Theory of the insulating state: Part 2

Raffaele Resta

Trieste, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

1 The insulating state within PBCs

- λ^2 in band insulators
- Mott metal-insulator transition
- Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

- 3 Quantum geometry within OBCs
 - λ^2 in bounded samples
 - Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

- 2 Conductivity and Drude weight
- 3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

- 3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

Wannier functions, one dimension, single band

•
$$L \to \infty$$
, *q* continuous:

$$X_{\ell} = \ell a$$
 $|w_{\ell}
angle = rac{a}{2\pi} \int_{\mathrm{BZ}} dq \, \mathrm{e}^{iqX_{\ell}} \ket{\psi_{q}}$

• L = Ma finite, q_j discrete:

$$|w_{\ell}\rangle = rac{1}{M}\sum_{j=1}^{M}\mathrm{e}^{iq_{j}X_{\ell}}|\psi_{q_{j}}
angle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Caveat: Gauge arbitrariness in $|\psi_{q_i}\rangle$

Invariance of the many-body ground state

- So far, we have written $|\Psi_0\rangle$ an *N*-particle Slater determinant of Bloch orbitals.
- Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
- We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
 - The occupied manifold is the whole band: $|\Psi_0\rangle$ is invariant by such unitary transformation.
 - |Ψ₀⟩ can be equivalently written as an *N*-particle Slater determinant of Wannier orbitals.

What about the metallic case?

Invariance of the many-body ground state

- So far, we have written $|\Psi_0\rangle$ an N-particle Slater determinant of Bloch orbitals.
- Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
- We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
 - The occupied manifold is the whole band: $|\Psi_0\rangle \text{ is invariant by such unitary transformation.}$
 - $|\Psi_0\rangle$ can be **equivalently** written as an *N*-particle Slater determinant of Wannier orbitals.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What about the metallic case?

Invariance of the many-body ground state (cont'd)

Infinite $L \quad (M \to \infty)$

$$|w_{\ell}\rangle = rac{a}{2\pi}\int_{\mathrm{BZ}}dq\,\mathrm{e}^{iqX_{\ell}}\left|\psi_{q}
ight
angle$$

$$\int_{-\infty}^{\infty} dx \, |\langle x|w_{\ell}\rangle|^2 = 1 \qquad \text{finite!}$$

Invariance of the many-body ground state (cont'd)

Infinite $L \quad (M \to \infty)$

$$\ket{w_\ell} = rac{a}{2\pi} \int_{\mathrm{BZ}} dq \, \mathrm{e}^{iqX_\ell} \ket{\psi_q}$$

$$\int_{-\infty}^{\infty} dx \, |\langle x|w_{\ell}\rangle|^2 = 1 \qquad \text{finite!}$$

• With the **optimal** choice of the gauge:

 $|\langle x|w_{\ell}\rangle| \to 0$ exponentially for $x \to \pm \infty$ $\langle w_n|x^2|w_n\rangle - |\langle w_n|x|w_n\rangle|^2$ minimum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The minimum "quadratic spread" is equal to the RS λ^2
- The spread diverges in the metallic case.
- Caveat: In 3d there are some complications: Marzari-Vanderbilt MLWFs (1997).

• With the **optimal** choice of the gauge:

 $|\langle x|w_{\ell}\rangle|
ightarrow 0$ exponentially for $x
ightarrow \pm \infty$

 $\langle w_n | x^2 | w_n \rangle - | \langle w_n | x | w_n \rangle |^2$ minimum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The minimum "quadratic spread" is equal to the RS λ^2
- The spread diverges in the metallic case.
- Caveat: In 3d there are some complications: Marzari-Vanderbilt MLWFs (1997).

