temperature) the
configuration of lowest E(A) is reached, while wider regions of the parameter
space are visited at lower  values. Slow simulated annealing helps the sys-
tem to sample several local minima before “choosing” to fall into the lowest
one. A further appealing feature of the method is the fact that the writing of a
computer code performing simulated annealing is a very easy task. 2

The simulated-annealing concept has been brought in 1985 to electronic
structure theory by Car and Parrinello, > providing the most significant ad-
vance of the 80°s in electronic structure theory; tutorial accounts of the method
can be found in Refs. 30-33 . The simulated annealing in the Car-Parrinello
method is not performed via Monte Carlo sampling, and dynamicel simulated
annealing—via molecular dynamics®* algorithms—is performed instead. To this
purpose, Car and Parrinello define a fictitious dynamical system by considering
the paramesters ¢;(r} and R, in the F,,, functional to be dependent on time. A
generalized classical Lagrangian is introduced, where the ions have their physi-
cal mass, while the “electronic” masses are arbitrary parameters, which control
the rate of variation of the electronic degrees of freedom; the orthonormality
is translated into simple holonomic constraints. A simulation run is started
at high temperature; after thermal equilibration, where a large portion of the
configuration space is sampled, the system is cooled by slowing down the ve-
locities (electronic and iomic). The nature of the thermal motion evolves in
time, switching from random walk to a steep approach to the closest minimum.
Eventually, and for sufficiently slow cooling rates, the system is caught in the
absclute minimum at low T.

During a global optimization search the system visits in general nonphysical
regions in the {y;(r)}, {R:} parameter space, i.e. configurations which are
not on the ground-state Born-Oppenheimer surface. This is irrelevant as far
as one is interested in the end product only, i.e. the absoclute T=0 minimum.
Nonetheless, the Car-Parrinello method is capable of doing much more than
this: in fact, their fictious dynamics provides the possibility of simulating real
dynamics of the nuclei on the Born-Oppenheimer surface, thus opening new
avenues to quantum-mechanical studies of finite-temperature properties. The
tunable knob allowing this performance is the electronic mass: playing with
this parameter, it is possible to hinder thermal equilibration between the jonic
and electronic degrees of freedom. While the ionic temperature is chosen as
the physical temperature of interest, the (fictitious) electronic temperature is
kept close to zero, implying that the trajectories lie on the Born-Oppenheimer
surface. It has been found that such a metastable configuration has indeed a
lifetime comparable with the duration of the simulation run {typically a few
picoseconds), at least for nonmetallic systems.

11



A large number of results, on many different physical properties, has been
obtained by several groups via the Car-Parrinello scheme, upon exploiting its
unique features particularly in dealing with low-symmetry systems.%-33 A
(nonexaustive) list of the materials and systems studied includes: semiconduc-
tors and simple metals (in crystalline, liquid and amorphous states), clusters,
defects, grain boundaries, and surfaces.

1.5 Basis functions and pseudopotentials

The single-particle orbitals of a periodic solid have the Bloch form: they are
expanded—at a given g (quasimomentum) vector—over a finite basis set in
order to solve variationally the KS Schrédinger equation.

A first obvious choice would be a plane-waves (PW) basis set: besides con-
ceptual simplicity, PW’s have invaluable numericel advantages (unbiased con-
vergence behavior, simple form of matrix elements, simple integration of Poisson
equation, use of fasi-Fourier transform techniques, &c.). Unfortunately PW's
cannot be straightforwardly used because of the fast oscillations of the orbitals
in a neighborhood of the nuclei, which would demand an enormous basis size io
be described with acceptable resolution.

The second obvious choice is in a sense the opposite extreme, emphasizing
the atomic-like nature of the crystal states: expansion over a localized basis, or
tight-binding method. This is feasible, but computationally very heavy, owing
to huge numbers of multi-center integrals and slow convergence of Counlomb
sums. The problems are the same as in variational Hartree-Fock, and a good
account of them can be found in Ref 13.

Several kinds of different expansions have been proposed over the years, 35-97
but very few methods survive in the context of first-principle calculations.
Two extensively used methods are the LMTO (linear combination of muffin-

in orbitals)*** and the LAPW (linear augmented plane-wave method): 4042
these methods are also called “all-electron”, because they provide an explicit
expansion of all the K8 orbitals of the system.

A different viewpoint is provided by pseudopotentials. '© This concept sup-
plies smooth wavefunctions, which are comfortably expanded in either PW's or
localized orbitals. In many situations, the core electrons do not contribute to
the properties of interest and can be “frozen” in their free-atom configuration,
while the chemistry and the physics are dominated by the behavior of valence
electrons. The idea is to map the all-electron, frozen-core problem, onto an
equivalent problem involving valence electrons only, and where the orbitals are
smooth.** The formal transformation of the Hamiltonian is orthogonalization
to core states, giving pseudowavefunctions and pseudopotentials. It turns out
that the orthogonalization “cancels” to a large extent the ionic attraction in
the core region: *° this cancellation principle is often referred to as a “theorem”.
The pseudowavefunction of the lowest valence state is nodeless, and all the in-

iz
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Figure 1.2. Comparison of the 3s radial wavefunciions of Si, pseudo (solid) vs. all-
electron (dashed}. Pseudization produces a nodeless function, which coincides with
the all-electron one beyond a “core” radius; The two funciions plotted have the same
norm. After the tabulation of Hefl 43,

teresting ones are (hopefully) smooth as well. The ionic pseudopotential 4647
consists of & Coulomb attractive term, whose charge is the valence ome, plus
3 short-range part, mostly due to nonclassical orthogonalization repulsion, but
which also has contributions from the itrue interactions with core electrons.

The pseudopotential approach is useful only in situations where core overlap
between neighboring ions is negligible. But even in these situations the frozen-
core ansaiz has some subtleties unexpected at first glance: its validity relies
upon an imporiant result of von Barth and Gelatt, *5%7

Several recipes where proposed for generating psendopotentials, *® and all
along the sixties and the seventies the use of pseudopotentials has been an in-
valuable approximation, providing a great number of very remarkable resulis
in solid and liquid state physics. But, after 1979, the pseudopotential concept
made a transition: instead of being an wnconirolled approximation, the pseu-
dopotentials of the modern generation are a mathematical transformation of
the frozen-core Hamiltonian, being essentially exact in a wide energy range:
these pseudopotentials enjoy a large transferability to different chemical envi-
ronments. The key idea making this step possible is norm conservation, first
proposed in quantum chemistry **°° and brought to condensed matter physics
by Hamann, Schliiter and Chiang.®! The concept of norm-conservation is illus-
trated in Fig. 1.2, where it is shown that the pseudocharge distribution exactly
reproduces the full valence charge beyond the “core” radius. The pseudopoten-
tials of the old generation,® instead, where typically tailored after eigenvalue
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Figure 1.3, [-dependent radial pseudopotential (a.u.} of the 8l ion core: z {solid},
7 (dashed), and d {dotted): all of them coincide with —4e” /7 beyond the core radius.
After the tabulation of Hef, 43.

properties only. The tradeof! to be paid for norm conservation is nonlocality, 7.e.
the radial ionic pseudopotential explicitly depends on the angular momentum
I: this is illustrated in Fig. 1.3; such a weak form of nonlocality is often called
“guasilocality”. Since nomnlocality is mainly a technical problem, in this hook
most of the formal results will be presenied in the local form, although siate-
of-the-art implementations use norm-conserving pseudopotentials with almost
no exception, Useful tabulations of modern pseudopotentials are available for
applications. **%2 A very good account of theory and applications of modern
pseudopotentials—updated to 1989—can be found in Ref. 47.

The atomic species where norm-conserving pseudopotentials show their best
performances are those where the bonding is of sp kind {typically group I meials,
group IV and III-V semiconductors}, with the exception of first-row elements.
In other atoms a good transferability can be achieved only by pseudopotentials
which are very “hard”, meaning with this that the they need a large PW expan-
sion in order to achieve convergence in a given calculation: typical “unfriendly”
atoms—from a pseudopotential viewpoint—are iransition meials and first-row
elements. We illustrate the case of Cu, whose 3d all-electron wavefunction is
shown in Fig 1.4, dashed line. The wavefunction is nodeless, and very localized,
Since the core radius must be smaller than half a typical bondlength, any norm-
conserving pseudowavefunction needs large PW expansions. These unfriendly
atoms are mastered within the ultrasoft psendopotential scheme proposed by
Vanderbilt, > tailored to generate pseudowavefunctions which are smooth, al-
though nof norm-conserving; both features are easily detected from the plot of
Fig. 1.4, where the pseudowavefunciion is shown as a solid line. The missing
charge is accurately accounted for by an ad-hoc procedure in the selfconsistent

14



0.75¢

0.5

0.25

2 4
r{a.u.)

Figure 1.4. Cu 3d all-sleciron radial wavefunction {(dashed); pseudowavefunctions
generated from the “ulirasoft” Vanderbilt pseudopotential (solid). Afier the calcula-
tion of Rel. 53; courtesy of A. Pasquarello.

scheme: as a result, the ultrasoft pseudopotentials achieve both high iransfer-
ability and fast PW convergence. For details abount the implementation and for

a review of some applications, see Ref, 33.

1.6 Total energy expansions

Suppose you can modify the ground state of the system through some tunable
knobs which act on the electrons via the external one-body potential, Eq. (1.2},
and you wish fo know how turning the knobs affects the total energy F,,,. For
the sake of simplicity we summarize all the tunable parameters of V.., in a single
one. At this point we choose o remain completely general about the physical
nature of the perturbation; we only assume that V.;(A) is analytic around the
unperturbed A=0 situation. in a typical implementation, the perturbation could
be a lattice distortion, and the parameter A a phonon coordinate.

The total energy is
Eagg(/\) = Eezt(A:} + <\I’,\§T + U + Vezg(;\)z‘ll/\% (119)

where the first term is purely classic and the second one is the electronic energy
Eo(2). We take its derivative

Boy(A) = (OalVin (M) + Ear(A)((TA1T5) + (TA]TY)), (1.20)



and using normalization we recognize the familiar expression, going under the
. cx me
name of Hellman-Feynman theorem 5556

By() = (¥a Ve (A)¥a). (1.21)

We now expand the energy in powers of A Eiu(A) = Fé;) Ei{i; Eii}

...... and analogously for the perturbation V.;:{A). The zerc-order term is the
nnpezimbed energy; the first order term is got from Eq. {1.21} 2t A = 0:

B} = B + (wlVidwo) = B + [ae VO, 29

The message of Eq. {1.22) is that knowledge of the unperturbed electronic den-
sity is enough to evaluate first-order energy corrections induced by a given per-
turbation.

Taking one more derivative from Eq. {1.21), and evaluating it at A = 0, we
get the second order ferm

A2 X .
Eif} = ﬁg« ’;H i{G} @35 + {/@z ixiig)%@f}fs T Qi}} exi{g})g 8!} -
= (@o|V) o) + 5({%&%2@@ + (W [VEAIS)). (1.23)

Finally, the term in brackets involves only the firsi-order potential and the first
derivative of the density with respect to A, as it is easily recognized afier a glance
to Eq. {1.3). Therefore the second-order term in the total energy expansion is:

£ = 5+ [ar v + 5 [ vQ@am. (129

The content of Bq. (1.24) is that knowledge of the first-order density polarization
induced by the perturbation is encugh to evaluate second-order corrections to
the total emergy. This is a very general and old theorem, rediscovered several
times in different contexts; within harmonic lattice dynamics the formulation is
apparently due to De Cicco and Johnson, °” whose proof is furthermore limited
to the Hartree-Fock approximation. It has been shown here that Eq. (1.24) is
an exact resuli in & many-body formulation.

Iteration of the previous path would easily show that the lowest n-th order
density response of the electronic system determines the (n+1)-th order energy
correction. A more powerful result is the so-called “2n-+1" theorem, stating
that the lowest n-th order corrections to the KS wavefunclions determine the
energy correction up to the {2n+1)-th order. Although even this result is not

new, °®5% an elegant proof has appeared recently. %°
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Chapter 2

Screening and electrostatics

2.1 Electronic screening

Since we intend to sindy the effect of perturbations upon the electronic ground
state of the system, we split the external poleniial as

Vege(r) = VEO(2) + §Vime(r), (2.1)

where {;?2(1-} is the electron-ion potential in the isolated system at equilibriam

geometry, and 6V, (r) is the perturbation due to some other source.
In order to make coniact with traditional electrostalics, we may write

5}?{;1’5{1’} s &’E}{\{i‘\}? {22}

where the potential ¢o{r) describes a static field:

Eo(r) = —Veo(r). (2.3)

This micrescopic field is the unsereened {or “bare”} field: il is in fact, by def
inition, the field that would be generated by the source in the absence of elec-
tronic response. As usual in electrostatics,’ one could perform the average of
Eo(r) over a macroscopic region of the system to get the macroscopic field.
The macroscopic average of the bare field must not be identified, in general,
with the electric displacement vector D: the former is, according to Eq. {2.3),
longitudinal while the curl of I may be nonzero.
For a given bare perturbation, the electronic systems polarizes, i.e.

An{r) = n(r) — nl9(x) # 0, (2.4)

where #{%9(z) and n(r) are the densities of the unperturbed and perturbed crys-

tals, respectively, Using Poisson equation, the screened electrostatic potential
inside the piece of matler is

$(x) = dofx) + ¢ [ o .jé;:’i(_i 2.5)
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The microscopic local field is
B(r) = —V(x); (2.6)

this is by definition the field acting on a classicel and infintiesimal test charge
in the system. The macroscopic average of E(r) yields the familiar macroscopic
electric field.?

The basic problem in screening is therefore to get the polarization electzonic
density An{r}: this is a fundamental many-body problem, where quantum me-
chanics plays & major role. Unless differently stated, I will always refer to purely
electronic, or clamped-nuclel, polarization. This is the basic quantity; contri-
butions due o the relaxation of the nuclear coordinates can be added to it via
iattice dynamics {see below, Section 2.4.3). Most of the electronic polarization,
farthermore, comes in simple materials from the relaxzation of valence stales
core polarizaiion can therefore be neglected and a pseudopotential approach is
adequate in most cases.

The polarization density An(z) is a funciional of the perturbation §V, . {x),
and we are interested here in the term n{U(r) which is linear in it. This is
wiitten

n{‘i}(f} = jfdr; X{Tsr;)ﬁ‘izé{?;}? (2.7)

which defines the linear operator ¥, known as the density response of the system.

