Zone-center phonons in polar crystals

Raffaele Resta

Trieste, 2021

Outline

1 Experiments \& Lyddane-Sachs-Teller

2 Huang's phenomenological theory

3 Born effective charge, polarization, current

Outline

1 Experiments \& Lyddane-Sachs-Teller

2 Huang's phenomenological theory

3 Born effective charge, polarization, current

From: C. Kittel, Introduction to Solid State Physics

$\operatorname{Re} \varepsilon(\omega)$ for SrF_{2}

Two regimes:

$\square \operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{0}:$ static

- $\operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{\infty}$: "static high frequency"
a.k.a. clamped ion, a.k.a. electronic

In a nonpolar crystal $\varepsilon_{0}=\varepsilon_{\infty}$, no pole: why?

From: C. Kittel, Introduction to Solid State Physics

$\operatorname{Re} \varepsilon(\omega)$ for SrF_{2}
Two regimes:
$\square \operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{0}$: static
$\square \operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{\infty}$: "static high frequency"
a.k.a. clamped ion, a.k.a. electronic

From: C. Kittel, Introduction to Solid State Physics

$\operatorname{Re} \varepsilon(\omega)$ for SrF_{2}
Two regimes:
$\square \operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{0}$: static
$\square \operatorname{Re} \varepsilon(\omega) \longrightarrow \varepsilon_{\infty}$: "static high frequency"
a.k.a. clamped ion, a.k.a. electronic

■ In a nonpolar crystal $\varepsilon_{0}=\varepsilon_{\infty}$, no pole: why?

From: C. Kittel, Introduction to Solid State Physics

From: C. Kittel, Introduction to Solid State Physics

Inelastic neutron scattering in KBr
B.N. Brockhouse et al.

Experiments: 1950s Nobel prize: 1994

Polar vs. nonpolar: Si \& GaAs

Figure 2. Phonon dispersions for Si (above) and GaAs (below) from ab initio calculations

Key message

■ Polar crystal (cubic binary)
■ $\varepsilon_{0}>\varepsilon_{\infty}$

- $\omega_{\mathrm{LO}}>\omega_{\mathrm{TO}}$

■ Zone-center mode infrared active

■ Nonpolar crystal (cubic binary, e.g. diamond)
■ $\varepsilon_{0}=\varepsilon_{\infty}$

- $\omega_{\mathrm{LO}}=\omega_{\mathrm{TO}}$

■ Zone-center mode infrared inactive

Lyddane-Sachs-Teller (1941)

$$
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=\frac{\varepsilon_{0}}{\varepsilon_{\infty}}
$$

Beautifully simple and general
Independent of microscopics such as
■ masses

- interatomic force constants
- ionic charges

■ cell volume.....

Outline

1 Experiments \& Lyddane-Sachs-Teller

2 Huang's phenomenological theory

3 Born effective charge, polarization, current

Phenomenological theory: Huang, 1950

 (exact within the harmonic approximation)Free energy per cell $\mathcal{F}=V_{\text {c }} \mathscr{F}$
Cubic binary crystal: independent variables: E, u expanded to second order

$$
\mathcal{F}(E, u)=\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E
$$

Equations of motion (M reduced mass)

Phenomenological theory: Huang, 1950

 (exact within the harmonic approximation)Free energy per cell $\mathcal{F}=V_{\text {c }} \mathscr{F}$
Cubic binary crystal: independent variables: E, u expanded to second order

$$
\mathcal{F}(E, u)=\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E
$$

Equations of motion (M reduced mass):

$$
\begin{aligned}
f & =-\frac{\partial \mathcal{F}}{\partial u}=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =-\frac{4 \pi}{V_{\mathrm{c}}} \frac{\partial \mathcal{F}}{\partial E}=\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

Phenomenological theory: Huang, 1950

 (exact within the harmonic approximation)Free energy per cell $\mathcal{F}=V_{\text {c }} \mathscr{F}$
Cubic binary crystal: independent variables: E, u expanded to second order

$$
\mathcal{F}(E, u)=\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E
$$

Equations of motion (M reduced mass):

$$
\begin{aligned}
f & =-\frac{\partial \mathcal{F}}{\partial u}=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =-\frac{4 \pi}{V_{\mathrm{c}}} \frac{\partial \mathcal{F}}{\partial E}=\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

