Fundamentals of dc conductivity:
 Longitudinal and transverse

Raffaele Resta

Trieste, 2023

Linear conductivity

$$
\sigma_{\alpha \beta}(\omega)=\frac{\partial \dot{j}_{\alpha}(\omega)}{\partial \mathcal{E}_{\beta}(\omega)}
$$

■ The conductivity tensor $\sigma_{\alpha \beta}(\omega)$ is partitioned into its symmetric and antisymmetric components:

$$
\begin{aligned}
j_{\alpha}(\omega) & =\sigma_{\alpha \beta}^{(+)}(\omega) \mathcal{E}_{\beta}(\omega) & & \text { longitudinal } \\
j_{\alpha}(\omega) & =\sigma_{\alpha \beta}^{(-)}(\omega) \mathcal{E}_{\beta}(\omega) & & \text { Hall (transverse) }
\end{aligned}
$$

■ Focus here on dc conductivity:

$$
\operatorname{Re} \sigma_{\alpha \beta}(\omega) \text { at } \omega=0
$$

Linear conductivity

$$
\sigma_{\alpha \beta}(\omega)=\frac{\partial \dot{j}_{\alpha}(\omega)}{\partial \mathcal{E}_{\beta}(\omega)}
$$

■ The conductivity tensor $\sigma_{\alpha \beta}(\omega)$ is partitioned into its symmetric and antisymmetric components:

$$
\begin{array}{lll}
j_{\alpha}(\omega)=\sigma_{\alpha \beta}^{(+)}(\omega) \mathcal{E}_{\beta}(\omega) & & \text { longitudinal } \\
j_{\alpha}(\omega)=\sigma_{\alpha \beta}^{(-)}(\omega) \mathcal{E}_{\beta}(\omega) & & \text { Hall (transverse) }
\end{array}
$$

- Focus here on dc conductivity:

$$
\operatorname{Re} \sigma_{\alpha \beta}(\omega) \text { at } \omega=0
$$

$\square \operatorname{Re} \sigma_{\alpha \beta}^{(\pm)}(\omega)$ related to $\operatorname{Im} \sigma_{\alpha \beta}^{(\pm)}(\omega) \quad$ (Kramers-Kronig)

Motivation

■ Linear Hall conductivity requires breaking of T-symmetry:
■ Normal: T-symmetry broken by an applied B field

- Anomalous: T-symmetry spontaneously broken (e.g. in ferromagnets)

■ T-symmetry does not forbid nonlinear Hall conductivity:
I. Sodemann \& L. Fu,

Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett. 2015

- Everything you always wanted to know about dc conductivity (but were afraid to ask): Theory of longitudinal and transverse nonlinear dc conductivity, Phys. Rev. Research 4, 033002 (2022)

Motivation

■ Linear Hall conductivity requires breaking of T-symmetry:
■ Normal: T-symmetry broken by an applied B field

- Anomalous: T-symmetry spontaneously broken (e.g. in ferromagnets)

■ T-symmetry does not forbid nonlinear Hall conductivity:
I. Sodemann \& L. Fu,

Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett. 2015

■ Everything you always wanted to know about dc conductivity (but were afraid to ask):
Theory of longitudinal and transverse nonlinear dc conductivity, Phys. Rev. Research 4, 033002 (2022)

Outline

1 Longitudinal conductivity, linear

- Classical theory
- Quantum theory
- Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Outline

1 Longitudinal conductivity, linear

- Classical theory
- Quantum theory

■ Boundary conditions
2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Outline

1 Longitudinal conductivity, linear

- Classical theory
- Quantum theory
- Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear de conductivity
4 Anomalous Hall conductivity (linear)
5. Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number

Classical Drude theory
 P. Drude, Annalen der Physik. 306, 566 (1900)

■ From Ashcroft-Mermin, Chapter 1: (dissipation enters the EOM directly via a relaxation time τ)

$$
\begin{aligned}
\sigma_{\text {Drude }}(\omega) & =\frac{i e^{2}}{\omega+i / \tau}\left(\frac{n}{m}\right), \quad \frac{n}{m}=\frac{\text { electron density }}{\text { electron mass }} \\
\sigma_{\text {Drude }}(0) & =\tau e^{2}\left(\frac{n}{m}\right) \quad \text { Ohm's law }
\end{aligned}
$$

- In the nondissipative $\tau \rightarrow \infty$ limit:

- Real and imaginary parts related by Kramers-Kronig

Classical Drude theory
 P. Drude, Annalen der Physik. 306, 566 (1900)

■ From Ashcroft-Mermin, Chapter 1: (dissipation enters the EOM directly via a relaxation time τ)

$$
\begin{aligned}
\sigma_{\text {Drude }}(\omega) & =\frac{i e^{2}}{\omega+i / \tau}\left(\frac{n}{m}\right), \quad \frac{n}{m}=\frac{\text { electron density }}{\text { electron mass }} \\
\sigma_{\text {Drude }}(0) & =\tau e^{2}\left(\frac{n}{m}\right) \quad \text { Ohm's law }
\end{aligned}
$$

■ In the nondissipative $\tau \rightarrow \infty$ limit:

$$
\sigma_{\text {Drude }}(\omega)=D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\text {classical }}=\pi e^{2} \frac{n}{m}
$$

■ Real and imaginary parts related by Kramers-Kronig

Why is Drude theory still alive after 122 years?
 P. Drude, Annalen der Physik. 306, 566 (1900)

$$
\sigma_{\text {Drude }}(\omega)=D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\text {classical }}=\pi e^{2} \frac{n}{m}
$$

■ In a macroscopic field \mathcal{E} the electrons undergo free-acceleration

- Classical case:

■ The electronic inverse inertia is measured by $D_{\text {classical }}$

- QM case:
- The inverse inertia of the many-electron system is measured by a tensor D_{c}
Drude weight a.k.a. charge sfiffness
- Interacting electron gas in a flat potential:
- In a crystalline potential D

Why is Drude theory still alive after 122 years?
 P. Drude, Annalen der Physik. 306, 566 (1900)

$$
\sigma_{\text {Drude }}(\omega)=D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\text {classical }}=\pi e^{2} \frac{n}{m}
$$

