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Zone-center phonons in polar crystals

Raffaele Resta

Trieste, 2021
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Outline

1 Experiments & Lyddane-Sachs-Teller

2 Huang’s phenomenological theory

3 Born effective charge, polarization, current
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Outline

1 Experiments & Lyddane-Sachs-Teller

2 Huang’s phenomenological theory

3 Born effective charge, polarization, current
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From: C. Kittel, Introduction to Solid State Physics

Re ε(ω) for SrF2
Two regimes:

Re ε(ω) −→ ε0: static
Re ε(ω) −→ ε∞: “static high frequency”

a.k.a. clamped ion, a.k.a. electronic
In a nonpolar crystal ε0 = ε∞, no pole: why?
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From: C. Kittel, Introduction to Solid State Physics

Inelastic neutron scatter-
ing in KBr

B.N. Brockhouse et al.

Experiments: 1950s
Nobel prize: 1994
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From: C. Kittel, Introduction to Solid State Physics

Inelastic neutron scatter-
ing in KBr

B.N. Brockhouse et al.

Experiments: 1950s
Nobel prize: 1994
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Polar vs. nonpolar: Si & GaAs
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Key message

Polar crystal (cubic binary)

ε0 > ε∞
ωLO > ωTO
Zone-center mode infrared active

Nonpolar crystal (cubic binary, e.g. diamond)

ε0 = ε∞
ωLO = ωTO
Zone-center mode infrared inactive
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Lyddane-Sachs-Teller (1941)

ω2
LO

ω2
TO

=
ε0

ε∞
Beautifully simple and general

Independent of microscopics such as
masses
interatomic force constants
ionic charges
cell volume.....
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Outline

1 Experiments & Lyddane-Sachs-Teller

2 Huang’s phenomenological theory

3 Born effective charge, polarization, current
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Phenomenological theory: Huang, 1950
(exact within the harmonic approximation)

Free energy per cell F = VcF
Cubic binary crystal: independent variables: E ,u
expanded to second order

F(E ,u) = F0 +
1
2

Mω2
TO u2 − Vc

8π
ε∞E2 − Z ∗uE

Equations of motion (M reduced mass):

f = −∂F
∂u

= − Mω2
TOu + Z ∗E

D = − 4π
Vc

∂F
∂E

= ε∞E +
4π
Vc

Z ∗u
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expanded to second order
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Phenomenological theory: Huang, 1950
(exact within the harmonic approximation)

Free energy per cell F = VcF
Cubic binary crystal: independent variables: E ,u
expanded to second order

F(E ,u) = F0 +
1
2

Mω2
TO u2 − Vc

8π
ε∞E2 − Z ∗uE

Equations of motion (M reduced mass):

f = −∂F
∂u

= − Mω2
TOu + Z ∗E

D = − 4π
Vc

∂F
∂E

= ε∞E +
4π
Vc
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Phenomenological theory: Huang, 1950
(exact within the harmonic approximation)

Free energy per cell F = VcF
Cubic binary crystal: independent variables: E ,u
expanded to second order

F(E ,u) = F0 +
1
2

Mω2
TO u2 − Vc

8π
ε∞E2 − Z ∗uE

Equations of motion (M reduced mass):

f = −∂F
∂u

= − Mω2
TOu + Z ∗E

P = − 4π
Vc

∂F
∂E

=
ε∞ − 1

4π
E +

1
Vc

Z ∗u
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Static response: ε0

f = −Mω2
TOu + Z ∗E

D = ε∞E +
4π
Vc

Z ∗u

at equilibrium:

f = 0 −→ u =
Z ∗

Mω2
TO

E

D =

[
ε∞ +

4π(Z ∗)2

VcMω2
TO

]
E = ε0 E
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Static response: ε0

f = −Mω2
TOu + Z ∗E
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at equilibrium:
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Dynamical response ε(ω)

f = −Mω2
TOu + Z ∗E

D = ε∞E +
4π
Vc

Z ∗u

forced oscillations at frequency ω:

−Mω2u = −Mω2
TOu + Z ∗E

u =
Z ∗

M(ω2
TO − ω2)

E

D(ω) =

[
ε∞ +

4π(Z ∗)2

VcM(ω2
TO − ω2)

]
E(ω) = Re ε(ω)E(ω)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dynamical response ε(ω)

f = −Mω2
TOu + Z ∗E

D = ε∞E +
4π
Vc

Z ∗u

forced oscillations at frequency ω:

−Mω2u = −Mω2
TOu + Z ∗E

u =
Z ∗

M(ω2
TO − ω2)

E

D(ω) =

[
ε∞ +

4π(Z ∗)2

VcM(ω2
TO − ω2)

]
E(ω) = Re ε(ω)E(ω)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dynamical response ε(ω)

f = −Mω2
TOu + Z ∗E

D = ε∞E +
4π
Vc

Z ∗u

forced oscillations at frequency ω:

−Mω2u = −Mω2
TOu + Z ∗E

u =
Z ∗

M(ω2
TO − ω2)

E

D(ω) =

[
ε∞ +

4π(Z ∗)2

VcM(ω2
TO − ω2)

]
E(ω) = Re ε(ω)E(ω)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dynamical response ε(ω)
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From: C. Kittel, Introduction to Solid State Physics

ε(ω) for SrF2 (real part)

Re ε(ω) = ε∞ +
4π(Z ∗)2

VcM(ω2
TO − ω2)

Im ε(ω) =
2π(Z ∗)2

VcMωTO
[ δ(ωTO − ω)− δ(ωTO + ω) ]
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E and D fields

In presence of a long wavelength phonon of wave vector q:

Solid macroscopically homogeneous normal to q
Macroscopic properties modulated in the of q direction

Ergo:
E normal to q vanish
D parallel to q vanish

TO phonon: E = 0,D ̸= 0
LO phonon: D = 0,E ̸= 0
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E and D fields

In presence of a long wavelength phonon of wave vector q:

Solid macroscopically homogeneous normal to q
Macroscopic properties modulated in the of q direction

Ergo:
E normal to q vanish
D parallel to q vanish

TO phonon: E = 0,D ̸= 0
LO phonon: D = 0,E ̸= 0



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Transverse & longitudinal modes

In a transverse mode E = 0:

f = −Mω2
TOu + Z ∗E

In a longitudinal mode D = εE = 0 ⇒ ε = 0:

0 = ε(ωLO) = ε∞ +
4π(Z ∗)2

VcM(ω2
TO − ω2

LO)

ω2
LO = ω2

TO +
4π(Z ∗)2

ε∞VcM
= ω2

TO + 4π
(charge density)2

mass density

(charge density)2 =
(Z ∗)2

ε∞V 2
c

reduced mass density =
M
Vc
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Bottom line: Lyddane-Sachs-Teller

ω2
LO

ω2
TO

= 1 +
4π(Z ∗)2

ε∞VcMω2
TO

ε0

ε∞
= the same

All microscopic parameters disappear (Z ∗,M,Vc)
LST is exact (within the harmonic approx.)
Both members of LST measure the field-lattice coupling

Can be generalized to more complex crystals,
and beyond (anharmonic solids, amorphous materials....)
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Bottom line: Lyddane-Sachs-Teller

ω2
LO

ω2
TO

= 1 +
4π(Z ∗)2

ε∞VcMω2
TO

ε0

ε∞
= the same

All microscopic parameters disappear (Z ∗,M,Vc)
LST is exact (within the harmonic approx.)
Both members of LST measure the field-lattice coupling

Can be generalized to more complex crystals,
and beyond (anharmonic solids, amorphous materials....)
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Bottom line: Lyddane-Sachs-Teller

ω2
LO

ω2
TO

= 1 +
4π(Z ∗)2

ε∞VcMω2
TO

ε0

ε∞
= the same

All microscopic parameters disappear (Z ∗,M,Vc)
LST is exact (within the harmonic approx.)
Both members of LST measure the field-lattice coupling

Can be generalized to more complex crystals,
and beyond (anharmonic solids, amorphous materials....)
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Outline