Eq. (2.7) is quite general, and applies to atoms, molecules or condensed mat-

ter. The density response is the functional derivative of the electronic density

with respect to the external potential, evaluated at §V,5(r) = 0, and is there-

fore a ground-state property of the unperturbed system. As such, it is totally

symmeitic under the operations which leave the unperturbed system invariant.
When linear response is valid, i.e. An{r) ~ 2{!)(r), Eq. (2.5) reads

i AT
b(r) = jf dr’ gé{r—— ') + €2 f dr” %(“}5% bo(r'). (2.8)
H E
Introducing the following definition of the inverse dielectric response operator:
B 5 X g
e Hr,®) =86(r —¢') + €7 fdr” ?;(—:“’;;;?s (2.9)

the basgic equation of linear dielectzic screening reads

b(x) = jf dr’ e (x, ¥') o (x'). (2.10)

Once the operator ¢~ ! known, any perturbation can be screened within the
linear approximation, and everything reduces to a matter of electrostatics; but
the evaluation of e~ ! is a complex many-body problem. The operator £™', as
defined here, is also called the test-charge test-charge inverse dieleciric response,
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In fact, it is easy to realize that the mutual interaction energy between two
classical and infinitesimal test charges ¢J) and ¢, located at vy and ro, is given
in terms of it as

Einilry,rg) = Qéng’fdij e ey, Y/l — 1l (2.11)

We also notice that F;,; must be symmetric under interchange of the coordinates
ry and ry, while Eq. (2.11) does not appear symmetzic in form: the fact is that
¢z, r') is in general not a symmetric operator. Instead, it is easy to prove
that symmetry of By, implies that the density response x{r, ') for an arbitrary
system is a symmetiric operator.

2.2 Diagonal screening

The simplest system where one can study screening is an homogenecus and
isotropic medium. The basic screening operators x and ¢! are then transla-
sionally invariant, z.e. functions of [r — »'| only, and our previous expressions
take the form of convolution producis. Switching to reciprocal space we get e.g.
from Eq. {2.Th

(k) = x (k)6 Ve (k); (2.12)

i.e. the operator y is diagonel in reciprocal space. In this representation a
product of operators iz a simple algebraic product, and analogously for the
inverse: Bq. (2.9} becomes

1 dxe?
e HEY = e = 1 . (2.1%
= =t e (213)

The function £{k) is known as the (static) dielectric function of the homogeneous
system: the fransformation of Eq. (2.10) is

p(k) = go(k)/e(k). (2.14)

The content of Eq. {2.14) is that perturbations of different wavelengths are
differently screened; a reasonable guess is that the longer is the wavelength the
most effective is the screening. There is a typical screening length, such that at
wavelengths much smaller than it the medivm is unable to respond; the actual
value of this screening length depends on the physical mechanism involved. 1
anticipate that for purely electronic screening in a crystalline material at zero
temperature such length is of the order of the interatomic distance in either
metals, semiconductors or insulators. Therefore, as a general feature, (k) is
a monothonically decreasing function of k, going to 1 for large values of k.

Typical and very simple model dielectric functions for a metal (Al) and for a
semiconductor (Ge) are shown in Fig 2.1(a).
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We illustrate diagonal screening, and the differences beiween metals and
nonmetals, upon a specific perturbation: a point charge at the origin. The bare
potential ¢oi{r) = @/r has a Coulomb long-range tail, and its Fourier transform,
as a consequence, has a k™7 singularity around k=0:

po(k) = 47w Q [k {2.15)

The shori-range behavior of the potential ¢go(r) is related instead to the power-
law decrease of gk} at large k.

§
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Pigure 2.1. (a): Diagonal diclectric functions e{k) for Al {dashed) and Ge {solid) {b}:
Ratio ¢{r}/¢o{r} between the screened and unscresned potentials of & point charge,
from the dielectric functions shown in (a).

Let me consider now the screened potential

kT iky 470 .
o }S/dk kT k) = G }5]’41{&3‘2 o (2.16)

The ratio ¢(r)/¢o(r) has the typical behavior shown in Fig. 2.1{b), whose main
features are easy to understand as follows. In order to simplify matters, ] assume
in this section that ¢(k) is an analytic function for 0 < k < oo,

The small 7 behavior of a function is dominated by the large k& behavior
of its Fourier transform, and reciprocally, under the hypothesis of analyticity.
According to the above considerations ¢(k} = ¢o(k) at large k and hence ¢(r) =~
gol{r) at small . The potential is essentially unscreened at distances from
the point charge much smaller than the screening length, both in metals and
nonmetals, in agreement with common sense and with Fig. 2.1(b).

¢lr) =
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Metals and nonmetals manifest a gualitative difference at large 7, or eguiv-
alently at small &, as it is evident in Fig. 2.1. In a conducior the screened
potential is shori-range, i.¢. no Coulomb tail survives at macroscopic distances
and the bare poini charge is completely screened by the medium: this siems
in fact from elementary Faraday screening in conductors. This implies that the
screened potential ¢(k) is regular in reciprocal space, and therefore that the k2
divergence in ¢o(k)} is cancelled in Eq. {2.14) by a divergence of the same kind
in the dielectric function.

in a nonmetal & point charge is incompletely screened: its peteniial, over
macroscopic distances, is simply the Coulomb one screened by the macroscopic
dielectric constant of the medium. This is seen in Fig 2.1(b), where the asymp-
totic value of the solid line is in fmct the inverse macroscopic dieleciric constant
(=1/16 for Ge). It follows that the screened potential must have a k™7 diver-
gence: hence e{k) is regular at small k, and the value of £(0), Fig. 2.1(a) is
in fact the disleciric constant of the medium. Since purely electronic sereening
is our main concern, in a polar crystal the relevant constant is .., also called
the “static high frequency” dielectric consfani: i.e. measured ai a freguency
much higher than the vibrational motions and much smaller than the opiic
transitions. ?

2.3 Microscopic model screening

2.2.1 Metals

The simplest model for an alkall metal is the electron gas, or “jellium”: the
ion cores are smeared into a classical, nonpolarizable, uniform neutralizing
background, across which the valence electrons travel freely, while interaciing
amongst themselves via Coulomb repulsion. The eleciron gas {or jellium) is a
well-defined many-body system, discussed in more detail below, Chapter 4; at
densities of inferest in condensed matter physics, its ground stale is homoge-
neous and metallic.

The dielectric function of the eleciron gas has been much studied over the
years. »* In this section I only discuss the simplest level of approximation; more
sophisticated ireaiments are briefly outlined in Chapter 4. I have already ob-
served above that elecironic screeming is dominated by gquantum many-body
effects: roughly speaking by indeiermination and Pauli principles; the simplest
scheme which accounts for both is the Thomas-Fermi (TF) approximation. The
TF dielectric function has been first proposed in 1936 by N.F. Mott; clegant
derivations are reported in almost every textbook in solid state physics. Here I
only quote the resuli:

e(k) = 14+ k55 /%, (217}

where kpp, the TF inverse screening length, is a simple funciion of the density.
This is indeed the dielectric function plotted in Fig. 2.1(s), dashed line, at the
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valence electronic density of Al. Using this dielectric function, the potential of
a point charge s exponentially screened:

$(r) = Qe 77 /7 (2.18)

this is shown in Fig. 2.1(b). At metallic densities the screening length is of the
order of interpariicle spacing, and this makes shielding very effective.

2.2.2 Semiconductors

A pure semiconductor at zero temperature is of course an insulator, but a special
kind of one, having & high value of the electronic dielectric constant {(eo ~ 10}, 2
small gap, and a valence elecironic distzibution which is not too inhomogeneous.
T4 is then, in a sense, “close” to a metal: a simple model for electronic screening
iz therefore the homogeneous and isoiropic one {or “semiconducting eleciron
gas” ), which allows using a diagonal dielectric function.

Given that the electron gas is indeed a metal, some prescription to introduce
semiconductorlike behavior has to be introduced ad hoc into the model. It
is remarkable that several rather different prescriptions give nonetheless very
similar dielectric functions. During the sixties, the most popular semiconductor
dielectric function has been provided by the Pean model,® which however can
be solved only numerically. Nowadays the most elegant approach in this class
is the TF model of Ref. 6. It generalizes the historical TF screeming theory
for metals, and furthermore it iz simply soluble in closed form: this dielectric
function is plotted in Fig. 2.1{a}, solid line, for Ge. Incidentally, Ge and Al
happen to have almost the same valence density, hence the same kyp.

The screened potential induced by a point-charge impurity within this diag-
onal model is the one reported in Fig. 2.1(b}, solid line; the arrow indicates one
hond length. It happens that in sll group IV semiconductors the microscopic
poteniial zecovers its macroscopic value almost exacily at this nearesi-neighbor
distance; remarkably, such feature is common essentially to all diagonal models
on the market. 57

When comparing diagonal models {o real materials, the first obvious differ-
ence is that a solid is nof homogeneous and isotropic on 8 microscopic scale: the
effects due to latiice periodicity, which are outside the scope of such models,
are known under the name of “local-field effects”. ®¥ Some comments about the
imporiance of local-field effects are given below, Section 2.3.4.

2.2.2 Insulators

Flectronic screening in a sirong insulator (like a solid rare gas, a lonic or a molec-
ular crystal) is strongly inhomogeneous and cannoi reasonably be described—on
3 microscopic scale—Dby any homogeneous model. Instead, insulators are at the
opposite extreme: they can be modeled as an assembly of localized, indepen-

dently polarizable units {atoms, molecules, jons), which selfconsistently respond
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io the local fields generated by the bare perturbation and by the induced elec-
tric multipoles at the other sites. In this picture the role of local-field effecis is
emphasized, and no diagonal dielectric funciion is 2 sound approximation.

The response of a model system of this kind is very simple in the case where
the external perturbation is a constant field, generated e.g. by a plane capacitor
polariging the dieleciric sample. The problem has been sclved for isotropic
materials in the nineteenth century: ¥ the electronic dielectric constant is found
from the classic Clausius-Mossotii selfconsistency relationship

oo — 1 dwo (2.19)

£ +2 307
where a primitive lattice is assumed, {7 is the cell volume, and « is the dipolar
polarizability of each unit.

The generalization of Eq. {2.19) to crystals of symmetry lower than cubic is
not widely known, but it is feasible indeed: the caleunlation of local fields requires
then explicit evaluation of suitable Ewald sums. All of the fools needed are the
ones which are routinely used to cope with electiric fields in classical latiice
dynamics. ' Finally, I mention that when the actual perturbation is different
from = constant field, a selfconsistent solution may be worked out case by case
from s generalized Clausius-Mossottl model: this approach goes under the name
of Mott-Littleton model. 212

2.3.4 Clausius-Mossotti vs. diagonal models

1 have stated, upon plausibility arguments, that electronic screening in semicon-
ductors is rather well described by a diagonal model, while the Clausius-Mossotti
model is much more appropriate in insulators. The two are really alternative
extreme pictures: what about screening in real materials?

Why not describing an insulator through a diagonal model, or a covalent ma-
terial through Clausius-Mossotti? The latter possibility is particularly tempting:
one uses the experimental value of e, in Eq. (2.19), and atiributes the resuli-
ing polarizability @ either o the atoms oz to the bonds. I show here, using the
specific examples of Ge and Gahs, that both pictures are completely wrong.
Insight into the physical mechanisms in real materials has been obiained from
computer experiments: ®* the discussion given here follows Ref. 15.

Suppose we embed in our dielectric a charged thin capacitor plate, bearing
a bare {or unscreened) charge per unit surface op. The dielectric polarizes, and
straightforward macroscopic electrostatics® predicts in a neighborhood of the
plate an induced elecironic charge whose value per unit surface is:

93'39,95 = 6‘(}{1;’590 - 1:}, {2.29)

Qur concern here is the microscopic distribution in space of the linearly induced
electronic charge pyo(r)=en'')(xr): I shall discuss this point first within diagonal
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screening, then within the Clausius-Mossotti picture, and finally illustrating the
resulis of 2 gquantum-mechanical detailed calculation. The plate is taken normal
to the (001) direction (orientation is irrelevani only for diagonal screening);
beecause of technical reagons, the plate has a finile—salthough small— thickness.
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Pigure 2.2. Upper panel: Diagonal screening of a negatively charged thin plate in Ge.

The bars on the z-axis indicate positions of atomic planes. Bottom panel: microscopic
eleciric field.

Use of a diagonal dieleciric function is eguivalent to the hypothesis of a
homogeneous and isotropic medium: since the perturbation is translationally
invariant along ®y, the response charge p,, will also explicitly depend only
upon z. The polarization charge given by the TF dielectric function® of Fig.

2.1(a) for this perturbation is shown in Fig. 2.2: the integrated value of this
charge

oo
Tpol = dz ppoi(z) {2.21)

0
is in agreement with the macroscopic value, Eq. (2.20). The basic message of
Fig. 2.2 is that the microscopic polarization charge vanishes beyond a distance
from the plate which is very close to one bond length. The electric field is also
shown in the same figure: this is determined only up to an arbitrary constant,
which is fixed by the boundary conditions and not by the charge distribution; the
symmetric choice is performed here. We further notice that, for an infinitely thin
plate, the electric field would be monothonically increasing and discontinuous:
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the region of negaiive slope in the bottom panel of Fig. 2.2 monitors therefore
the actual thickness of our plate.

(;ha?ge;ﬁ
plate

#

Figure 2.8. Microscopic polarization around a negatively charged thin plate in GaAs,
within a Clausius-Mossotii picture (schematic). The projection of the ions in the {110}
plane is given; only anions (big circles) are shown as polarized; cations are shown as
small circles.

As GaAs Ga AsGaAs

Figure Z.4. Planar sverage along zy of the Clausius-Mossotti polarization charge.
Schematic plot in arbitrary units (longer bars: anionic plsnes; shorter bars: cationic).

Let us now switch to the alternative extreme picture: our charged plate is
embedded in an an assembly of individually polarizable units, which selfcon-
sistently respond to the perturbation. We take the specific example of GaAs,
schematically shown in Fig. 2.3. The induced charge does not vanish far from
the plate, and is responsible for oscillations of the microscopic local fields, which
reflect the periodicity of the screening medium. Such charge is strongly inhomo-
geneous, although lattice-periodic in the planes normal to z: taking its planar
average Ppoi(z), we get a function schematically shown in Fig. 2.4. The inte-
grated value of (2} is the macroscopic surface charge o0, as in Eq. (2.21),
although integration of this oscillating function requires some care.
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Figure 2.5. Planar average of the induced elecironic charge around a thin charged
plate embedded in real dielecirics.

Comparison of Fig. 2.2 with Fig. 2.4 shows at a glance the main features
of electron-gas-like screening versus local-dipole screening: the next point is
to ascertain to which paradigm are real materials closer. At present no ex-
perimental probe is powerful enough to settle this issue: but a very accurate
understanding has been achieved over the years through computational physics,
which often is the unique source of information about microscopic elecirostatics.
For the screening problem studied here, the quantum-mechanical calculations
are performed in Refs. 14,15 : results for Ge and GaAs are shown in Fig. 2.5.
Comparing this figure with the previous ones it is immediately realized that
real materials are intermediate between the two extreme models and show the
basic mechanisms of both: diagonal screening and local-field screening. The
relative importance of the two contributions has a definite trend with ionicity:
local-field effects are more important in GaAs than in Ge, in agreement with
the fact that Clausius-Mossotti is the paradigmatic model in the exireme ionic
limit. However, both in Ge and GaAs, local-field effects appear as a fairly small
correction to diagonal screening, which is by far the most prominent mechanism
for the perturbation discussed here.