■ In a macroscopic field \mathcal{E} the electrons undergo free-acceleration
■ Classical case:

- The electronic inverse inertia is measured by $D_{\text {classical }}$

■ QM case:

- The inverse inertia of the many-electron system is measured by a tensor $D_{\alpha \beta}$:

Drude weight a.k.a. charge sfiffness

- Interacting electron gas in a flat potential:
$D_{\alpha \beta}=D_{\text {classical }} \delta_{\alpha \beta}$
- In a crystalline potential $D_{\alpha \beta} \neq D_{\text {classical }} \delta_{\alpha \beta}$

Why is Drude theory still alive after 122 years?
 P. Drude, Annalen der Physik. 306, 566 (1900)

$$
\sigma_{\text {Drude }}(\omega)=D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\text {classical }}=\pi e^{2} \frac{n}{m}
$$

■ In a macroscopic field \mathcal{E} the electrons undergo free-acceleration
■ Classical case:
■ The electronic inverse inertia is measured by $D_{\text {classical }}$
■ QM case:

- The inverse inertia of the many-electron system is measured by a tensor $D_{\alpha \beta}$:

Drude weight a.k.a. charge sfiffness

- Interacting electron gas in a flat potential:
$D_{\alpha \beta}=D_{\text {classical }} \delta_{\alpha \beta}$
■ In a crystalline potential $D_{\alpha \beta} \neq D_{\text {classical }} \delta_{\alpha \beta}$

A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:

$$
\mathcal{E}(t)=-\frac{1}{c} \frac{d A(t)}{d t}
$$

■ Free-electron Hamiltonian:

$$
H=\frac{1}{2 m}\left[p+\frac{e}{c} A(t)\right]^{2}
$$

- Velocity:

$$
v(t)=\frac{1}{m}\left[p+\frac{e}{c} A(t)\right]
$$

■ Current density:

$$
j(t)=-\frac{e n}{m}\left[p+\frac{e}{c} A(t)\right]
$$

A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:

$$
\mathcal{E}(t)=-\frac{1}{c} \frac{d A(t)}{d t}
$$

■ Free-electron Hamiltonian:

$$
H=\frac{1}{2 m}\left[p+\frac{e}{c} A(t)\right]^{2}
$$

■ Velocity:

$$
v(t)=\frac{1}{m}\left[p+\frac{e}{c} A(t)\right]
$$

■ Current density: zero current in zero field

$$
\begin{gathered}
j(t)=-\frac{e n}{m}\left[-\frac{e}{c} A(t)\right] \quad \Longrightarrow \quad-\frac{e^{2} n}{m c} A(t) \\
j(\omega)=-\frac{e^{2} n}{m c} A(\omega)=-\frac{D_{\text {classical }}}{\pi c} A(\omega)
\end{gathered}
$$

A simple exercise: classical Drude formula in 1d

- Conductivity:

$$
\sigma_{\text {Drude }}(\omega)=\frac{d j(\omega)}{d \mathcal{E}(\omega)}=\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\frac{D_{\text {classical }}}{\pi c} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

- $A(\omega)$ in function of $\mathcal{E}(\omega)$:

Naive inversion:

- Constant fixed by causality:

A simple exercise: classical Drude formula in 1d

- Conductivity:

$$
\sigma_{\text {Drude }}(\omega)=\frac{d j(\omega)}{d \mathcal{E}(\omega)}=\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\frac{D_{\text {classical }}}{\pi c} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

- $A(\omega)$ in function of $\mathcal{E}(\omega)$:

Naive inversion:

- Constant fixed by causality:

A simple exercise: classical Drude formula in 1d

- Conductivity:

$$
\sigma_{\text {Drude }}(\omega)=\frac{d j(\omega)}{d \mathcal{E}(\omega)}=\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\frac{D_{\text {classical }}}{\pi c} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

- $A(\omega)$ in function of $\mathcal{E}(\omega)$:

$$
\mathcal{E}(t)=-\frac{1}{c} \frac{d A(t)}{d t} \quad \Rightarrow \quad \mathcal{E}(\omega)=i \omega A(\omega) / c
$$

Naive inversion:

$$
A(\omega)=-\frac{i c}{\omega} \mathcal{E}(\omega) \quad ? ? ? ?
$$

Wrong! The inversion is

- Constant fixed by causality:

A simple exercise: classical Drude formula in 1d

- Conductivity:

$$
\sigma_{\text {Drude }}(\omega)=\frac{d j(\omega)}{d \mathcal{E}(\omega)}=\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\frac{D_{\text {classical }}}{\pi c} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

- $A(\omega)$ in function of $\mathcal{E}(\omega)$:

$$
\mathcal{E}(t)=-\frac{1}{c} \frac{d A(t)}{d t} \quad \Rightarrow \quad \mathcal{E}(\omega)=i \omega A(\omega) / c
$$

Naive inversion: $\quad A(\omega)=-\frac{i c}{\omega} \mathcal{E}(\omega)$
Wrong! The inversion is $\quad A(\omega)=-c\left(\frac{i}{\omega}+\right.$ const $\left.\times \delta(\omega)\right) \mathcal{E}(\omega)$

- Constant fixed by causality:

A simple exercise: classical Drude formula in 1d

- Conductivity:

$$
\sigma_{\text {Drude }}(\omega)=\frac{d j(\omega)}{d \mathcal{E}(\omega)}=\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\frac{D_{\text {classical }}}{\pi c} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

- $A(\omega)$ in function of $\mathcal{E}(\omega)$:

$$
\mathcal{E}(t)=-\frac{1}{c} \frac{d A(t)}{d t} \quad \Rightarrow \quad \mathcal{E}(\omega)=i \omega A(\omega) / c
$$

Naive inversion: $\quad A(\omega)=-\frac{i c}{\omega} \mathcal{E}(\omega)$
Wrong! The inversion is $\quad A(\omega)=-c\left(\frac{i}{\omega}+\right.$ const $\left.\times \delta(\omega)\right) \mathcal{E}(\omega)$

- Constant fixed by causality:

$$
\frac{d A(\omega)}{d \mathcal{E}(\omega)}=-\lim _{\eta \rightarrow 0^{+}} \frac{i c}{\omega+i \eta} \equiv-c\left[\pi \delta(\omega)+\frac{i}{\omega}\right]
$$