1 Experiments & Lyddane-Sachs-Teller

2 Huang’s phenomenological theory

3 Born effective charge, polarization, current
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Born effective charge (cubic binary crystal)

F(E ,u) = F0 +
1
2

Mω2
TO u2 − Vc

8π
ε∞E2 − Z ∗uE

f = −∂F
∂u

= −Mω2
TOu + Z ∗E

P = − 1
Vc

∂F
∂E

=
ε∞ − 1

4π
E +

1
Vc

Z ∗u

Dual interpretation of Z ∗ = ∂2F
∂u∂E

Force exerted on the clamped nuclei by E : ∂f
∂E

Polarization due to the ionic displacement at E = 0: 1
Vc

∂P
∂u
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Born effective charge (generic crystal)

Generalization to a low-symmetry lattice
with ℓ = 1,2.....n sublattices:

Effective mass tensor:

Z ∗
ℓ,αβ =

∂2F
∂uℓ,α∂Eβ

Sum rule:
∑

ℓ Z ∗
ℓ,αβ = 0

In general, not a symmetric tensor

It could be strongly counterintuitive
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Born effective charge (generic crystal)

Generalization to a low-symmetry lattice
with ℓ = 1,2.....n sublattices:

Effective mass tensor:

Z ∗
ℓ,αβ =

∂2F
∂uℓ,α∂Eβ

Sum rule:
∑

ℓ Z ∗
ℓ,αβ = 0

In general, not a symmetric tensor

It could be strongly counterintuitive
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Macroscopic current

In a cubic binary crystal:

P =
1
Vc

Z ∗u, E = 0

Harmonic: The sublattices oscillate at frequency ωTO:

P(t) =
1
Vc

Z ∗u(t)

j(t) =
d
dt

P(t) =
1
Vc

Z ∗ d
dt

u(t) =
1
Vc

Z ∗v(t)

Total current (a.k.a. charge flux): electronic and nuclear

Generic, anharmonic system (e.g. liquid):

jα(t) =
e
V

N∑
ℓ=1

Z ∗
ℓ,αβ(t) vℓ,β(t)
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Macroscopic current

In a cubic binary crystal:

P =
1
Vc

Z ∗u, E = 0

Harmonic: The sublattices oscillate at frequency ωTO:

P(t) =
1
Vc

Z ∗u(t)

j(t) =
d
dt

P(t) =
1
Vc

Z ∗ d
dt

u(t) =
1
Vc

Z ∗v(t)

Total current (a.k.a. charge flux): electronic and nuclear

Generic, anharmonic system (e.g. liquid):

jα(t) =
e
V

N∑
ℓ=1

Z ∗
ℓ,αβ(t) vℓ,β(t)
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Macroscopic vs. microscopic field

E(micro)(r) is the “real” electric field inside the material:

fℓ = Zℓ E(micro)(rℓ) Zℓ bare nuclear charge
fℓ,α = Z ∗

ℓ,αβ Eβ force induced by macroscopic E field

Z ∗
ℓ,αβ =

E (micro)
α (rℓ)

Eβ
Zℓ

Z ∗
cation > 0 Z ∗

anion < 0

CAVEAT: No pseudopotentials here!
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Macroscopic vs. microscopic field

E(micro)(r) is the “real” electric field inside the material:

fℓ = Zℓ E(micro)(rℓ) Zℓ bare nuclear charge
fℓ,α = Z ∗

ℓ,αβ Eβ force induced by macroscopic E field

Z ∗
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Macroscopic vs. microscopic field

E(micro)(r) is the “real” electric field inside the material:

fℓ = Zℓ E(micro)(rℓ) Zℓ bare nuclear charge
fℓ,α = Z ∗

ℓ,αβ Eβ force induced by macroscopic E field

Z ∗
ℓ,αβ =

E (micro)
α (rℓ)

Eβ
Zℓ

Z ∗
cation > 0 Z ∗

anion < 0

CAVEAT: No pseudopotentials here!
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Z ∗ tensors in molten KCl

jα(t) =
e
V

N∑
ℓ=1

Z ∗
ℓ,αβ(t) vℓ,β(t)

