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Fundamentals of dc conductivity:
Longitudinal and transverse

Raffaele Resta

Trieste, 2023



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear conductivity

σαβ(ω) =
∂jα(ω)
∂Eβ(ω)

The conductivity tensor σαβ(ω) is partitioned into its
symmetric and antisymmetric components:

jα(ω) = σ
(+)
αβ (ω) Eβ(ω) longitudinal

jα(ω) = σ
(−)
αβ (ω) Eβ(ω) Hall (transverse)

Focus here on dc conductivity:

Re σαβ(ω) at ω = 0

Re σ(±)
αβ (ω) related to Im σ

(±)
αβ (ω) (Kramers-Kronig)
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σαβ(ω) =
∂jα(ω)
∂Eβ(ω)

The conductivity tensor σαβ(ω) is partitioned into its
symmetric and antisymmetric components:

jα(ω) = σ
(+)
αβ (ω) Eβ(ω) longitudinal

jα(ω) = σ
(−)
αβ (ω) Eβ(ω) Hall (transverse)

Focus here on dc conductivity:

Re σαβ(ω) at ω = 0
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αβ (ω) related to Im σ

(±)
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Motivation

Linear Hall conductivity requires breaking of T-symmetry:

Normal: T-symmetry broken by an applied B field
Anomalous: T-symmetry spontaneously broken
(e.g. in ferromagnets)

T-symmetry does not forbid nonlinear Hall conductivity:
I. Sodemann & L. Fu,
Quantum Nonlinear Hall Effect Induced by Berry Curvature
Dipole in Time-Reversal Invariant Materials,
Phys. Rev. Lett. 2015

Everything you always wanted to know about dc
conductivity (but were afraid to ask):
Theory of longitudinal and transverse nonlinear dc conductivity,
Phys. Rev. Research 4, 033002 (2022)
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Classical Drude theory
P. Drude, Annalen der Physik. 306, 566 (1900)

From Ashcroft-Mermin, Chapter 1:
(dissipation enters the EOM directly via a relaxation time τ )

σDrude(ω) =
ie2

ω + i/τ

( n
m

)
,

n
m

=
electron density
electron mass

σDrude(0) = τe2
( n

m

)
Ohm’s law

In the nondissipative τ → ∞ limit:

σDrude(ω) = Dclassical

[
δ(ω) +

i
πω

]
Dclassical = πe2 n

m

Real and imaginary parts related by Kramers-Kronig
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Why is Drude theory still alive after 122 years?
P. Drude, Annalen der Physik. 306, 566 (1900)

σDrude(ω) = Dclassical

[
δ(ω) +

i
πω

]
Dclassical = πe2 n

m

In a macroscopic field E the electrons undergo free-acceleration

Classical case:

The electronic inverse inertia is measured by Dclassical

QM case:

The inverse inertia of the many-electron system is
measured by a tensor Dαβ :
Drude weight a.k.a. charge sfiffness
Interacting electron gas in a flat potential:
Dαβ = Dclassical δαβ
In a crystalline potential Dαβ ̸= Dclassical δαβ
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A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:

E(t) = −1
c

dA(t)
dt

Free-electron Hamiltonian:

H =
1

2m

[
p +

e
c

A(t)
]2

Velocity:

v(t) =
1
m

[
p +

e
c

A(t)
]

Current density:

j(t) = −en
m

[
p +

e
c

A(t)
]

j(ω) = −e2n
mc

A(ω) = −Dclassical

πc
A(ω)
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A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:

E(t) = −1
c

dA(t)
dt

Free-electron Hamiltonian:

H =
1

2m

[
p +

e
c

A(t)
]2

Velocity:

v(t) =
1
m

[
p +

e
c

A(t)
]

Current density: zero current in zero field

j(t) = −en
m

[
px+ e

c
A(t)

]
=⇒ −e2n

mc
A(t)

j(ω) = −e2n
mc

A(ω) = −Dclassical

πc
A(ω)
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A simple exercise: classical Drude formula in 1d

Conductivity:

σDrude(ω) =
d j(ω)
dE(ω)

=
d j(ω)
dA(ω)

dA(ω)
dE(ω)

= −Dclassical

πc
dA(ω)
dE(ω)

A(ω) in function of E(ω):

E(t) = −1
c

dA(t)
dt

⇒ E(ω) = iωA(ω)/c

Naive inversion: A(ω) = − ic
ω
E(ω) ????