The Clausius-Mossotti model tends to be proposed in most textbooks as
the only possible paradigm for electronic screening, thus leading o incorrect
viewpoints. Looking back at Bq. (2.19), it is tempting to use it for any mate-
rial and in the reverse way: given the experimental €4, one infers the corre-
sponding value for the “local” polarizability a. In covalent solids the electron
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density is—roughly speaking——more polarizable in the bond regions than at
the atomic sites, therefore in such materials o has been often identified with a
“bond” polarizability. 1%'7 The calculations and pictures reported here demon-
strate very perspicuously that the concept of bond pelarizability lacks of any
physical basis and is incorrect: a covalent material is definitely not an assembly
of independently polarizable dipoles.

2.4 Macroscopics

2.4.1 Phenomenology

The discussion so far has been about some very basic features of the micro-
scopic polamization induced in the many-electzon system by an arbitrary bare
perturbation. In the rest of this Chapier we focus instead on some features
of the macroscopic polarization in semiconduciors and insulaiors, at a phe-
nomenological level, regardiess of the microscopic mechanisms responsible for
such polarization, The microscopic guantum theory of macroscopic polarization
is the subject of Chapter 7.

The macroscopic polarization P induced (to linear order} by a consians fleld
in a dielectric can be expressed as & funclion of the macroscopic bare field BEq,
or alternatively of the screened one E. The latter choice yields!

P(E) = Qé B =1y (2.22)

T 4

in noncubic materials, £, i1s understood to be a temsor. The occurrence of
£o indicates that Eq. (2.22) is a clamped-ions polarization, where only the
electronic system responds to Eﬁe perturbation. In other words Eq. (2.22) applies
when the only perturbing agent is the macroscopic field, and the bare electron-
ion potential coincides with the unperturbed one:

Veer(x) = V) (r) — eBor. (2.23)

We are interested into the more general case, where the macroscopic polariza-
tion is possibly due to a source other than an “external” field By, such as e.g.
a lattice distortion. Even in such cases, the polarization may {or may not)
be accompanied by a macroscopic field, depending on the boundary conditions
chosen for the macroscopic sample.

To proceed further, we assume that the perturbation is measured by a pa-
rameter A: to fix the ideas, A could be identified either with macroscopic sirain
{Section 2.4.2), or with a phonon coordinate {Section 2.4.3). In the study of
this problem, it is convenient fo use A and E as the independent variables. The

We do not discuss in this Chapter crystals in which sponianeous polarization is symmetry
allowed.



screened field E—as opposite to the bare one Eq—is in fact the one which is
easiest to control in bulk dielectrics, both experimentally and theoretically: in
the former case, the control of E amounts to placing the dielectric inside a ca-
pacitor at a given voltage, and in the latter case to solving Poisson equation
with assigned boundary conditions.

The thermodynamic potential ® per unit (unperturbed) volume F(}, E) pro-
vides the generalized force f and the electric displacement D as conjugate vari-
ables:

FAE) = -2 F(\E) (2.24)
D()\E) = —47r%f’(/\,E); (2.25)

the latter equation generalizes Eq. (2.22) as
P(A\E) = -2 F(\,E) - —E (2.26)
AT R MY 4x ’

Assuming the solid to be in equilibrium at A=0 and at null field, a second-order
expansion of the thermodynamic potential in both A and E yields:

_8%F(0,0) A 82F(0,0)

~ 2.27
82F(0,0),  €co—1
~ - . 2.
P()\E) o Mt F (2.28)

These are the basic phenomenological equations which describe the lowest-order
response of the macroscopic dielectric to a perturbation A, within a given bound-
ary condition for the field. Besides €, two other material constants enter the
phenomenological equations. The second derivative with respect to A has the
meaning of an harmonic force constant per unit volume, at vanishing field. This
is not a new quantity; using the notations of Section 1.6 we identify

B 18%F(0,0)

V T2 ax
where V is the volume of the macroscopic sample, and the thermodynamic limit
V — oo is understood. The mixed derivative entering both Egs. (2.27) and
(2.28) is a novel material constant, which couples the mechanical and electrical
degrees of freedom. Its occurrence is basic for a proper description of the per-

turbed dielectric: the two most important cases are discussed in the following
of this Chapter.

A, (2.29)

2.4.2 Piezoelectricity

We apply the above macroscopic formulation to the case where X is identified
with a macroscopic strain of suitable symmetry. The generalized force f coin-
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cides then with macroscopic stress, and the harmonic constant with a suitable
macroscopic elastic constant, measured at vanishing electric field.

The constant which couples the mechanical and elecirical variables—
whenever such coupling is sllowed by the symmetry of the crystal and of the
sirain 'Y—measures the piezcelectiric effect. The piszoeleciric constant

_ 8%F(0,0) ,
=T TaE (2.30)
can be defined, after Eq. (2.27), as the stress lineazly induced by a umit field
at zero strain; an aliernative definition is provided by Eq. (2.28), where the
piezoeleciric constant v appears as the polarization linearly induced by a unit
strain at zero field.

The latter definition is related to the experimental situation sketched in Fig.
2.6{a). The crystal is uniaxially strained—along a piezoelectric direction—while
in a shorted capacitor: the measured guantity is the current flowing through
the shorting wire. Of course, this is not the unigue possible realization of the
piezoelectric effect. An obvious alternative setup would be io keep the sam-
ple free-standing in vacuum while straining it, as skeiched in Fig. 2.6(b). In
this case some surface charge piles up at the crystal boundary, and a macro-
scopic field is generated inside the sample: the longitudinal boundary condition
E=—47P is appropriate for Eq. (2.28)}, which then yields P=yA/e.., at variance
with the previous case.

Figure 2.68. The piezoeleciric effect: (a) for a sample within a shorted capacitor, in
a null field; (b) for an isolated sample, in a depolarizing field B=—4rP.

2.4.3 Ionic screening

In order to simplify notations, we specialize to cubic binary crystals. A zone-
center optic phonon is a macroscopic {f.e. lattice-periodical) mode, where the
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two sublattices oscillate against each other. The phenomenological theory of
these modes, based on Eqgs. (2.27) and (2.28), is due to Huang: 202! this theory
is model-independent and therefore ezact for harmonic modes, insofar as the
effects of electromagnetic retardation can be neglected. Furthermore, the latter
effects can be easily included leading thus to the polariton theory, which will
not be discussed here.

We abandon in the following the scalar parameter A, and we replace it with
the relative coordinate u as the mechanical variable. When the field is kept
vanishing, the macroscopic mode coincides with the sone-center transverse-optic
phonon, whose frequency wro is one of the basic parameters of the theory. The
harmonic force constant per unit volume is mw;}j@g where m is the reduced
ionic mass, and £2 is the cell volume,

The mechanical-electrical coupling constant in Egs. (2.27) and (2.28) is con-
veniently written B

o e o
%i@f}i =2 (2.31)
udgE Q
where Z” is called the Bormn (or transverse) effective charge tensor: in cubic
binary erystals it reduces o a scalar, while it vanishes in nonpolar {i.e. diamond-
structure) materials. We thus recast Egs. {2.27) and (2.28) in the form

Qf = —mwi u-—eZ°E {2.32)
eZ” oo — 1
P = - + ——E. (2.
a -+ o ; {2.33)

where Z™ measures either the force linearly induced on the ions by & unit electric
field at zero displacement, or alternatively the polarization linearly induced by
a unit displacement at zero field.

In a given static field E, the equilibrium value of the sublattice displacement
u is provided by Eq. (2.32)

1o B .
m%o {2.34)

it is proportional to Z”, and inversely proportional to the hardness of the restor-
ing force. Upon replacing the eguilibrium value of u into Eq. {2.33), we get the
total (ionic and electronic) polarization as

(eZ2*)? e —1
miw? 4r

P(E) = 1B, (2.35)

to be compared with the purely electronic polarization of Eq. (2.22). Thence
the static dielectiric constant is

dr(ez")?
mwi,

€ = €40 (2.36}
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So far about static screening; this same viewpoint can be extended to time-
dependent macroscopic screening, provided the frequencies are in the quasistatic
(or adiabatic) regime. In other words, the extension is correct in the range of
infrared frequencies, but cannot be extrapolated to the optic region of the elec-
tromagnetic spectrum. In a driving applied field at frequency w we have essen-
tially a problem of forced oscillations; the equilibrium relationship Eq. (2.34) is
replaced by the equation of motion:

— mwiu = —mwiou —eZ B, {2.37)
Solving for u one gets the polarization and eventually the w-dependent dielectric
constant
dm{eZ*)?

glw) =« T A
) miwh, ~ w?)’

) = oo + (2.38)
for a nice experimental plot of e{w} in the infrared regime see Fig 13b, p. 274
in Ref. 2. The w-dependent dielectric constant has an obvious resonance atb
w=w7, which is the normal mode of the system: Eq. (2.37) confirms that the
macroscopic field vanishes in this case.

It can be shown? that the zero of e(w) is the frequency of the longitudinal
macroscopic normal mode (alias zone-center longitudinal optic phonon): we get

%42
i"’?,(? = w?‘(} + M~ (2.39)
mile
This phonon is accompanied by a depolarizing field E=—4#xP, which oscillates
in phase with u, and whose magnitude is easily found from the previous ex-
pressions: it is therefore a coupled mechanical-electrical mode, peculiar to ionic
crystals. At frequencies wro < w < wy o the dielectric constant is negative and
the propagation of electromagnetic waves in the polar crystal is forbidden.
The previous exact resulis can be recast in the Lyddane-Sachs-Teller form:

€0/€o0 = wio/who, {2.40)

which is valid for any cubic binary crystal; elegant extensions to complex crystals
and to amorphous polar solids are available. 22%°% ALl of the results of the macro-
scopic fenomenological theory reported here are recovered in the first-principle
theory of lattice dynamics, ?* which is the subject of Chapter 9.
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Chapter 3

Formal linear-response theory

3.1 Deunsity-functional formulation

When the perturbation §V,,,(r) is applied to the system, the clectrons polarize
and modify the K8 potential, Eg. {1.13), through the density dependence of Vi
and V. as well:

8Vis = &Vop + 6V + 6V, {3,1}

While 6V,;; is the given external perturbation, the remaining terms are not
known beforehand and have to be evaluaied in a selfconsisient way; once this
problem solved, one has access to the electron density ﬁ{i){:r} linearly-induced
by the perturbed KS potential. The formal treatment of this problem—io first-
order in 6V,;;—is the subject of this Chapter. Throughout it, I will remain
within a formally ezact many-body formulation, in the DFT framework, and
which applies to a general system (atom, molecule, cluster, condensed matter...).
The LDA is needed only at the level of practical implementations,

There are basically two distinct ways of dealing with linear response: both
of them will be reviewed here. The former way is inspired by the classic selfcon-
sistent approach of Ehrenreich and Cohen, ' also known as RPA (random-phase
approximation), and dating back to 1959. This was originally formulated at the
Hartree level of approximation (4.e. neglecting §V,.); it has been generalized
later to Hartree-Fock? or to LDA; 3% essentially, the selfconsistent problem is
solved in closed form via the inversion of suitable operators. I will give here &
formally exact DFT formulation, based essentially upon the same algebra as in
the approximated ireatments.

The latter way for coping with selfconsistent linear response is the so-called
“direct” method: it can be spelled out as an iterative scheme for finding the
perturbed electronic ground state, selfconsistently to firsi-order in the bare per-
turbation. In atomic physics this method is very old; ® the Hartree-Fock mod-
ification of the same concept is also known in molecular physics, and goes un-
der the name of “coupled Hartree-Fock”.® The idea was brought to solid state
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physics in 1987 by Baroni, Giannoszzi, and Testa, 7 and has provided since then
the most effective and accurate way of de&iiﬁg with linear-response properties
and lattice dynamics in semiconduciors. % Some applications are discussed be-
low, in Chapters 8 and 8. A somewhat different implementation of the same
main idea is due to Gonze et al.. 'V In the following, the direct approach of Ref.
7 will be referred to as the density-functional perturbation theory (DFPT)

3.2 Independent-particle polarizability

Within the RPA-like approach, ! one starts introducing an auxiliary (and non-
physical) linear response operator g, defined as the functional derivative of the
electron density with respect to the folal KS potential, ie.

%{£>{¥} - j ! X{}g\?yrij}évf?»é'{rgj* (3.2)

This auxiliazy operator will be called the independent-pariicle polarizability,
and will be eventually related to the physical response operators.

The first-order variation of the ¢-th K5 orbital is obiained from siraighifor-
ward perturbation theory

RS Y T PR (U
1 (%5 16Vksle ) \
P =Nl ST (3.3)
c i € — €5
i g
and the first-order elecironic density is, from Eq. (1.8}
R < iy 1
(0, 5 1B VRS0 v .
};za D ()l (r) L teel, (3.4)
! € & |

where c.c. stays for the complex conjugate, and the primed sum is over all 4,
with 7 #£ 7. A trivial {ransformation leads to the more symmetric form:

n(r) = Zf — 6,7 8Vies el )l () ). (3.5)

The occupancy factor, for a closed shell system at zerc temperature, assumes
the values of either 2 {occupied K35 orbitals) or 0 {empty KS orbitals): Eq. (3.5)
is then recast as

(Oh
n(r) = -42\% 1P ) 0 (1)l (), (3.6)

e €y

where it is understood that the index v (like valence) runs only over the occupied
KS orbitals and ¢ (like conduction} over the unoccupied ones.
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We have purposely not explicitated until here the matrix elements of Vi s,
because n{!){r) in the form of Eq. (3.6) will be useful below, Section 3.4. If
we now exploit the locality of the KS potential, then Eq. (3.6) is identical to
Eq. (3.2), once made the identification

S LSO O FARIN COLTIRUN () R
xole, ) = —4 3 £ {E)en her (e () (5.7
Y, < ¢ v

It can be explicitly checked that o iz a real symmetric operator, which is easily
built from knowledge of the unperiurbed KS Hamiltonian only; it has been proved
that xo is negative definite. '

3.3 Physical response operators

The next step is to get the physical response operators v and 70 in terms of

the independent-particle polarizability .
The selfconsistent variation of the Hariree potential is, upon linearization,

§Vp () = Vgégr} =g’ / de' n V() /| - 1), (3.8

. . - ‘/i‘} /1y
or in shorthand operator notation §Vy o~ V' = v, 2l where
ve(r, v’y = e?/|r — ¢|. (3.9)

Linearization of the exchangs-correlation term gives analogously 6V, ~ Vo) =
feen't), where f,. is the functional derivative

L 8Vee(x) .
£ R EAY — e 7 ) <
Jzcl®, ¥ §?E§;?’} 3 {3,3{}}
evaluated at the unperturbed ground state. From Eq. (3.2) we get
2 = %o Vgﬁ = xol6 Ve + v, 20 4 fre n{i)}. (3.11)

The density response x is straightforwardly obtained solving Eq. (3.11) with -
respect to nll):

nt) = (1 - XolUs — Xﬂfzc}~1X0 8Vert; (3-12)
X = {1 — X0Ve — Xszc}-EXG = {Xgi Ve — fx{:)Wiz {323)

which incidentally displays that y is a real symmetric operator; general stability
considerations require ¥ to be negative definite, !