A simple exercise: classical Drude formula in 1d

■ Multiplying the two factors:

$$
\begin{aligned}
\sigma_{\text {Drude }}(\omega) & =\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)} \\
& =-\frac{e^{2} n}{m c} \times-c\left[\pi \delta(\omega)+\frac{i}{\omega}\right] \\
& =D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right]
\end{aligned}
$$

■ Key message:
■ Drude weight = derivative of jwrt to A

- ω-dependent factor $=$ derivative of \mathbf{A} wrt \mathcal{E}

A simple exercise: classical Drude formula in 1d

■ Multiplying the two factors:

$$
\begin{aligned}
\sigma_{\text {Drude }}(\omega) & =\frac{d j(\omega)}{d A(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)} \\
& =-\frac{e^{2} n}{m c} \times-c\left[\pi \delta(\omega)+\frac{i}{\omega}\right] \\
& =D_{\text {classical }}\left[\delta(\omega)+\frac{i}{\pi \omega}\right]
\end{aligned}
$$

■ Key message:

- Drude weight = derivative of \mathbf{j} wrt to \mathbf{A}
- ω-dependent factor $=$ derivative of \mathbf{A} wrt \mathcal{E}

Outline

1 Longitudinal conductivity, linear

- Classical theory
- Quantum theory
- Boundary conditions

2 Adiabatic electron transport
3. Kohn's approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Drude \& regular terms in a real metal

- The Drude weight still measures the many-electron free acceleration:

$$
\begin{aligned}
\sigma_{\alpha \beta}^{(+)}(\omega) & =\sigma_{\alpha \beta}^{(\text {Drude })}(\omega)+\sigma_{\alpha \beta}^{(\text {regular })}(\omega) \\
& =D_{\alpha \beta}\left[\delta(\omega)+\frac{i}{\pi \omega}\right]+\sigma_{\alpha \beta}^{(\text {regular })}(\omega)
\end{aligned}
$$

$\sigma(\omega)$ in Rubidium
■ Dots: experiment (N. V. Smith, 1970)

■ Red: Drude (broadened by extrinsic effects)

■ Blue: Regular
■ Solid: sum of the two terms

f-sum rule

■ Interacting electron gas in a flat potential:

$$
\sigma_{\alpha \beta}^{(\text {regular })}(\omega)=0, \quad D_{\alpha \beta}=D_{\text {classical }} \delta_{\alpha \beta}
$$

- After switching on the crystalline potential:

$$
\sigma_{\alpha \beta}^{(+)}(\omega)=D_{\alpha \beta}\left[\delta(\omega)+\frac{i}{\pi \omega}\right]+\sigma_{\alpha \beta}^{(\text {regular })}(\omega)
$$

- The two terms are related by the f-sum rule

f-sum rule

■ Interacting electron gas in a flat potential:

$$
\sigma_{\alpha \beta}^{(\text {regular })}(\omega)=0, \quad D_{\alpha \beta}=D_{\text {classical }} \delta_{\alpha \beta}
$$

- After switching on the crystalline potential:

$$
\sigma_{\alpha \beta}^{(+)}(\omega)=D_{\alpha \beta}\left[\delta(\omega)+\frac{i}{\pi \omega}\right]+\sigma_{\alpha \beta}^{(\text {regular })}(\omega)
$$

■ The two terms are related by the f-sum rule

$$
\int_{0}^{\infty} d \omega \operatorname{Re} \sigma_{\alpha \beta}(\omega)=\frac{D_{\alpha \beta}}{2}+\int_{0}^{\infty} d \omega \operatorname{Re} \sigma_{\alpha \beta}^{(\text {regular })}(\omega)=\frac{D_{\text {classical }}}{2} \delta_{\alpha \beta}
$$

Ground-state vs. dynamical properties

■ Switching on the crystalline potential transfers some spectral weight from $\sigma_{\alpha \beta}^{(\text {Drude })}(\omega)$ to $\sigma_{\alpha \beta}^{(\text {regular })}(\omega)$
■ In insulators $D_{\alpha \beta}=0$

- $\sigma_{\alpha \beta}^{\text {(regular) }}(\omega)$ is a dynamical property (it requires sum-over-states Kubo formulæ)
- $D_{\alpha \beta}$ is a ground-state property
(it doesn't need sum-over-states Kubo formulæ)
■ All dc conductivities are ground-state properties: Longitudinal \& transverse, linear \& nonlinear

Ground-state vs. dynamical properties

- Switching on the crystalline potential transfers some spectral weight from $\sigma_{\alpha \beta}^{(\text {Drude })}(\omega)$ to $\sigma_{\alpha \beta}^{(\text {regular })}(\omega)$
■ In insulators $D_{\alpha \beta}=0$
- $\sigma_{\alpha \beta}^{(\text {regular })}(\omega)$ is a dynamical property (it requires sum-over-states Kubo formulæ)
■ $D_{\alpha \beta}$ is a ground-state property (it doesn't need sum-over-states Kubo formulæ)

■ All dc conductivities are ground-state properties: Longitudinal \& transverse, linear \& nonlinear

Ground-state vs. dynamical properties

■ Switching on the crystalline potential transfers some spectral weight from $\sigma_{\alpha \beta}^{(\text {Drude })}(\omega)$ to $\sigma_{\alpha \beta}^{(\text {regular })}(\omega)$
■ In insulators $D_{\alpha \beta}=0$

- $\sigma_{\alpha \beta}^{(\text {regular })}(\omega)$ is a dynamical property (it requires sum-over-states Kubo formulæ)
- $D_{\alpha \beta}$ is a ground-state property (it doesn't need sum-over-states Kubo formulæ)

■ All dc conductivities are ground-state properties: Longitudinal \& transverse, linear \& nonlinear

Effective electron density

■ The Drude weight measures the inverse inertia of the many-electron system

■ Switching on the crystalline potential:

$$
D_{\text {classical }} \delta_{\alpha \beta}=\frac{\pi e^{2}}{m} n \delta_{\alpha \beta} \quad \Longrightarrow \quad D_{\alpha \beta}=\frac{\pi e^{2}}{m} n_{\alpha \beta}^{*}
$$