ARTICLESNATURE PHYSICS

space: this can, in fact, be characterized by its fundamental group, 
defined as the set of homotopy classes of loops containing R(0) as 
the base point, and equipped with: (1) an associative composition 
law defined as the concatenation of paths at the base point; (2) an 
identity, defined as the class of (trivial) paths homotopic to the base 
point; and (3) an inverse, defined for each class by its paths trav-
elled backwards. The fundamental group of T N3  is a free Abelian 
group of rank 3N and it is thus isomorphic to Z N3  (ref. 19). Therefore, 
given a base point T∈R(0) N3 , topologically equivalent loops can be 
uniquely identified by the 3N-dimensional integer tuple n = {niα}, 
where niα is the winding number of the ith atom along the αth spa-
tial direction. This is illustrated in Fig. 1 (right) in the toy case where 
the ACS has dimension 2 and the loop CI is represented by n = (1,1). 
Note that with such a representation the concatenation of two 
loops C C∘n m is simply expressed as the sum of two integer vectors: 
n + m = {niα + miα}. Likewise, trivial loops are characterized by n = 0. 
In the following, we assume that all trivial loops can be shrunk to a 
point without ever closing the electronic gap; this condition will be 
referred to in the following as strong adiabaticity. As a generic loop 
CI is the concatenation of elementary loops involving individual 
atoms along specific directions, C αi , and the dipole displaced along 
each of them is likewise additive, we conclude that:

C ∑=α
β

αβ βQ q n[ ] (6)I
i

i i

where C=αβ α βq Q [ ]i i  is the integer charge associated with the αth 
component of the dipole displaced by a loop of the ith atom along 
the βth direction, according to equation (5). Whenever the positions 
of two identical atoms can be interchanged without closing the elec-
tronic gap and strong adiabaticity holds, the dipole displaced along 
two trajectories that differ by such an atomic interchange coincide, 
and the topological charges qiαβ can depend on i only through the 
species of the ith atom, S(i): qiαβ = qS(i),αβ. Also, the requirement that 
the dipole displaced along the sum of any two lattice vectors equals 
the sum of the dipoles displaced along each of them implies that the 
qS charges are (integer) scalars: qSαβ = qSδαβ (ref. 9). We conclude that 
the dipole displaced along the C ′II  loop can be cast into the form:

∑μΔ = ℓ′ q n (7)II
i

S i i( )

where ni = (nix, niy, niz) is the set of three winding numbers of the ith 
atom in the C ′II  loop. The topological charges defined by equation (7)  
have all the properties that chemical common sense requires from 
oxidation numbers, and provide therefore a rigorous topological 
definition of them. Among the necessary but non-trivial conse-
quences of this definition, we point out the additivity of the charge 
transported by several atoms that are being displaced simultane-
ously. This definition puts on a firm ground similar conclusions that 
could be drawn using the concept of Wannier centres9.

We now consider the dipole displacement computed from the qS 
topological charges:

∫ΩμΔ = ′′ ′ ′t t tJ( ) ( )d (8)
t

0

∑Ω=′ t q tJ v( ) 1 ( ) (9)
i

S i i( )

Evidently, one has: ∫μ μΔ = Δ + ∑′ ′ ′t q dr( ) II i S i I
F

i( ) . The second 
term on the right-hand side of this expression is bounded, and we 
conclude that:

μ μ⟨ ∣Δ ∣ ⟩ = ⟨ ∣Δ ∣ ⟩′
→∞ →∞t

t
t

tlim 1 ( ) lim 1 ( ) (10)
t t

2 2

and therefore:

∫ ∫⟨ ⋅ ⟩ = ⟨ ⋅ ⟩′ ′
∞ ∞

t t t tJ J J J( ) (0) d ( ) (0) d (11)
0 0

Equations (10) and (11) are the main conclusion of our work: 
the adiabatic electrical conductivity of a liquid can be exactly 
obtained by replacing in equation (2) the time-dependent, real-
valued, Born charge tensor of each atom with an integer, time-
independent, scalar topological charge, which depends only on 
the atomic species, qS(i). The topological arguments in which this 
conclusion is rooted, while global and based on PBCs by their very 
nature, naturally lead to the definition of such quantities as atomic 
oxidation numbers, which are both local and independent of the 
system size. This makes us believe that our conclusions hold in the 
thermodynamic limit and are independent of the boundary condi-
tions being adopted.