Identification of 6V, with ey shows that the basic screening operator 7!
of Bq. (2.10) is: '

el = (1~- Frexo)(1 = vexo — f:rcXO}—i' (3.14)
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Tt iz convenient $0 express ¢ * through an eguivalent expression for the operator
£, its inverse:

e=1—vexo(l = frexo) ™t (3.15)

The historical RPA expressions’ are recovered in the Hartree approximation,
i.e. taking f,.=0; for the density response this gives

Xrpa = (xg —v)7h (3.18)

showing that even xpp, is a negative definite operator. The ezaci density
response can be formally expressed as a “correction” fo the RPA one, from
Bq. {3.13), as:

7, —1 ~ 4 1 -1 I 3
X = (Xppa — foc) 7 = xrpall — focxnpa) (3.17)

but it must be kept in mind that in this case the RPA has {o be evaluated with
the K5 one-pariicle states.

The selfconsistent screening problem has thus been eventually solved: the
key point, where selfconsistency has been achieved, is the inversion of the rel-
evant operators. All of the previous results, like Bgs. {3.13) and (3.15), aze
formally exact; but the difficult many-body part is of course hidden in the op-
erator fre.

The static dieleciric response is a ground-staie property: as such, it is cesr-
tainly within the scope of DEFT. Nonetheless it could seem disturbing that the
exact expressions involve, through the operator xo, BEq. (3.7), one-particle sigen-
values and eigenfunctions (both occupied and empty)} of the unperturbed sys-
tem: the denominators particularly take the form of “transition” energies. There
is no paradox: on one side the one-particle KS states are nol to be related io
electronic excited states of the real physical system;'? on the other side these
same states are guantifies generated by the ground-siate KS Hamiltonian, and
they enter the formulation because of simple mathemaotical reasons (4.2, use of
periurbation theory in the study of linear response}.

if the previous theory is implemented within LDA, the operator f,. is local,
and is a simple function of the local density:

FEPD (e, ) = oe - ) Hzel)]

- (3.18)

rg:n(sﬁ’){r}

The response operators take a form which can be worked out for real systems;
the results thus obtained yield therefore the linear term in the response, and
are ezact at this level, 7.e. no further approximation besides LDA has been
introduced at any stage. Owing to Eq. (1.17) fg(é’y‘%} is negative: this implies
{excluding pathological circumstances) that that x; , , — Xpp, Is negative def-

inite, after Eq. (3.17). In other words the f,. correction to the RPA result
enhances screening. '3
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3.4 Density-functional perturbation theory

The linear operator x (or equivalently ') is all what is needed to describe,
to linear order, the response to an arbifrary bare perturbation §Voze(r). It is
therefore a very useful quantity, containing a lot of microscopic information
about the system. But exactly because of this reason, a complete calculation
of x within the above formalism can be a difficult task: it often amounts to
compute much more than what is actually needed to solve a specific physical
problem.

Some typical linear-response problems of condensed matter physics have
been alternatively attacked in a brute-force way. The perturbed system, with
a given “frozen-in” bare perturbation, is considered on the same ground as
the nnperturbed one, and two independent selfconsistent caleulations are per-
formed: then the physical quantities of interest are obtained by difference. Har-
monic phonons are the linear property most studied in this way, either via so-
called “frozen phonon” straightforward calenlations, %1% or via more elaborated
approaches; '° other dielectric properties have been studied as well. 17:18

Baroni, Giannozzi and Testa’ have proposed and implemented DFPT for
periodic solids, which combines some advantages of both (frozen-perturbation
and linear-response) approaches, while eliminating most of their drawbacks. The
idea is to start with the unperturbed reference system in its ground state; then a
spectfic bare perturbation is introduced, and the new selfconsistent ground state
is evaluated keeping only the terms which are linear in the perturbation. The
logies is the same as in some well known methods in atomic®? and molecular?
physics.

It 1s convenient fo start again with Eq. (3.6), and then write also the inde-
pendent equation relating, to linear order, n{Y) and §Vys:

Vid = 6Vige + .0 + £, a0, (3.19)

The two linear equations fogether give a selfconsistent scheme, which can be
solved iteratively for n{") and v, giié, starting at iteration zero with the unscreened
situation: V, i¥i§:5§@zs and n{")=0. Iteration of the linearized eguations replaces
thus the operator inversion which was an essential step in the RPA-like scheme
described in Secton 3.2. To state the concept in different words: only the
relevant portion of the inverse operator is built, and this is performed iteratively
step by step.

A further essential improvement in DFPT is avoiding complete diagonaliza-
tion of the unperturbed Hamiltonian, using the identity:

(034, (0,
|
lee )lee | = -P,GO(e)P,, (3.20)
- € — €
where P, = 1 — P, is the projector over the unoccupied KS manifold and

GO (e) = (e— HL)~" is the unperturbed single-particle Green’s function. This
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allows to recast Eq. (3.6) in a form where the (slowly convergent) sum over the
empty ¢ states formally disappears:

n(r) = 430 ol () x 1RGO e PVicsiol”). (3.21)

7
In order fo procesd further we rewrite Eq. (3.21) in the form
() = —4 Z PO () (x| Pl (1) {3.22)

(1)

where ¢y fulfills the equation
(HEY — el = PV o). (3.23)

The solution @y~ of Eq. (3.23), with the condition of being orthogonal to the
» manifold, is unigue and is efliciently computled solving the linear system;
the DFPT iteration is performed in fact using the equations (3.23), {3.22) and
(3.19).

This method has invaluable advaniages when dealing with extended con-
densed matier systems using periodic boundary conditions; this point will be
discussed in Chapter 8. Another essential advantage is manifest if & modern
pseundopotential scheme is adopted in calculations. In fact, being the bare
ionic pseudopotentials nonlocal, periurbations involving ionic displacements
{e.g. phonons, strain) are nonlocal as well, and the linear-response operators of
Section 3.2 are useless. DFPT can instead be {and actually is) implemented in
s modern pseudopotential context without any major problem: for this reason
DFPT is the state of the art for lattice dynamics in semiconductors.®

3.5 Role of symmetry

The symmetry of the system, in its unperturbed ground state, plays an over-
whelming role and allows fundamental decoupling of the linear response. Sup-
pose that the system is totally symmetric under the operations of a group of
transformations: then if the bare perturbation belongs to a given irreducible
representation, the linear response to it belongs fo the same representation. I
will illustrate this concept over three simple and very important examples.

The first one is the homogeneous system, already discussed in Section 2.2:
the ground state is invariant under the continuous group of {ranslations. The
irreducible representations of this group are one-dimensional and are labeled by
the quantum number k (momentum); a perturbation of given k only induces—
t0 linear order—a response at the same k. The decoupling, or “diagonality” of
the response, follows therefore from the general symmetry argument.

The second example is a spherical {i.e. closed-shell) atom. It is invariant
under the continuous group of rotations, whose irreducible representations are
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labeled by the quantum number ! (angular momentum). A dipolar (I=1) per-
turbation, like e.g. a comsiant field, only induces—io linear order—a dipole
moment; an irreducible quadrupolar {I=2) perturbation dees the same, and
so forth. Linearity allows therefore decoupling of the problem, multipole by
multipole,

The third example is a periodic solid: 1% is invariant under the group of dis-
crete translations, whose irreducible representations are labeled by the guantum
number g (quasimomentum). Components of different q do not couple to linear
order: this allows to introduce the concept of response matrices in reciprocal
space, like e.g. the dieleciric matrix. A thorough analysis is given in Chapter
8.
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Chapter 4

Electron-gas results

4.1 Ground state

The electron gas {(alias jellium} is the paradigmatic many-electron system in
condensed matter physics: there have been six decades of scientific literature
about it.»? A single parameter characterizes the electron-gas properties: the
density ng, or equivalently the Fermi momentum kr = (33?2%9)é, or the di-
mensionless parameter r,, which defines the interelectronic distance through
1/no = 4wria)/3 At densities of interest in condensed matter physics {i.e. 7,
between 2 and 7) the electron-gas ground state is homogeneous and paramag-
netic (alias closed-shell), and the KS potential is constant. The single-particle
KS orbitals are therefore PW’s of momentum k, whose eigenvalues are

1. .

e{k) = §§g5 + Vi, 4.1

here the two terms are each referred to the zero of the potential, which is
completely arbitrary in extended Coulomb systems; if is convenient to choose

this reference fo be the mean electrostatic potential. Using such a convention,
Vi s = ttgelno), while the total chemical potential is:

p=clkp) = %kfv + Bae. (4.2)

Using the results of Chapter 1, the total energy of the system is written as:
Buot = Bert + [ dr Veaa(s)n(x) + By + T, + e (4.3)

The first three terms are classical Coulomb energies, accounting for background-
background, background-electron and electron-electron interaction energies, re-

spectively: each of these terms individually diverges, but it is easy to show that
their sum cancels exactly for an homogenous electron distribution.” The two
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remaining terms scale like the size of the system; the total energy per electron
can then be writfen as:

1 1 3 ,,

}}'—gii}ﬁ - g%\{;% -+ g@c} - ”}g’[’}“%?g" "'; Eqps (44}
This is shown in Fig. 4.1 as a function of r, {solid line}, where the quantum
Monte Cazlo electron-gas results of Ceperley and Alder have been used, after
Ref. 4. The two individual contribuiions are are also separately shown: kinetic
energy of the noninteracting system {dashed), and exchange correlation energy
{dotted). The system is stable at r,=4.18, not very far from the average valence
electron density of metallic Na (r,=3.93).

0.1="~

ee=”
.=
=
%

Figure 4.1. Total energy {a.u.) per electron of the paramagnetic electron gas (solid);

kinetic energy of the fictitious noninteracting system T {dashed}; exchange-corzelation
term €q (dotted).

4.2 Dielectric function

Some main features of the electron-gas response have been anticipated previ-
ously, in Chapter 2; here we reexamine this system in the light of the general
theory of Chapter 3. For the densities of interest, the sysiem is homogeneous
and metallic; since translational symmetry uniguely determines the cigenstates,
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Figure 4.2. The Lindhard function g{z). Notice the singular derivative at z=1.

the independeni-particle polarizability coincides for this system with the free-
particle polarizability. The general expression for xo, Eq. (3.7} reads then:

eiltke~ko)(z-1)

Ce(ke) —e(ky)

where k, is inside the Fermi sphere {k, < k) and k. ocuiside. Eg. {4.5) shows
the dependence upon r — v, typical of any ground-siate operator in the homoge-
neous system; switching to reciprocal space, where these operators are diagonal,
the integrations of Eq. (4.5) can be performed exactly:

\ 4 ,
Xole.¥) = ~ oo [ dkdk, (4.5)

P %}g: { & 145\}
sk = gl {4.8)
Xolz) ??5§‘2k;} (Y

1 12?7 14zl
T e e in: . e
(=) =5+ ?‘?;_Q (4.7)

The funciion g(z) is shown in Fig. 4.2; this result iz usually atiributed to
Lindhard, 5 although it is at least implicit in a 1937 paper of Bardeen.® At the
RPA level {i.e. neglecting the occurrence of f;.) the dielectric funciion is

k2 k
enpal(k) =1+ LL

%2 §(§E;}, (4.8

where the g factor appears as a correction to the TF result, Eq. (2.17); the TF
inverse screening length is given by:

f dkp  2.44
ki, = — ~ . 4.9
T i rsa? (4.9)
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FPigure 4.8. Ratio ¢{r}/dolr) between the screened and umscreened potentials of &
point charge in an electron gas af r,=4: solid, RPA; dashed, TT. The Friedel oscilla-

tions are magnified {by a facior 50) in the right panel; their wavelength is 7 /kpr=8.55
2.l

Since g{k)~ 1 at small &, one could naively expect that at large r the screened
potential ¢(r) of a point charge behaves like the TF one, Bq. (2.18). This is
false, because the small-k « large-r relationship holds under the hypothesis
of analyticity, while the RPA dielectric function has a logarithmic singularity
at kB = 2kp. As a fingerprint of this singularity, the asympiotic behavior is
¢(r) ~ cos(2kpr)/r?; an elegant proof can be found e.g. in Ref. 3, p.178. The
cosine behavior goes under the name of “Friedel oscillations”™. The TF and RPA
screened potentials of a point charge are compared in Fig. 4.3.

The logarithmic singularity is a consequence of the sharpness of the Fermi
surface nsed in caleulating xo: one could suspect an artifact of RPA, guessing
this singularity to be cancelled either by f.. or by finite temperature effects.
As for the latter, they can be ruled out: at metallic densities and at room
temperature the electronic Fermi-Dirac distribution is really very sharp.” As a
matter of fact the singularity at & = 2kp is no artifact at all, and manifests itself
very strikingly in the phonon spectra of real metals: this was experimentally
detected only affer the theory of the effect, due to W, Kohn.® This is discussed
below, Section 9.3.

The exchange-correlation correction f,. in the homogeneous electron gas
is diagonal as well, and the exact dielectric function is formally written, affer
BEq. (3.15), as
dore” xolk)

k2 i- fu{k)XO(k) ‘
As T have already siated, the electron-gas literature is abundant and several
different calculations of f,.(k) are available.»? Usually these are written as

elk) =1~ (4.10)
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fec(k) = —4we?G(k)/k?, where the dimensionless fuction G(k) in the electron-
gas jargon is the “local-field correction”. This is somewhat confusing, because
in the context of screening in nonmetals {and therefore in this book, see Section
2.3) the term “local field” is used for a rather different concept. Within LDA
fzc is a negative constant. Several different calculations for G(k) are available
on the market, »? and the corresponding f,. for some of them are shown in Fig.
4.4 at r,=4: the different calculations are only in rough quslitative agreement,
particularly in the interesting region around kp (kr=0.48 a.u.}). Within LDA
foc is a negative constant, shown in Fig. 4.4 as a thin line. The G(k) of Ichimaru
and Utsumi? (solid line) concides at small k with the LDA value, since it has
been fitted to the same electron-gas data® as our LDA ones; but the figure shows
that the different theories disagree even in the sign of the second derivative of f,.
at k=—0. As for the large-k behavior, it has been demonstrated 'Y that £, tends
to a negative constant (and not to zero) at large k: here again, the existing
calculations often violate this reguirement. Unforiunately, a guantum Monte
Carlo calculation of the linear response of the electron gas is not available yei,
at least in three dimensions (while 14 has been recently performed in the two-
dimensional case '').

i
1 2 3 4
Kk (a.u.)