■ The periodic potential hinders the free acceleration

$$
n_{\alpha \alpha}^{*}<n
$$

■ Effective electron density contributing to the dc current:

Effective electron density

■ The Drude weight measures the inverse inertia of the many-electron system

■ Switching on the crystalline potential:

$$
D_{\text {classical }} \delta_{\alpha \beta}=\frac{\pi e^{2}}{m} n \delta_{\alpha \beta} \quad \Longrightarrow \quad D_{\alpha \beta}=\frac{\pi e^{2}}{m} n_{\alpha \beta}^{*}
$$

■ The periodic potential hinders the free acceleration

$$
n_{\alpha \alpha}^{*}<n
$$

■ Effective electron density contributing to the dc current:

$$
n_{\alpha \beta}^{*}=\frac{m}{\pi e^{2}} D_{\alpha \beta}
$$

f-sum rule revisited

$$
\begin{aligned}
& \frac{D_{\alpha \beta}}{2}+\int_{0}^{\infty} d \omega \operatorname{Re} \sigma_{\alpha \beta}^{(\text {regular })}(\omega)=\frac{\pi e^{2} n}{2 m} \delta_{\alpha \beta} \\
& n_{\alpha \beta}^{*}+\frac{2 m}{\pi e^{2}} \int_{0}^{\infty} d \omega \operatorname{Re} \sigma_{\alpha \beta}^{(\text {regular) }}(\omega)=n \delta_{\alpha \beta}
\end{aligned}
$$

For a given electron density n :
■ In a flat potential: Only the Drude peak, $\sigma_{\alpha \beta}^{\text {(regular) }}(\omega)=0$
■ In crystalline metals: Both terms are nonzero

■ In insulators: Only the regular term, $D_{\alpha \beta}=0$

Outline

1 Longitudinal conductivity, linear

- Classical theory
- Quantum theory
- Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (Iinear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Schrödinger equation in condensed matter

■ Periodic vs. "open"

Born-von-Kàrmàn PBCs (toroidal)

Open boundary conditions (bounded crystallite)

■ Closed circuit:
PBCs are the natural framework for conductivity
but also for condensed matter theory in general
■ Open circuit:
No dc current may flow in a bounded crystallite

Schrödinger equation in condensed matter

■ Periodic vs. "open"

Born-von-Kàrmàn PBCs (toroidal)

Open boundary conditions (bounded crystallite)

■ Closed circuit:
PBCs are the natural framework for conductivity but also for condensed matter theory in general
■ Open circuit:
No dc current may flow in a bounded crystallite

Drude weight within open boundary conditions

G. Bellomia \& R. Resta, Phys. Rev. b 102, 205123 (2020)

■ Is it possible to compute D by solving Schrödinger equation for the many-electron system within OBCs?

- Yes!

The inverse inertia can be probed in a different way

- How?

From the linear response to a low-frequency $\mathcal{E}(\omega)$

- The system (bounded crystallite) has normal modes which coalesce to $\omega=0$ in the $1 / L$ limit

Drude weight within open boundary conditions G. Bellomia \& R. Resta, Phys. Rev. b 102, 205123 (2020)

■ Is it possible to compute D by solving Schrödinger equation for the many-electron system within OBCs?

■ Yes!
The inverse inertia can be probed in a different way
■ How?
From the linear response to a low-frequency $\mathcal{E}(\omega)$
■ The system (bounded crystallite) has normal modes which coalesce to $\omega=0$ in the $1 / L$ limit

Outline

1 Longitudinal conductivity, linear
 ■ Classical theory
 - Quantum theory
 - Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5. Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number

The problem

■ Hamiltonian depending on two parameters (t-independent)

$$
\hat{H}=\hat{H}_{\kappa_{1}, \kappa_{2}} \quad\left|\Psi_{0}\right\rangle \text { and } E_{0} \text { also depend on }\left(\kappa_{1}, \kappa_{2}\right)
$$

■ Focus on an operator \hat{O} which can be written as

$$
\hat{O}=\partial_{\kappa_{1}} \hat{H} \quad \text { derivative wrt the first parameter }
$$

■ Ground-state expectation value

$$
\langle\hat{O}\rangle=\left\langle\Psi_{0}\right| \hat{O}\left|\Psi_{0}\right\rangle=\partial_{\kappa_{1}} E_{0} \quad \text { Hellmann-Feynman }
$$

- When \hat{H} is varied in time: $\hat{H} \Rightarrow \hat{H}(t)$

The problem

■ Hamiltonian depending on two parameters (t-independent)

$$
\hat{H}=\hat{H}_{\kappa_{1}, \kappa_{2}} \quad\left|\Psi_{0}\right\rangle \text { and } E_{0} \text { also depend on }\left(\kappa_{1}, \kappa_{2}\right)
$$

- Focus on an operator \hat{O} which can be written as

$$
\hat{O}=\partial_{\kappa_{1}} \hat{H} \quad \text { derivative wrt the first parameter }
$$

■ Ground-state expectation value

$$
\langle\hat{O}\rangle=\left\langle\Psi_{0}\right| \hat{O}\left|\Psi_{0}\right\rangle=\partial_{\kappa_{1}} E_{0} \quad \text { Hellmann-Feynman }
$$

- When \hat{H} is varied in time: $\hat{H} \Rightarrow \hat{H}(t)$

$$
\langle\hat{O}(t)\rangle=\langle\Psi(t)| \hat{O}|\Psi(t)\rangle=? ? ? ?
$$

Niu-Thouless theorem (1984)

- The time-dependence of \hat{H} occurs via $\kappa_{2} \Rightarrow \kappa_{2}(t)$:

$$
\hat{H}(t)=\hat{H}_{\kappa_{1}, \kappa_{2}(t)}, \quad \hat{H}(t)|\Psi(t)\rangle=i \hbar \frac{d}{d t}|\Psi(t)\rangle
$$

- In the adiabatic limit:

$$
\langle\hat{O}(t)\rangle=\partial_{\kappa_{1}} E_{0}-\hbar \Omega\left(\kappa_{1}, \kappa_{2}\right) \dot{k}_{2}(t)
$$

