
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theory of the insulating state: Part 1

Raffaele Resta

Trieste, 2020
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Outline

1 Early history
The textbook viewpoint
What textbooks (usually) do not say

2 Kohn’s “Theory of the insulating state” (1964)

3 Modern theory of polarization (1992 onwards)
The single-point Berry phase (1998)
Polarization in a band insulator

4 The insulating state according to Resta & Sorella (1999)
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Before quantum mechanics
(Discovery of the electron: J.J. Thomson 1897)

Insulator (Lorentz, 1906)

Metals (Drude, 1900)
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Under the action of a field

Electrons do not flow freely
(they polarize instead)

Electrons flow freely
(hindered by scattering)
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Soon after quantum mechanics
(Bloch 1928, Wilson 1931)
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2 Kohn’s “Theory of the insulating state” (1964)

3 Modern theory of polarization (1992 onwards)
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Polarization in a band insulator

4 The insulating state according to Resta & Sorella (1999)
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A more general theory is needed: why?

Bloch theorem applies to noninteracting electrons in a
periodic crystalline potential.
“Noninteracting” means that the Bloch theorem applies to a
mean-field theory.

Some insulators are obviously noncrystalline
(i.e. liquid or amorphous).
In some crystalline materials the electron-electron interaction
must be dealt with explicitly
(i.e beyond mean-field theory).
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“Exotic” insulators

In some materials, the insulating character is dominated by
disorder: Anderson insulators.
In some materials, the insulating character is dominated by
electron-electron interaction: Mott insulators.
Other kinds of exotic insulators exist.
Example: a two-dimensional electron fluid in the
quantum-Hall regime.
The nonexotic textbook insulators will be called in the
following band insulators.
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Exotic insulators first discovered by theoreticians
(late 1950s)
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A very ambitious title indeed!
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Which property characterizes all insulators?
(band insulators & exotic insulators)

Kohn’s revolutionary message (1):
The insulating behavior reflects a certain type of organization
of the electrons in their ground state.
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Property of the ground state or of the excitations?
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Kohn’s revolutionary message (2):
Insulating characteristics are a strict consequence of
electronic localization (in an appropriate sense) and do not
require an energy gap.
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Kohn’s theory vindicates classical physics:
Electrons localized/delocalized in insulators/metals
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Which “appropriate sense”?
(Simple example: a band insulator)

What Kohn did not provide:
A “marker” for the insulating/metallic state of matter
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Outline

1 Early history
The textbook viewpoint
What textbooks (usually) do not say

2 Kohn’s “Theory of the insulating state” (1964)

3 Modern theory of polarization (1992 onwards)
The single-point Berry phase (1998)
Polarization in a band insulator

4 The insulating state according to Resta & Sorella (1999)
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Center of charge

According e.g. to Kittel textbook P is nonzero when
“....the center of positive charge does not coincide with the center
of negative charge”

N spinless electrons in a segment of lenght L:

Ψ0 = Ψ0(x1, x2, . . . xj, . . . xN),

Periodic boundary conditions:

Ψ0 = Ψ0(x1, x2, . . . xj, . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN)

Nuclei of charge eZℓ at sites Xℓ

Centers of positive & negative charge:∑
ℓ

ZℓXℓ − 2 ⟨Ψ0|
∑

j
xj |Ψ0⟩
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“....the center of positive charge does not coincide with the center
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N spinless electrons in a segment of lenght L:
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Periodic boundary conditions:
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Center of charge, much better

Within PBCs coordinates are actually angles
The two “centers” must be defined modulo L
Their difference must be origin-invariant∑

ℓ

ZℓXℓ − 2 ⟨Ψ0|
∑

j
xj |Ψ0⟩

−→ L
2π Im ln ei 2π

L
∑

ℓ ZℓXℓ +
2L
2π Im ln ⟨Ψ0|e−i 2π

L
∑

j xj |Ψ0⟩
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Single-point Berry phase

Polarization, including disordered & correlated insulators:

Px =
e

2π Im ln ⟨Ψ0|ei 2π
L (

∑
ℓ ZℓXℓ−2

∑
j xj)|Ψ0⟩ = e γ2π

γ is a Berry phase in disguise

How can one prove that the formula really yields polarization?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