Figure 4.4, The exchange-correlation correction f..(k) in a.u. for the homogeneous
electron gas at r;=4. The thin line indicates the LDA constant value; solid line after
Ref. 9; dotted line afier Ref. 12; dashed line after Ref. 13,
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Chapter 5

Pseudopotential perturbation theory

5.1 DBasic concepts

The psendopotential perturbation theory ™2 provides a universal description of
simple metals—i.e. those which are bonded by sp electrons—ranging from static
crystalline properties (cohesion, structural stability, stacking fault energies),
through harmonic properties {elasticity, lattice dynamics}, and up to extremely
anharmonic—albeit adiabatic—dynamical properties (finite-temperature prop-
erties, melting, phase diagrams). =% Although being based upon (very little)
empirical parametrization, the theory can be comsidered as the archetypical
“total energy” method in condensed matter physics.

The theory gives a realistic description of the electronic ground state of a
simple metal (both solid or liquid), through a perturbation expansion. The un-
perturbed reference system is chosen as the uniform electron gas, at a density
equal to the average valence density of the real sysiem under study, which is as-
sumed to be macroscopically homogeneous. The unperturbed external potential
%{;}{r} is therefore the potential of the neutralizing uniform background; the
perturbation potential §V,,;(r) switches the background off, while switching the
electron-ion interaction on. A low-order perturbation expansion will certainly
hold if the perturbing potential is weak, but this is generally not the case for
bare eleciron-ion interactions. Nonetheless, the expansion holds as well pro-
vided only that the scattering of valence electrons by ions is weak, thus allowing
the use of weak pseudopotentials which provide the same scattering power. ?

We consider here only second order perturbation theory, with local pseu-
dopotentials. This level of treatment is still (1993) the state of the art for
finite-temperature simulations of simple metals. As for crystalline solids at
T=0, a theory of this kind provided a number of outstanding results all along
the sixties, 1% but is nowadays of historical and tutorial interest only. It is
reviewed here to the purpose of introducing some important concepts used in
subsequent Chaplers.
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For a given lonic configuration, the total energy of the system is identically
written as:

«gimﬁ = Ee&”i + Eaé = EE;} -+ ;&Es:ﬁ -+ &E{Ef: {53}

where the total energy of the electron gas—discussed in Section 4.1—is used
for Eéi}z at the same density np as the valence electron density of the system
under study. Our next task is then to evaluate the two (structure-dependent)
terms AF,..;, and AFE,. An essential simplifying feature is the fact that the
perturbation is neutral in average, such as to avoid Coulomb divergences in
both terms. I anticipaie the basic feature that L E.;, when expanded {0 second
order, is equivalent 4o an indirect ion-electron-ion interaction, mediated by the
polarizability of the electron gas.

5.2 Formalism

I give here an outline of the basic ireatment; several variants to it have been
proposed in the literature.? For the sake of simplicity, I only consider the case
of an elemental condensed system, whose ion cores have valence Z: the average
electronic demsity is therefore no=2/, where the atomic volume coincides in
the crystalline case with the cell volume for primitive lattices; a finite system is
made of N, cores (at the sites Ry) and N=ZN, electrons.

Starting with the classical term:

Z%e? ,  mi A

DBy = %f ey
iZm i

[ R

we notice that in the thermodynamic Hmit this expression becomes equal to the
electrostatic energy of point charges of magnitude Ze immersed in a uniform
compensating background. This classical energy takes the name of Ewald {or
Madelung) energy, and scales—1like all of the terms in Eq. {5.1)—linearly with
the number of sites:

_AEg 2’252{ 1 1.1 (5.3)
YEwald — NC == 2 : Euﬁ i‘;,. (0.9}
-=2t]

For any given periodic structure, this conditionally convergent expression is
efficiently calculated partly in real space and partly in reciprocal space, using
Ewald-Fuchs techniques. For primitive lattices it is sometimes expressed 1n
terms of the atomic-sphere radius Rq = (3Q/4r)3 = Z3r,, as:

Z2e? 5 4
s /- (8 § PPN -
YEwald Ry “Ew (5-4)

where gy is an adimensional structural constant, which equals e.g. 1.79175
(for the fec lattice), or 1.79186 (for the bee lattice). Disordered systems are
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simulated upon periodically repeating large unit cells. Short-range interactions
of the Born-Mayer kind are sometimes added to Eq. {5.2) in order to account
for repulsion amongst bare ion cores. ’

We now swilch to the gquantum-mechanical term AFE,;, which is evaluated
starting from a power expansion in the strengih of the bare perturbation

§Verr(r) = v(jr — Ryl) +e jaﬁr

i

%@*

T (5.5}

where the second term accounts for subtraction of the uniform background, and
v is the local electron-ion pseudopotiential:
v(r) = ~Ze? v + 4147 (5), (5.6)
; {ar) - . 5 . -
whose shori-range term v'\*"/ mimicks the nonclassic repulsion due to core or-
thogonalization.

Using Eqs. {1.22) and (1.24) one gets:
AFEg o~ E +E{2} f&fz‘ Ve (2)n O (2) + = jldr Vert (£)nV(x), (5.7)

which is correct up to second order. Only the last term in Eq. (5.7) involves
the aciual electronic structure of the perturbed system: because of this, it is
usually called the “band-structure” term Ej,. As for the first term in Eq. (5.7),
one has

) , N.Z P N
[ dr 6Va (5 () = 5 f dr o7 (r) +
J

, i 7{0) .
7 | o4

§i‘-§*55

In the thermodynamic limit, the (divergent) electrostatic terms identically can-
cel owing to translational invariance; the first term provides the only surviving
contribution. Defining the average of the noncoulombic eleciron-ion interaction

as .
| = = fdr zz{”}{r}, (5.9)
Q
the results found so far allow recasting Eq. (5.1) as
Bror Nc{ZUw} + Zoy) + NoeYewara + Fis, {5.10)
where we have indicated with U(9) = Ei(:?}N the energy per electron of the

uniform electron gas. The first term in Eq. (5.10) depends on the atomic vol-
ume but not on structure, while the last two are structure-dependent. The o

contribution to Eq. (5.10} has a physically iransparent meaning: its volume
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derivative represents & positive pressure on the valemce-electron gas, which is
due to the nonclassical effect of orthogonalization repulsion from the ion cores.

Last but not least, we have now to evaluate the term E,,, whose sxpression
in reciprocal space is:

i .
d . L5 IS TR § | . 1
Epy = @) fék 5V, (k)nV (k); (5.11)
owing to the fact that nl!) is a neutral distribution, and 6V, a neutral potential,
the integral is regular around k=0. At this point all of the “band-structure”
information which is needed can be fed in via linear-response theory:

1 [ » . ,
Bs = 22w j! dk 6V, (k)x (k)6 Vori (k). (5.12)

Introducing then the siructure factor per ion

1 R
S(k) = 3 ek Ry (5.13)
o

the band-structure term is transformed into

72

7 ‘Z\gé i i 122733
By = m j( dk ;5{3{}3 7 {k}x{%} {5.1é>

where the primed integral accounts for the subiraction of the background po-
tential in order to get 6V, from the full pseudopotential v(k). This is a rather
subtle point: in the thermodynamic limit N.|5(k}|? has a singular k=0 term,
equal to (27)°6(k)/, both for ordered and disordered ionic configurations (see
below}, and with the prime we indicate that this é-like term has to be omitted
from the integration. It is customary to use the dielectric function £(k) instead
of the density response x{k); by defining the dimensionless function:

dnZe? . _, | 1
G(k) = ( 226 )20 (k)[1 — <, (5.15)

known as the “energy-wave-number characteristic”, we write the total energy of
the system as:

, NZ ! 5 4w 7e?
Brot = No(ZU 4 Zay + Ypwaia) — =i | dk |S(k)20(K) 2257 (5.16
2(2x)° k2

This formal expression is quite general and holds for both ordered or disordered
configurations of the nuclei.
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5.3 Crystalline metals

The above formalism straightforwardly provides the foial energy per atom in
a crystal at zero temperature, where the configuration of the ions is lattice
periodical. Starting from Egs. {(5.13) and (5.16), and assuming for simplicity a
primitive lattice, the total energy per atom is given by:

Fio o 1 . AmZte?
f}éf— = Z{J{i}} + Zony + YBwald — é"é’ Z §{QEE§W§ {51?}
G0
where we have used the identity
KR -R) kR, _ o (27)° < o
E%} : _f‘é}ge mﬁngég‘xwa}ﬁ (5.18)

and G=0 has to be omified from the sum, as explained above.

Such a simple expression provides excelleni results for the binding energy of
simple metals. It can be used in conjunciion with several different recipes for
generating model pseudopotentials.? A crude, although effective, pseudopoten-
tial in this class is the Ascroft empiy-core model:®

v(r) =0, 7 <7 ; v(r)=~Ze’/r, r > r, {5.19)

depending on the single parameter r., the core radius; this is fixed once for all by
fitting a single empirical datum (typically the equilibrium lattice constant), and
then several physical properties are investigated “almost” from first principles.
The energy-wave-number characieristic assumes in this case the simple form

P 1,
G(k) = cos®(kr.)[1 - ;i-}%j; (5.20}

since e{k} — 1 atlarge k, the reciprocal sum in Eq. (5.17)} converges. We further-
more notice that the cosine oscillations are the fingerprint of the pseudopotential

discontinuity at r=7, in Eq. (5.19); faster reciprocal-space convergence is easily
achieved with psendopotentials which are smooth in r-space.

rs {a.u.) | Theory | Expt.
Na 1.67 §.45 0.46
K 2.14 0.38 0.39
Rb 2.61 0.34 0.37
Al 1.12 1.41 1.38

Table 5.1 Modulus of the binding energy (Ry) for some simple metals, as obtained
from pseudopotential perturbation theory, and empty core model pseudopotentizls.
The core radii are reported as well. After Ref. 9.



The binding energies found from Eq. (5.17), and using the model potential
of Eq. (5.19}, are reported in Table 5.1: these are compared to the experimental
binding energy obtained as the sun of the cohesive energy and of the appropriate
ionigation energy of the free atom.

The macroscopic elastic constants can be obtained either from numerical
differentiation, using BEq. (5.17} with unit cells of various size and shape, or
equivalently from some more elegant procedure. !” There are three independent
elastic constants in cubic materials: these are indicated as ¢y4, 39, and ¢44. A
calculation for the alkali melals is reported in Table 5.2: this is performed within
pseudopotential perturbation theory and the Ashcrofi empiy-core pssudopo-
tentials, Bg. {5.19), but with core radii slightly different from the calculation
reported in Table 8.1

7o {a.u.) £{c11 — c12) Cy4 B = £{c11 + 2c12)
Nsa 1.76 0.083 0.637 3.897
(0.069 ~ 0.085) | (0.58 — 0.65) |  (0.54 - 0.88)
K 2.13 0.034 0.268 (.388
(0.038 - 0.044) | (0.26 - 0.29) |  (0.37 - 0.40)
Eb 2.26 0.024 3.180 0.251
(0.026) (0.16) (0.26)

Table 5.2 Calculated elastic constants of the alkali metals, in 10" dyn/cm?, after Ref,
10. The corresponding experimental low-temperature data are shown in parentheses,

5.4 The pairwise interaction

In this Section we get more insight into the physical meaning of Eq. (5.16) for a
general nonperiodical configuration of the ions; to this aim, it is convenient fo
start expressing also the classical Ewald energy in terms of the structure factor.
We straightforwardly obtain:

AE?.}:Z 1

. B 47 Z2e?
N, YBwad = 2@

B2

7
f dk [N.|S(k)> — 1] (5.21)
where the second term in square brackets accounts for removal of self-interaction
terms [J=m terms in Eq. {56.2)], and the primed integral has the same meaning
as above.
It proves convenient to explicitly separate I=mn terms also in Eq. (5.16). The
band-structure energy per atom is then written as:

Fye (el N, ! . 1. 4nZ2e?
“:U“‘}—w——f/dkHSkzm Gk T2 9
NC self 2{27{—}3 Li ( )] N(:J —'{ ) ;62 3 (5 52}
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where the self-inferaction electronic term is given by:

ey 1 ) ( S@??ZZ£E -
Ul = ~ 5 jdk o(k) 5 (5.23)

This term is siructure-independent: owing to the cutoff provided by G{k), the

integral is convergent at large %k, and the prime has been dropped because the
integrand has no 6-like terms at k=0. We thus arrive at

Eig

i 5
— 72U 4 ga, + U 4 4 fék‘v SOOP — Tok), (5.2
3\! o self 2{2?;}5 Ne|S(k)|" — o(k), (5.24)

where the last term collects all of the structure-dependent effects, and

. 4nZe

p(k) = T [1-g(k)] (5.25)
plays the role of an effective ion-ion screened interaction. In order to see this, we
fizst transform the primed integral in Eq. (5.24) into an unprimed one, explicitly
subtracting off the §-like term in N_|S(k)|%:

“i

J;;ﬁk [N.IS(k)]? — 1]p(k) =

1
— {2 — 4 N 3. E
= 29{;&;%_8}—}—22 §3J/’55k,ié ka? 1ok {5.26)

At this point, Bq. (5.24} can be straighiforwardly transformed back to 1eal
space, yielding for the energy of the whole system:

Erot = NJZU©® 4 Zay + Uiz;‘i — %@(%:@}@ + é z #(|R; — R,,]). (5.27)

i#m
This is a very bmportant result, usually attributed to M.H. Cohen: ! the total
energy of & meial, when expanded to second order in the eleciron-ion infer-
action, is the sum of two coniributions. The first coniribution depends on the
average density only, while the second has the explicit form of a central pairwise
interaction. Most of the Literature is somewhat reticent in detailing the various
terms which appear in the structure-independent contribution: the four terms
in square bracket in Eq. (5.27) are consistent with those given in Ref. 4 (Section
6.5).

We pause at this point to illustrate the basic feaiures of the effective pairwise
interaction ¢(r), whose Fourier transform is given in Eq. {5.25). This interaction
is the sum of two terms: the first term can be interpreied as a direct ion-ion
interaciion, and the second as an indirect ion-electron-ion inieraction, mediated
by the polarizable valence-electron gas. Incidentally, we notice that U{ ) has the

sel
simple meaning of the value of the indirect interaction at r=0, after Eq. {(5.23).
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7.5 G 2.5

10
r{a.u.}

Figure 5.1. The pairwise interaction, in 10™° a.u., for solid Na (r,=3.93). The empty
core pseudopotential of Eq. (5.19) has been used, with r,=1.69 a.u., and dieleciric
functions as follows: Hefl 12 (solid}; RPA {dotied); LDA {dashed).

The meaning of Egs. {5.15) and (5.25) is more transparent if we neglect for a

while the short-range term in the pseudopotential v{k}, Eq. (5.6): we obtain
then

WS {5283

i.e. the effective pairwise interaction becomes simply a screened Counlomb po-
tential, whose Fourier antitrasform is shown in Pig. 4.3 for two simple choices
of the dielectric function. When the short-range term in the psendopotential is
included, ¢ has the limiting value of 1 at small & anvhow: hence the pairwise
potential of Eq. {5.25) is short-range, in the sense that the indirect term exactly
cancels the Counlomb singularity of the direct one, and ¢{k=10) is well defined.
Nonetheless, the Fourler antitransform of Eq. (5.25) has long-range oscillations
of the Friedel type, which are due to the sharpness of the Fermi surface. The
sffect of such oscillations npon the structural stability of simple metals has been
widely discussed.? Typical pairwise potentials for crystalline Na are shown in
Fig. 5.1; the one drawn in solid line, after the dielectric function of Singwi et
al.,*?, provides remarkably accurate phonon spectra (see below). The picture
also shows that plain RPA screening provides a very poor pairwise interaction,
while a simple LDA dielectric function—where f,. in Eq. (4.10) is taken as
constant—compares rather well with the more sophisticated approaches as far
as the pairwise interaction is concerned.