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
 ■ λ² in bounded samples
 ■ Model Anderson insulator in 1d

Anderson metal-insulator transition in 3d

Implementation: Mott transition in H_N chains Stella, Attaccalite, Sorella & Rubio, PRB 2011

localization length (tensor in 3d)

$$\lambda_N^2 = -\frac{1}{N} \left(\frac{L}{2\pi}\right)^2 \ln |\mathfrak{z}_N|^2$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Transition: \simeq 3.5 bohr

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

- 2 Conductivity and Drude weight
- 3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

Model 1*d* ionic crystal

$$\gamma = \operatorname{Im} \operatorname{In} \langle \Psi_0 | e^{i\frac{2\pi}{L} \left(\sum_{\ell} Z_{\ell} X_{\ell} - 2 \sum_j x_j \right)} | \Psi_0 \rangle = \pi \pmod{2\pi}$$

Z₂-odd:
$$P = e/2 \mod e$$

Tight-binding Hamiltonian:

$$H = \sum_{j} \left[(-1)^{j} \Delta |j\rangle \langle j| - t |j + 1\rangle \langle j| - t |j\rangle \langle j + 1| \right]$$

In second quantization notations:

$$H = \sum_{j} [(-1)^{j} \Delta c_{j}^{\dagger} c_{j} - t c_{j}^{\dagger} c_{j+1} - t c_{j+1}^{\dagger} c_{j}]$$

$$\epsilon(k) = \pm \sqrt{\Delta^2 + 4t^2 \cos^2 ka/2}$$

Model 1*d* ionic crystal

$$\gamma = \operatorname{Im} \operatorname{In} \langle \Psi_0 | e^{j\frac{2\pi}{L} \left(\sum_{\ell} Z_{\ell} X_{\ell} - 2 \sum_j x_j \right)} | \Psi_0 \rangle = \pi \pmod{2\pi}$$

Z₂-odd:
$$P = e/2 \mod e$$

Tight-binding Hamiltonian:

$$H = \sum_{j} \left[\left. (-1)^{j} \Delta \left| j \right\rangle \left\langle j \right| - t \left| j + 1 \right\rangle \left\langle j \right| - t \left| j \right\rangle \left\langle j + 1 \right| \right. \right]$$

In second quantization notations:

$$H = \sum_{j} [(-1)^{j} \Delta c_{j}^{\dagger} c_{j} - t c_{j}^{\dagger} c_{j+1} - t c_{j+1}^{\dagger} c_{j}]$$

$$\epsilon(k) = \pm \sqrt{\Delta^{2} + 4t^{2} \cos^{2} ka/2}$$

Model 1*d* ionic crystal

Band structure:

$$\epsilon(k)=\pm\sqrt{\Delta^2+4t^2\cos^2 ka/2}$$

- Insulator at half filling
- Density of states $\mathcal{D}(\epsilon)d\epsilon$: Red plot

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tight binding 1d binary crystal again

Introducing spin:

$$H = \sum_{j\sigma} \left[(-1)^{j} \Delta c_{j\sigma}^{\dagger} c_{j\sigma} - t (c_{j\sigma}^{\dagger} c_{j+1\sigma} + \text{H.c.}) \right]$$

Introducing Hubbard on-site repulsion:

$$H = \sum_{j\sigma} \left[(-1)^{j} \Delta c_{j\sigma}^{\dagger} c_{j\sigma} - t (c_{j\sigma}^{\dagger} c_{j+1\sigma} + \text{H.c.}) \right] + U \sum_{j} n_{j\uparrow} n_{j\downarrow}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monitoring the insulator-insulator transition

Plot of λ^2 at half filling:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Metallic only for a special U value
- On the left it is a band-like insulator
- On the right it is a **Mott-like insulator**
- What happens for t = 0?

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

- 3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

Longitudinal conductivity (zero T)

$$\begin{aligned} \sigma_{\alpha\beta}^{(+)}(\omega) &= \mathcal{D}_{\alpha\beta} \left[\delta(\omega) + \frac{i}{\pi\omega} \right] + \sigma_{\alpha\beta}^{(\text{regular})}(\omega) \\ &= \sigma_{\alpha\beta}^{(\text{Drude})}(\omega) + \sigma_{\alpha\beta}^{(\text{regular})}(\omega) \end{aligned}$$

- Both terms obtain from Kubo formulas (may include disorder & correlation, but not dissipation)
- The Drude weight D_{αβ} is actually a ground-state property: it measures the (inverse) inertia of the many-electron system in the adiabatic limit

$$D_{\alpha\beta} = 0 Re \ \sigma^{(regular)}_{\alpha\beta}(\omega) \text{ goes to zero for } \omega \to 0$$

