Quantum transport & polarization

Raffaele Resta

Dipartimento di Fisica, Università di Trieste

Trieste, 2021

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Outline

1 Faraday laws of electrolysis

- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

First law of electrolysis, 1832

(Modern formulation, from Wikipedia)

The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode. Quantity of electricity refers to the quantity of electrical charge. § 7. On the absolute quantity of Electricity associated with the particles or atoms of Matter

not to reason upon the subject. Although we know nothing of what an atom is, yet we cannot resist forming some idea of a small particle, which represents it to the mind; and though we are in equal, if not greater, ignorance of electricity, so as to be unable to say whether it is a particular matter or matters, or mere motion of ordinary matter, or some third kind of power or agent, yet there is an immensity of facts which justify us in believing that the atoms of matter are in some way endowed or associated with electrical powers, to which they owe their

Faraday's "equivalent numbers" (1832) (Notice: in 1832 Mendeleev was not yet born!

Anions.		
Oxygen 8 Chlorine 35.5 Iodine 126 Bromine 78.3 Fluorine 18.7 Cyanogen 26 Sulphuric acid 40	Selenic acid64 Nitric acid54 Chloric acid75.5 Phosphoric acid22 Boracie acid24 Acetic acid51	Tartaric acid
Cations.		
Hydrogen I Potassium 39.2 Sodium 23.3 Lithium 10 Barium 68.7 Strontium 43.8 Calcium 20.5 Magnesium 12.7 Manganese 27.7 Zine 32.5 Tin 57.9 Lead 103.5 Iron 28 Copper 31.6	Cadmium 55.8 Cerium 46 Cobalt 29.5 Nickel 29.5 Antimony 64.6? Bismuth 71 Mercury 200 Silver 108 Platina 98.6? Gold (?) Ammonia 17 Potassa 47.2	Soda31.3Lithia18Baryta76.7Strontia51.8Lime28.5Magnesia20.7Alumina(?)Protoxides generally.Quinia171.6Cinchona160Morphia290Vegeto-alkalies generally.

Electrolytic solutions vs. molten salts

What about molten metals?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Electrolytic solutions vs. molten salts

What about molten metals?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

1 Faraday laws of electrolysis

- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Electrolyte or molten salt

An assembly of:

- Point-like nuclei
 Electronic charge density
- Electron density all over the place
- How much charge "belongs" to each nucleus?
- Ionic charges arbitrary & noninteger

Electrolyte or molten salt

An assembly of:

- Point-like nuclei
- Electronic charge density
- Electron density all over the place
- How much charge "belongs" to each nucleus?
- Ionic charges arbitrary & noninteger

Electrolyte or molten salt

An assembly of:

- Point-like nuclei
- Electronic charge density
- Electron density all over the place
- How much charge "belongs" to each nucleus?
- Ionic charges arbitrary & noninteger

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

The ultimate solution

PHYSICAL REVIEW B

VOLUME 27, NUMBER 10

15 MAY 1983

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantization of particle transport

D. J. Thouless Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (Received 4 February 1983)

Faraday's law is reconciled with QM owing to topology

- The transported charge is a topological invariant
- Historical perspective:
 - Q: Why did this paper appear in 1983?

A: Topology entered the theory of quantum Hall effect in 1982 (the famous TKNN invariant).

The ultimate solution

PHYSICAL REVIEW B

VOLUME 27, NUMBER 10

15 MAY 1983

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantization of particle transport

D. J. Thouless Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (Received 4 February 1983)

Faraday's law is reconciled with QM owing to topology

- The transported charge is a topological invariant
- Historical perspective:
 - Q: Why did this paper appear in 1983?

A: Topology entered the theory of quantum Hall effect in 1982 (the famous TKNN invariant).

A few months afterwards (Pendry & Hodges, J. Phys. C 1984)

Verbatim:

- "... in condensed matter there is no way of extracting integer charges for the ions from a charge-density map."
- "... in insulating systems atoms or ions diffusing through the system carry with them charges which are integral multiples of *e*."
- "In a static configuration no evidence is found for integral charges, the existence of which is manifested by the transport properties alone."