The extent to which the above theory applies to molecular fluids, 
such as, for example, ionic liquids, depends on the occurrence of 
one of the following two circumstances: when a molecular species is 
stable in solution (that is, it does not coexist with any of its constitu-
ent moieties), our considerations show that the charge transported 
by it across a closed loop is quantized, and our conclusions hold 
under the same assumptions that are necessary in the atomic case; 
when a molecular species coexists with two or more of its constitu-
ent moieties, as is the case, for example, in partially ionic water8, 
our considerations still hold under the hypothesis, which we may 
call adiabatic dissociation, that the dissociation of a molecule into 
its constituent moieties occurs without closing the electronic gap.

Numerical experiments
To demonstrate our results we have performed extensive numeri-
cal experiments on a 64-atom sample of molten KCl at a density of 
1.42 g cm−3 (ref. 20), corresponding to a cubic simulation cell whose 
edge is ℓ = .14 07 Å. All simulations were performed using com-
puter codes from the Quantum ESPRESSO package v.6.121,22. We 
employed the Perdew–Burke–Ernzerhof energy functional23 with 
optimized norm-conserving Vanderbilt pseudopotentials (ref. 24  

0.50

1.00

1.50
Z

K
Z

C
I

0 1 2 3 4 5

Time (ps)

–1.50

–1.00

–0.50

Zxx Zyy Zzz

Zxx Zyy Zzz
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*

* * *

* *

*
* ZCI

*

Fig. 2 | Time series of the Born effective-charge tensor. Shown are 
its three diagonal components for one K atom (top) and one Cl atom 
(bottom). The average values on the diagonal are: = ±*Z 1.10 0.01K  and 

= − ±*Z 1.10 0.01Cl , reported on the right.
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Instantaneous
↔
Z ∗
ℓ (t) (after Grasselli & Baroni, Nature Phys. 2019)

Scalar in average, ⟨
↔
Z ∗

K⟩ = 1.1, ⟨
↔
Z ∗

Cl⟩ = −1.1
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Z ∗ tensors in partially dissociated water

54 O atoms and 108 H atoms in a PBCs simulation cell of volume V :
anharmonic thermal motion in zero E field

jα(t) =
e
V

N∑
ℓ=1

Z ∗
ℓ,αβ(t) vℓ,β(t)

Distribution of the Z ∗
ℓ tensors: diagonal (solid) & off-diagonal (dashed)

is lacking for the electrons. But as long as the system is
nonmetallic, all electronic contributions can theoretically
be allocated to ions, which then carry screened effective
charges instead of their bare nuclear charges.

The remaining task is now to determine the effective
charge of each ion in a consistent way. The literature offers
several methods to obtain effective charges from a popu-
lation analysis of their surrounding electronic states [30],
e.g., with a Bader analysis [31]. However, since in a MD
simulation all ions are in motion, it is much more reason-
able to ask which fraction of its electronic screening cloud
remains attached to an ion as it is displaced from its current
position. This question is adequately answered by polar-
ization theory [15,16], which allows us to calculate the
Born effective charge tensor !Z via the determination of the
change in the electronic polarization induced by a dis-
placed ion. The numerical procedure involves a self-
consistent perturbative DFT scheme [16,32]. For instance,
this method reproduces the measured mean effective
charge of þ0:53 of hydrogen in liquid water [33] very
well [10].