Phenomenological theory: Huang, 1950

 (exact within the harmonic approximation)Free energy per cell $\mathcal{F}=V_{\mathrm{c}} \mathscr{F}$
Cubic binary crystal: independent variables: E, u expanded to second order

$$
\mathcal{F}(E, u)=\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E
$$

Equations of motion (M reduced mass):

$$
\begin{aligned}
f & =-\frac{\partial \mathcal{F}}{\partial u}=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =-\frac{4 \pi}{V_{\mathrm{c}}} \frac{\partial \mathcal{F}}{\partial E}=\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

Phenomenological theory: Huang, 1950

 (exact within the harmonic approximation)Free energy per cell $\mathcal{F}=V_{\text {c }} \mathscr{F}$
Cubic binary crystal: independent variables: E, u expanded to second order

$$
\mathcal{F}(E, u)=\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E
$$

Equations of motion (M reduced mass):

$$
\begin{aligned}
f & =-\frac{\partial \mathcal{F}}{\partial u}=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
P & =-\frac{4 \pi}{V_{\mathrm{c}} \partial E}=\frac{\varepsilon_{\infty}-1}{4 \pi} E+\frac{1}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

Static response: ε_{0}

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

at equilibrium:

$$
f=0 \quad \longrightarrow \quad u=\frac{Z^{*}}{M \omega_{\mathrm{TO}}^{2}} E
$$

Static response: ε_{0}

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

at equilibrium:

$$
\begin{gathered}
f=0 \quad \longrightarrow \quad u=\frac{Z^{*}}{M \omega_{\mathrm{TO}}^{2}} E \\
D=\left[\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}}\right] E=\varepsilon_{0} E
\end{gathered}
$$

Dynamical response $\varepsilon(\omega)$

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

forced oscillations at frequency ω :

$$
-M \omega^{2} u=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

$$
D(\omega)=\left[\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{2}-\omega^{2}\right)}\right] E(\omega)=\operatorname{Re} \varepsilon(\omega) E(\omega)
$$

Dynamical response $\varepsilon(\omega)$

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

forced oscillations at frequency ω :

$$
-M \omega^{2} u=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

Dynamical response $\varepsilon(\omega)$

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

forced oscillations at frequency ω :

$$
-M \omega^{2} u=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

$$
u=\frac{Z^{*}}{M\left(\omega_{\mathrm{TO}}^{2}-\omega^{2}\right)} E
$$

Dynamical response $\varepsilon(\omega)$

$$
\begin{aligned}
f & =-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
D & =\varepsilon_{\infty} E+\frac{4 \pi}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

forced oscillations at frequency ω :

$$
\begin{gathered}
-M \omega^{2} u=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
u=\frac{Z^{*}}{M\left(\omega_{\mathrm{TO}}^{2}-\omega^{2}\right)} E \\
D(\omega)=\left[\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{2}-\omega^{2}\right)}\right] E(\omega)=\operatorname{Re} \varepsilon(\omega) E(\omega)
\end{gathered}
$$

From: C. Kittel, Introduction to Solid State Physics

$\varepsilon(\omega)$ for SrF_{2} (real part)

$$
\begin{aligned}
\operatorname{Re} \varepsilon(\omega) & =\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{\mathrm{o}}-\omega^{2}\right)} \\
\operatorname{Im} \varepsilon(\omega) & =\frac{2 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M \omega_{\mathrm{TO}}}\left[\delta\left(\omega_{\mathrm{TO}}-\omega\right)-\delta\left(\omega_{\mathrm{TO}}+\omega\right)\right]
\end{aligned}
$$

E and D fields

- In presence of a long wavelength phonon of wave vector \mathbf{q} :
- Solid macroscopically homogeneous normal to q
- Macroscopic properties modulated in the of \mathbf{q} direction

E and D fields

■ In presence of a long wavelength phonon of wave vector \mathbf{q} :

- Solid macroscopically homogeneous normal to q

■ Macroscopic properties modulated in the of \mathbf{q} direction

- Ergo:

■ E normal to q vanish

- D parallel to \mathbf{q} vanish
- TO phonon: $\mathbf{E}=0, \mathbf{D} \neq 0$

■ LO phonon: $\mathbf{D}=0, \mathbf{E} \neq 0$

Transverse \& longitudinal modes

■ In a transverse mode $E=0$:

$$
f=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

- In a longitudinal mode $D=\varepsilon E=0 \Rightarrow$

Transverse \& longitudinal modes

■ In a transverse mode $E=0$:

$$
f=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

■ In a longitudinal mode $D=\varepsilon E=0 \Rightarrow \varepsilon=0$:

$$
0=\varepsilon\left(\omega_{\mathrm{LO}}\right)
$$

Transverse \& longitudinal modes

■ In a transverse mode $E=0$:

$$
f=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

■ In a longitudinal mode $D=\varepsilon E=0 \Rightarrow \varepsilon=0$:

$$
0=\varepsilon\left(\omega_{\mathrm{LO}}\right)=\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{2}-\omega_{\mathrm{LO}}^{2}\right)}
$$

Transverse \& longitudinal modes

■ In a transverse mode $E=0$:

$$
f=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

■ In a longitudinal mode $D=\varepsilon E=0 \Rightarrow \varepsilon=0$:

$$
\begin{gathered}
0=\varepsilon\left(\omega_{\mathrm{LO}}\right)=\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{2}-\omega_{\mathrm{LO}}^{2}\right)} \\
\omega_{\mathrm{LO}}^{2}=\omega_{\mathrm{TO}}^{2}+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M}=\omega_{\mathrm{TO}}^{2}+4 \pi \frac{(\text { charge density })^{2}}{\text { mass density }}
\end{gathered}
$$

Transverse \& longitudinal modes

■ In a transverse mode $E=0$:

$$
f=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E
$$

■ In a longitudinal mode $D=\varepsilon E=0 \Rightarrow \varepsilon=0$:

$$
\begin{gathered}
0=\varepsilon\left(\omega_{\mathrm{LO}}\right)=\varepsilon_{\infty}+\frac{4 \pi\left(Z^{*}\right)^{2}}{V_{\mathrm{c}} M\left(\omega_{\mathrm{TO}}^{2}-\omega_{\mathrm{LO}}^{2}\right)} \\
\omega_{\mathrm{LO}}^{2}=\omega_{\mathrm{TO}}^{2}+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M}=\omega_{\mathrm{TO}}^{2}+4 \pi \frac{(\text { charge density })^{2}}{\text { mass density }}
\end{gathered}
$$

$(\text { charge density })^{2}=\frac{\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{c}^{2}} \quad$ reduced mass density $=\frac{M}{V_{c}}$

Bottom line: Lyddane-Sachs-Teller

$$
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=1+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}}
$$

■ All microscopic parameters disappear $\left(Z^{*}, M, V_{c}\right)$

- LST is exact (within the harmonic approx.)
- Both members of LST measure the field-lattice coupling

■ Can be generalized to more complex crystals, and beyond (anharmonic solids, amorphous materials....)

Bottom line: Lyddane-Sachs-Teller

$$
\begin{gathered}
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=1+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}} \\
\frac{\varepsilon_{0}}{\varepsilon_{\infty}}=\text { the same }
\end{gathered}
$$

- All microscopic parameters disappear (Z^{*}, M, V_{c})
- LST is exact (within the harmonic approx.)
- Both members of LST measure the field-lattice coupling

■ Can be generalized to more complex crystals, and beyond (anharmonic solids, amorphous materials....)

Bottom line: Lyddane-Sachs-Teller

$$
\begin{gathered}
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=1+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}} \\
\frac{\varepsilon_{0}}{\varepsilon_{\infty}}=\text { the same }
\end{gathered}
$$

■ All microscopic parameters disappear (Z^{*}, M, V_{c})
■ LST is exact (within the harmonic approx.)

- Both members of LST measure the field-lattice coupling

■ Can be generalized to more complex crystals, and beyond (anharmonic solids, amorphous materials....)

Bottom line: Lyddane-Sachs-Teller

$$
\begin{gathered}
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=1+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}} \\
\frac{\varepsilon_{0}}{\varepsilon_{\infty}}=\text { the same }
\end{gathered}
$$

■ All microscopic parameters disappear (Z^{*}, M, V_{c})

- LST is exact (within the harmonic approx.)
- Both members of LST measure the field-lattice coupling
- Can be generalized to more complex crystals, and beyond (anharmonic solids, amorphous materials....)

