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Linear conductivity

_ Ofa(w)
7ap() = 9Es(w)

m The conductivity tensor o,5(w) is partitioned into its
symmetric and antisymmetric components:

jalw) = ol (w)&s(w)  longitudinal
Ja(w) = ogﬁ)(w) Es(w) Hall (transverse)
m Focus here on dc conductivity:

Re o,p(w) atw =0



Linear conductivity

_ Ofa(w)
7ap() = 9Es(w)

m The conductivity tensor o,5(w) is partitioned into its
symmetric and antisymmetric components:

jalw) = ol (w)&s(w)  longitudinal
Ja(w) = ogﬁ)(w) Es(w) Hall (transverse)
m Focus here on dc conductivity:

Re o,p(w) atw =0

m Re ag?(w) related to Im a((jg) (w)  (Kramers-Kronig)



Motivation

m Linear Hall conductivity requires breaking of T-symmetry:

m Normal: T-symmetry broken by an applied B field

m Anomalous: T-symmetry spontaneously broken
(e.g. in ferromagnets)

m T-symmetry does not forbid nonlinear Hall conductivity:
I. Sodemann & L. Fu,

Quantum Nonlinear Hall Effect Induced by Berry Curvature
Dipole in Time-Reversal Invariant Materials,
Phys. Rev. Lett. 2015
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m Normal: T-symmetry broken by an applied B field
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m T-symmetry does not forbid nonlinear Hall conductivity:

I. Sodemann & L. Fu,

Quantum Nonlinear Hall Effect Induced by Berry Curvature
Dipole in Time-Reversal Invariant Materials,

Phys. Rev. Lett. 2015

m Everything you always wanted to know about dc
conductivity (but were afraid to ask):

Theory of longitudinal and transverse nonlinear dc conductivity,
Phys. Rev. Research 4, 033002 (2022)
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Longitudinal conductivity, linear
m Classical theory



Classical Drude theory

P. Drude, Annalen der Physik. 306, 566 (1900)

m From Ashcroft-Mermin, Chapter 1:
(dissipation enters the EOM directly via a relaxation time 7)

ie? ( n) n _ electron density

w+i/T\m m ~ electron mass

ODrude (W) m

JDrude(O) - 7—92 (%) Ohm'’s law



Classical Drude theory

P. Drude, Annalen der Physik. 306, 566 (1900)

m From Ashcroft-Mermin, Chapter 1:
(dissipation enters the EOM directly via a relaxation time 7)

@) ie? ( n ) n _ electron density

O Drude w+i/T\m)°  m  electron mass
2 (N :

JDrude(O) = 7€ (E> Ohm'’s law

m In the nondissipative 7 — oo limit:

i 5N
oDrude(w) = Detassical [5(‘”) + m] D jassical = 7€ m

m Real and imaginary parts related by Kramers-Kronig



Why is Drude theory still alive after 122 years?

P. Drude, Annalen der Physik. 306, 566 (1900)
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UDrude(W) = Dclassical |:5(W) + :| Dclassical =T7ée E

m In a macroscopic field £ the electrons undergo free-acceleration
m Classical case:
m The electronic inverse inertia is measured by D, sical
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m QM case:

m The inverse inertia of the many-electron system is
measured by a tensor D, 3:
Drude weight a.k.a. charge sfiffness

m Interacting electron gas in a flat potential:
DaB - Dclassical 5aﬂ



Why is Drude theory still alive after 122 years?