- Main features of the Niu-Thouless formula:
- $\Omega\left(\kappa_{1}, \kappa_{2}\right)$ is called today a Berry curvature
- Both $\partial_{\kappa_{1}} E_{0}$ and $\Omega\left(\kappa_{1}, \kappa_{2}\right)$ depend implicitly on time

■ Exact for infinitesimal $\dot{\kappa}_{2}(t)$ (i.e. in the adiabatic limit)
■ It converges to Hellmann-Feynman for $\dot{\kappa}_{2}(t) \rightarrow 0$

Niu-Thouless theorem (1984)

■ The time-dependence of \hat{H} occurs via $\kappa_{2} \Rightarrow \kappa_{2}(t)$:

$$
\hat{H}(t)=\hat{H}_{\kappa_{1}, \kappa_{2}(t)}, \quad \hat{H}(t)|\Psi(t)\rangle=i \hbar \frac{\mathcal{U}}{d t}(\Psi(t)\rangle
$$

■ In the adiabatic limit:

$$
\begin{gathered}
\langle\hat{O}(t)\rangle=\partial_{\kappa_{1}} E_{0}-\hbar \Omega\left(\kappa_{1}, \kappa_{2}\right) \dot{\kappa}_{2}(t) \\
\Omega\left(\kappa_{1}, \kappa_{2}\right)=i\left(\left\langle\partial_{\kappa_{1}} \psi_{0} \mid \partial_{\kappa_{2}} \Psi_{0}\right\rangle-\left\langle\partial_{\kappa_{2}} \Psi_{0} \mid \partial_{\kappa_{1}} \psi_{0}\right\rangle\right)
\end{gathered}
$$

■ Main features of the Niu-Thouless formula:
■ $\Omega\left(\kappa_{1}, \kappa_{2}\right)$ is called today a Berry curvature
■ Both $\partial_{\kappa_{1}} E_{0}$ and $\Omega\left(\kappa_{1}, \kappa_{2}\right)$ depend implicitly on time
■ Exact for infinitesimal $\dot{\kappa}_{2}(t)$ (i.e. in the adiabatic limit)
■ It converges to Hellmann-Feynman for $\dot{\kappa}_{2}(t) \rightarrow 0$

Outline

1 Longitudinal conductivity, linear
 ■ Classical theory
 - Quantum theory
 - Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Kohn's Hamiltonian (1964)

$$
\hat{H}_{\kappa}=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}^{(\text {micro })}\left(\mathbf{r}_{i}\right)+\hbar \boldsymbol{\kappa}\right]^{2}+\hat{V}
$$

■ N-electron $\left|\Psi_{0}\right\rangle$ depending on $\kappa=\left(\kappa_{x}, \kappa_{y}, \kappa_{z}\right)$
■ Born-von-Kàrmàn PBCs over a period L : The coordinates $r_{i \alpha}$ are actually angles $\varphi_{i \alpha}=2 \pi r_{i \alpha} / L$
■ \hat{V} one-body (possibly disordered) and two-body potentials
■ $\mathrm{A}^{(\text {micro })}\left(\mathbf{r}_{i}\right)$ needed to break T-symmetry
■ κ-derivatives taken first, $L \rightarrow \infty$ limit after

The 3d parameter $\kappa=\left(\kappa_{x}, \kappa_{y}, \kappa_{z}\right)$

$$
\hat{H}_{\kappa}=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}^{(\mathrm{micro})}\left(\mathbf{r}_{i}\right)+\hbar \kappa\right]^{2}+\hat{V}
$$

■ $\boldsymbol{\kappa}$ "flux" or "twist" (dimensions: inverse length)
■ Equivalent to an additional vector potential

$$
\hbar \boldsymbol{\kappa} \equiv \frac{e}{c} \mathbf{A} \quad\left\{\mathbf{r}_{i}\right\} \text {-independent }
$$

■ Two different cases
$1 t$-independent κ : a pure gauge-transformation
$2 t$-dependent κ : macroscopic field

$$
\mathcal{E}(t)=-\frac{\hbar}{e} \dot{\boldsymbol{\kappa}}(t)
$$

The operator \hat{O} : macroscopic current density

$$
\hat{H}_{\kappa}=\frac{1}{2 m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}^{(\mathrm{micro})}\left(\mathbf{r}_{i}\right)+\hbar \boldsymbol{\kappa}\right]^{2}+\hat{V}
$$

■ Many-body velocity operator (extensive):

$$
\hat{\mathbf{v}}=\frac{1}{m} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}^{(\mathrm{micro})}\left(\mathbf{r}_{i}\right)+\hbar \boldsymbol{\kappa}\right]=\frac{1}{\hbar} \partial_{\boldsymbol{\kappa}} \hat{H}_{\kappa}
$$

■ Macroscopic current-density operator:

$$
\hat{\mathbf{j}}=-\frac{e}{\hbar L^{3}} \partial_{\kappa} \hat{H}_{\kappa}
$$

■ Niu-Thouless formula:

$$
\left\langle\hat{j}_{\alpha}(t)\right\rangle=-\frac{e}{\hbar L^{3}}\left[\partial_{\kappa_{\alpha}} E_{0}-\hbar \Omega\left(\kappa_{\alpha}, \kappa_{\beta}\right) \dot{\kappa}_{\beta}(t)\right]
$$

Berry curvature

■ Berry curvature (change of notation):

$$
\Omega_{\alpha \beta}(\kappa) \equiv \Omega\left(\kappa_{\alpha}, \kappa_{\beta}\right)=i\left(\left\langle\partial_{\kappa_{1}} \Psi_{0} \mid \partial_{\kappa_{2}} \Psi_{0}\right\rangle-\left\langle\partial_{\kappa_{2}} \Psi_{0} \mid \partial_{\kappa_{1}} \Psi_{0}\right\rangle\right)
$$

■ Niu-Thouless formula:

$$
\begin{aligned}
j_{\alpha}(t) & =\left\langle\hat{j}_{\alpha}(t)\right\rangle=-\frac{e}{\hbar L^{3}}\left[\partial_{\kappa_{\alpha}} E_{0}-\hbar \Omega_{\alpha \beta}(\kappa) \dot{\kappa}_{\beta}(t)\right] \\
& =0 \quad \text { if } \kappa(t) \equiv 0
\end{aligned}
$$