Wrong! The inversion is A(ω) = −c
(

i
ω

+ const × δ(ω)

)
E(ω)

Constant fixed by causality:

dA(ω)
dE(ω)

= − lim
η→0+

ic
ω + iη

≡ −c
[
πδ(ω) +

i
ω

]
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A simple exercise: classical Drude formula in 1d

Multiplying the two factors:

σDrude(ω) =
dj(ω)
dA(ω)

dA(ω)
dE(ω)

= −e2n
mc

× −c
[
πδ(ω) +

i
ω

]
= Dclassical

[
δ(ω) +

i
πω

]
Key message:

Drude weight = derivative of j wrt to A
ω-dependent factor = derivative of A wrt E
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Drude & regular terms in a real metal

The Drude weight still measures the many-electron
free acceleration:

σ
(+)
αβ (ω) = σ

(Drude)
αβ (ω) + σ

(regular)
αβ (ω)

= Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

σ(ω) in Rubidium

Dots: experiment
(N. V. Smith, 1970)

Red: Drude (broadened by
extrinsic effects)

Blue: Regular

Solid: sum of the two terms
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f -sum rule

Interacting electron gas in a flat potential:

σ
(regular)
αβ (ω) = 0, Dαβ = Dclassicalδαβ

After switching on the crystalline potential:

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i
πω

]
+ σ

(regular)
αβ (ω)

The two terms are related by the f -sum rule∫ ∞

0
dω Re σαβ(ω) =

Dαβ

2
+

∫ ∞

0
dω Re σ(regular)

αβ (ω) =
Dclassical

2
δαβ
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Ground-state vs. dynamical properties

Switching on the crystalline potential transfers some
spectral weight from σ

(Drude)
αβ (ω) to σ(regular)

αβ (ω)

In insulators Dαβ = 0

σ
(regular)
αβ (ω) is a dynamical property

(it requires sum-over-states Kubo formulæ)
Dαβ is a ground-state property
(it doesn’t need sum-over-states Kubo formulæ)

All dc conductivities are ground-state properties:
Longitudinal & transverse, linear & nonlinear
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Switching on the crystalline potential transfers some
spectral weight from σ

(Drude)
αβ (ω) to σ(regular)

αβ (ω)

In insulators Dαβ = 0

σ
(regular)
αβ (ω) is a dynamical property

(it requires sum-over-states Kubo formulæ)
Dαβ is a ground-state property
(it doesn’t need sum-over-states Kubo formulæ)

All dc conductivities are ground-state properties:
Longitudinal & transverse, linear & nonlinear
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Ground-state vs. dynamical properties

Switching on the crystalline potential transfers some
spectral weight from σ

(Drude)
αβ (ω) to σ(regular)

αβ (ω)

In insulators Dαβ = 0

σ
(regular)
αβ (ω) is a dynamical property

(it requires sum-over-states Kubo formulæ)
Dαβ is a ground-state property
(it doesn’t need sum-over-states Kubo formulæ)

All dc conductivities are ground-state properties:
Longitudinal & transverse, linear & nonlinear
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Effective electron density

The Drude weight measures the inverse inertia of the
many-electron system

Switching on the crystalline potential:

Dclassical δαβ =
πe2

m
n δαβ =⇒ Dαβ =

πe2

m
n∗
αβ

The periodic potential hinders the free acceleration

n∗
αα < n

Effective electron density contributing to the dc current:

n∗
αβ =

m
πe2 Dαβ
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Effective electron density

The Drude weight measures the inverse inertia of the
many-electron system

Switching on the crystalline potential:

Dclassical δαβ =
πe2

m
n δαβ =⇒ Dαβ =

πe2

m
n∗
αβ

The periodic potential hinders the free acceleration

n∗
αα < n

Effective electron density contributing to the dc current:

n∗
αβ =

m
πe2 Dαβ
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f -sum rule revisited

Dαβ

2
+

∫ ∞

0
dω Re σ(regular)

αβ (ω) =
πe2n
2m

δαβ

n∗
αβ +

2m
πe2

∫ ∞

0
dω Re σ(regular)

αβ (ω) = n δαβ

For a given electron density n:

In a flat potential:
Only the Drude peak,
σ
(regular)
αβ (ω) = 0

In crystalline metals:
Both terms are nonzero

In insulators: Only the
regular term, Dαβ = 0
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Schrödinger equation in condensed matter

Periodic vs. “open”

18/01/23, 11:52Torus - Wikipedia

Page 1 of 14https://en.wikipedia.org/wiki/Torus

A torus with a selection of circles
on its surface

As the distance from the axis of
revolution decreases, the ring
torus becomes a horn torus, then
a spindle torus, and finally
degenerates into a double-
covered sphere.

Torus

In geometry, a torus (plural tori, colloquially donut or
doughnut) is a surface of revolution generated by revolving
a circle in three-dimensional space about an axis that is
coplanar with the circle.