P. Drude, Annalen der Physik. 306, 566 (1900)

i n
UDrude(W) = Dclassical |:5(W) + :| Dclassical = ﬂ'ez

m In a macroscopic field £ the electrons undergo free-acceleration
m Classical case:

m The electronic inverse inertia is measured by D, sical
m QM case:

m The inverse inertia of the many-electron system is
measured by a tensor D, 3:
Drude weight a.k.a. charge sfiffness

m Interacting electron gas in a flat potential:
DaB - Dclassical 5aﬂ

m |n a crystalline potential D3 # Dejassical 9o s



A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:

m Free-electron Hamiltonian:
1 e 2
H= g [P+ AW

m Velocity:

m Current density:



A simple exercise: classical Drude formula in 1d

Alternative derivation in the vector-potential gauge:
1 dA(t)

“0="c"a

m Free-electron Hamiltonian:
1 e 2
H= g [P+ GAW)]
m Velocity:
1 e
vit) = — [p+ AW
m Current density: zero current in zero field

i=-2[lan]  —  -Zla

2 .
—QA(LU) _ DclasswalA(w)

J(w) =

mc e
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m Conductivity:
dj(w) _ dj(w) dAw)
dé(w)  dA(w) d&(w)

ODrude (w) =



A simple exercise: classical Drude formula in 1d

m Conductivity:
dj(w) _ dj(w) dAw) _  Detassica dA(w)
df(w) dA(w) dE(w) mc  dE(w)

ODrude (w) =



A simple exercise: classical Drude formula in 1d

m Conductivity:
dj(w) _ dj(w) dAw) _  Detassica dA(w)
df(w) dA(w) dE(w) mc  dE(w)

ODrude (w) -

m A(w) in function of £(w):

1 dAY) .
5(1‘)——57 = E(w) = iwA(w)/c
Naive inversion: Alw) = —Es(w) 777



A simple exercise: classical Drude formula in 1d

m Conductivity:
dj(w) _ d/(w) dA(w) _ _ Dclassical dA(w)
dé(w)  dA(w) d&(w) mc  dE(w)

ODrude (w) -

m A(w) in function of £(w):

1 dAY) .
5(1‘)——57 = E(w) = iwA(w)/c
Naive inversion: Alw) = —Es(w) 777

w

Wrong! The inversion is Aw)=-c <L: + const x 6(w)) E(w)



A simple exercise: classical Drude formula in 1d

m Conductivity:
dj(w) _ d/(w) dA(w) _ _ Dclassical dA(w)
dé(w)  dA(w) d&(w) mc  dE(w)

ODrude (w) -

m A(w) in function of £(w):
1 dA(t)

Naive inversion: Alw) = —Es(w) 777

w

Wrong! The inversion is Aw)=-c <L: + const x 6(w)) E(w)

m Constant fixed by causality:
dA(w) ' ic

dé(w) ~ nLn8+ w+in

=-c {wd(w) + ]



A simple exercise: classical Drude formula in 1d

m Multiplying the two factors:

ome(w) = dj(w) dA(w)
Drude dA(w) d&(w)
e2

= o X —C |:7T(5(W)+ ]

= Dqassical |:5(W) + :|

W



A simple exercise: classical Drude formula in 1d

m Multiplying the two factors:
_ d(w) dA(w)
oorce(w) = GAC) dE(w)

= —i X —C [w&(w)—i— ]

mc

W

= Dqassical |:6(W) + :|

m Key message:

m Drude weight = derivative of j wrt to A
m w-dependent factor = derivative of A wrt £
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Longitudinal conductivity, linear

m Quantum theory



Drude & regular terms in a real metal

m The Drude weight still measures the many-electron
free acceleration:

Drud ul
o) = o) + o w)

i
D b (regular)
3 [6(0.)) + Ww} +o,5 (W)

o(w) in Rubidium

m Dots: experiment f—
(N. V. Smith, 1970)

m Red: Drude (broadened by
extrinsic effects)

o ) (10" sec™y

o
o

m Blue: Regular

m Solid: sum of the two terms



f-sum rule

m Interacting electron gas in a flat potential:
Ug;gular) (w) = 07 Doc,B = Dclassica15a5

m After switching on the crystalline potential:

«Q

i regular
Uffg)(@ = Daup [5(w) + mu] + ol ﬂg : )(w)



f-sum rule

m Interacting electron gas in a flat potential:
Ug;gular)( ) = 07 Doc,B = Dclassica15a5

m After switching on the crystalline potential:

i regular
Uffg)(w = Dag [5(w) + mu] + agﬂg 120) ()

m The two terms are related by the f-sum rule

[ s Recuste) = %2 [ oo e ol = Do



Ground-state vs. dynamical properties

m Switching on the crystalline potential transfers some

spectral weight from agz,f“de)(w) to Ugggular)( w)

m Ininsulators D3 = 0
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n aggg“m) (w) is a dynamical property
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m D, is a ground-state property
(it doesn’t need sum-over-states Kubo formulee)



Ground-state vs. dynamical properties

m Switching on the crystalline potential transfers some
(Drude)

spectral weight from o, (w) to agggular) (W)
m Ininsulators D3 = 0
n aggg“m) (w) is a dynamical property

(it requires sum-over-states Kubo formulae)
m D, is a ground-state property

(it doesn’t need sum-over-states Kubo formulee)

m All dc conductivities are ground-state properties:
Longitudinal & transverse, linear & nonlinear



Effective electron density

m The Drude weight measures the inverse inertia of the
many-electron system

m Switching on the crystalline potential:

2 2
e e
Dclassical 5a6 = 7” 5a6 — Docﬂ = m nj;ﬂ

m The periodic potential hinders the free acceleration

*
ax

n < n



Effective electron density

m The Drude weight measures the inverse inertia of the
many-electron system

m Switching on the crystalline potential:

2 2
e e
Dclassical 5a6 = 7” 5&6 — Dozﬂ = nj;ﬂ

m The periodic potential hinders the free acceleration

*
ax

n < n

m Effective electron density contributing to the dc current:

Mg re2 P



f-sum rule revisited

Te*n

DaB > (regular) o
T—F/O dw Redaﬁ (w)— om 5046

aﬁ + 2m / dw Re o regular)( ) _ n5ag

Iy

For a given electron density n:

RUBIDIUM

m In a flat potential:
Only the Drude peak,
regular)( ) _

o W) (10" sech)

m In crystalline metals:
Both terms are nonzero

°
o

m In insulators: Only the
regular term, D5 =0 o
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Longitudinal conductivity, linear

m Boundary conditions



Schrédinger equation in condensed matter

m Periodic vs. “open”

-

Born-von-Karman PBCs  Open boundary conditions
(toroidal) (bounded crystallite)

m Closed circuit:
PBCs are the natural framework for conductivity



Schrédinger equation in condensed matter

m Periodic vs. “open”

-

Born-von-Karman PBCs  Open boundary conditions
(toroidal) (bounded crystallite)

m Closed circuit:
PBCs are the natural framework for conductivity
but also for condensed matter theory in general
m Open circuit:
No dc current may flow in a bounded crystallite



Drude weight within open boundary conditions

G. Bellomia & R. Resta, Phys. Rev. b 102, 205123 (2020)

-

m Is it possible to compute D by solving Schrédinger equation for
the many-electron system within OBCs?



Drude weight within open boundary conditions

G. Bellomia & R. Resta, Phys. Rev. b 102, 205123 (2020)

-

m Is it possible to compute D by solving Schrédinger equation for
the many-electron system within OBCs?

m Yes!
The inverse inertia can be probed in a different way

m How?
From the linear response to a low-frequency €(w)

m The system (bounded crystallite) has normal modes which
coalesce to w = 0 in the 1/L limit
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Adiabatic electron transport



The problem

m Hamiltonian depending on two parameters (t-independent)
H=H., ., |V andE, alsodepend on (1, r2)
m Focus on an operator O which can be written as
0= d«,H  derivative wrt the first parameter
m Ground-state expectation value

(O) = (Wo| O|Wo) = 9y, Ey Hellmann-Feynman



The problem

m Hamiltonian depending on two parameters (t-independent)
H=H., ., |V andE, alsodepend on (1, r2)
m Focus on an operator O which can be written as
0= d«,H  derivative wrt the first parameter
m Ground-state expectation value