Longitudinal conductivity (zero T)

$$\sigma_{\alpha\beta}^{(+)}(\omega) = \mathcal{D}_{\alpha\beta} \left[\delta(\omega) + \frac{i}{\pi\omega} \right] + \sigma_{\alpha\beta}^{(\text{regular})}(\omega)$$
$$= \sigma_{\alpha\beta}^{(\text{Drude})}(\omega) + \sigma_{\alpha\beta}^{(\text{regular})}(\omega)$$

- Both terms obtain from Kubo formulas (may include disorder & correlation, but not dissipation)
- The Drude weight D_{αβ} is actually a ground-state property: it measures the (inverse) inertia of the many-electron system in the adiabatic limit

The insulating state requires both:

$$\begin{array}{l} \bullet \ D_{\alpha\beta} = 0 \\ \bullet \ \mathsf{Re} \ \sigma^{(\mathrm{regular})}_{\alpha\beta}(\omega) \ \mathrm{goes} \ \mathrm{to} \ \mathrm{zero} \ \mathrm{for} \ \omega \to 0 \end{array}$$

Drude weight according to Kohn (1964)

Hamiltonian with a "flux" (a gauge transformation):

$$\hat{H}(\kappa) = rac{1}{2m}\sum_{i=1}^{N} |\mathbf{p}_i + \hbar\kappa|^2 + \widehat{\mathbf{V}}$$

- Thermodynamic limit after taking derivatives
- PBCs violate gauge invariance in the conventional sense: E_0 does depend on κ .
- Drude weight

$$D_{\alpha\beta} = \left. \frac{\pi e^2}{\hbar^2 L^d} \left. \frac{\partial^2 E_0(\boldsymbol{\kappa})}{\partial \kappa_\alpha \partial \kappa_\beta} \right|_{\boldsymbol{\kappa}=0}$$

Drude weight according to Kohn (1964)

Hamiltonian with a "flux" (a gauge transformation):

$$\hat{H}(\kappa) = rac{1}{2m}\sum_{i=1}^{N} |\mathbf{p}_i + \hbar\kappa|^2 + \widehat{\mathbf{V}}$$

- Thermodynamic limit after taking derivatives
- PBCs violate gauge invariance in the conventional sense: E_0 does depend on κ .
- Drude weight

$$D_{\alpha\beta} = \left. \frac{\pi e^2}{\hbar^2 L^d} \left. \frac{\partial^2 E_0(\boldsymbol{\kappa})}{\partial \kappa_\alpha \partial \kappa_\beta} \right|_{\boldsymbol{\kappa}=0}$$

Why RS discriminate insulators from metals

$$\hat{H}(\kappa) = \frac{1}{2m} \sum_{i=1}^{N} |\mathbf{p}_i + \hbar \kappa|^2 + \hat{\mathbf{V}}, \qquad \hat{\mathbf{r}} = \sum_{\mathbf{i}} \mathbf{r}_{\mathbf{i}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $|\tilde{\Psi}_0(\kappa)
angle = \mathrm{e}^{-i\kappa\cdot\hat{\mathbf{r}}}|\Psi_0(0)
angle$ obeys Schrödinger Eq.

It does not obey PBCs

Except for a commensurate κ₀
 Does |Ψ̃₀(κ₀)⟩ coincide with the genuine |Ψ₀(κ₀)⟩?
 Yes (modulo a phase) if D = 0
 No (it is orthogonal to it) if D ≠ 0

Why RS discriminate insulators from metals

$$\hat{H}(\kappa) = \frac{1}{2m} \sum_{i=1}^{N} |\mathbf{p}_i + \hbar \kappa|^2 + \hat{\mathbf{V}}, \qquad \hat{\mathbf{r}} = \sum_{\mathbf{i}} \mathbf{r}_{\mathbf{i}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

•
$$| ilde{\Psi}_0(m{\kappa})
angle = {
m e}^{-im{\kappa}\cdot\hat{m{r}}}|\Psi_0(0)
angle$$
 obeys Schrödinger Eq.