If the axis of revolution does not touch the circle, the surface
has a ring shape and is called a torus of revolution. If the
axis of revolution is tangent to the circle, the surface is a
horn torus. If the axis of revolution passes twice through
the circle, the surface is a spindle torus. If the axis of
revolution passes through the center of the circle, the
surface is a degenerate torus, a double-covered sphere. If the
revolved curve is not a circle, the surface is called a toroid,
as in a square toroid.

Real-world objects that approximate a torus of revolution
include swim rings, inner tubes and ringette rings. Eyeglass
lenses that combine spherical and cylindrical correction are
toric lenses.

A torus should not be confused with a solid torus, which is
formed by rotating a disk, rather than a circle, around an
axis. A solid torus is a torus plus the volume inside the torus.
Real-world objects that approximate a solid torus include O-
rings, non-inflatable lifebuoys, ring doughnuts, and bagels.

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles: , and the latter is taken to be
the definition in that context. It is a compact 2-manifold of
genus 1. The ring torus is one way to embed this space into
Euclidean space, but another way to do this is the Cartesian product of the embedding of  in
the plane with itself. This produces a geometric object called the Clifford torus, a surface in 4-
space.

In the field of topology, a torus is any topological space that is homeomorphic to a torus.[1] The
surface of a coffee cup and a doughnut are both topological tori with genus one.

An example of a torus can be constructed by taking a rectangular strip of flexible material, for
example, a rubber sheet, and joining the top edge to the bottom edge, and the left edge to the
right edge, without any half-twists (compare Möbius strip).

Born-von-Kàrmàn PBCs
(toroidal)

18/01/23, 11:59Vector Cubic Box Template. Royalty Free SVG, Cliparts, Vectors, And Stock Illustration. Image 83921564.
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Open boundary conditions
(bounded crystallite)

Closed circuit:
PBCs are the natural framework for conductivity
but also for condensed matter theory in general
Open circuit:
No dc current may flow in a bounded crystallite
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Schrödinger equation in condensed matter

Periodic vs. “open”
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A torus with a selection of circles
on its surface

As the distance from the axis of
revolution decreases, the ring
torus becomes a horn torus, then
a spindle torus, and finally
degenerates into a double-
covered sphere.

Torus

In geometry, a torus (plural tori, colloquially donut or
doughnut) is a surface of revolution generated by revolving
a circle in three-dimensional space about an axis that is
coplanar with the circle.

If the axis of revolution does not touch the circle, the surface
has a ring shape and is called a torus of revolution. If the
axis of revolution is tangent to the circle, the surface is a
horn torus. If the axis of revolution passes twice through
the circle, the surface is a spindle torus. If the axis of
revolution passes through the center of the circle, the
surface is a degenerate torus, a double-covered sphere. If the
revolved curve is not a circle, the surface is called a toroid,
as in a square toroid.

Real-world objects that approximate a torus of revolution
include swim rings, inner tubes and ringette rings. Eyeglass
lenses that combine spherical and cylindrical correction are
toric lenses.

A torus should not be confused with a solid torus, which is
formed by rotating a disk, rather than a circle, around an
axis. A solid torus is a torus plus the volume inside the torus.
Real-world objects that approximate a solid torus include O-
rings, non-inflatable lifebuoys, ring doughnuts, and bagels.

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles: , and the latter is taken to be
the definition in that context. It is a compact 2-manifold of
genus 1. The ring torus is one way to embed this space into
Euclidean space, but another way to do this is the Cartesian product of the embedding of  in
the plane with itself. This produces a geometric object called the Clifford torus, a surface in 4-
space.

In the field of topology, a torus is any topological space that is homeomorphic to a torus.[1] The
surface of a coffee cup and a doughnut are both topological tori with genus one.

An example of a torus can be constructed by taking a rectangular strip of flexible material, for
example, a rubber sheet, and joining the top edge to the bottom edge, and the left edge to the
right edge, without any half-twists (compare Möbius strip).
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but also for condensed matter theory in general
Open circuit:
No dc current may flow in a bounded crystallite
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Drude weight within open boundary conditions
G. Bellomia & R. Resta, Phys. Rev. b 102, 205123 (2020)
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Is it possible to compute D by solving Schrödinger equation for
the many-electron system within OBCs?