(O) = (Wo| O|Wo) = 9y, Ey Hellmann-Feynman

m When A is varied in time: H = H(t)

(O(1)) = (W(1)| O|w(t)) = 2722



Niu-Thouless theorem (1984)

m The time-dependence of H occurs via ko = ka(t):

A(t) = Hey () A () = lh*l"’( )



Niu-Thouless theorem (1984)

m The time-dependence of H occurs via ko = ko(t):

At = He, eao)» A (t) = ih%\l’(m
m In the adiabatic limit:
(O(t)) = 0, Eg — B (11, 1) Fea(t)

Q(r1, k2) = 1 ({Ory V0|0, Vo) — (O, Wo|Or, Vo))

m Main features of the Niu-Thouless formula:
B Q(k1,k2) is called today a Berry curvature
m Both 0,;, Ep and Q(k1, k2) depend implicitly on time
m Exact for infinitesimal #»(t) (i.e. in the adiabatic limit)
m It converges to Hellmann-Feynman for s»(t) — O
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Kohn’s approach to linear dc conductivity



Kohn’s Hamiltonian (1964)

N

/:IK, _ % Z |:pl + gA(micro)(ri) n hl{|2+\,\/

i=1

m N-electron |Wy) depending on k = (kx, Ky, Kz)

m Born-von-Karman PBCs over a period L:
The coordinates r;, are actually angles ¢, = 27r, /L

mV one-body (possibly disordered) and two-body potentials
m A(™e)(r;) needed to break T-symmetry

B x-derivatives taken first, L — oo limit after



The 3d parameter k = (kx, ky, kz)

N
e - 2
_ . © A (micro) (.
Ay = 21: [p, +_A () + hn} +
=
m x “flux” or “twist” (dimensions: inverse length)

m Equivalent to an additional vector potential
hk = SA {r;}-independent

m Two different cases
t-independent «: a pure gauge-transformation
t-dependent «: macroscopic field

(1) = —Zk(t)



The operator O: macroscopic current density

N
1 € A (micro 2 (;

Bl = 21: [p,-+ ZAME(r) +7m} + v

I=

m Many-body velocity operator (extensive):

N €\ (mi 1. =~

Z [P: + EA(mlcro)(ri) + hfg:| = %aKDHFL

i=1

L1
V= —
m
m Macroscopic current-density operator:
e

TERAG

i=-
m Niu-Thouless formula:

Galt)) = =750 o — 1 Qs 5)ies (1))



Berry curvature

m Berry curvature (change of notation):

Qup(k) = Qka, k) = (05 Yol|Or, Vo) = (9r,Vol0r, Vo))

m Niu-Thouless formula:

A

a0 = Gal0) = =751
=0 ifk(t)=0

Oro Eo — h Qap(r)ra(t)]

m Symmetry properties:
m In presence of T-symmetry Q,z(k) = —Qus5(—kK)
m In presence of I-symmetry Q,z(k) = Qus(—k)
m Q.5(0) # 0 needs time-reversal symmetry broken



Case 1: t-independent flux, longitudinal conductivity

m Current induced by a constant vector potential:

Uhlt)]  __ 0 e 0B
Ok "~ Okgp hL3 Ok,

time-independent
K=0

ja € Oja e 0°E

0As  hcdwg  h2cL3 dra0ng




Case 1: t-independent flux, longitudinal conductivity

m Current induced by a constant vector potential:

Uhlt)]  __ 0 e 0B
Ok "~ Okgp hL3 Ok,

time-independent
K=0

ja € Oja e 0°E

0As  hcdwg  h2cL3 dra0ng

m A constant vector potential is a pure gauge:
why is Ey gauge-dependent ?
m Born-von-Karman PBCs violate gauge-invariance



Longitudinal conductivity

m The chain rule

o (w) B 8ja(w) _ aja(w) dA(w)
) = Beg(w)  0A(w) dEw)

m dA(w)/dE(w) same as in the classical case
B Jj.(w)/0As(w) requires sum-over-states Kubo formula