■ Symmetry properties:
■ In presence of T-symmetry $\Omega_{\alpha \beta}(\kappa)=-\Omega_{\alpha \beta}(-\kappa)$
■ In presence of I-symmetry $\Omega_{\alpha \beta}(\kappa)=\Omega_{\alpha \beta}(-\kappa)$

- $\Omega_{\alpha \beta}(0) \neq 0$ needs time-reversal symmetry broken

Case 1: t-independent flux, longitudinal conductivity

■ Current induced by a constant vector potential:

$$
\begin{aligned}
\left.\frac{\partial j_{\alpha}(t)}{\partial \kappa_{\beta}}\right|_{\kappa=0} & =-\frac{\partial}{\partial \kappa_{\beta}} \frac{e}{\hbar L^{3}} \frac{\partial E_{0}}{\partial \kappa_{\alpha}} \quad \text { time-independent } \\
\frac{\partial j_{\alpha}}{\partial A_{\beta}} & =\frac{e}{\hbar c} \frac{\partial j_{\alpha}}{\partial \kappa_{\beta}}=-\frac{e^{2}}{\hbar^{2} c L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}}
\end{aligned}
$$

■ A constant vector potential is a pure gauge: why is E_{0} gauge-dependent ?

- Born-von-Kàrmàn PBCs violate gauge-invariance

Case 1: t-independent flux, longitudinal conductivity

■ Current induced by a constant vector potential:

$$
\begin{aligned}
\left.\frac{\partial j_{\alpha}(t)}{\partial \kappa_{\beta}}\right|_{\kappa=0} & =-\frac{\partial}{\partial \kappa_{\beta}} \frac{e}{\hbar L^{3}} \frac{\partial E_{0}}{\partial \kappa_{\alpha}} \quad \text { time-independent } \\
\frac{\partial j_{\alpha}}{\partial A_{\beta}} & =\frac{e}{\hbar c} \frac{\partial j_{\alpha}}{\partial \kappa_{\beta}}=-\frac{e^{2}}{\hbar^{2} c L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}}
\end{aligned}
$$

■ A constant vector potential is a pure gauge: why is E_{0} gauge-dependent?
■ Born-von-Kàrmàn PBCs violate gauge-invariance

Longitudinal conductivity

■ The chain rule

$$
\sigma_{\alpha \beta}(\omega)=\frac{\partial j_{\alpha}(\omega)}{\partial \mathcal{E}_{\beta}(\omega)}=\frac{\partial j_{\alpha}(\omega)}{\partial A_{\beta}(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

■ $d A(\omega) / d \mathcal{E}(\omega)$ same as in the classical case
■ $\partial j_{\alpha}(\omega) / \partial \boldsymbol{A}_{\beta}(\omega)$ requires sum-over-states Kubo formula

- In the dc case: response to a static A

Longitudinal conductivity

■ The chain rule

$$
\sigma_{\alpha \beta}(\omega)=\frac{\partial j_{\alpha}(\omega)}{\partial \mathcal{E}_{\beta}(\omega)}=\frac{\partial j_{\alpha}(\omega)}{\partial A_{\beta}(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

■ $d A(\omega) / d \mathcal{E}(\omega)$ same as in the classical case
■ $\partial j_{\alpha}(\omega) / \partial \boldsymbol{A}_{\beta}(\omega)$ requires sum-over-states Kubo formula
■ In the dc case: response to a static A

$$
\begin{aligned}
\sigma_{\alpha \beta}^{(\text {Drude })}(\omega) & =-\frac{e^{2}}{\hbar^{2} c L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}} \times-c\left[\pi \delta(\omega)+\frac{i}{\omega}\right] \\
& =D_{\alpha \beta}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\alpha \beta}=\frac{\pi e^{2}}{\hbar^{2} L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}}
\end{aligned}
$$

The famous Kohn's formula (1964)

■ The chain rule

$$
\sigma_{\alpha \beta}(\omega)=\frac{\partial j_{\alpha}(\omega)}{\partial \mathcal{E}_{\beta}(\omega)}=\frac{\partial j_{\alpha}(\omega)}{\partial \boldsymbol{A}_{\beta}(\omega)} \frac{d A(\omega)}{d \mathcal{E}(\omega)}
$$

■ $d A(\omega) / d \mathcal{E}(\omega)$ same as in the classical case

- $\partial j_{\alpha}(\omega) / \partial A_{\beta}(\omega)$ requires sum-over-states Kubo formula

■ In the dc case: response to a static A

$$
\begin{aligned}
\sigma_{\alpha \beta}^{(\text {Drude })}(\omega) & =-\frac{e^{2}}{\hbar^{2} c L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}} \times-c\left[\pi \delta(\omega)+\frac{i}{\omega}\right] \\
& =D_{\alpha \beta}\left[\delta(\omega)+\frac{i}{\pi \omega}\right] \quad D_{\alpha \beta}=\frac{\pi e^{2}}{\hbar^{2} L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}}
\end{aligned}
$$

Outline

1 Longitudinal conductivity, linear
 ■ Classical theory
 - Quantum theory
 - Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Case 2: time-dependent flux (adiabatically)

■ Constant \mathcal{E} field $\Rightarrow \boldsymbol{\kappa}$ linear in time

$$
\mathcal{E}=-\frac{1}{c} \frac{d \mathbf{A}(t)}{d t}, \quad \kappa=-\frac{e}{\hbar} \mathcal{E} t
$$

■ Second term in the Niu-Thouless fomula:

$$
\begin{aligned}
j_{\alpha}(t) & =-\frac{e}{\hbar L^{3}}\left[\partial_{\kappa_{\alpha}} E_{0}-\hbar \Omega_{\alpha \beta}(\kappa) \dot{\kappa}_{\beta}(t)\right] \\
& =-\frac{e^{2}}{\hbar L^{3}} \Omega_{\alpha \beta}(\kappa) \mathcal{E}_{\beta} \quad \text { time independent at } \boldsymbol{\kappa}=0
\end{aligned}
$$