We employ VASP 5.2.8 to calculate the Born effective
charge tensor !ZðtÞof every ion at each time step of a MD
run. We used a plane-wave cutoff of 400 eV and the
Baldereschi point [34] in these particular calculations.
This is sufficient to fulfill the charge neutrality condition
2hZHi ¼ %hZOi for the diagonal elements within 1%. It
also results in acceptable numerical costs that amount to
about 3 times of the respective MD simulation. In all
calculations the time-averaged charge tensors of both ion
species are, within the statistical uncertainties, diagonal
and contain the same values in any direction. This is
consistent with the symmetry of the isotropic and cubic
systems that we consider here.

First we examine water at a temperature of 2000 K and a
density of 2 g=cm3. Under these conditions the system still
retains its molecular structure but already contains about
20% of dissociated water molecules [10] so that frequent
proton jumps occur. Figure 1 displays typical fluctuations
of the Born effective charge of an arbitrary hydrogen and
oxygen ion. Most interestingly, a hydrogen ion can carry an
effective charge greater than þ1 for short times. Such
anomalous (anti-) screening can often be correlated with
events at which the hydrogen ion changes its nearest oxy-
gen ion, thus performing a Grotthuss-like proton jump into
the respective direction. An explanation for temporarily
antiscreened hydrogen ions is given by the breaking of
the proton’s bond to its oxygen and a jump to the next
oxygen ion to form another bond again. During such a
process the initial bonding electrons pull back to its oxygen
ion while electronic charge density from the second oxy-
gen ion is attracted by the incoming proton to form the new
bond. This effectively creates an additional negative cur-
rent that is directed oppositely to the motion of the proton.
Nevertheless, effective charges of þ2 can occur also

without a proton jump; see Fig. 1 near time step 200. We
then relate this effect to protons that have already large
vibrational amplitudes but do not yet have enough kinetic
energy to break their already weakened bond.
Additional simulations show that effective proton

charges greater than þ1 occur also in other phases of
water. Figure 2 shows distributions of the Born effective
charges distinguished by diagonal and off-diagonal com-
ponents for both ion species in fluid and superionic water.
The diagonal components are distributed over relatively
broad intervals and have pronounced non-Gaussian tails to
high charge values. The off-diagonal components accumu-
late around zero. To analyze and understand the micro-
physics that generates such charge distributions in greater
detail would go well beyond the scope of this work.
Instead, we aim to put the key aspect here on the calcu-
lation of the ionic conductivity in the respective systems.

0 200 400 600 800 1000
0

0.5
1

1.5
2

2.5
3

Z
H

Zxx
Zyy
Zzz

0 200 400 600 800 1000
time steps

-3
-2.5

-2
-1.5

-1
-0.5

0

Z
O

FIG. 1 (color online). Fluctuations in the diagonal Born effec-
tive charges for a hydrogen and an oxygen ion. The triangles
indicate Grotthuss-like proton jumps (changes of the proton’s
nearest oxygen neighbor, detectable with a geometric analysis).
One time step amounts to 0.3 fs.

2000 K, 2 g/cm³ (part. dissociated) 

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Z

3000 K, 3 g/cm³ (superionic)

〈Z H〉〈Z O〉

〈Z O〉 〈Z H〉

FIG. 2 (color online). Distribution of Born effective charges in
partially dissociated (top) and superionic water (bottom) in
arbitrary units. Solid lines represent diagonal components,
dashed lines off-diagonal components. Protons are displayed in
black, oxygen ions in red (gray in print version). The average
values of the diagonal components are indicated as well.
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Ionic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic conductivity:

σ =
Vβ

3

∫ ∞

0
dt ⟨ j(t) · j(0) ⟩

The total current ~JðtÞin Eq. (1) is expressed as a time
derivative of the polarization, and is thus given by the time-
dependent Born effective charge tensor via