Longitudinal conductivity

m The chain rule

o (w) B 8ja(w) _ aja(w) dA(w)
) = Beg(w)  0A(w) dEw)

m dA(w)/dE(w) same as in the classical case
B Jj.(w)/0As(w) requires sum-over-states Kubo formula

m In the dc case: response to a static A

2 2 i
(Drude) _ € 0 EO _ L
s (@) = h2cl® Oka0kp x ¢ [Tré(w) + w}
i re® 02 Eo
= Daﬂ |:(5(W) + 7'['(,():| aB - ths 8/4}068%/6



The famous Kohn'’s formula (1964)

m The chain rule

o (w) B 8ja(w) _ aja(w) dA(w)
)= Beg(w) ~ DA(w) dE()

m dA(w)/d€(w) same as in the classical case
B Jj.(w)/0As(w) requires sum-over-states Kubo formula

m In the dc case: response to a static A

2 2 i
(Drude) _ e 0 EO _ L
Top (W) = h2cl3 Oka0kp x ¢ [Tré(w) * w}
i 71'62 82 EQ
= Dos [5(“’) * m] %0 = 218 Bradry
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Anomalous Hall conductivity (linear)



Case 2: time-dependent flux (adiabatically)

m Constant € field = k linear intime

_ 1dA(1) e
E=- c ar K=— hSt
m Second term in the Niu-Thouless fomula:
, e .
Ja(t) = =51 0k. Eo = 11 Qap(k)is(1)]
e? o
= i3 Q.5(k)Es  time independent at k = 0

m The extra term yields a dc current: no dissipation needeed
m The is current normal to the field: Q,z(x) antisymmetric
m It could be nonzero even in insulators



Case 2: time-dependent flux (adiabatically)

m Constant € field = k linear intime

_ 1dA(1) e
E=- c ar K=— hSt
m Second term in the Niu-Thouless fomula:
, e .
Ja(t) = =51 0k. Eo = 11 Qap(k)is(1)]
e? o
= i3 Q.5(k)Es  time independent at k = 0

m The extra term yields a dc current: no dissipation needeed
m The is current normal to the field: Q,z(x) antisymmetric
m It could be nonzero even in insulators

m Bottom line: anomalous Hall conductivity (linear):

e2
3 Qagp (O)

=)oy —
%5 (0= 5[5



Linear anomalous Hall conductivity: Summary

m Linear Hall conductivity: Geometric term
(in insulators and metals, in 2d and 3d)

2
o)(0) = —%Qaﬁ(O) in the L — oo limit
m Many-body Berry curvature (extensive):

Qap(K) = 1 ({OkaVolOks Vo) — (OkoVolOk,s Vo) )

m Q,3(0) # 0 only if T symmetry is broken
m Extrinsic terms always present in metals

m Topological in 2d insulators (Niu, Thouless, & Wu, 1985):
extrinsic effects irrelevant
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Independent-electron formulation in a crystalline material



Band structure (Hartree-Fock or Kohn-Sham)

m The many-body ground state |Wg):
Slater determinant of Bloch orbitals (doubly occupied)
ij) = e’k'r‘Ujk> with energy ejk

m Inthe L — oo limit k is a continuous variable

m Intensive ground state observables are k-integrals:
m Over the Brillouin zone (insulators)
m Over the Fermi volume (metals)

m Example: band energy per unit volume

E .
fg — 22/ @n? f(u—ejx) €, p = Fermilevel



Longitudinal conductivity

m Kohn’s Drude weight

e’ 82E0

ak _
— 2ré? Z /BZ @n) F — eji) m; ()
J

1 0% . . .
—1 _ i
mi,s(K) = 72 30k, inverse effective mass of band j

m Integrating by parts:
Fermi volume integral = Fermi surface integral



Longitudinal conductivity

m Kohn’s Drude weight

ne® 02 Eq

= ZWGZZ/ _dk_ f(u—e) m; (k)
i /Bz (2m)? ep
1 OPei . . .
—1 _ i
m ,s(K) = 72 30k, inverse effective mass of band j