1 Early history
The textbook viewpoint
What textbooks (usually) do not say

2 Kohn’s “Theory of the insulating state” (1964)

3 Modern theory of polarization (1992 onwards)
The single-point Berry phase (1998)
Polarization in a band insulator

4 The insulating state according to Resta & Sorella (1999)
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M)
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Electronic term when |Ψ0⟩ is a Slater determinant

zN = ⟨Ψ0| exp

i2πL

N∑
j=1

xj

 |Ψ0⟩ = ⟨Ψ0|Ψ̃0⟩

Even |Ψ̃0⟩ is a Slater determinant

Theorem: ⟨Ψ0|Ψ̃0⟩ = det S

Single band case:

S(qj, qj′) = ⟨ψqj |ψ̃qj′ ⟩ =
∫ L

0
dx ψ∗

qj(x)e
i 2π

L xψqj′ (x).
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The connection matrix is very sparse in the band case

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0


The matrix element vanishes unless qj′ = qj − 2π/L,
that is ′ = j−1: the determinant factors.

zN = det S =
N∏

j=1
S(qj, qj−1)
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King-Smith & Vanderbilt Berry phase

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0


Insulating case: Discretization of King-Smith & Vanderbilt γ

γ = i
∫

BZ
dk ⟨ψk|

d
dkψk⟩ = lim

N→∞
Im ln

M∏
j=1

S(qj, qj−1) = lim
N→∞

Im ln zN
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Outline

1 Early history
The textbook viewpoint
What textbooks (usually) do not say

2 Kohn’s “Theory of the insulating state” (1964)

3 Modern theory of polarization (1992 onwards)
The single-point Berry phase (1998)
Polarization in a band insulator

4 The insulating state according to Resta & Sorella (1999)
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What is the relationship between polarization
and the insulating state?

Phenomenologically:
Metal: Has a nonzero dc conductivity
Insulator: Has a zero dc conductivity
(at zero temperature)

But also
Metal: Macroscopic electrical polarization is trivial:
It is not a bulk effect.
Insulator: Macroscopic polarization is nontrivial:
It is a bulk effect, material dependent.
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Under the action of a dc electrical field

Insulator: Electrons do not flow freely
(they polarize instead)
Metal: Electrons flow freely over macroscopic distances
(hindered by scattering)
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The relationship between localization and polarization

VOLUME 82, NUMBER 2 PHY S I CA L REV I EW LE T T ER S 11 JANUARY 1999

Electron Localization in the Insulating State

Raffaele Resta
Istituto Nazionale di Fisica della Materia (INFM), Strada Costiera 11, I-34014 Trieste, Italy

and Dipartimento di Fisica Teorica, Università di Trieste, I-34014 Trieste, Italy

Sandro Sorella
Istituto Nazionale di Fisica della Materia (INFM), Via Beirut 4, I-34014 Trieste, Italy

and Scuola Internazionale Superiore di Studı̂ Avanzati (SISSA), Via Beirut 4, 34014, Trieste Italy
(Received 11 August 1998)

The insulating state of matter is characterized by the excitation spectrum, but also by qualitative
features of the electronic ground state. The insulating ground wave function in fact (i) sustains
macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept
and we show how the two basic features stem from essentially the same formalism. Our approach
to localization is exemplified by means of a two-band Hubbard model in one dimension. In the
noninteracting limit, the wave function localization is measured by the spread of the Wannier orbitals.
[S0031-9007(98)08159-9]

PACS numbers: 71.10.Fd, 71.23.An

In a milestone paper that appeared in 1964 [1],
W. Kohn investigated the very basic features which
discriminate between an insulator and a metal: he gave
evidence that localization of the electronic ground wave
function implies zero dc conductivity, and therefore char-
acterizes the insulating state. In this Letter, we provide a
definition of localization which is deeply rooted into the
modern theory of polarization [2–5], and rather different
from Kohn’s. Indeed, besides zero dc conductivity,
the property which obviously discriminates between
insulators and metals is dielectric polarization: whenever
the bulk symmetry is low enough, an insulator displays
nontrivial static polarization. Here, we show that the
whole information needed for describing both localization
and polarization is embedded into the same many-body
expectation value, namely, the complex number z

N

de-
fined in Eq. (10) below. It was previously shown [5] that
macroscopic polarization is essentially the phase of z

N

:
here we show that the modulus of z

N

yields a definition of
localization length which is sharper and more meaningful
than the available ones. In our formalism a vanishing z