A final comment about the density- and structure-dependent terms in the ex-
pressions for the total energy, Egs. (5.24) and (5.27). U(®), a4, and d(b=0)/20

(o3
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have an obvicus dependence upon the average electron densily; besides them,
the G(k) function depend on density as well, through the density dependence of
the eleciron-gas dielectric function. Therefore [:m,} depends on density as well,

7
and even the pairwise interaction potential ¢, acconnting for all of the structiural

effects, has an implicil density dependence.

5.5 Liquid metals

The energy of any desordered configuration is given by Bq. (5.24), with the
appropriate structure factor; one is guite often interested into some kind of
configurational average (Ei») of Eq. (5.16) or Eq. {5.24). For a liquid, and
making contact with the traditional notations, '® the average structure factor is
to be identified with:

g(}g} - {\Z z%{{R -8, E\ = N.{ Egék‘ 2z (§2§}

9

The behavior of this funciion in the thermodynamic limit is most easily investi-
gated starting from the pair-correlation function, in terms of which the structure
factor reads

=, I : )
Siky =1+ a !‘dr egkrg{?}. {5.30)

Since g(r) — 1 at large 7, S(k) has a §-like singularity at k=0, as anticipated
above: we recast the previous sguation as

(2m) X .
Sk} =1+ *—26( e T a(r) — (E.31Y
(B} =1+ P §(k) j dr lg(r) {5.31)
and now the integral yields a regular continuous function of k.

The configurational average energy per atom is then, after Eqgs. (5.24) and
(5.26):

'!E o 3 . el o 5
\_:% = zy(@)w%zggw}d} ¢<k 0)+ = 2(2 E f dk [S(k)—1]¢(k); (5.32)

a straightforward transformation provides the eguivalent expression:

<Eiot>

Ve

=200 4 Zay + Ujjjj, — 5gfk=0)+ 5= / dr g(r)é(r);  (5.33)

this laiter expression coincides of course with the configurational average of
Eq. (5.27), as directly evaluated in real space.

At finite temperatures, the effeciive pairwise interaction ¢ provides, after
Eq. (5.27), the total adiabatic potential for ionic motion at fixed volume.??
When T is larger than the harmonic Debye frequency (~ 100-200 K), the ionic
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motion is classical and the time evolution can be simulated through standard
molecular dynamics. If is then possible to get anharmonic properties, ther-
mal expansion, melting of the solid, struciural and other physical properties of

the fiuid phase either from approximate analytical theories or from computer
experiments. The results are very good for simple metals, 115

5.6 Phonons vs. elasticity: a paradox

When considering deviations from the eguilibrium positions, a second order
expansion of Eq. (5.16) or Eq. (5.27) in terms of the ionic positions {at constant
atomic volume) provides the spectrum of the harmonic phonons. The detailed
formalism leading to the dynamical matrix will be illusirated below, Chapter 9.
Here we aniicipate some results, showing in Fig. 5.2 the phonon spectrum of
Na, where the same ingredients as in Ref. 18 have been used: the corresponding
pairwise interaction has been shown in Fig. 5.1 {solid line)}.

(001) (111) (110) -

Figure 5.2. Cslculsted phonon-dispersion curves for bee Nea, in THz. The empty
core peeudopotential of Eq. (5.19) has been used, with 7.=1.8% a.u., and dieleciric

functions as follows: Ref. 12 (solid}; RPA (dashed). The neutzon scattering data are
also shown (dots}, after Ref. 17.

The agreement amongst theory and experiment appears as excellent; no-
thetheless the zone-center slopes of the phonon dispersion curves given by pseu-
dopotential perturbation theory are incorreci. Such slopes determine the macro-
scopic elastic constants, whose values determined in this way are incorrect as
well.

To better state the issue, the elastic constants may be defermined in two
ways, either via homogeneous deformations of the whole solid or via elastic
waves of long wavelength, and the two measurements must provide the same
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values for a real material. We now discuss this same issue within the framework
of pseudopotential perfurbation theory. As for the homogeneous deformations,
some results obtained in this way are reported in the previous Seciion (Ta-
ble 5.2}, and found in good agreement with the experiment; in particular, the
calculated values of ¢y and ¢4 do not coincide: for instance in the case of
Na Table 5.2 implies ¢;3=0.842 and ¢44=0.637 (in units of 10''dyn/cm?). On
the conirary, it is easy to show that long-wavelength phonons obtained from
Eq. (5.27) always imply ¢y2=casa. This is because the phonon frequencies are
obtained from a difference of two ionic configurations having the same atomic
volume: hence only the last term of Eq. (5.27) enters lattice dynamics, and the
remaining (volume-dependent) term is irrelevant. Therefore the dynamical ma-
trix of a simple metal—within pseudopotential perturbation theory to second
order—is indistinguishable from the dynamical matrix of a classical system with
genuine pairwise central forces: for such a system, & venerable theorem, due to
Cauchy, '® implies in cubic symmetry cyo=c44.

We have therefore found an important paradox, and identified its source:
within pseudopotential periurbation theory, lattice vibrations sample only the
last (two-body) term in Eq. {5.27), while a homogeneous deformation of the
whole solid samples the first (volume-dependent) term as well. It follows that
second-order pseudopotential perturbation theory, whose iotal energy is given
in Bgs. {5.16} and (5.27), has an internal inconsistency. Given the fact that the
bare ionic pseudopotential in teciprocal space is particularly sirong at low-k,
it is no surprise that the paradox manifests itself in the long-wavelength Hmit,
although microscopic {4.e short-wavelength) properties like the phonon spectra,
Fig. 5.2, are predicied pretty well. It must also be observed that a long acoustic
wave really samples large regions of the solid where the average atomic volume
is varied, i.e. where the effective ng varies as well.

The point where an inconsistent logical step has been performed is easy to
detect. The theory describes, for a given configuration of the ions, the ground
stafe as a perturbation over the electron gas, chosen as a reference system,
and where only the second order terms in the bare pseudopotentials have been
kept. In order to perform latiice dynamics, we now need o perturbe the ionic
configuration and to evaluate second-order ierms in the ionic displacements. If
we use Eqgs. (5.16) and (5.27) for lattice dynamics, we actually perform a second-
order expansion over a second-order expansion: it is then clear that some terms
are missing, while harmonic properties of the solid can be consistently described
only if a fourth-order pseudopotential perturbation theory is adopted. This is
in principle possible, but it generates three- and four-body terms in the effective
ion-electron-ion interaction;'® in this case the hypothesis of Cauchy’s theorem
no longer apply, and we recover the equality for the elastic constants evaluated
from either homogeneous deformations or long acoustic waves.
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Chapter 6

Ground state of periodic solids
(incomplete)

6.1 Kohn-Sham equation

We apply here the general results of Chapter 1 to an infinite crystalline solid
in the thermodynamic limit, where the electron density is lattice-periodical. In
such circumstances, the KS potential is periodic as well, and the KS orbitals
have the Bloch form. Such a seemingly obvious statement amounts indeed to
an additional assumiption, é ¢. the boundary condition of vanishing macroscopic
electric field is ;&mhbii;;‘ hosen for inte
noticing f%zatf—wfaz i i

mac rmu}ps

grating Poisson equation. It is worth

iepend on ‘t e ;}wmosize charge and represents in fact

an arbit iti

ihs ¢ ¢ structure theory discussed in this chapter—and
more geae%a?iy h;oughozgi these lecture notes—refer to implementations in a
plane-waves basis set. In order to greatly simplify the algebra, local p E,J?é
dopotentials, in the form of Eq. (5.6}, are used throughout. All of the resulis
and theorems are trivially generalizable to nonlocal pseudopotentials as well, al-
though this requires lengthy expressions. In fact, all the calculations which have
been performed for real materials using the methods iluustrated in the present
lecture notes have been indeed performed using ab-initie norm-conserving pseu-
dopotentials.

We only consider here the case of insulators, where the K8 bands are either
completely filled or empty. The KS equation is then

(=5 V24 Vs g F)euq(r) = e(@)peq(r), (6.1)
G

D | e

where @, g(r) are the KS orbitals of the v-th occupied band, corresponding to
the energies €,(q), and V. o ¢z are the Fourier coeflicients of the KS potential,



seriph 51 ent atoms in t}
with the notations ii%ed in the previous si}api'ﬁz
are the Fourier fransforms of the local gamg(z@po?ez;uai
lattice vectors, sg{} are the Fourier coefficients of

/o G are the coeflicients of the exchange-correl

1<;M—@i‘i§i§§ § DA~z univer 55& %;}mi(}ﬁ of the local fiezhzt’ft

€23

evaluated at reciprocal-
eriodic {\Ex c 2509 & ensity,

(6.3

where the Bloch sta
coupled with Eq. (6.1)

/?

tes have a plane-wave-like normalization. This equation,
), provides a selfconsistent scheme which can be straight-
forwardly implemented and solved, usually via iteration. >
It is now m}p@rtaﬁt to discuss fhe G=0 coeflicient of Vi g, which would fix
the absolute scale for one-electron band energies. 1 stress that this coeflicient is
completely arbitrary, and no such absolute scale exists for infinite solids, due to
the presence of Coulomb interactions. Such arbitrariness stems indeed from a
sitrarily added when integrating Poisson equation in
@;zféz}deé system. A careful analysis of the thermodynamic limit shows very
elegantly ® that no physical argument can be invoked to fix this zer
periodic solid as a bulk quantity. The computer codes which actua
selfconsistent calculations for solids—either of the LDA or of the Har

e-Fock
type—set a conventional reference for the one-electron energy 2 h ch is in

general different from code $o code, and has no fundamental phy Si{“cﬂ meani
This arbitrary constani in the one-

"(."5

constant which can be a

Q,y

n an infinite

IR

e

x
iy
%

electron energy levels has no effect on the
genuine bulk physical properties, like e.g. the total energy per cell, discused
below.

6.2 Total energy per cell

We will find a closed-form expression for the total energy per cell within LDA;

the only delicate part in this derivation is the proper cancellation of Coulomb

divergences, which will be performed here in an original way. The main results

derived in this section have been first published in Ref. 5, although they have
een probably known earlier to different authors.



he g{%é;{iz‘ﬁ expression for the total energy of any
2

reported here for convenience:

+ f{{ffiﬁ Voot (tin{r
]
g

The ¢

al term £

5
v the Coulc

where { is a cell index. The Havtree term £y has the simple
Coulomb repulsion energy as well:

£ N o 73
o0 o j Y ot ?}.(}f}?ir{f } £ 73
Egln] = 5 j; dy dy T (6.7)

The term involving the bare pseudopotentials can be writien as
o3

F

;
! dr Voz(e)n(z) = ‘}M‘ }/ dr n{z)v,(r —R; - R;) =
is

-

[¢ f( MY )

r— R‘g — Rg;

where the short-rar ge iefm ha

ploiting then the lattice per

5 been explicitly sepai‘aieé as in Eq. {5.6); ex-
dicity, this last term becomes:

Q

=N, Y nigulr(Ge ' GR..
"G

The G=0 coeflicient of the density is ng = Z/Q, where Z is the total ionic
charge per cell; a suitable generalization of ahe definition given in the previous
chapter allows to define oy as the cell-average of the noncoulombic interaction:
the G=0 contribution to Eq. (6.9) can therefore be written in the form N, Za.
I now consider the whole (ionic and electronic) charge density altogether:

p(r) =e[n(x) = > Z8(r~Ri —Ry)], (6.10)
iz

.
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raction ENCTEY is:

E

, riply’) .
Ecou = 3 jffz* g%» (6.11)

”I‘

E‘he three terms iy

where EG are the Fourier coefficients of the microscopic electric field. Cliven
the boundary condition of ‘v?m&hmg macroscopic field assameai since the very

beginning, the G=0 term must be excluded from the Coulomb sum.

The exchange-correlation contribution E,, to the total ener gy is very simple
within LDA:

Eee = N.QY ngge,. G (6.14)
G

the Fourier coeflicients of ¢, {%{r}} Collecting all the previous
, the total energy per cell is

e G20

(6.15)

rgent G=0 Coulomb term has been properly removed. At this

pumi we may replace again the microscopic field with the electron density and
the bare pseudopotentials, yielding:

Eron T N Qdme? 2
v :—;\—- Jq'?*i}Z??Géz ,G+z ST ngl® +

di

G;:S
Lk N v G R, dme ;- P
+ng v, (GlemGRs o 2222@2@3 R, (6.16)
K1 ss’
We easily identify the last contribution in square brackets:
1 dme? iGR,-R.) 6 17)
YEwald = 70 Z N Z? Zge (6.17)

Gxo
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with the classical energy (per cell) of point <E1af*e& lmimerse

in a uniform com-

per ;ba,mw background, already discussed s—in the previous
chapter. The final result is therefore:

¥, {é i}'r ‘:i’d JBzZ
. Y- 47e? ) )
%fEZ?‘ggg o+ 5 ) {;7 Ing -iGR, {6.18)
4 F T
(e Gxo

An alternative expr

is derived upon exploiting Eq. (6.1) to replace
, and using explici

m%gﬁ?za; elermnents o

ly the sum of the Ex‘) eigenvalue
solute scale, we

, szhiss, £} id.
then:
2 ‘/“
= IR ) d% fa{@'ﬁi‘ YEwald

(2m)? Z:E/ "
1 §? ‘;x dme?, 2 2103
‘%‘QZ ?sgfa‘ G Ve G} — 2 T g?lgg ; {s;,;&j

G G_¢&

where the two last terms have the obvious meaning of double-cou ing correc-
tions for exchange-correlation and Coulomb interactions. In case a different zero
is chosen for the band structure, an extra term must be added, and the total
energy per cell is in fact s?megﬁzfmfmz’ of the arbitrary choice of the zero of Vg
in Bg. (6.1).

The two expressions given above for the total energy are equivalent when
applied to the selfconsisient density and h% orbitals; if the solution is found
via the usual iter

live method, at a given cycle before achieving selfconsis
the two expressions no 3{31"196? provide the same value. The first expression,
Fq. (6.18), has the virtue of ‘beang variational, providing therefore at any cycle un
upper bound to the converged value; even more important, its error is quadratic
in the “distance” from selfconsistency, while different expressions produce a
linear error, >’ The direct minimization methods®? discussed in Chap. 1 make
of course use of Eq. (6.18).