■ The extra term yields a dc current: no dissipation needeed
■ The is current normal to the field: $\Omega_{\alpha \beta}(\kappa)$ antisymmetric
■ It could be nonzero even in insulators

- Bottom line: anomalous Hall conductivity (linear)

Case 2: time-dependent flux (adiabatically)

■ Constant \mathcal{E} field $\Rightarrow \boldsymbol{\kappa}$ linear in time

$$
\mathcal{E}=-\frac{1}{c} \frac{d \mathbf{A}(t)}{d t}, \quad \kappa=-\frac{e}{\hbar} \mathcal{E} t
$$

■ Second term in the Niu-Thouless fomula:

$$
\begin{aligned}
j_{\alpha}(t) & =-\frac{e}{\hbar L^{3}}\left[\partial_{\kappa_{\alpha}} E_{0}-\hbar \Omega_{\alpha \beta}(\kappa) \dot{\kappa}_{\beta}(t)\right] \\
& =-\frac{e^{2}}{\hbar L^{3}} \Omega_{\alpha \beta}(\kappa) \mathcal{E}_{\beta} \quad \text { time independent at } \kappa=0
\end{aligned}
$$

■ The extra term yields a dc current: no dissipation needeed

- The is current normal to the field: $\Omega_{\alpha \beta}(\kappa)$ antisymmetric
- It could be nonzero even in insulators

■ Bottom line: anomalous Hall conductivity (linear):

$$
\sigma_{\alpha \beta}^{(-)}(0)=-\frac{e^{2}}{\hbar L^{3}} \Omega_{\alpha \beta}(0)
$$

Linear anomalous Hall conductivity: Summary

■ Linear Hall conductivity: Geometric term (in insulators and metals, in $2 d$ and $3 d$)

$$
\sigma_{\alpha \beta}^{(-)}(0)=-\frac{e^{2}}{\hbar L^{d}} \Omega_{\alpha \beta}(0) \quad \text { in the } L \rightarrow \infty \text { limit }
$$

■ Many-body Berry curvature (extensive):

$$
\Omega_{\alpha \beta}(\kappa)=i\left(\left\langle\partial_{\kappa_{\alpha}} \Psi_{0} \mid \partial_{\kappa_{\beta}} \Psi_{0}\right\rangle-\left\langle\partial_{\kappa_{\alpha}} \Psi_{0} \mid \partial_{\kappa_{\beta}} \Psi_{0}\right\rangle\right)
$$

■ $\Omega_{\alpha \beta}(0) \neq 0$ only if T symmetry is broken
■ Extrinsic terms always present in metals

■ Topological in $2 d$ insulators (Niu, Thouless, \& Wu, 1985): extrinsic effects irrelevant

Outline

1 Longitudinal conductivity, linear
 ■ Classical theory
 - Quantum theory
 - Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Band structure (Hartree-Fock or Kohn-Sham)

- The many-body ground state $\left|\Psi_{0}\right\rangle$:

Slater determinant of Bloch orbitals (doubly occupied)
$\left|\psi_{j \mathbf{k}}\right\rangle=\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}\left|u_{j \mathbf{k}}\right\rangle \quad$ with energy $\epsilon_{j \mathbf{k}}$
■ In the $L \rightarrow \infty$ limit \mathbf{k} is a continuous variable
■ Intensive ground state observables are k-integrals:

- Over the Brillouin zone (insulators)

■ Over the Fermi volume (metals)

■ Example: band energy per unit volume

$$
\frac{E_{0}}{L^{d}} \Longrightarrow \quad 2 \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \epsilon_{j \mathbf{k}}, \quad \mu=\text { Fermi level }
$$

Longitudinal conductivity

■ Kohn's Drude weight

$$
\begin{aligned}
D_{\alpha \beta} & =\frac{\pi e^{2}}{\hbar^{2} L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}} \quad \text { at } \kappa=0 \\
& \Longrightarrow 2 \pi e^{2} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) m_{j, \alpha \beta}^{-1}(\mathbf{k})
\end{aligned}
$$

$m_{j, \alpha \beta}^{-1}(\mathbf{k})=\frac{1}{\hbar^{2}} \frac{\partial^{2} \epsilon_{j \mathbf{k}}}{\partial k_{\alpha} \partial k_{\beta}} \quad$ inverse effective mass of band j
■ Integrating by parts:
Fermi volume integral \Rightarrow Fermi surface integral

- Landau's Fermi-liquid theory:

Charge transport involves only quasiparticles with energies within $k_{\mathrm{B}} T$ from the Fermi level

Longitudinal conductivity

■ Kohn's Drude weight

$$
\begin{aligned}
D_{\alpha \beta} & =\frac{\pi e^{2}}{\hbar^{2} L^{3}} \frac{\partial^{2} E_{0}}{\partial \kappa_{\alpha} \partial \kappa_{\beta}} \quad \text { at } \kappa=0 \\
& \Longrightarrow 2 \pi e^{2} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) m_{j, \alpha \beta}^{-1}(\mathbf{k})
\end{aligned}
$$

$m_{j, \alpha \beta}^{-1}(\mathbf{k})=\frac{1}{\hbar^{2}} \frac{\partial^{2} \epsilon_{j \mathbf{k}}}{\partial k_{\alpha} \partial k_{\beta}} \quad$ inverse effective mass of band j
■ Integrating by parts:
Fermi volume integral \Rightarrow Fermi surface integral
■ Landau's Fermi-liquid theory:
Charge transport involves only quasiparticles with energies within $k_{\mathrm{B}} T$ from the Fermi level

Charge transport as an "intraband" property

- Fermi-volume to Fermi-surface (integrating by parts):

Charge transport as an "intraband" property

■ Fermi-volume to Fermi-surface (integrating by parts):

$$
\begin{aligned}
D_{\alpha \beta} & =\frac{2 \pi e^{2}}{\hbar^{2}} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \frac{\partial^{2} \epsilon_{j \mathbf{k}}}{\partial k_{\alpha} \partial k_{\beta}} \\
& =-2 \pi e^{2} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f^{\prime}\left(\epsilon_{j \mathbf{k}}\right) v_{j \alpha}(\mathbf{k}) v_{j \beta}(\mathbf{k}), \quad v_{j \alpha}(\mathbf{k})=\frac{1}{\hbar} \frac{\partial \epsilon_{j \mathbf{k}}}{\partial k_{\alpha}}
\end{aligned}
$$