Yes!
The inverse inertia can be probed in a different way

How?
From the linear response to a low-frequency E(ω)

The system (bounded crystallite) has normal modes which
coalesce to ω = 0 in the 1/L limit
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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The problem

Hamiltonian depending on two parameters (t-independent)

Ĥ = Ĥκ1,κ2 |Ψ0⟩ and E0 also depend on (κ1, κ2)

Focus on an operator Ô which can be written as

Ô = ∂κ1Ĥ derivative wrt the first parameter

Ground-state expectation value

⟨Ô⟩ = ⟨Ψ0| Ô |Ψ0⟩ = ∂κ1E0 Hellmann-Feynman

When Ĥ is varied in time: Ĥ ⇒ Ĥ(t)

⟨Ô(t)⟩ = ⟨Ψ(t)| Ô |Ψ(t)⟩ = ????
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The problem

Hamiltonian depending on two parameters (t-independent)

Ĥ = Ĥκ1,κ2 |Ψ0⟩ and E0 also depend on (κ1, κ2)

Focus on an operator Ô which can be written as

Ô = ∂κ1Ĥ derivative wrt the first parameter

Ground-state expectation value

⟨Ô⟩ = ⟨Ψ0| Ô |Ψ0⟩ = ∂κ1E0 Hellmann-Feynman

When Ĥ is varied in time: Ĥ ⇒ Ĥ(t)

⟨Ô(t)⟩ = ⟨Ψ(t)| Ô |Ψ(t)⟩ = ????
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Niu-Thouless theorem (1984)

The time-dependence of Ĥ occurs via κ2 ⇒ κ2(t):

Ĥ(t) = Ĥκ1,κ2(t), Ĥ(t)|Ψ(t)⟩ = iℏ
d
dt

|Ψ(t)⟩

In the adiabatic limit:

⟨Ô(t)⟩ = ∂κ1E0 − ℏ Ω(κ1, κ2)κ̇2(t)

Ω(κ1, κ2) = i (⟨∂κ1Ψ0|∂κ2Ψ0⟩ − ⟨∂κ2Ψ0|∂κ1Ψ0⟩)

Main features of the Niu-Thouless formula:
Ω(κ1, κ2) is called today a Berry curvature
Both ∂κ1E0 and Ω(κ1, κ2) depend implicitly on time
Exact for infinitesimal κ̇2(t) (i.e. in the adiabatic limit)
It converges to Hellmann-Feynman for κ̇2(t) → 0
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Niu-Thouless theorem (1984)

The time-dependence of Ĥ occurs via κ2 ⇒ κ2(t):

Ĥ(t) = Ĥκ1,κ2(t), Ĥ(t)|Ψ(t)⟩ = iℏ
d
dt

|Ψ(t)⟩X
In the adiabatic limit:

⟨Ô(t)⟩ = ∂κ1E0 − ℏ Ω(κ1, κ2)κ̇2(t)

Ω(κ1, κ2) = i (⟨∂κ1Ψ0|∂κ2Ψ0⟩ − ⟨∂κ2Ψ0|∂κ1Ψ0⟩)

Main features of the Niu-Thouless formula:
Ω(κ1, κ2) is called today a Berry curvature
Both ∂κ1E0 and Ω(κ1, κ2) depend implicitly on time
Exact for infinitesimal κ̇2(t) (i.e. in the adiabatic limit)
It converges to Hellmann-Feynman for κ̇2(t) → 0
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Kohn’s Hamiltonian (1964)

Ĥκ =
1

2m

N∑
i=1

[
pi +

e
c

A(micro)(ri) + ℏκ
]2
+V̂

18/01/23, 11:52Torus - Wikipedia

Page 1 of 14https://en.wikipedia.org/wiki/Torus

A torus with a selection of circles
on its surface

As the distance from the axis of
revolution decreases, the ring
torus becomes a horn torus, then
a spindle torus, and finally
degenerates into a double-
covered sphere.

Torus

In geometry, a torus (plural tori, colloquially donut or
doughnut) is a surface of revolution generated by revolving
a circle in three-dimensional space about an axis that is
coplanar with the circle.

If the axis of revolution does not touch the circle, the surface
has a ring shape and is called a torus of revolution. If the
axis of revolution is tangent to the circle, the surface is a
horn torus. If the axis of revolution passes twice through
the circle, the surface is a spindle torus. If the axis of
revolution passes through the center of the circle, the
surface is a degenerate torus, a double-covered sphere. If the
revolved curve is not a circle, the surface is called a toroid,
as in a square toroid.

Real-world objects that approximate a torus of revolution
include swim rings, inner tubes and ringette rings. Eyeglass
lenses that combine spherical and cylindrical correction are
toric lenses.

A torus should not be confused with a solid torus, which is
formed by rotating a disk, rather than a circle, around an
axis. A solid torus is a torus plus the volume inside the torus.
Real-world objects that approximate a solid torus include O-
rings, non-inflatable lifebuoys, ring doughnuts, and bagels.