Bottom line: Lyddane-Sachs-Teller

$$
\begin{gathered}
\frac{\omega_{\mathrm{LO}}^{2}}{\omega_{\mathrm{TO}}^{2}}=1+\frac{4 \pi\left(Z^{*}\right)^{2}}{\varepsilon_{\infty} V_{\mathrm{c}} M \omega_{\mathrm{TO}}^{2}} \\
\frac{\varepsilon_{0}}{\varepsilon_{\infty}}=\text { the same }
\end{gathered}
$$

■ All microscopic parameters disappear (Z^{*}, M, V_{c})

- LST is exact (within the harmonic approx.)
- Both members of LST measure the field-lattice coupling
- Can be generalized to more complex crystals, and beyond (anharmonic solids, amorphous materials....)

Outline

1 Experiments \& Lyddane-Sachs-Teller

2 Huang's phenomenological theory

3 Born effective charge, polarization, current

Born effective charge (cubic binary crystal)

$$
\begin{aligned}
\mathcal{F}(E, u) & =\mathcal{F}_{0}+\frac{1}{2} M \omega_{\mathrm{TO}}^{2} u^{2}-\frac{V_{\mathrm{c}}}{8 \pi} \varepsilon_{\infty} E^{2}-Z^{*} u E \\
f & =-\frac{\partial \mathcal{F}}{\partial u}=-M \omega_{\mathrm{TO}}^{2} u+Z^{*} E \\
P & =-\frac{1}{V_{\mathrm{c}}} \frac{\partial \mathcal{F}}{\partial E}=\frac{\varepsilon_{\infty}-1}{4 \pi} E+\frac{1}{V_{\mathrm{c}}} Z^{*} u
\end{aligned}
$$

■ Dual interpretation of $\quad Z^{*}=\frac{\partial^{2} \mathcal{F}}{\partial u \partial E}$

- Force exerted on the clamped nuclei by $E: \frac{\partial f}{\partial E}$

■ Polarization due to the ionic displacement at $E=0: \frac{1}{V_{c}} \frac{\partial P}{\partial u}$

Born effective charge (generic crystal)

■ Generalization to a low-symmetry lattice with $\ell=1,2 \ldots . . n$ sublattices:

■ Effective mass tensor:

$$
Z_{\ell, \alpha \beta}^{*}=\frac{\partial^{2} \mathcal{F}}{\partial u_{\ell, \alpha} \partial E_{\beta}}
$$

■ Sum rule: $\sum_{\ell} Z_{\ell, \alpha \beta}^{*}=0$
■ In general, not a symmetric tensor

- It could be strongly counterintuitive

Born effective charge (generic crystal)

- Generalization to a low-symmetry lattice with $\ell=1,2 \ldots . . n$ sublattices:

■ Effective mass tensor:

$$
Z_{\ell, \alpha \beta}^{*}=\frac{\partial^{2} \mathcal{F}}{\partial u_{\ell, \alpha} \partial E_{\beta}}
$$

■ Sum rule: $\sum_{\ell} \boldsymbol{Z}_{\ell, \alpha \beta}^{*}=0$
■ In general, not a symmetric tensor
■ It could be strongly counterintuitive

Macroscopic current

■ In a cubic binary crystal:

$$
P=\frac{1}{V_{\mathrm{c}}} Z^{*} u, \quad E=0
$$

■ Harmonic: The sublattices oscillate at frequency ω_{TO} :

$$
\begin{aligned}
P(t) & =\frac{1}{V_{\mathrm{c}}} Z^{*} u(t) \\
j(t) & =\frac{d}{d t} P(t)=\frac{1}{V_{c}} Z^{*} \frac{d}{d t} u(t)=\frac{1}{V_{\mathrm{c}}} Z^{*} v(t)
\end{aligned}
$$

Total current (a.k.a. charge flux): electronic and nuclear

- Generic, anharmonic system (e.g. liquid):

Macroscopic current

■ In a cubic binary crystal:

$$
P=\frac{1}{V_{\mathrm{c}}} Z^{*} u, \quad E=0
$$

■ Harmonic: The sublattices oscillate at frequency ω_{TO} :

$$
\begin{aligned}
P(t) & =\frac{1}{V_{\mathrm{c}}} Z^{*} u(t) \\
j(t) & =\frac{d}{d t} P(t)=\frac{1}{V_{\mathrm{c}}} Z^{*} \frac{d}{d t} u(t)=\frac{1}{V_{\mathrm{c}}} Z^{*} v(t)
\end{aligned}
$$