6.3 Forces

The total energy plays a crucial role in structural stability of materials. In
addition, from total energy calculations performed at nonequilibrium geometry,
the forces on atoms can be determined via numerical differentiation. From this
information, the lattice dynamics of crystals can be investigated, as well as the
structural relaxation paths in low symmetry situations (such as e.g. defects,
surfaces, interfaces).



l'§

The Hellman-Feynman theorem 'Y'M circumvents the need for numerical dif-
fezez;{;ai}aﬁ? and allows the direct evaluation of forc

S, in the form of analy

derivatives, from a single-shot selfconsistent calculation. In its original

wziez}; formulation the theorem has an immediate electrostatic meaning: ]
E

sotal force acting over a given atomic nucleus in a mo

cule or in a solid s just
equal o the pi@?i’fog“aﬁc force originating from the electron distribution and
from all the other nuclel. In a pseudopotential for ma}ls m, this purely electro-
static pich

ire is lost, aiissagh the theorem mantains validity and usefulness.
Using the results of Chap.,

the force acting on z}}e atom at the site By, =
B; + K, is staightorwardly obtained upon disp i ;g ?bz atom and wahméig*f
ie first-order change of the total energy, wiés% :
'This is a straightforward application of Eq.
where the parameter A is identified with the fizsg‘;?aeeggz{:'

- © ‘L H.fs - Ef’e:‘:" 3 £y
?g\ = ng”Z i ! e o ; dr n{xjv

component, and the obvious notation
the pseudopotential gradient.

the primed sum is carried over all the sites i}éaez‘ than Is, o is a cartesian
PN
s,

or) = 75v) (Jr])/r has been used for

In this Section we are of course interested into ﬁ@iieqambrmm configurations
such as to provide nonvanishing forces. However, for the time bein 1g only i{zé{,zs -
periodical configurations are considered. We mention incidentally that the case
of nonperiodical-—aibeit commensu rate—configurations of a g ren

solid can be

studied much in the same v at the price of using larger elementary cells:
this is called the “superce ‘%ppzroach Since we limit ovrseh@g to the i‘a%@
where n{r) is periodic, the force in Eq. (6.20) does not depend on the cell index

{: using explicitly the 5‘0 rier series of the periodic charge, we get:

Fio= F;%f’ + Z ESG {?r e”igryi}&,{i‘ —R,) =

/M
o
)
s

S’

Fi‘E:f) 41 meﬁz{;x"gg 20, {G).
&)

The classic term Fb o w) accounts for nuclear repulsion and can be evaluated usin
g

Ewald techniques. The generalization to modern quasilocal pseudopotentials
requires a modest effort.®

So far, everything looks quite simple; given the ground-state density cor-
responding to an arbitrary (nonequilibrium) configuration, the forces on the
atoms can be easily evalnated. But the important point to notice is that the
Helmann-Feynman theorem, Egs. (1.21) and (1. 22) holds if the ezact many-
electron wavefunction is used to build the dcnsﬁ.y, but in general it does not
hold for approzimate wavefunctions. It is rather straightforward to prove that
the theorem still holds exactly if all quantities are consistently evaluated at the



LDA level; nonetheless the problem

emains a severe o

‘hen a finite-basis
A variational approximation. This main
pered a massive us af the theorem in quantum chemistry, and
%a%i% sets have been seldom optimized specifically to the aim. 213 When o
vaves are used, such as for the treatment given here, the

r
expansion is adopted, as usual, to find a
problem has han

3

problem simply
not show up, and the Hellman-Feynman theorem can be safely apg iacé Lo any
finite-basis expansion, provided only that the ¢

calculation is very well conver
wrds selfconsistency. The key feature of plane waves allowing such perfor-
mance is the following: there is no “basis error” when evaluating the gradient
of a given function projected over the basis ivanifsié, This is due to the fact
that a finite set of p‘aﬁe Waves spans ?ns, same ma io‘id as i
their v-gradients. Other

tow

1e spanned by

ce {Z‘GHE f’gi%‘%fi»
tum dzpmsaf Ty has ?9{3@* carrie

1 a proper {:a.i(:i
n the LAPW me ’g i
heavy formalism.

%}g;z}ua ations: equilibrium in low-symmetry situations, Karel, fononi (anche
anarmonici), CP..

i'—z} par ', ular,

c ii( ulation of
ved only in E,Q&’%E, * and requires a z*aaiézez

6.4 Macroscopic stress

For a large, although finite, system the macroscopic stress is a simpie function of
the forces acting on individual atoms: for instance, the system is in equilibrium
and stress-free if and only if all the forces vanish, ma?izdmﬁ those acting on the
surface atoms. When studying an extended solid in the thermor i

il

it is useful to consider a bulk region of it as a ne F?‘Gi&?({g syst

must be regarded as an exte rvable,

> forces: for instance all the forces may van

bulk

<L

nde

iz 80 h(? which is nonetheless subject to macroscopic stress.
oy model to illustrate this concept is a one-dimensional chain
springs. A finite chain is in equilibrium when all the forces on the balls vanish;
upon application of external forces on the two end balls only, the whole chain
will be under tension. It is then evident that an infinite chain—in the periodic
configuration where all the springs are elongated the same amount—is in a state
of tensile stress; nonetheless, the forces on individual balls are zero.

For an infinite periodic solid, forces and stress can be considered as comple-
mentary physical variables. In fact the forces provide the first-order change of
the total energy under variation of the ionic positions in the unit cell; the stress
tensor provides the energy change due to macroscopic strain, i.¢ to variations
in size and shape of the unit cell. A free-standing solid is in equilibrium only
if forces and stress are vanishing. A simple illustration can be given taking e.g.
any cubilc crystal: the forces upon the atoms vanish by symumetry, at any value
of the lattice constant a. But of course there

of balls and

is only one equil 1buum value for

]
[



a; other values are possible only if an external pressure is applied to the sample.

A £ . T —
After this 1

oduction, the main issue can be stated. For a given periodic
configuration of a solid in the Born-Oppenheimer approximation, the forces
can be evaluated-—as shown above in Ssc.
the ground

6.3—from a single calculation of
ate electronic wavefunction. Is it possible to evalus

1te even the
¢ stress tensor from a single ground-state calculation? This question
was positively answered in 1983 by Nielsen and Martin, *'® who also provide
an explicit expression for the stress tensor within LDA. Implementations of this
sion within first-principle theory

Macrosc

ks

expres

of real materials has proved very useful

in two ways: as an efficient method for calculating physical observables, 1718
L Prac {sfai tool when %ea?ch'“g r the theorsti cructural QQ‘MEEm um
orces and stress must vanish) in low-symmetry we quote Hef. 19
as a sm gl mple. The stress ?be@ em has been ;’ti@nﬁy generalized b

vond

LDA. %
We start ¢ ing a macroscopic and finite so e Y, for which
the internal stress is balanced by external forces applie

[ at the sample bound-
. Such stress 1s defined as the derivative of the total energy with respect to

macr OS“U;}W strain:

o
DD
)
S

where the Helmann-Feynman theorem, Eq
equality.

i, has been used in the last

6.5 The stress theorem

The derivation of the sire 1eorem given here is somewhat different from the
sen-Martin one, *518 and follows instead Ref 29
In nonprimitive lattices, and for |
positions ¢

original Ni
ow-simmetry strain tensors, the displaced

d by symmetry only. Starting from the equili 3;517&7‘
he ionic displacements in a strained crystal are, to linear order in the

re nol determine

positions
strain:

Rio— Rio=Ria+ Rispcap+ T

(w‘

(6.2
where T' is the so-called internal strain tensor (sum over repeated cartesian
indices is implicitly understood). The internal strain, however, is lattice-
periodical {l-independent) and equivalent to a zone-center optic mode: therefore
its contribution to macroscopic stress is directly obtained from a snitable force
calculation. ! In order to simplify the algebra, we deal in these notes with the
case of a primitive Jattice only, where the effect of macroscopic strain is a simple
rigid (homothetical) scaling: the displaced ionic positions are

3)

Riog— R, =Rio+ Rigcap.

e
o
B
N
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We thus formally get the strain derivative of the total

o

asl

*!dr ?z{r}; Ry gvl, (v — Ry), . {6.25)
Jv At

This expression is

give

sensitive, and therefore unus

ble as such for a macroscopic syst
modynamic limit: we transform it into a
dynamic limit can be sal

{(6.26)

.
+ f de ni{x)rp

[
S Vert
1y

the Hartree term is conveniently evaluated in the symmetric form:

)

= e | dydy’ niyin(e)
Y

i

e,
=
b
[¢s]

5 7

while we define the XC stress as

/
87 e L
Org '

7

evaluated: in fact,

(n{r))] (6.30)

Sy
and is an effeciive isotropic pressure {owing to the §,5). We notice
LDA, and for a low-symmetry solid, the XC stres is anisotropic. 2°

Using the previous expressions, and substituting B = rg — (z — Ry)s,
Eq. {6.25) is recast as:

that bevond

2 { o N Y
€ ; é\?& - }(}'}s\’{,ﬁ - r;j‘j

pepples — = f dede’ n(x)n(x)) —
; 7y TP

[ =)

[

o
p—g

where now all the terms are manifestly boundary-insensitive and extensive in-
form. The integrals are cast in terms of relaiive coordinates of the system
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equivalent form o% Eq. {8.31} can be useful. Let us s

separate within
the pseudopoter ﬁmﬁ the pure Coulomb term from the ci‘é\r%«z‘&? se repulsive te
as in then we may collect in Eq. (6. 313 all the pure Cor ‘i?@ﬁ?b terms

(ion-ion, io

the integrated Ma

xwell stress © e

(6.34)

where now all the terms ha - n‘“ p%}}fsiﬁf% meaning. The third one

is the k

while ¢

> s, due to core
orthogonal zm‘sm;; repulsion.

For a crystalline solid the density n(r) is a periodic function, and the average

(6.35)

3 performing the 1
a p?a
as reciprocal-lattice
15,16. As an example

wave expansion is adopted, these in ieg%ﬁk

orted

in Refs.

BUITS, ‘Whgjb&, E’/}ipl{'}i‘s.\ieﬁ‘s are rep

L only give %}w expression for t

in terms of the Fourier coefficients of the microscopic ’E@{i%?i@ izeidk

o
E Shap 1,
EY ZL ‘G o E Ga 5 Cas iEG E

and the G=0 term vanishes whenever no macroscopic field is present. In case
nonlocal 1onic pseudopotentials are dsed an extra term must %e considered in

the commutator of Eq. (6.26).

The above proof of the stress theorem is a typical example of a rather general
strategy to be used in evaluating macroscopic properties of an extended s system
in the thermodynamic Hmit. One starts from a iaz’ge but finite system and
writes a formal expression for the quantity of interest (in the previous example
the macroscopic stress tensor); this expression, being boundary-se ssitive, cannot

be used as such. A suitable transformation leads then o a boundary-insensitive
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Similar strategies have ?seazz uxed in other theorems concerning macros
physical quantities *xampies concern deformation peiez‘é als 22—

elastic constants;

nportant cases a 26,1

= plegoelectric
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scopic polarizati ic” case 1s discussed in the next {*

6.6 FElastic constants

The search truct
performing several @f
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constanis and-—for low
cell. Starting from t}

1ic positions in the lonic

g:@‘;z;i“«; in configuration
» provides at a time
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es with a continuous
structural minimum of By, I
macroscopic elastic constanis.
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Chapter 9

Lattice dynamics (preliminary draft)

Commento: cominciare con una adi sic dinamic piu® generale. Affrontare il
oroblema partendo da %h ocity-velocity correlation function, ete.. solo dopo

passare all’ approx. armonica,.

9.1 Definitions

Let us CQI;S;(?{}; a solid at zero temperature in the adiabatic approximation: the
ionic positions at equili % rium are By, = B+ B, where [ is a cell index and s 1s
{in nonprimitive lattices) a basis index in the unit cell of 7 “0 ms. A distorted

o’)ﬁﬁg{ixrat’io& of the solid is described by the set of the ionic spbgez%m“ {ui b
greek subscript will be used for cartesian components.

The total energy 18 expanded in the displacemenis around equilibrium as
. 1) ) Jit Y R
B tot E /}} ‘3ot igs‘{zlig,j};-%ﬂ»)). i\gﬁl}

and the harmonic force constant are second derivatives, defined through

oug
(2, a1
l’ff—;:i\{ﬁzsj} = E % 03\\‘3’, }Qis oYt 3.

Wsst,af

M
)
b
p—

Because of lattice periodicity, the force constants depend only on By — R, and
hence ¢, op{0, ") contain all of the information. Besides this, there are further
important cchsézamis imposed by translational and rotational invariance: * we
consider explicitly only the former. I the solid is translated as a whole, the

energy is unchanged, and hence the energy expansion vanishes to all orders;
this is easily shown to imply

) 1
Css,a/3(\ﬁ~{)> = ‘Z 583;3&3(013;}, {93}
3}81

with the usual meaning of the primed sum.



Owing to
potential ene

are then éwczi mi E}x the eq *z&%%aﬁ of motion:

T
f%”js?iisxz —

)
o]
s
-

periodic boundary conditions)

and ntroducing the auxiliary quantities

,.,.
U

where

3]

{QE = Z ;}S’

ix 18 hermitian, and has (in stable systen 15) nonnegative
eigenvalues: at every ¢ thers are 3n normal modes, whose frequencies are the
square roots of the eigenvalues; 1displacements are related to the eigen-
vectors by a trivial z*zzass—{%ep@zzép%f factor.

The dynamical m:

i
At this point I stress the importance—both in model and first-principle
lattice dynamics—of a standard technical trick. It is convenient not to bother
explicitly with the actual value of the on-site force constant ¢, «p{0,0). To this
effect one uses an auxiliary set of force constants, indicated with an overbar,
which in general violate translational invariance and are therefore nounphysical.
The physical force constanis are recovered from

Css’,&ﬁ{@} = 553%&';3((}) — g0 zzss”,aﬁ({}}w <9EG}

2t

which ensures translational invariance in form. It is easy to verify that z,, apl0)

cancels in this expression, and hence the value of ‘ihe on-site force constant
ss,0(0,0) is irrelevant, whenever Eq. (9.10) is explicitly used.

o]
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9.2 Central two-body forces

We <§éssz:;<< in this section the contribution to lattice dynamics of centr
body interactions. In the
the bare ion-ion

al two-
first-principle context, such treatment only Y concerns
> repulsion, being purely f:?asséczié: the energy of this
cin O Aaptfer 1. However, for pedagogical purposes
impler treatments, like E}«sﬁ;dq}{;? ential perturbatior
and the rigid-ion model (in alkali nahéeb} in ‘b{m
iteractions involved are indeed central pairwise.

term is ndl
we will previon
theory {in simple
these ¢

Suppose ‘:' at the central two-body potential between ions of species 5 and
s’ is 1 ribution to the lattice-dynamical force constants is
" {535{%53;{"

5"; using an {zrés?mm
} we get ’&\, analogous of Eq. {9. b

), 0

p{0. e QR

£q.(9.13) is usable 2

uch only fﬁz short-range ;ntei“miion 5, wher :
I 1s rapidly conver ; the resulting force constants are then an alytic functions
of .