- It does not obey PBCs
- Except for a commensurate κ_0
- Does $|\tilde{\Psi}_0(\kappa_0)\rangle$ coincide with the genuine $|\Psi_0(\kappa_0)\rangle$?
 - Yes (modulo a phase) if D = 0
 - **No** (it is orthogonal to it) if $D \neq 0$

$$\begin{array}{lll} \langle \tilde{\Psi}_0(\boldsymbol{\kappa}_0) | \Psi_0(\boldsymbol{\kappa}_0) \rangle & = & \langle \Psi_0(0) | \operatorname{e}^{i \boldsymbol{\kappa}_0 \cdot \hat{\mathbf{r}}} | \Psi_0(\boldsymbol{\kappa}_0) \rangle = 0, \quad D \neq 0 \\ \langle \tilde{\Psi}_0(\boldsymbol{\kappa}_0) | \Psi_0(\boldsymbol{\kappa}_0) \rangle & = & \langle \Psi_0(0) | \operatorname{e}^{i \boldsymbol{\kappa}_0 \cdot \hat{\mathbf{r}}} | \Psi_0(\boldsymbol{\kappa}_0) \rangle = \operatorname{e}^{i \gamma}, \quad D = 0 \end{array}$$

To lowest order in 1/*L*:

$$\begin{aligned} |\mathfrak{z}_{N}| &= |\langle \Psi_{0}(0)| e^{i\mathcal{K}_{0}\cdot\hat{\mathfrak{r}}} |\Psi_{0}(0)\rangle| \simeq 0, \quad D \neq 0 \\ |\mathfrak{z}_{N}| &= |\langle \Psi_{0}(0)| e^{i\mathcal{K}_{0}\cdot\hat{\mathfrak{r}}} |\Psi_{0}(0)\rangle| \simeq 1, \quad D = 0 \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{split} &\langle \tilde{\Psi}_0(\boldsymbol{\kappa}_0) | \Psi_0(\boldsymbol{\kappa}_0) \rangle &= \langle \Psi_0(0) | e^{i\boldsymbol{\kappa}_0 \cdot \hat{\mathbf{r}}} | \Psi_0(\boldsymbol{\kappa}_0) \rangle = 0, \quad D \neq 0 \\ &\langle \tilde{\Psi}_0(\boldsymbol{\kappa}_0) | \Psi_0(\boldsymbol{\kappa}_0) \rangle &= \langle \Psi_0(0) | e^{i\boldsymbol{\kappa}_0 \cdot \hat{\mathbf{r}}} | \Psi_0(\boldsymbol{\kappa}_0) \rangle = e^{i\gamma}, \quad D = 0 \end{split}$$

To lowest order in 1/L:

$$\begin{aligned} |_{\mathbf{3N}}| &= |\langle \Psi_0(0)| \, \mathrm{e}^{i\boldsymbol{\mathcal{K}}_0\cdot \hat{\mathbf{r}}} |\Psi_0(0)\rangle | \simeq 0, \quad D \neq 0 \\ |_{\mathbf{3N}}| &= |\langle \Psi_0(0)| \, \mathrm{e}^{i\boldsymbol{\mathcal{K}}_0\cdot \hat{\mathbf{r}}} |\Psi_0(0)\rangle | \simeq 1, \quad D = 0 \end{aligned}$$

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 Anderson metal-insulator transition in 3d

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

2 Conductivity and Drude weight

- 3 Quantum geometry within OBCs
 λ² in bounded samples
 - Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

Same Hamiltonian with a "flux", but now within OBCs:

$$\hat{H}(\kappa) = rac{1}{2m}\sum_{i=1}^{N} |\mathbf{p}_i + \hbar\kappa|^2 + \widehat{\mathbf{V}}$$

Within OBCs:

- The operator r̂ = ∑_i r_i is well defined
 |Ψ̃₀(κ)⟩ = e^{-iκ·î}|Ψ₀(0)⟩ obeys Schrödinger Eq.
- It also obeys OBCs

• Ergo $e^{-i\kappa\cdot\hat{\mathbf{r}}}|\Psi_0(0)\rangle$ is the ground eigenstate of $\hat{H}(\kappa)$ with eigenvalue $E_0(0)$, κ -independent:

$$|\partial_{\kappa_{\alpha}}\Psi_{0}(0)\rangle = i\,\hat{r}_{\alpha}|\Psi_{0}(0)\rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Same Hamiltonian with a "flux", but now within OBCs:

$$\hat{H}(\kappa) = rac{1}{2m}\sum_{i=1}^{N} |\mathbf{p}_i + \hbar\kappa|^2 + \widehat{\mathbf{V}}$$