In topology, a ring torus is homeomorphic to the Cartesian
product of two circles: , and the latter is taken to be
the definition in that context. It is a compact 2-manifold of
genus 1. The ring torus is one way to embed this space into
Euclidean space, but another way to do this is the Cartesian product of the embedding of  in
the plane with itself. This produces a geometric object called the Clifford torus, a surface in 4-
space.

In the field of topology, a torus is any topological space that is homeomorphic to a torus.[1] The
surface of a coffee cup and a doughnut are both topological tori with genus one.

An example of a torus can be constructed by taking a rectangular strip of flexible material, for
example, a rubber sheet, and joining the top edge to the bottom edge, and the left edge to the
right edge, without any half-twists (compare Möbius strip).

N-electron |Ψ0⟩ depending on κ = (κx , κy , κz)

Born-von-Kàrmàn PBCs over a period L:
The coordinates riα are actually angles φiα = 2πriα/L

V̂ one-body (possibly disordered) and two-body potentials

A(micro)(ri) needed to break T-symmetry

κ-derivatives taken first, L → ∞ limit after
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The 3d parameter κ = (κx , κy , κz)

Ĥκ =
1

2m

N∑
i=1

[
pi +

e
c

A(micro)(ri) + ℏκ
]2

+ V̂

κ “flux” or “twist” (dimensions: inverse length)

Equivalent to an additional vector potential

ℏκ ≡ e
c

A {ri}-independent

Two different cases
1 t-independent κ: a pure gauge-transformation
2 t-dependent κ: macroscopic field

E(t) = −ℏ
e
κ̇(t)
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The operator Ô: macroscopic current density

Ĥκ =
1

2m

N∑
i=1

[
pi +

e
c

A(micro)(ri) + ℏκ
]2

+ V̂

Many-body velocity operator (extensive):

v̂ =
1
m

N∑
i=1

[
pi +

e
c

A(micro)(ri) + ℏκ
]
=

1
ℏ
∂κĤκ

Macroscopic current-density operator:

ĵ = − e
ℏL3∂κĤκ

Niu-Thouless formula:

⟨̂jα(t)⟩ = − e
ℏL3 [ ∂καE0 − ℏ Ω(κα, κβ)κ̇β(t) ]
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Berry curvature

Berry curvature (change of notation):

Ωαβ(κ) ≡ Ω(κα, κβ) = i (⟨∂κ1Ψ0|∂κ2Ψ0⟩ − ⟨∂κ2Ψ0|∂κ1Ψ0⟩)

Niu-Thouless formula:

jα(t) = ⟨̂jα(t)⟩ = − e
ℏL3 [ ∂καE0 − ℏ Ωαβ(κ)κ̇β(t) ]

= 0 if κ(t) ≡ 0

Symmetry properties:
In presence of T-symmetry Ωαβ(κ) = −Ωαβ(−κ)
In presence of I-symmetry Ωαβ(κ) = Ωαβ(−κ)
Ωαβ(0) ̸= 0 needs time-reversal symmetry broken



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Case 1: t-independent flux, longitudinal conductivity

Current induced by a constant vector potential:

∂jα(t)
∂κβ

∣∣∣∣
κ=0

= − ∂

∂κβ

e
ℏL3

∂E0

∂κα
time-independent

∂ jα
∂Aβ

=
e
ℏc

∂ jα
∂κβ

= − e2

ℏ2cL3
∂2E0

∂κα∂κβ

A constant vector potential is a pure gauge:
why is E0 gauge-dependent ?
Born-von-Kàrmàn PBCs violate gauge-invariance
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Case 1: t-independent flux, longitudinal conductivity

Current induced by a constant vector potential:

∂jα(t)
∂κβ

∣∣∣∣
κ=0

= − ∂

∂κβ

e
ℏL3

∂E0

∂κα
time-independent

∂ jα
∂Aβ

=
e
ℏc

∂ jα
∂κβ

= − e2

ℏ2cL3
∂2E0

∂κα∂κβ

A constant vector potential is a pure gauge:
why is E0 gauge-dependent ?
Born-von-Kàrmàn PBCs violate gauge-invariance
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Longitudinal conductivity

The chain rule

σαβ(ω) =
∂jα(ω)
∂Eβ(ω)

=
∂jα(ω)
∂Aβ(ω)

dA(ω)
dE(ω)

dA(ω)/dE(ω) same as in the classical case
∂jα(ω)/∂Aβ(ω) requires sum-over-states Kubo formula

In the dc case: response to a static A

σ
(Drude)
αβ (ω) = − e2

ℏ2cL3
∂2E0

∂κα∂κβ
× −c

[
πδ(ω) +

i
ω

]
= Dαβ

[
δ(ω) +

i
πω

]
Dαβ =

πe2

ℏ2L3
∂2E0

∂κα∂κβ
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Longitudinal conductivity

