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An outline of Drude theory

1 Static conductivity

According to classical mechanics, the motion of a free electron in a constant E field
obeys the Newton equation

m
dv

dt
= −eE, (1)

whose solution is v(t) = v(0)−eEt/m; the electronic current density is j(t) = −env(t),
where n = N/V is the electron density. The macroscopic current obeys therefore the
equation:

d j

dt
= (n/m) e2E. (2)

Analogous results are retrieved in quantum mechanics (QM) and the macroscopic
current obeys the equation:

d j

dt
= (n/m)eff e

2E. (3)

The quantity (n/m)eff measures the density of free carriers and their (inverse) inertia.
QM linear response theory provides indeed the value of (n/m)eff ; this is discussed
below, Sec. 4.

In order to retrieve Ohm’s law, Drude introduces “by hand”a phenomenological
dissipation term in the equation of motion. In QM we cannot do the same; nonetheless
a relaxation time τ can be inserted phenomenologically in the response functions. The
classical equation of motion, including dissipation, is(

d j

dt
+

j

τ

)
= (n/m)effe

2E. (4)

For any given initial conditions, j(t) has a transient which decays exponentially with
lifetime τ . After this, the steady state solution is

j = σDrudeE = (n/m)effe
2τ E, (5)

where σDrude is the dc (i.e. static) conductivity in the Drude model. Notice that a
dissipative system forgets its past, and the same steady state is reached independently
of the initial conditions.
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2 Drude theory (ω-dependent)

We now identify the input signal with a time-dependent electric field E(t) and the
output one with the linearly induced current density j(t): the generalized susceptibility
χ coincides in this case with the conductivity (scalar in isotropic systems). Switching
then to the frequency domain, the conductivity σ(ω) measures the current linearly
induced by an electric field at frequency ω

j(ω) = σ(ω)E(ω). (6)

We adopt our usual conventions about Fourier transforms; other conventions may
change the sign of the imaginary parts in the response functions.

Inserting E(t) = E(ω)e−iωt in Eq. (4), we get(
−iω +

1

τ

)
j(ω) = (n/m)effe

2E(ω). (7)

The Drude phenomenological formula is then

σDrude(ω) =
ie2(n/m)eff
ω + i/τ

, (8)

where (n/m)eff is the quantum analogue of the original n/m in the classical theory.
The dc limit is purely dissipative:

σDrude(0) = e2(n/m)effτ. (9)

We rewrite Eq. (8) as
σDrude(ω) =

i

π

D

ω + iη
, (10)

where D = πe2(n/m)eff is the Drude weight and η = 1/τ . Since η > 0 the conductivity
has a pole in the complex ω plane at ω = −iη and is analytic in the upper half plane.
This fact ensures a causal response and guarantees the Kramers-Kronig relationships.

The real and imaginary parts of σ denote in-phase (dissipative) and out-of-phase
(reactive) response to the E field. Within the Drude model

Re σDrude(ω) =
1

π

Dη

ω2 + η2
; Im σDrude(ω) =

1

π

Dω

ω2 + η2
. (11)

In the nondissipative (η → 0+), yet causal, limit we get

Re σDrude(ω) = D δ(ω) ; Im σDrude(ω) =
D

π
P 1

ω
, (12)

where P denotes the principal part. The dc (ω = 0) in-phase conductivity has a δ-
like divergence: this accounts for the obvious fact that free electrons in a constant
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field undergo free acceleration. The Drude weight measures, as said above, the inverse
inertia of the many–electron system; it vanishes in insulators. For η → 0+ the current
does not reach a steady state limit; equivalently, we may say that the system has an
undamped normal mode at ω = 0.

3 Classical theory in the vector-potential gauge

As explained below, the vector-potential gauge is mandatory within QM. It is therefore
instructive to alternatively derive the same results as above in the vector potential
gauge. The classical current is then

j = −e n

m

(
p+

e

c
A
)
, (13)

where the vector potential is time-dependent, but the dc limit is implicitly understood.
The Drude conductivity is

σDrude(ω) =
d j(ω)

dE(ω)
=

d j(ω)

dA(ω)

dA(ω)

dE(ω)
. (14)

Given that E(ω) = iωA(ω)/c, causal inversion yields

dA(ω)

dE(ω)
= − lim

η→0+

ic

ω + iη
= −c

[
πδ(ω) +

i

ω

]
. (15)

Since we are interested in the dc limit only, it will be enough to derive Eq. (13) with
respect to a static vector potential, hence

d j

dA
= −e2n

mc
, (16)

Re σDrude(ω) =
e2πn

m
δ(ω) : (17)

as expected, this is the same result as found above.