Within OBCs:

- The operator \$\hfrac{r}{r} = \sum_i r_i\$ is well defined
 \$|\tilde{\Psi}_0(\kappa)\rangle = e^{-i\kappa \cdot \hat{r}} | \Psi_0(0) \rangle\$ obeys Schrödinger Eq.
 It also obeys OBCs
- Ergo $e^{-i\kappa\cdot\hat{\mathbf{r}}}|\Psi_0(0)\rangle$ is the ground eigenstate of $\hat{H}(\kappa)$ with eigenvalue $E_0(0)$, κ -independent:

$$|\partial_{\kappa_{\alpha}}\Psi_{0}(0)\rangle = i\,\hat{r}_{\alpha}|\Psi_{0}(0)\rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Many-body quantum metric within OBCs

• Quantum metric tensor (derivatives taken at $\kappa = 0$))

$$ilde{g}_{lphaeta} = rac{1}{N} (\operatorname{\mathsf{Re}} \langle \partial_{\kappa_{lpha}} \Psi_0 | \partial_{\kappa_{eta}} \Psi_0
angle - \langle \partial_{\kappa_{lpha}} \Psi_0 | \Psi_0
angle \langle \Psi_0 | \partial_{\kappa_{eta}} \Psi_0
angle)$$

 Intensive ground state property, gauge-invariant (dimensions: squared length)

Basic tenet of the modern theory: The OBCs metric $\tilde{g}_{\alpha\beta}$ in the thermodynamic limit

- Diverges in all metals
- Converges in all insulators
- In the isotropic case \tilde{g}_{xx} converges to λ^2 .

Many-body quantum metric within OBCs

$$\begin{split} \tilde{g}_{\alpha\beta} &= \frac{1}{N} \big(\operatorname{Re} \left\langle \partial_{\kappa_{\alpha}} \Psi_{0} | \partial_{\kappa_{\beta}} \Psi_{0} \right\rangle - \left\langle \partial_{\kappa_{\alpha}} \Psi_{0} | \Psi_{0} \right\rangle \left\langle \Psi_{0} | \partial_{\kappa_{\beta}} \Psi_{0} \right\rangle \big) \\ &= \frac{1}{N} \big(\left\langle \Psi_{0} | \hat{r}_{\alpha} \hat{r}_{\beta} \Psi_{0} \right\rangle - \left\langle \Psi_{0} | \hat{r}_{\alpha} | \Psi_{0} \right\rangle \left\langle \Psi_{0} | \hat{r}_{\beta} \Psi_{0} \right\rangle \big) \\ &= \frac{1}{2N} \int d\mathbf{r} d\mathbf{r}' \, (\mathbf{r} - \mathbf{r}')_{\alpha} (\mathbf{r} - \mathbf{r}')_{\beta} [n(\mathbf{r})n(\mathbf{r}') - n^{(2)}(\mathbf{r}, \mathbf{r}')] \end{split}$$

■ Exchange-correlation hole (integrates to -1):

$$n_{xc}(\mathbf{r},\mathbf{r}')=n^{(2)}(\mathbf{r},\mathbf{r}')-n(\mathbf{r})n(\mathbf{r}')$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\tilde{g}_{\alpha\beta}$ is the second moment of the XC hole, averaged over the sample

Isotropic system in dimension d:

$$\tilde{g}_{xx} = \lambda^2 = \frac{1}{2Nd} \int d\mathbf{r} d\mathbf{r}' |\mathbf{r} - \mathbf{r}'|^2 [n(\mathbf{r})n(\mathbf{r}') - n^{(2)}(\mathbf{r}, \mathbf{r}')]$$