The chain rule

σαβ(ω) =
∂jα(ω)
∂Eβ(ω)

=
∂jα(ω)
∂Aβ(ω)

dA(ω)
dE(ω)

dA(ω)/dE(ω) same as in the classical case
∂jα(ω)/∂Aβ(ω) requires sum-over-states Kubo formula

In the dc case: response to a static A

σ
(Drude)
αβ (ω) = − e2

ℏ2cL3
∂2E0

∂κα∂κβ
× −c

[
πδ(ω) +

i
ω

]
= Dαβ

[
δ(ω) +

i
πω

]
Dαβ =

πe2

ℏ2L3
∂2E0

∂κα∂κβ
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The famous Kohn’s formula (1964)

The chain rule

σαβ(ω) =
∂jα(ω)
∂Eβ(ω)

=
∂jα(ω)
∂Aβ(ω)

dA(ω)
dE(ω)

dA(ω)/dE(ω) same as in the classical case
∂jα(ω)/∂Aβ(ω) requires sum-over-states Kubo formula

In the dc case: response to a static A

σ
(Drude)
αβ (ω) = − e2

ℏ2cL3
∂2E0

∂κα∂κβ
× −c

[
πδ(ω) +

i
ω

]
= Dαβ

[
δ(ω) +

i
πω

]
Dαβ =

πe2

ℏ2L3
∂2E0

∂κα∂κβ
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Case 2: time-dependent flux (adiabatically)

Constant E field ⇒ κ linear in time

E = −1
c

dA(t)
dt

, κ = −e
ℏ
Et

Second term in the Niu-Thouless fomula:

jα(t) = − e
ℏL3 [ ∂καE0 − ℏ Ωαβ(κ)κ̇β(t) ]

= − e2

ℏL3 Ωαβ(κ)Eβ time independent at κ = 0

The extra term yields a dc current: no dissipation needeed
The is current normal to the field: Ωαβ(κ) antisymmetric
It could be nonzero even in insulators

Bottom line: anomalous Hall conductivity (linear):

σ
(−)
αβ (0) = − e2

ℏL3 Ωαβ(0)
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Case 2: time-dependent flux (adiabatically)

Constant E field ⇒ κ linear in time

E = −1
c

dA(t)
dt

, κ = −e
ℏ
Et

Second term in the Niu-Thouless fomula:

jα(t) = − e
ℏL3 [ ∂καE0 − ℏ Ωαβ(κ)κ̇β(t) ]

= − e2

ℏL3 Ωαβ(κ)Eβ time independent at κ = 0

The extra term yields a dc current: no dissipation needeed
The is current normal to the field: Ωαβ(κ) antisymmetric
It could be nonzero even in insulators

Bottom line: anomalous Hall conductivity (linear):

σ
(−)
αβ (0) = − e2

ℏL3 Ωαβ(0)
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Linear anomalous Hall conductivity: Summary

Linear Hall conductivity: Geometric term
(in insulators and metals, in 2d and 3d)

σ
(−)
αβ (0) = − e2

ℏLd Ωαβ(0) in the L → ∞ limit

Many-body Berry curvature (extensive):

Ωαβ(κ) = i ( ⟨∂καΨ0|∂κβ
Ψ0⟩ − ⟨∂καΨ0|∂κβ

Ψ0⟩ )

Ωαβ(0) ̸= 0 only if T symmetry is broken

Extrinsic terms always present in metals

Topological in 2d insulators (Niu, Thouless, & Wu, 1985):
extrinsic effects irrelevant
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Band structure (Hartree-Fock or Kohn-Sham)

The many-body ground state |Ψ0⟩:
Slater determinant of Bloch orbitals (doubly occupied)
|ψjk⟩ = eik·r|ujk⟩ with energy ϵjk

In the L → ∞ limit k is a continuous variable

Intensive ground state observables are k-integrals:
Over the Brillouin zone (insulators)
Over the Fermi volume (metals)

Example: band energy per unit volume

E0

Ld =⇒ 2
∑

j

∫
BZ

dk
(2π)d f (µ−ϵjk) ϵjk, µ = Fermi level
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Longitudinal conductivity

Kohn’s Drude weight

Dαβ =
πe2

ℏ2L3
∂2E0

∂κα∂κβ
at κ = 0

=⇒ 2πe2
∑

j

∫
BZ

dk
(2π)d f (µ− ϵjk)m−1

j,αβ(k)

m−1
j,αβ(k) =

1
ℏ2

∂2ϵjk
∂kα∂kβ

inverse effective mass of band j

Integrating by parts:
Fermi volume integral ⇒ Fermi surface integral
Landau’s Fermi-liquid theory:
Charge transport involves only quasiparticles with energies
within kBT from the Fermi level
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Longitudinal conductivity