4 Quantum mechanics

The conductivity tensor in QM is defined via linear-response theory; its expression
belongs to the family of Kubo formulas, thoroughly discussed in the Lecture Notes.

In general longitudinal conductivity is a symmetric Cartesian tensor σαβ, and is the
sum of a regular term and a Drude (δ-like) term:

Re σαβ(ω) = Dαβ δ(ω) + σ
(regular)
αβ (ω). (18)
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The Drude term accounts for free acceleration, in analogy to the classical case.
Recalling our previous definition D = πe2(n/m)eff , linear-response theory provides
the QM expression for (n/m)eff . The Kubo formula for conductivity can be formally
written even for correlated systems, and even for finite temperature.

In order to deal with dc currents within Born-von-Kàrmàn periodic boundary
conditions it is mandatory to adopt the vector-potential gauge (no steady current
may flow in a bounded sample); ergo

σαβ(ω) =
∂jα(ω)

∂Eβ(ω)
=

∂jα(ω)

∂Aβ(ω)

dA(ω)

dE(ω)
= −c

∂jα(ω)

∂Aβ(ω)

[
πδ(ω) +

i

ω

]
, (19)

where the factor ∂jα(ω)/∂Eβ(ω) requires in general time-dependent perturbation
theory (i.e. a sum-over-states Kubo formula).

However, if we are interested in the dc response only, it will be enough to insert
into Eq. (19) the response of the many-electron system to a static vector potential A
(constant in space):

σ
(D)
αβ (ω) = −c

∂jα
∂Aβ

[
πδ(ω) +

i

ω

]
. (20)

The QM expression for Drude weight is then

Dαβ = −cπ
∂jα
∂Aβ

. (21)

In the special case of noninteracting electrons in a periodic (mean-field) potential we
define the α component of the electron velocity in the n-th band as

vnα(k) =
1

ℏ
∂εn(k)

∂kα
; (22)

the Drude weight can be cast as

Dαβ = − 2πe2

(2π)3

∑
n

∫
dk

∂fϵ
∂εn(k)

vnα(k)vnβ(k), (23)

where fϵ is the Fermi distribution function. At zero temperature D is a pure Fermi-
surface property, i.e. D depends only on the shape of the Fermi surface and on the
k-derivatives of the band structure εn(k) at the Fermi surface. Clearly, these are the
only ingredients which can account for free acceleration in a crystalline system.

Eq. (23) is derived at the semiclassical level in Chap. 13 of the Ashcroft-Mermin
textbook. We remind that a full QM approach requires dealing with the vector
potential, while the semiclassical approximation allows dealing with the field E: this
makes life easier. The general QM theory of the Drude weight can be found in the
Lecture Notes.
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It is a simple exercise to apply Eq. (23) to the simple case of noninteracting electrons
in zero potential (free electron gas), and at zero temperature. In this case we have:

fϵ = θ(ϵF − ϵ), ε(k) =
ℏ2

2m
k2; (24)

f
′

ϵ(k) = − δ(εF − ℏ2

2m
k2) = − m

ℏ2kF
δ(kF − k);

1

3
v2 =

ℏ2k2
F

3m2
. (25)

D = − 2πe2

(2π)3

(
− m

ℏ2kF

)
4πk2

F

ℏ2k2
F

3m2
= πe2

k3
F

3π2m
= πe2

n

m
. (26)

It is remarkable that for noninteracting electrons in zero potential we get precisely
(n/m)eff = n/m, i.e. the QM result coincides with the classical one, obtained by
Drude in 1900. In other words Schrödinger equation, Pauli principle, and Fermi-Dirac
statistics do not provide any correction to the original Drude result in this simple case.
The reasons why this happens are pretty clear from a figure in Kittel, reproduced here.
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