Independent electrons: $n^{(2)}(\mathbf{r}, \mathbf{r}')$ is a function of $\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle$:

$$n(\mathbf{r})n(\mathbf{r}') - n^{(2)}(\mathbf{r}, \mathbf{r}') = 2 |\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle|^2 \qquad \text{(spinful)} \\ = |\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle|^2 \qquad \text{(spinless)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Isotropic system in dimension d:

$$\tilde{g}_{xx} = \lambda^2 = \frac{1}{2Nd} \int d\mathbf{r} d\mathbf{r}' |\mathbf{r} - \mathbf{r}'|^2 [n(\mathbf{r})n(\mathbf{r}') - n^{(2)}(\mathbf{r}, \mathbf{r}')]$$

• Independent electrons: $n^{(2)}(\mathbf{r}, \mathbf{r}')$ is a function of $\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle$:

$$n(\mathbf{r})n(\mathbf{r}') - n^{(2)}(\mathbf{r},\mathbf{r}') = 2 |\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle|^2 \quad \text{(spinful)} \\ = |\langle \mathbf{r} | \mathcal{P} | \mathbf{r}' \rangle|^2 \quad \text{(spinless)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

- 2 Conductivity and Drude weight
- 3 Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

Tight binding 1d binary crystal

$$H = \sum_{j} (\left. \epsilon_{j} \left. \left| j
ight
angle \langle j
ight| - t \left| j + 1
ight
angle \langle j
ight| - t \left| j
angle \langle j + 1
ight|)$$

Diagonal disorder: t fixed, $\epsilon_b - \epsilon_a = 2\Delta$ fixed

Random choice with equal probability, average over many replicas.

Density of states

At half filling both (crystalline and disordered) are insulating

 At any other filling the crystalline is conducting and the disordered is insulating.

• What about \tilde{g} (a.k.a. λ^2)?

Density of states

At half filling both (crystalline and disordered) are insulating

- At any other filling the crystalline is conducting and the disordered is insulating.
- What about \tilde{g} (a.k.a. λ^2)?

Results of the simulations (5000 sites, 1000 replicas, 1/2 & 1/4 filling)

$$\tilde{g} = \frac{1}{2N} \int dx dx' \ (x - x')^2 |\langle x| \mathcal{P} | x' \rangle^2 = \frac{a^2}{2N} \sum_{\ell, \ell'=1}^N P_{\ell\ell'}^2 (\ell - \ell')^2$$

- In the crystalline case \tilde{g} converges to a finite limit for 1/2 filling, diverges for 1/4 (as expected).
- In the disordered case g̃ always converge (to a very similar value for the two cases).
- The disordered case g̃ is about 20 times larger than the crystalline one. Why?
- The insulating mechanism (band vs. Anderson) is quite different, despite the very similar Hamiltonian.

The insulating state within PBCs λ² in band insulators Mott metal-insulator transition Insulator-insulator transition (Mott-like)

- 2 Conductivity and Drude weight
- Quantum geometry within OBCs
 λ² in bounded samples
 Model Anderson insulator in 1d
 - Anderson metal-insulator transition in 3d

- Need a 3d system to observe the M-I transition
- A standard 3d tight-binding Hamiltonian is known from previous literature to undergo the transition at $W_c = 8.25$ (*W* is the amount of tunable disorder, in appropriate units)
- In our (and others') simulations:
 - Computational samples are long rods of square section
 - Results are averaged over several disorder realizations
- The novelty here: use our marker to detect the transition in the ground state

Anderson transition as a ground-state property T. Olsen, R. Resta, and I. Souza, Phys. Rev. B **95**, 045109 (2017)

Localization length $\lambda = \sqrt{\tilde{g}_{\alpha\alpha}}$ as a function of rod length *L* (average over 100 disorder realizations)

A smarter way to estimate W_c (by Thomas Olsen)

Our best estimate: $W_c = 8.5$ We are probing "the organization" of the electrons in their **ground state**

Summary

Phenomenology:

- Insulators differ from conductors in their dc conductivity;
- But also: insulators and metals polarize in a different way.
- Kohn's (1964) vision:
 - Even before any probe is applied to the system, the ground-state organization of the electrons is different in insulators and metals (localized vs. delocalized)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Quantitative sampling of Kohn's localization:
 - Resta-Sorella within PBCs
 - Relationship to Drude weight & conductivity
 - Quantum metric within OBCs