Kohn’s Drude weight

Dαβ =
πe2

ℏ2L3
∂2E0

∂κα∂κβ
at κ = 0

=⇒ 2πe2
∑

j

∫
BZ

dk
(2π)d f (µ− ϵjk)m−1

j,αβ(k)

m−1
j,αβ(k) =

1
ℏ2

∂2ϵjk
∂kα∂kβ

inverse effective mass of band j

Integrating by parts:
Fermi volume integral ⇒ Fermi surface integral
Landau’s Fermi-liquid theory:
Charge transport involves only quasiparticles with energies
within kBT from the Fermi level
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Charge transport as an “intraband” property

Fermi-volume to Fermi-surface (integrating by parts):

Dαβ =
2πe2

ℏ2

∑
j

∫
BZ

dk
(2π)d f (µ− ϵjk)

∂2ϵjk
∂kα∂kβ

= −2πe2
∑

j

∫
BZ

dk
(2π)d f ′(ϵjk) vjα(k)vjβ(k), vjα(k) =

1
ℏ
∂ϵjk

∂kα
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Charge transport as an “intraband” property

Fermi-volume to Fermi-surface (integrating by parts):

Dαβ =
2πe2

ℏ2

∑
j

∫
BZ

dk
(2π)d f (µ− ϵjk)

∂2ϵjk
∂kα∂kβ

= −2πe2
∑

j

∫
BZ

dk
(2π)d f ′(ϵjk) vjα(k)vjβ(k), vjα(k) =

1
ℏ
∂ϵjk

∂kα
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Anomalous Hall conductivity (linear)

Berry curvature of band j :

Ω̃j,αβ(k) = i ( ⟨∂kαujk|∂kβujk⟩ − ⟨∂kβujk|∂kαujk⟩ )
Many-body Berry curvature at κ = 0

1
Ld Ωαβ(0) =⇒

∑
j

∫
BZ

dk
(2π)d f (µ− ϵjk) Ω̃j,αβ(k)

Intrinsic Hall conductivity (insulators and metals):

σ
(−)
αβ (0) =⇒ −e2

ℏ
∑

j

∫
BZ

dk
(2π)d f (µ− ϵjk) Ω̃j,αβ(k)

Topological in 2d insulators:

σ
(−)
xy (0) = −e2

ℏ
∑

j=occ.

∫
BZ

dk
(2π)2 Ω̃j,xy (k) = −e2

h
C1



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Anomalous Hall conductivity (linear)

Berry curvature of band j :

Ω̃j,αβ(k) = i ( ⟨∂kαujk|∂kβujk⟩ − ⟨∂kβujk|∂kαujk⟩ )
Many-body Berry curvature at κ = 0

1
Ld Ωαβ(0) =⇒

∑
j

∫
BZ

dk
(2π)d f (µ− ϵjk) Ω̃j,αβ(k)

Intrinsic Hall conductivity (insulators and metals):

σ
(−)
αβ (0) =⇒ −e2

ℏ
∑

j

∫
BZ

dk
(2π)d f (µ− ϵjk) Ω̃j,αβ(k)

Topological in 2d insulators:

σ
(−)
xy (0) = −e2

ℏ
∑

j=occ.

∫
BZ

dk
(2π)2 Ω̃j,xy (k) = −e2

h
C1
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Summary

Generalities about dc conductivity
(classical & quantum-mechanical)

Many-body Hamiltonian with a “flux” (Kohn 1964)
Linear longitudinal conductivity
Lineal Hall conductivity

Bloch theory & band-structure
Linear longitudinal conductivity
Lineal Hall conductivity

Appendix: The Niu-Thouless-Wu many-body Chern
number
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Outline

1 Longitudinal conductivity, linear
Classical theory
Quantum theory
Boundary conditions

2 Adiabatic electron transport

3 Kohn’s approach to linear dc conductivity

4 Anomalous Hall conductivity (linear)

5 Independent-electron formulation in a crystalline material

6 Appendix: Many-body Chern number
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Integrating the 2d many-body Berry curvature

Ωxy (κ) = i ( ⟨∂κxΨ0κ|∂κyΨ0κ⟩ − ⟨∂κyΨ0κ|∂κxΨ0κ⟩ )

2π/L

2π/L

C1 =
1

2π

∫ 2π
L

0
dκx

∫ 2π
L

0
dκy Ωxy (κ)