m Integrating by parts:
Fermi volume integral = Fermi surface integral

m Landau’s Fermi-liquid theory:
Charge transport involves only quasiparticles with energies

within kg T from the Fermi level



Charge transport as an “intraband” property

|

F 1 Formi sphere
at t




Charge transport as an “intraband” property

|

F 1 Formi sphere
at t

m Fermi-volume to Fermi-surface (integrating by parts):

27762 dk aejk
Das = 2 z/:/ 2n7 (=g ks

_gwezz / (2"7:‘)(”’(6,.() Via(K)Vjs(K),  Vja(k) = ;ZZ“




Anomalous Hall conductivity (linear)

m Berry curvature of band j:
Q) a5(K) = i ( (Ok, Ujk|Ok, Uik) — (Ok, Ujk| Ok, Ujk) )
m Many-body Berry curvature at Kk = 0

1 dk =

— — ——— f(u— €jk) Qjap(k

13%2(0) Ej /BZ @) (1 — €j) Q2 ap(K)
m Intrinsic Hall conductivity (insulators and metals):

2 ~
j BZ



Anomalous Hall conductivity (linear)

m Berry curvature of band j:
Q) a5(K) = i ( (Ok, Ujk|Ok, Uik) — (Ok, Ujk| Ok, Ujk) )
m Many-body Berry curvature at Kk = 0

1 dk =

— — ——— f(u— €jk) Qjap(k

13%2(0) Ej /BZ @) (1 — €j) Q2 ap(K)
m Intrinsic Hall conductivity (insulators and metals):

2 ~
j BZ

m Topological in 2d insulators:

oy & K o gy €
7y (0) == ,-:%(;c /Bz (27)2 By (k) = =7 C




Summary

m Generalities about dc conductivity
(classical & quantum-mechanical)

m Many-body Hamiltonian with a “flux” (Kohn 1964)

m Linear longitudinal conductivity
m Lineal Hall conductivity

m Bloch theory & band-structure

m Linear longitudinal conductivity
m Lineal Hall conductivity

m Appendix: The Niu-Thouless-Wu many-body Chern
number
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B Appendix: Many-body Chern number



Integrating the 2d many-body Berry curvature

Qxy("‘) =i( <aﬁxWOK‘J|a‘iy\UOR> - <anywon|8nxwon>)

2n/ L

1 [T s
Ci= 5 /0 drx /0 dry Q)

27/ E

The domain is a torus if and only if the system is insulating



Single-point Chern number

m Chern theorem on a torus:

2w 2w
1 us em
2m Jo 0

m Inthe L — oo limit:

.27 .27 2
1 L L 1 /27 2r



QAHE in 2d insulators

m General formula for linear Hall conductivity,
in insulators and metals, in 2d and 3d:
e2

o{)(0) = —+73Qas(0)  inthe L — oo limit



QAHE in 2d insulators

m General formula for linear Hall conductivity,
in insulators and metals, in 2d and 3d:
e2

o{)(0) = —+73Qas(0)  inthe L — oo limit

m In24: 2
_ 2m
ol)(0) = — 5 120(0)

m In 2d insulators:

2 _
L—ZQX},(O) — G, 0)(0) — ~—Ci

Niu, Thouless, and Wu, Phys. Rev. B 31, 3372 (1985)



Convergence of the many-body Chern number

1.02

1.00 .
2
g 098
2
c 27I'
[} L i R
2 o9 2 Qxy(0) — Cq

numerical —e—
0.94  analytical —e—
exact

0.92 ; ; :
0 005 01 015 0.2

1L

m Tight-binding simulation (Haldane model Hamiltonian)
D. Ceresoli & R. Resta, Phys. Rev. B 76, 012405 (2007)
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