Total current (a.k.a. charge flux): electronic and nuclear
■ Generic, anharmonic system (e.g. liquid):

$$
j_{\alpha}(t)=\frac{e}{V} \sum_{\ell=1}^{N} Z_{\ell, \alpha \beta}^{*}(t) v_{\ell, \beta}(t)
$$

Macroscopic vs. microscopic field

$\mathbf{E}^{(\text {micro })}(\mathbf{r})$ is the "real" electric field inside the material:

$$
\begin{aligned}
\mathbf{f}_{\ell} & =Z_{\ell} \mathbf{E}^{(\text {micro })}\left(\mathbf{r}_{\ell}\right) \quad Z_{\ell} \text { bare nuclear charge } \\
& =Z_{\ell, \alpha \beta}^{*} E_{\beta} \quad \text { force induced by macroscopic E field }
\end{aligned}
$$

Macroscopic vs. microscopic field

$\mathbf{E}^{\text {(micro })}(\mathbf{r})$ is the "real" electric field inside the material:

$$
\begin{aligned}
\mathbf{f}_{\ell} & =Z_{\ell} \mathbf{E}^{(\text {micro })}\left(\mathbf{r}_{\ell}\right) \quad Z_{\ell} \text { bare nuclear charge } \\
\mathbf{f}_{\ell, \alpha} & =Z_{\ell, \alpha \beta}^{*} E_{\beta} \quad \text { force induced by macroscopic } \mathbf{E} \text { field }
\end{aligned}
$$

$$
\begin{gathered}
Z_{\ell, \alpha \beta}^{*}=\frac{E_{\alpha}^{(\text {micro })}\left(\mathbf{r}_{\ell}\right)}{E_{\beta}} Z_{\ell} \\
Z_{\text {cation }}^{*}>0 \quad Z_{\text {anion }}^{*}<0
\end{gathered}
$$

CAVEAT: No pseudopotentials here!

Macroscopic vs. microscopic field

$\mathbf{E}^{\text {(micro })}(\mathbf{r})$ is the "real" electric field inside the material:

$$
\begin{aligned}
\mathbf{f}_{\ell} & =Z_{\ell} \mathbf{E}^{(\text {micro })}\left(\mathbf{r}_{\ell}\right) \quad Z_{\ell} \text { bare nuclear charge } \\
\mathbf{f}_{\ell, \alpha} & =Z_{\ell, \alpha \beta}^{*} E_{\beta} \quad \text { force induced by macroscopic } \mathbf{E} \text { field }
\end{aligned}
$$

$$
\begin{array}{cc}
Z_{\ell, \alpha \beta}^{*}=\frac{E_{\alpha}^{(\text {micro })}\left(\mathbf{r}_{\ell}\right)}{E_{\beta}} Z_{\ell} \\
Z_{\text {cation }}^{*}>0 & Z_{\text {anion }}^{*}<0
\end{array}
$$

CAVEAT: No pseudopotentials here!

Z^{*} tensors in molten KCl

$$
j_{\alpha}(t)=\frac{e}{V} \sum_{\ell=1}^{N} Z_{\ell, \alpha \beta}^{*}(t) v_{\ell, \beta}(t)
$$

Instantaneous $\overleftrightarrow{Z}_{\ell}^{*}(t)$ (after Grasselli \& Baroni, Nature Phys. 2019) Scalar in average, $\left\langle\overleftrightarrow{Z_{\mathrm{K}}^{*}}\right\rangle=1.1,\left\langle\overleftrightarrow{Z_{\mathrm{Cl}}^{*}}\right\rangle=-1.1$

Z^{*} tensors in partially dissociated water

54 O atoms and 108 H atoms in a PBCs simulation cell of volume V : anharmonic thermal motion in zero \mathbf{E} field

$$
j_{\alpha}(t)=\frac{e}{V} \sum_{\ell=1}^{N} Z_{\ell, \alpha \beta}^{*}(t) v_{\ell, \beta}(t)
$$

Distribution of the Z_{ℓ}^{*} tensors: diagonal (solid) \& off-diagonal (dashed)

French, Hamel, \& Redmer, Phys. Rev. Lett. 107, 185901 (2011)

Ionic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic conductivity:

$$
\sigma=\frac{V \beta}{3} \int_{0}^{\infty} d t\langle\mathbf{j}(t) \cdot \mathbf{j}(0)\rangle
$$