The domain is a torus if and only if the system is insulating
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Single-point Chern number

Chern theorem on a torus:

1
2π

∫ 2π
L

0
dκx

∫ 2π
L

0
dκy Ωxy (κ) = C1 ∈ Z, any L

In the L → ∞ limit:

1
2π

∫ 2π
L

0
dκx

∫ 2π
L

0
dκy Ωxy (κ) → 1

2π

(
2π
L

)2

Ωxy (0) =
2π
L2 Ωxy (0)
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QAHE in 2d insulators

General formula for linear Hall conductivity,
in insulators and metals, in 2d and 3d :

σ
(−)
αβ (0) = − e2

ℏLd Ωαβ(0) in the L → ∞ limit

In 2d :

σ
(−)
xy (0) = −e2

h
2π
L2 Ωxy (0)

In 2d insulators:

2π
L2 Ωxy (0) → C1, σ

(−)
xy (0) → −e2

h
C1

Niu, Thouless, and Wu, Phys. Rev. B 31, 3372 (1985)
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QAHE in 2d insulators

General formula for linear Hall conductivity,
in insulators and metals, in 2d and 3d :

σ
(−)
αβ (0) = − e2

ℏLd Ωαβ(0) in the L → ∞ limit

In 2d :

σ
(−)
xy (0) = −e2

h
2π
L2 Ωxy (0)

In 2d insulators:

2π
L2 Ωxy (0) → C1, σ

(−)
xy (0) → −e2

h
C1

Niu, Thouless, and Wu, Phys. Rev. B 31, 3372 (1985)
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Convergence of the many-body Chern number

proach yields an error of 7!10−3 for L=6, and smaller than
10−5 for L=32. We are showing here the results for a " value
well inside the C=1 domain. We also find that the conver-
gence worsens near the transition point !sin "!=1/"3.

Numerical evaluation of Chern numbers is a staple tool in
the theory of the quantum Hall effect, where supercells are
routinely used to account for disorder and/or electron-
electron interaction. However, even in a supercell frame-
work, a discrete reciprocal mesh #or equivalently a mesh of
phase boundary conditions$ has been invariably used in the
algorithms implemented so far.19–22 Here we have shown
that, provided the supercell is large enough, no mesh is
needed: the Chern number can be evaluated from a single
Hamiltonian diagonalization #with a single choice of bound-
ary condition$. The rationale behind our finding is simple:
the Chern number is by definition an integral, whose integra-
tion domain shrinks to a single point in the limit of a large
supercell.

The single-point orbital magnetization M of the model
system, computed from Eqs. #3$ and #10$ as a function of the

supercell size, is shown in Fig. 3, again for "=0.4#. In this
case the analytical-derivative approach converges definitely
better, showing, in fact, the same kind of relative error as the
Chern number, while the numerical-derivative approach
proves somewhat less accurate.

In conclusion, we provide here the key formulas for com-
puting the orbital magnetization of a condensed system from
first principles in a supercell framework and using a single k
point, to be used as they stand within Car-Parrinello simula-
tions in an environment which breaks time-reversal symme-
try. We have validated the present formulas on a simple tight-
binding model Hamiltonian in two dimensions, and checked
their #fast$ convergence with the supercell size. Last but not
the least, we have proved that even the Chern number—
which has a paramount relevance in quantum-Hall-effect
simulations—can be computed from a single Hamiltonian
diagonalization, and converges fast with the supercell size.
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APPENDIX: MORE GENERAL BOUNDARY CONDITIONS

The single-point formulas discussed so far are based on
Eq. #7$, with $=1, and eventually require diagonalizing the
Hamiltonian at the % point only, ergo solving the
Schrödinger equation with periodic boundary conditions on
the supercell. This is by far the most common choice among
Car-Parrinello practitioners, although other choices are pos-
sible.

In order to extend our single-point formulas to more gen-
eral boundary conditions it would be enough to switch from
Eq. #7$ #at $=1$ to alternative expressions for the directional

t1

+∆
−∆

t2 ie φ

FIG. 1. Four unit cells of the Haldane model. Filled #open$
circles denote sites with E0=−& #+&$. Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei". Arrows indicate sign of the phase " for second-
neighbor hopping.
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FIG. 2. Convergence of the Chern number as a function of the
supercell size, evaluated using the single-point formulas #see text$,
for the Haldane model Hamiltonian at "=0.4#. The largest L cor-
responds to 2048 sites.
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FIG. 3. Convergence of the orbital magnetization as a function
of the supercell size, evaluated using the single-point formulas #see
text$, for the Haldane model Hamiltonian at "=0.4#, The largest L
corresponds to 2048 sites.
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