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Gauss-Bonnet-Chern theorem

Parametric Hamiltonian on a closed surface (a torus) :

$$H(\vartheta,\varphi) = H(\vartheta + 2\pi,\varphi) = H(\vartheta,\varphi + 2\pi)$$

- Ground **nondegenerate** eigenstate $|\psi_0(\vartheta, \varphi)\rangle$
- Berry curvature $\Omega(\vartheta, \varphi) = i \left(\langle \frac{\partial}{\partial \vartheta} \psi_0 | \frac{\partial}{\partial \omega} \psi_0 \rangle \langle \frac{\partial}{\partial \omega} \psi_0 | \frac{\partial}{\partial \vartheta} \psi_0 \rangle \right)$
- Chern number:

Parametric Hamiltonian on a closed surface (a torus) :

$$H(\vartheta, \varphi) = H(\vartheta + 2\pi, \varphi) = H(\vartheta, \varphi + 2\pi)$$

- Ground **nondegenerate** eigenstate $|\psi_0(\vartheta, \varphi)\rangle$
- Berry curvature $\Omega(\vartheta, \varphi) = i \left(\langle \frac{\partial}{\partial \vartheta} \psi_0 | \frac{\partial}{\partial \varphi} \psi_0 \rangle \langle \frac{\partial}{\partial \varphi} \psi_0 | \frac{\partial}{\partial \vartheta} \psi_0 \rangle \right)$
- Chern number:

Thouless' "angles"

• $\varphi \rightarrow t$ (time)

•
$$H(k, t)$$
 periodic over $(\frac{2\pi}{L}, T)$

Thouless theorem:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$Q = \int_0^T dt \ I(t) = e \ C$$

$$C = \frac{1}{2\pi} \int_0^{2\pi/L} dk \int_0^T dt \ \Omega(k,t)$$

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Dipolar polarization of an atom

- Think of polarization in a time-dependent (adiabatic) way:
 E = E(t)
- H(t) varies slowly in time
- Adiabatic limit: $\Delta t \gg \hbar/(\varepsilon_1 \varepsilon_0)$
- $|\psi_0(t)\rangle$ instantaneous ground eigenstate

$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -e \frac{\partial}{\partial t} |\psi_0(\mathbf{r})|^2 = -e \left[\dot{\psi}_0^*(\mathbf{r}) \psi_0(\mathbf{r}) + \psi_0^*(\mathbf{r}) \dot{\psi}_0(\mathbf{r}) \right] \neq \mathbf{0}$$

Dipolar polarization of an atom

- Think of polarization in a time-dependent (adiabatic) way:
 E = E(t)
- H(t) varies slowly in time
- Adiabatic limit: $\Delta t \gg \hbar/(\varepsilon_1 \varepsilon_0)$
- $|\psi_0(t)\rangle$ instantaneous ground eigenstate

 $\frac{\partial \rho(\mathbf{r})}{\partial t} = -e \frac{\partial}{\partial t} |\psi_0(\mathbf{r})|^2 = -e \left[\dot{\psi}_0^*(\mathbf{r}) \psi_0(\mathbf{r}) + \psi_0^*(\mathbf{r}) \dot{\psi}_0(\mathbf{r}) \right] \neq \mathbf{0}$

Dipolar polarization of an atom

- Think of polarization in a time-dependent (adiabatic) way:
 E = E(t)
- H(t) varies slowly in time
- Adiabatic limit: $\Delta t \gg \hbar/(\varepsilon_1 \varepsilon_0)$
- $|\psi_0(t)\rangle$ instantaneous ground eigenstate

$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -e \frac{\partial}{\partial t} |\psi_0(\mathbf{r})|^2 = -e \left[\dot{\psi}_0^*(\mathbf{r}) \psi_0(\mathbf{r}) + \psi_0^*(\mathbf{r}) \dot{\psi}_0(\mathbf{r}) \right] \neq \mathbf{0}$$

Induced dipole

 \sim ()

Continuity equation:
$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r})$$
$$\mathbf{d} = \int_{0}^{\Delta t} dt \int d\mathbf{r} \ \mathbf{r} \frac{\partial \rho(\mathbf{r})}{\partial t} = -\int_{0}^{\Delta t} dt \int d\mathbf{r} \ \mathbf{r} \ \nabla \cdot \mathbf{j}(\mathbf{r})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Improved adiabatic approximation

Continuity equation:
$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r})$$

 $\mathbf{j}(\mathbf{r}) = -\frac{e}{2} \left[-i\psi_0^*(\mathbf{r})\nabla\psi_0(\mathbf{r}) + \text{c.c.} \right]$

- Simple case H(t): time-reversal-invariant
- Instantaneous ground eigenstate $|\psi_0(t)\rangle$ real
- j(r) vanishes (any r, any t)
- Need a better formula for the adiabatic current!
- Thouless formula:

$$|\psi\rangle \simeq |\psi_0\rangle + i\hbar \sum_{n \neq 0} |\psi_n\rangle \frac{\langle \psi_n |\psi_0\rangle}{\varepsilon_0 - \varepsilon_n}$$