It is now convenient to transform the force

constants into an equivalent
expression involving the Fourier transform &, (k) of the pairwise interaction
Standard manipulations, starting from Eq. {9.13), give

R 1 ) N niGR -
Ess',a{?{qf} = 5 Z{q + G}Q{q + G)ﬂ®s<’ﬂq -+ G;ieG (RS! RS) (’9‘}4/}
G

kS
R . . 7 i s sl
ciprocal space expression is @,./(k) = 47Q,Q, /k%. The force constants are
nonanalytic, as a fingerprint of long-range Coulomb interactions:
force constants repulsion in the form:

Specializing to a pure Coulomb interaction bebween point charges, its re-

we cast the

4?@ Qs (deds | s (a+Glala+ G)p HGR,-R.)
la+ GJ? v
G#U

s,
)
o
Wit

S’

(o)
[y
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a ma,;»cz problem is ihe iaf:z { ‘ Cast of q = G} loes ,fz{}z‘
9.10). What is the correct vaéaé o é be used” There ares
a rigorous answer: the final result can however

>, first proposed by Pines in the 5‘195‘ Under the

15U

valid at g 3

i%}? o a work
that thee
assurnption t

em is overall neutral, one g@t% always correct res

e Pourier transform of Ccmi}mn interaction is 4
ishes at a = 0. Th

and var refore the first term in square brackets must be

xactly zero, When g — 0, 4.2, in the long-wavelength

limit, this term gives in general a finite contribution.

a projector on the (;«uii{ ction, thus discriminating Dezweezz E,s
: rse modes. Basic i

frequenci

il & minor p

taken as zero when g

P s
a/q” acts as

dinal and

the ﬁ@”@ bra

gi iszw

> sum over (3 in ;‘

i one mf&gssat% the )

term giving a small gaussian s };‘éad to the ionic charges, in order to ensure con-
< ]

vergence. When the spread is much smaller than the typical inte

s not converge. i 8 &Efii

onic distances,
the force constants assume their physical (spread-independent) value. Alterna-
tively, o '

rald techniques can be used.! There is one simple case
where the sum can be evaluated in closed form: let us consider 7,0 7/ (0) in a

cubic bizéaw ¢ v ofd and

9.3 Metals

Accurate phonon spectia in simple metals can be obtained from pseudopotential
perturbation theory to second order. Within this framework, the total energy is
the sum of two terms: the former depends only upon the average density, while
the second is in fact a pairwise central interaction. Phonon modes do not affect
the average densily, and therefore the full dynamical matrix is straightforwardly
obtained from the formalism of the previous section, where the two body inter-
action is given by Eqs. (5.15) and (5.25). For a primitive lattice we omit the s
subscripts; using Eq. (8.10) we get the dynamical matrix in the form:

4
i

—= 2 la+ Glala+ Gpd(la+ G) - GaGp®(@).  (9.18)
iVEd G

Dcr o] { Q.} =

[ee]
[N



with a som

[ a simple metal was first found by Tova,?

Mii@u than propo cal phonon

agonalization of Eq. {

A typ

K
SE}{SQ‘ vas alrea i

g}?evi@z;&*
i ;1%11%

ous section,

fore we write

tra

{j}{q} -

where Z is the bare charge of the ion.

therefore £{(g)=1. Then we get

the zone-center nor mal modes of the sys
wamical matrix. One Immed

1 from diagonalization of
r> two transverse modes of vanishing

frequency, which therefore is nof an

and coincides in fact with the plasma ﬁ%uems} wy, of a system of
charges in a neufralizing rigid (it i.e. nonpolarizable) Ba{* ground. b sy
is a paradigmatic one in the theory of classical liquids, being known as the
one-component plasma.” However, such model system has nothing to do with
real metals, where in fact lengﬂvavdengéh longitudinal modes do have vanishing
frequency.

Within the present formulation, it can be clearly seen that the key feature
which accounts for the existence of acoustic phonons is the ¢7?% divergence in
the dielectric function, i.e. its metallic character. In the following discussion
I will neglect the second term in Eq. (9.19), which amounts to neglecting the
discrete nature of the lattice and to dealing with the long-wavelength modes in
a macroscopic way. We thus obtain for the longitudinal mode:

2
wrlg)




which 1s correct!

nothing else than the

we evaluate it using ti
to leading order in ¢.

e TF dielectric function,

eed is then gi

s an im g Gsf‘mi result found in 1950 upon macro %Cqm

> The i mpor-

by electronic screening;
erniguantitative ag

vas dielectric funciion
herefore the dynamical matrix o gf in{; {% R} is
Brillouin zone) which

singularity for

7
o,
qu

ular at the q points
fullfll (g + G| 5; {for some G). The
ationship can be found izozzs a simple

smetrical

e*sz?m‘isnﬂké&i phonon
after the theory, the effec :
the name of “Kohn anomaly” since then.

9.4 Jonic Qi‘}fsﬁ als

ve features which
starting from the sumple rls";@
e dynamics of alkali halides
dynamicsis governed by two different
= Coulomb fo; ce acting between ions,

are better Erhi%é\la - z‘o;; E}s{iad 001&11 purpos
ion model, which was firet applied to the lattice
1040, % The basic assumption is thatl lattice

iiinds of forces:

(i1} a short range g airwise interaction
] ch a model was bi“ﬁ i
to fxg;ifzm fife lattice stal
Ashcroft, Kittel?”

The dynamical matrix i8 found summing ntributions, a&% ich are sep-
arately evaluated; we specialize to a cubic bi ‘

y system in the following. The
Coulomb term is given by Bq. (9.15), using for the ionic charges the values
g L Js £ £

Qs = (=17, where s=1 (2} labels the anion {cation); in the original version
of the model @=le| ({e. full ionicity) is assumed for alkali halides. The short
range term is evaluated directly in the form of Eq. (8.13), where only a small
number of terms is summed: within the simplest version the sum includ
deed only nearest nesgh’i}@i {six terms for the rocksalt structure). Therefore
(\q\) vanishes when s=s', while 2,3 1 .sla) depends on two
vin Eq. (8.12). The two paramet ers of the rigid-ion model

*fgpaﬁf%i data (typically the equilibrium lattice constant
and the bulk mod sihi ) Explicit dmeanzﬁ%mi;op o

vides the phonon spectrum. A typical resu
agreement....... except optic modes

It proves useful to study in detail the diagonalization ai the zone center.

il

by |

Ltere ‘szimw

s o
.
@ o=
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CD

es in-

&
the short-range T
parameters only,
are fitted to a pair

{ the dynamical matrix pro-
is shown in Figo......... The overall
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(s.7.) 4 \ o~
C12,0p\9) =

furthermore bulk cartesian tensors are diagonal in a cubic material, %ws’wo

e }Cﬂ?( = —Hobap, where the constant Ry cow apletely accounts for the st

;fabzz{?f: forces at the zone center. Using the same path for the Coulomb ’{erﬁ;

Eq. (9.15), we find a nonanalytic term (homogeneous of degree zero in q), plus
an analytic term which behaves in all respects like an effectively short-range
additional interaction. From Eqgs. (9.15) and (9.17) we cast the complete
namical matrix at the zone center as

10T

= we define the 2x2 matrix M as .

M

i

One of the eigenvalues of A is zero, and the other is 1/m = 1/
; =)

i.e. the inverse reduced mass; the corresponding eigenvectors ar

ognized to be the acoustic and optic modes, respectively. {xong
zone-center dynamical matrix, the acoustic mode is threefold deg
f} equency zero, while the optic modes require further diagonalization over the

n coordinates. There are two transverse modes—where the
Heular to g—with

5 1, 4nQ? .
Wippy == ?P{;ﬁ%g—* 30 } {jﬁéj

and one longitudinal mode—where the polarization is parallel to g—whose fre-
quency is
0T TG (
The longitudinal-transverse (LT) splitting of the zone-center optic modes
takes the simple form of a plasma frequency, where the mass density is in fact
a density of reduced mass. The LT splitting is substantially overestimated with
respect to the experiment, and this drawback is simply due to the fact that
no mechanism within the rigid-ion model allows for electronic screening of the
oulomb interaction. Models correcting this problem are well known in the
literature: they agree better with the experimental spectra, at the price of
using more empirical parameters. In the following we focus on the first-principle
approach to lattice dynamics.
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9.5 Effective charges

We have introduced the Born effective charges as basi

¢ phenomenological ma-
terial constant

s in cubic binary materials; the concept is easily extended to a
general crystal. The eff

;<“€’;z’e~{:hasz@‘> tensor

77 o5 meaures the a-component of

é;hJ dipole linearly induced by a unit displacement of an ion figma in the g-

rection, while all the other lons are kept fized, and the field i
fm ﬁquwaéem definition is via the force acting on ions of kin
macroscopic field. Of course, if the s site is of cubic symme
then Z7 5= Z]dsp

Me

i kept vanishing.
d 5 in a cons
L

&

3Lan.n

at equilibrium),

ere in relazione la Bg. (9.28) con
come in Axe, con la definizione %;se—w}%}a;
lavoro di Gon ]

N.B. oe un chapterf.old da saccheggiare,

9.6 Ion-electron-ion interaction

In order to solve the problem of lattice dynamics we lock for the force constants

arising from a second order expansion of féie total energy 5; ssﬁg the notations

of Chap. 1, this expansion is written as Lm’ = ;T‘,v,,, + F o - The csmn%mnor‘;
of the first term has been evaluated indeed in the previous section: the res
goes under the name of “direct” ion-ion force constants.

quantum-mechanical term:

We remain with the

— j; de ¥

or ion-ele Cii@lx—ifﬁé {c

:ra,ﬁ E@z‘ iﬁe sake of simplicity
%‘anlewerk, where

the unperturbed “external” has the form:

{9.30)

is

Alternatively, the same formulation can be consistently interpreted in the all-

electron sense, and the v’s are then full Coulomb point-charge potentials.

When the lattice distortion {u;} is present in the crystal, the bare pertur-
bation iw:

Vers(x) = Y [ vs(Jr = Ruy —uis|) — v = Reg]) ). (9.31)

is

The first order term in the displacements is;

Ay N
E’e;m’ {}') - Z ‘ligsgg'b’;a(l}.‘ - R’fs s

Is,o



with obvicus notations for the gradient of the
sity resp

The linear den-

to such perturbation is

ls ox

such that we get for the second-order

; Uls o Wips

i {}'{é}f -

ividually are

not sgsziz lms is easily checked ring a uniform trans-

lation, 1.e. vy, independent of Is. We further observe

82V,

@353&!31 Uirst B

= that the second derivatives

s (3;”5)515

give a contribution only fo the on-site force consiai ss,0pll ). Therefore
there is no need for the explicit evaluation of the ¥ . provided the trans-
i v invariant form of the force constants, Tq. (9. }f); is used. As for the
off-site force constants, comparison of Eq. (8.34) with Eq. (9.2) gives:

(el TNt
e oty = }f{f;‘ dr’ v,

N e wed
— Ry ]) x(e,r)

~ Ryl (9.36)

After straightforward man naﬁ’rz
reciprocal-space force cons

indivect term In the

% vy(la+ Gl x(a+ G, q+G) vlla+ G)). (9.37)

9.7 Ab-initio force counstants

s’%e now collect together the two terms in the force constants: the direct jon-ion
interaction, Eq. (9.15), and the ion-electron-ion interaction, Eq. {8.37). The
ﬁn E expression to be used in ab-initio lattice dynamics 1s then:
—~
- ' L HG R -GR) ‘q
Cap(@) == Y (a4 Glala+ G)pel )% (9.38)
G G

o ! -
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mmé D+ v g+ G vlg+ Gog+ G v g
llar Glla+ a7 GG + vslia+ ) x(a .q Jusr{ja+ G |

written in term of the in-
elebrated result due to Pick, Cohen and
g formulation of harmonic lattice dynamics in the adia
atic approximation, in terms of the linear response of the electronic system.
The role of the ofidiagonal vy elements and their analytic properties in the
neighborhood of q = 0 is essential. Here I only mention that a diagonal approx-
ém@{zo;z to the x matrix implies in insulators {or semiconductors) a strongly
unphysical result: {z}e* accustic modes have nonvanishing frequency at ¢
center. The v matrix elements fulfill in fact
tic sum rule” | = é is i

L IICPOSCO

lternative {aﬁ d equ uiea’swi; expression is easi

it 18 an exs

= zone
a relationship, known as the “acous-

viclated by any

onal approxima tion in insulators.

¢ definition of ¢ § ¢ phenomenol
rﬁfffmf ve charges in polar insula f;ﬁg crystals.
In the case of mets

53

, the diagonal screening approximation does not show
such a severe shortcoming. Incidentally, I point out that a diagonal (and
isotropic) screening approximation ﬁﬁﬂ’ﬁii Eq
stants identical in form to Eq. (914}, i.e.
palrwise interactions.

The PCM theory
dopotential context.

{9.38) gives a set of force con-
equivalent to a system with central

as f@s‘ﬁ*zﬁa‘ieé above, cannot be used in a modern pseu-
In fact the bare perturbations generated by ionic dis-
g}}aao ms are in this case ﬂs}iﬁ(}c@i and the standard dielectric operators (,
Yy are therefore unable to cope with ia%iz{a dynamics.

M

i we limit ocursel

ves

to LDA as usual, then the BGT approach '? solves the problem. The harmonic
force const

ants can be directly evaluated, at an arbitrary
a nonlocal pseudopotential framework. The BGT exp
ciple to Fq.

q«veczos? even within
on reduces in prin-
se of local ionic potentials, but it is worth
noticing that the full ¥ operator is not explicitly evaluated within BGT, thus
substantially reducing the computational effort.

in the simple

Espressione fenomenologica-like. Furbata della traccia. LST generalizzato.

9.8 QOutline of the results

The basic expression for the force constants, Eq. (9.38) applies to any periodic
solid (metal, semiconductor, insulator). Harmonic lattice dynamics in metals
within LRT has a long history, much elder than the milestone POM paper,
Reviews of important results can be found e.g. in Refs. 13,3, As for insulators,
I am unaware of any LRT result at the first-principle level: to the best of my
knowledge, only standard “frozen-phonon” caleulations are available.
Harmonic lattice dynamics in semiconductors, within the PCM formulation
of Eq. (9.38) and using local pseudopotentials, has been studied by some authors:
an account of the most interesting results can be found in Ref. 14. State-of-the-
art calculations, in a nonlocal pseudopotential framework, have been possible
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Figure 1.1, Comparison between the calculated and experimental zone-center phonon

frequencies in /17 — V semiconductors.

only after BG'T. Calculations for a few materials at the zone center were firg

eported in the original BGT paper.*? A systematic calculation for all the EH»«
" semiconductors is reported in Ref. 15: the '*esuiz‘@* are shown here in Fig. 1.1
More complicated materials, like superlattices and alloys,

have been studied
within the same approach. 117 Very 7 recently, the mfe,zh@é has been implemented

for calculating the ?’31‘“%’ constants at arbitrary g-vectors in the Br
with excellent results. ™
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