N

implies a delocalized wave function and an ill-defined
polarization: this characterizes the metallic state. Our
definition is first demonstrated for a one-dimensional
crystalline system of independent electrons, in which case
our localization length coincides (for insulators) with the
spread of the Wannier orbitals. We then study a two-band
Hubbard model undergoing a Mott-like transition: both
in the band regime (below the transition) and in the
highly correlated regime (above the transition) the wave
function turns out to be localized, while the localization
length diverges at the transition point, thus indicating a
metallic ground state. Our approach to localization in
a many-electron system sharply discriminates between a
conducting and nonconducting ground state, yet avoids
any reference to the excitation spectrum.

Let us start with a single one-dimensional electron:
the distinction between localized (bound) and delocalized
(scattering) states is a clearcut one when the usual
boundary conditions are adopted; much less so when
periodic Born–von Kàrmàn boundary conditions (BvK)
are adopted, implying a ring topology for the one-
dimensional system. Within the latter choice—which
is almost mandatory in condensed matter physics—all
states appear in a sense as “delocalized” since all wave
functions csxd are periodic over the BvK period: csx 1
Ld ≠ csxd. We show that the key parameter to study
localization of an electronic state within BvK is the
dimensionless complex number z, defined as

z ≠
Z L

0

dx e

is2pyLdxjcsxdj2, (1)

whose modulus is no larger than 1. In the case of extreme
delocalization, one has jcsxdj2 ≠ 1yL and z ≠ 0, while
in the case of extreme localization,

jcsxdj2 ≠
X̀

m≠2`

dsx 2 x

0

2 mLd , (2)

and we get z ≠ e

is2pyLdx
0 . In the most general case, de-

picted in Fig. 1, the electron density jcsxdj2 can always
be written as a superposition of a function n

loc

, normal-
ized over s2`, `d, and of its periodic replicas:

jcsxdj2 ≠
X̀

m≠2`

n

loc

sx 2 x

0

2 mLd . (3)

Both x

0

and n

loc

sxd have a large arbitrariness: we restrict
it a little bit by imposing that x

0

is the center of the
distribution, in the sense that

R`
2` dx xn

loc

sxd ≠ 0.
Using Eq. (3), z can be expressed in terms of the

Fourier transform of n

loc

as

z ≠ e

is2pyLdx
0

ñ

loc

µ
2

2p

L

∂
. (4)

370 0031-9007y99y82(2)y370(4)$15.00 © 1999 The American Physical Society

Macroscopic polarization and electron localization in the
insulating state stem from the same formalism
They are two aspects of the same phenomenon
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A marker for the insulating state of matter

Electronic term in polarization

P(el) =
e

2π Im log lim
N→∞

zN

It is imposible to define polarization whenever

lim
N→∞

zN = 0

all insulators: lim
N→∞

|zN| = 1 all metals: lim
N→∞

zN = 0
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RS localization length

λ2 = − lim
N→∞

1
N

(
L

2π

)2
ln |zN|2

λ is finite in all insulators
λ diverges in all metals

Very general: all kinds of insulators:
Correlated insulator
Independent electrons, crystalline
a.k.a. “band insulator”
Independent electrons, disordered
Quantum Hall insulator (not shown here)
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Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing:
14 Bloch vectors in the Brillouin zone.
14 occupied orbitals in the insulating state (N = M),
7 occupied orbitals in the metallic state (N = M/2).
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Crystalline system of independent electrons
Before the thermodynamic limit: N and L finite

|Ψ0⟩ is written as a determinant of occupied Bloch orbitals, in
both the insulating and the metallic case.

Key difference:
The whole band is used to build the insulating |Ψ0⟩, while
only one half of the band is used for the metallic |Ψ0⟩.
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Insulators vs. metal

S =



0 0 0 0 0 0 0 ■
■ 0 0 0 0 0 0 0
0 ■ 0 0 0 0 0 0
0 0 ■ 0 0 0 0 0
0 0 0 ■ 0 0 0 0
0 0 0 0 ■ 0 0 0
0 0 0 0 0 ■ 0 0
0 0 0 0 0 0 ■ 0



Zero determinant in the metallic case!
In a band metal λ2 = ∞ even at finite N
What is the meaning of λ2 for a band insulator?
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