Improved adiabatic approximation

Continuity equation:
$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r})$$

 $\mathbf{j}(\mathbf{r}) = -\frac{\mathbf{e}}{2} \left[-i\psi_0^*(\mathbf{r})\nabla \psi_0(\mathbf{r}) + \text{c.c.} \right]$

- Simple case H(t): time-reversal-invariant
- Instantaneous ground eigenstate $|\psi_0(t)\rangle$ real
- j(r) vanishes (any r, any t)
- Need a better formula for the adiabatic current!
- Thouless formula:

$$|\psi\rangle \simeq |\psi_0\rangle + i\hbar \sum_{n\neq 0} |\psi_n\rangle \frac{\langle\psi_n|\psi_0\rangle}{\varepsilon_0 - \varepsilon_n}$$

Improved adiabatic approximation

Continuity equation:
$$\frac{\partial \rho(\mathbf{r})}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r})$$

 $\mathbf{j}(\mathbf{r}) = -\frac{\mathbf{e}}{2} \left[-i\psi_0^*(\mathbf{r})\nabla\psi_0(\mathbf{r}) + \text{c.c.} \right]$

- Simple case H(t): time-reversal-invariant
- Instantaneous ground eigenstate $|\psi_0(t)\rangle$ real
- j(r) vanishes (any r, any t)
- Need a better formula for the adiabatic current!
- Thouless formula:

$$|\psi\rangle \simeq |\psi_0\rangle + i\hbar \sum_{n\neq 0} |\psi_n\rangle \frac{\langle\psi_n|\psi_0\rangle}{\varepsilon_0 - \varepsilon_n}$$

Infinite system with periodic boundary conditions

Switch to 1d from now on:

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} = -\frac{\partial j(\mathbf{x},t)}{\partial \mathbf{x}}$$

- A macroscopic current j^(macro)(t) constant in x is divergenceless
- $j(x,t) \rightarrow j(x,t) + j^{(macro)}(t)$ does not affect $\rho(x,t)$
- $j^{(\text{macro})}(t)$ is due to a source at $-\infty$ and a drain at $+\infty$.
- Thouless formula yields the adiabatic current, including the divergenceless term

Infinite system with periodic boundary conditions

Switch to 1d from now on:

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} = -\frac{\partial j(\mathbf{x},t)}{\partial \mathbf{x}}$$

- A macroscopic current j^(macro)(t) constant in x is divergenceless
- $j(x, t) \rightarrow j(x, t) + j^{(\text{macro})}(t)$ does not affect $\rho(x, t)$
- $j^{(\text{macro})}(t)$ is due to a source at $-\infty$ and a drain at $+\infty$.
- Thouless formula yields the adiabatic current, including the divergenceless term

Macroscopic polarization of a solid (Resta 1992, King-Smith & Vanderbilt 1993)

Polarization is the dipole per unit volume

$$\mathbf{P} = \frac{1}{V}\mathbf{d} = \frac{1}{V_{\text{sample}}} \int_{\text{sample}} d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) \neq \frac{1}{V_{\text{cell}}} \int_{\text{cell}} d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r})$$

• Meaningless for a lattice-periodical $\rho(r)$

The modern theory:

P has nothing to do with the periodic distribution ρ(r) contrary to what most textbooks pretend!

$$\mathbf{P} = \int_{0}^{\Delta t} dt \, \mathbf{j}^{(macro)}(t),$$
 evaluated via Thouless for

Macroscopic polarization of a solid (Resta 1992, King-Smith & Vanderbilt 1993)

Polarization is the dipole per unit volume

$$\mathbf{P} = \frac{1}{V}\mathbf{d} = \frac{1}{V_{\text{sample}}} \int_{\text{sample}} d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r}) \neq \frac{1}{V_{\text{cell}}} \int_{\text{cell}} d\mathbf{r} \, \mathbf{r} \rho(\mathbf{r})$$

Meaningless for a lattice-periodical $\rho(r)$

The modern theory:

P has nothing to do with the periodic distribution ρ(r) contrary to what most textbooks pretend!

$$\partial \mathbf{P}/\partial t = \mathbf{j}^{(macro)}(t) \implies$$

$$\mathbf{P} = \int_0^{\Delta t} dt \, \mathbf{j}^{(macro)}(t),$$

evaluated via Thouless formula

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

F-center in a molten salt (Selloni, Carnevali, Car, & Parrinello 1987)

- Mixed quantum-classical simulation
- 31 Cl⁻ and 32 K⁺ ions, plus one electron
- Both Newton & Schrödinger eqs. with PBCs
- Diffusion: asymptotically $\langle |\mathbf{r}_e(t)|^2 \rangle = 6D_e t$
- How to evaluate $\langle \mathbf{r}_e(t) \rangle$ within PBCs?

