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Re e(w) for SrF,
Two regimes:

B Re e(w) — ¢q: static
m Re ¢(w) — e “static high frequency”

a.k.a. clamped ion, a.k.a. electronic
m In a nonpolar crystal g = e, No pole: why?
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Polar vs. nonpolar: Si & GaAs

Figure 2. Phonon dispersions for §i (above) and Gads (below) from b calculations



Key message

m Polar crystal (cubic binary)

B gy > o
B wio > Wro
m Zone-center mode infrared active

m Nonpolar crystal (cubic binary, e.g. diamond)

B ) =€
B wro = wto
m Zone-center mode infrared inactive



Lyddane-Sachs-Teller (1941)

2
—5 = —
Wro  Coo

Beautifully simple and general

Independent of microscopics such as
B masses
m interatomic force constants
m ionic charges
m cell volume.....
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Phenomenological theory: Huang, 1950

(exact within the harmonic approximation)

Free energy per cell ¥ = V.%

Cubic binary crystal: independent variables: E, u
expanded to second order

—enoE? — Z*uE

1 V.
F(E,u) = Fo + 5 Muko tP —

2 81
Equations of motion (M reduced mass):

f = _?9];: — Mw?qu+ Z*E
1

€00 — 1
P = == E+—Z*
47 +VCZU
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Static response: g

f = —Mudou+Z°E
D = 600E+4—7TZ*U
Ve
at equilibrium:
f=0 — u= 22 E
Mwz,
*)2
D= [5m+4”(z) }E:goE
VCMW%O
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Dynamical response s(w)

f = —Mdou+Z°E
ar _,
D = 5OOE+ VCZ u

forced oscillations at frequency w:
~MuPu=—-MuBou+ ZE
___Z
M(W%o - w?)

An(Z*)?
VeM(w2, — w?)

D(w) = |e0o + E(w) =Re ¢(w) E(w)
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An(Z*)?
Ree(w) = ew+ VC/\/I(w(%O)—w2)
(Z* 2
Ime(w) = 2n(27) [d(wro — w) — d(wro + W) ]
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m Solid macroscopically homogeneous normal to q
m Macroscopic properties modulated in the of q direction



E and D fields

m In presence of a long wavelength phonon of wave vector q:

m Solid macroscopically homogeneous normal to q
m Macroscopic properties modulated in the of q direction

m Ergo:
m E normal to q vanish
m D parallel to q vanish

m TO phonon: E=0,D #0
m LO phonon: D=0,E+#0
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Transverse & longitudinal modes

m In a transverse mode E = 0:
f=—Muiou+ZE
m In alongitudinalmode D=cE =0 = ¢ =0:

47T(Z*)2
V. M(w%o — wfo)

0= €(wL0) = €00 +

47 (Z*)? (charge density)?
2 2 4dn
e VoM — 71O mass density

) (2
£00 V2

C

(charge density) reduced mass density =

V.
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Bottom line: Lyddane-Sachs-Teller

L}%O _ An(Z*)?

2 2
Wo Eoo VeMwi

£
0 _ the same

€00
m All microscopic parameters disappear (Z*, M, V)

m LST is exact (within the harmonic approx.)
m Both members of LST measure the field-lattice coupling

m Can be generalized to more complex crystals,
and beyond (anharmonic solids, amorphous materials....)
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Born effective charge (cubic binary crystal)

1 V, .
F(E,u)=Fo+ EMw%o u? — 8—;eooEz - Z*uE
OF .
f= -5, = —MuBou+ Z°E
1 OF et !
P = "VoE™ 4 ETy“sl
2
m Dual interpretation of Z* = 6de

m Force exerted on the clamped nuclei by E: 38_[:

m Polarization due to the ionic displacement at £ = 0:

<=
Q;|Q;
<



Born effective charge (generic crystal)

m Generalization to a low-symmetry lattice
with £ = 1, 2.....n sublattices:

m Effective mass tensor:

PF
Zfg = =
LB duy 4 0Es

m Sumrule: >, 2/ s =0

m In general, not a symmetric tensor



Born effective charge (generic crystal)

m Generalization to a low-symmetry lattice
with £ = 1, 2.....n sublattices:

m Effective mass tensor:

02F
Z} g = —
LB duy 4 0Es
m Sumrule: >, 2/ s =0
m In general, not a symmetric tensor

m It could be strongly counterintuitive



Macroscopic current

m In a cubic binary crystal:

1

m Harmonic: The sublattices oscillate at frequency wro:

P(t) = \1/CZ*u(t)

i = SR = 2 qult) = 52 v

Total current (a.k.a. charge flux): electronic and nuclear



Macroscopic current

m In a cubic binary crystal:

1

m Harmonic: The sublattices oscillate at frequency wro:

P(t) = \1/CZ*u(t)

ity = P)= VZ —u(t) = *Z v(t)
Total current (a.k.a. charge flux): electronic and nuclear

m Generic, anharmonic system (e.g. liquid):

N
) = 5 2 Zias(B) ves(D)
=1
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E(micro) (r) is the “real” electric field inside the material:
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Macroscopic vs. microscopic field

E(micro) (r) is the “real” electric field inside the material:

f, = Z EM™)(r,)  Z bare nuclear charge
Z; s Es force induced by macroscopic E field

ff,a

E&micro) (rg)
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Macroscopic vs. microscopic field

E(micro)(r) is the “real” electric field inside the material:

f, = Z EM™)(r,)  Z bare nuclear charge
foo = Z/.5Es  force induced by macroscopic E field
. E&micro) (rg)
Ziag = —E Z
cgtion >0 Z:nion <0

CAVEAT: No pseudopotentials here!



Z* tensors in molten KCI
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>
Instantaneous Z; (t) (after Grasselli & Baroni, Nature Phys. 2019)
> >
Scalar in average, (Zg) = 1.1, (Z3) = —1.1



Z* tensors in partially dissociated water

54 O atoms and 108 H atoms in a PBCs simulation cell of volume V:
anharmonic thermal motion in zero E field

N
(0= D2 Z s ves(t)
=1

Distribution of the Z; tensors: diagonal (solid) & off-diagonal (dashed)
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French, Hamel, & Redmer, Phys. Rev. Lett. 107, 185901 (2011)



lonic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic conductivity:
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