Anomalous Hall conductivity (linear)

■ Berry curvature of band j :

$$
\tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})=i\left(\left\langle\partial_{k_{\alpha}} u_{j \mathbf{k}} \mid \partial_{k_{\beta}} u_{j \mathbf{k}}\right\rangle-\left\langle\partial_{k_{\beta}} u_{j \mathbf{k}} \mid \partial_{k_{\alpha}} u_{j \mathbf{k}}\right\rangle\right)
$$

■ Many-body Berry curvature at $\kappa=0$

$$
\frac{1}{L^{d}} \Omega_{\alpha \beta}(0) \Longrightarrow \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})
$$

■ Intrinsic Hall conductivity (insulators and metals):

$$
\sigma_{\alpha \beta}^{(-)}(0) \quad \Longrightarrow \quad-\frac{e^{2}}{\hbar} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})
$$

- Topological in $2 d$ insulators:

Anomalous Hall conductivity (linear)

■ Berry curvature of band j :

$$
\tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})=i\left(\left\langle\partial_{k_{\alpha}} u_{j \mathbf{k}} \mid \partial_{k_{\beta}} u_{j \mathbf{k}}\right\rangle-\left\langle\partial_{k_{\beta}} u_{j \mathbf{k}} \mid \partial_{k_{\alpha}} u_{j \mathbf{k}}\right\rangle\right)
$$

■ Many-body Berry curvature at $\kappa=0$

$$
\frac{1}{L^{d}} \Omega_{\alpha \beta}(0) \Longrightarrow \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})
$$

■ Intrinsic Hall conductivity (insulators and metals):

$$
\sigma_{\alpha \beta}^{(-)}(0) \quad \Longrightarrow \quad-\frac{e^{2}}{\hbar} \sum_{j} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}} f\left(\mu-\epsilon_{j \mathbf{k}}\right) \tilde{\Omega}_{j, \alpha \beta}(\mathbf{k})
$$

■ Topological in 2d insulators:

$$
\sigma_{x y}^{(-)}(0)=-\frac{e^{2}}{\hbar} \sum_{j=0 \mathrm{CC.} .} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{2}} \tilde{\Omega}_{j, x y}(\mathbf{k})=-\frac{e^{2}}{h} C_{1}
$$

Summary

■ Generalities about dc conductivity (classical \& quantum-mechanical)

■ Many-body Hamiltonian with a "flux" (Kohn 1964)
■ Linear longitudinal conductivity

- Lineal Hall conductivity

■ Bloch theory \& band-structure
■ Linear longitudinal conductivity

- Lineal Hall conductivity

■ Appendix: The Niu-Thouless-Wu many-body Chern number

Outline

1 Longitudinal conductivity, linear
 - Classical theory
 - Quantum theory
 - Boundary conditions

2 Adiabatic electron transport
3 Kohn's approach to linear dc conductivity
4 Anomalous Hall conductivity (linear)
5 Independent-electron formulation in a crystalline material
6 Appendix: Many-body Chern number

Integrating the 2d many-body Berry curvature

$$
\Omega_{x y}(\boldsymbol{\kappa})=i\left(\left\langle\partial_{\kappa_{x}} \Psi_{0 \kappa} \mid \partial_{\kappa_{y}} \Psi_{0 \kappa}\right\rangle-\left\langle\partial_{\kappa_{y}} \Psi_{0 \boldsymbol{\kappa}} \mid \partial_{\kappa_{x}} \Psi_{0 \boldsymbol{\kappa}}\right\rangle\right)
$$

$$
C_{1}=\frac{1}{2 \pi} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{x} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{y} \Omega_{x y}(\kappa)
$$

The domain is a torus if and only if the system is insulating

Single-point Chern number

■ Chern theorem on a torus:

$$
\frac{1}{2 \pi} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{x} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{y} \Omega_{x y}(\kappa)=C_{1} \in \mathbb{Z}, \quad \text { any } L
$$

■ In the $L \rightarrow \infty$ limit:

$$
\frac{1}{2 \pi} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{x} \int_{0}^{\frac{2 \pi}{L}} d \kappa_{y} \Omega_{x y}(\kappa) \rightarrow \frac{1}{2 \pi}\left(\frac{2 \pi}{L}\right)^{2} \Omega_{x y}(0)=\frac{2 \pi}{L^{2}} \Omega_{x y}(0)
$$

QAHE in 2d insulators

■ General formula for linear Hall conductivity, in insulators and metals, in $2 d$ and $3 d$:

$$
\sigma_{\alpha \beta}^{(-)}(0)=-\frac{e^{2}}{\hbar L^{d}} \Omega_{\alpha \beta}(0) \quad \text { in the } L \rightarrow \infty \text { limit }
$$

- In 2d:

- In 2d insulators:

QAHE in 2d insulators

■ General formula for linear Hall conductivity, in insulators and metals, in $2 d$ and $3 d$:

$$
\sigma_{\alpha \beta}^{(-)}(0)=-\frac{e^{2}}{\hbar L^{d}} \Omega_{\alpha \beta}(0) \quad \text { in the } L \rightarrow \infty \text { limit }
$$

■ In 2d:

$$
\sigma_{x y}^{(-)}(0)=-\frac{e^{2}}{h} \frac{2 \pi}{L^{2}} \Omega_{x y}(0)
$$

■ In 2d insulators:

$$
\frac{2 \pi}{L^{2}} \Omega_{x y}(0) \rightarrow C_{1}, \quad \sigma_{x y}^{(-)}(0) \rightarrow-\frac{e^{2}}{h} C_{1}
$$

Niu, Thouless, and Wu, Phys. Rev. B 31, 3372 (1985)

Convergence of the many-body Chern number

$$
\frac{2 \pi}{L^{2}} \Omega_{x y}(0) \rightarrow C_{1}
$$

- Tight-binding simulation (Haldane model Hamiltonian) D. Ceresoli \& R. Resta, Phys. Rev. B 76, 012405 (2007)