~JðtÞ¼ e
XN

i¼1

!ZiðtÞ$ ~viðtÞ; (2)

where ~vi is the velocity of the ith ion and N is the
total number of ions. For a simulation of 15 ps duration
(50 000 time steps) at 2000 K and 2 g=cm3 we calculate
the current-current correlation function CðtÞ¼
h ~JðtÞ$ ~Jð0Þi=3e2 and the respective time integral and
display the results in Fig. 3. Depending on how the time-
dependent charges are treated, significantly different re-
sults are obtained. In particular, the complex mechanism of
charge transfer in water does not allow us to use only
constant average values of the Born effective charges,
ZH ¼ hZHi ¼ 0:69 and ZO ¼ hZOi ¼ %1:37 (dashed black
line). It is necessary to include their full time dependence
into the correlation function to obtain converged results
(full black line). Interestingly, the use of predefined con-
stant charges can yield the same conductivity as is found
with the fully time-dependent charge tensors, but only if
they have values of ZH ¼ 1 and ZO ¼ %2 (blue line, gray
in print version). The usually assumed picture of protons
transporting their unscreened charges is thus not in contrast
to our findings. Nevertheless, this work shows that the
processes of charge transport in water involve a complex
interplay of ionic movements and changes in the electronic
polarization of their surrounding.

In a second simulation of 60 000 time steps we examine
superionic water [26,35] at 3000 K and 3 g=cm3 and found
the correlation functions to behave similarly to those
shown in Fig. 3. In the sameway as above, constant charges
of ZH ¼ 1 and ZO ¼ %2 yield the same conductivity as the
time-dependent ones.

In general, the time correlations in the current-current
correlation function fade on the same time scale as they do
in velocity autocorrelation functions. Thereafter the time
integral is stable for a certain period before statistical
fluctuations take over at long times. Several 10 000 time
steps are necessary to obtain converged conductivities with
this method.
Furthermore, the Green-Kubo formula (1) can be de-

composed into autocorrelation and crosscorrelation terms.
When constant charges are assigned to all particles, the
contributions from autocorrelations can be expressed by
diffusion coefficients which leads to the Nernst-Einstein
relation. The crosscorrelation terms contain contributions
from the formation of associated species, such as
water molecules, and are usually negative. Mattsson and
Desjarlais [9] introduced a simple but well-motivated ap-
proximation scheme for this term (originally neglecting the
relatively small contribution of the oxygen ions [10]). This
leads to

!0 ¼ e2NHDH

VkBT
þð2eÞ2NODO

VkBT

!
1% 3

2
"
"
; (3)

where Di are diffusion coefficients, which can be obtained
with much less numerical effort than a reasonably con-
verged current-current correlation function. The factor "
denotes the fraction of hydrogen ions bound to oxygen ions
and has to be approximated. The term proportional to "
represents the deviation from the Nernst-Einstein relation
in Eq. (3).
With such a model most of the experimental ionic con-

ductivities [5,7,8] in warm dense water can be reproduced
well [10]. Nevertheless, the performance of Eq. (3) can
now be checked against our more general approach. For
our simulations in partially dissociated and superionic
water we display the results of both methods in Table I.
The agreement is very good in fluid water but not in
superionic water where the model of Mattsson and
Desjarlais reduces to an Einstein equation for the protons
(DO ¼ 0). Therefore all crosscorrelations are omitted
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FIG. 3 (color online). Upper: current-current correlation func-
tion for water at 2000 K and 2 g=cm3. Depending on the treat-
ment of the effective charges, different results are obtained, see
text for further explanations. Lower: the respective time integrals
of the functions from the upper figure.

TABLE I. Electrical conductivities from the current-current
autocorrelation function (1) calculated with time-dependent
Born effective charges, !, and with constant charges of þ1 for
hydrogen and %2 for oxygen, !þ1;%2. These are compared with
those derived from Eq. (3), !0 (" is taken from Ref. [10]). For
additional comparison, the conductivity using Eqs. (1) and (2)
with time-dependent Bader charges, !B, instead of Born effec-
tive charges is given as well. Bader charges [31] do not capture
electronic polarization effects and should not be used to calcu-
late conductivities. All conductivities along with estimated er-
rors are given in 1=" cm.

T (K) % (g=cm3) ! !þ1;%2 !0 !B

2000 2.0 30' 3 30' 3 28' 2 11' 1
3000 3.0 140' 15 140' 15 91' 3 55' 5
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