F-center in a molten salt (Selloni, Carnevali, Car, & Parrinello 1987)

- Mixed quantum-classical simulation
- 31 Cl⁻ and 32 K⁺ ions, plus one electron
- Both Newton & Schrödinger eqs. with PBCs
- Diffusion: asymptotically $\langle |\mathbf{r}_e(t)|^2 \rangle = 6D_e t$
- How to evaluate $\langle \mathbf{r}_e(t) \rangle$ within PBCs?

The position operator: fundamentals

- It is the simple multiplicative operator which maps (1d): ψ(x) → x ψ(x)
- Its expectation value is: $\langle x \rangle = \int dx \ x \ |\psi(x)|^2$
- The multiplicative operator x is not a legitimate operator when adopting periodic boundary conditions (as we do in condensed matter physics)
- A different definition of the position operator has to be adopted

The position operator: fundamentals

- It is the simple multiplicative operator which maps (1d): ψ(x) → x ψ(x)
- Its expectation value is: $\langle x \rangle = \int dx \ x |\psi(x)|^2$
- The multiplicative operator x is not a legitimate operator when adopting periodic boundary conditions (as we do in condensed matter physics)
- A different definition of the position operator has to be adopted
How does one define the electron-distribution center?

• $\langle x \rangle = \int dx \ x \ |\psi_0(x)|^2$ is nonsense • $\langle x \rangle$ must be defined modulo *L*

The electron-in-broth formula:

$$\langle x \rangle = \frac{L}{2\pi} \operatorname{Im} \ln \int_0^L dx \, \mathrm{e}^{i\frac{2\pi}{L}x} |\psi_0(x)|^2$$

Notice the occurrence of a phase ("Im In")

How does one define the electron-distribution center?

- $\langle x \rangle = \int dx \; x \, |\psi_0(x)|^2$ is nonsense
- $\blacksquare \langle x \rangle \text{ must be defined modulo } L$

The electron-in-broth formula:

$$\langle x \rangle = rac{L}{2\pi} \operatorname{Im} \operatorname{In} \int_0^L dx \; \mathrm{e}^{i rac{2\pi}{L} x} \, |\psi_0(x)|^2$$

Notice the occurrence of a phase ("Im In")

The adiabatic current

$$\langle x
angle = rac{L}{2\pi} \mathrm{Im} \, \mathrm{In} \, \int_0^L dx \, \mathrm{e}^{i rac{2\pi}{L} x} \, |\psi_0(x)|^2$$

\$\psi_0(x,t)\$ adiabatic instantaneous eigenstate
 Macroscopic current:

$$j^{(macro)}(t) = -rac{e}{L}rac{d\langle x
angle}{dt} = -rac{e}{2\pi}rac{d}{dt}$$
Im In $\int_0^L dx \; \mathrm{e}^{irac{2\pi}{L}x} \, |\psi_0(x,t)|^2$

• Coincides with Thouless formula for $L \to \infty$

The adiabatic current

$$\langle x
angle = rac{L}{2\pi} \operatorname{Im} \operatorname{In} \ \int_0^L dx \ \mathrm{e}^{i rac{2\pi}{L} x} |\psi_0(x)|^2$$

\$\psi_0(x,t)\$ adiabatic instantaneous eigenstate
 Macroscopic current:

$$j^{(macro)}(t) = -rac{e}{L}rac{d\langle x
angle}{dt} = -rac{e}{2\pi}rac{d}{dt}$$
Im In $\int_0^L dx \; \mathrm{e}^{irac{2\pi}{L}x} \, |\psi_0(x,t)|^2$

• Coincides with Thouless formula for $L \to \infty$

Quantization of transport

$$\langle x \rangle = \frac{L}{2\pi} \operatorname{Im} \ln \mathfrak{z}, \qquad \mathfrak{z} = \int_0^L dx \ \mathrm{e}^{i\frac{2\pi}{L}x} |\psi_0(x)|^2 = \langle \psi_0 | \mathrm{e}^{i\frac{2\pi}{L}x} |\psi_0\rangle$$

- **a** complex number, with $|\mathfrak{z}| \leq 1$
- $\mathbf{I}_{\mathfrak{Z}}(t)$ traces a path in the complex plane
- Suppose that H(T) = H(0) for some T, then $\mathfrak{z}(T) = \mathfrak{z}(0)$
- How much charge has been transported?

Winding number

■ The transported charge is the winding number (times -e) plus the charge transported by the classical ions

• Winding number ill defined if $\mathfrak{z}(t) = 0$ along the path!

Winding number

- The transported charge is the winding number (times -e) plus the charge transported by the classical ions
- Winding number ill defined if $\mathfrak{z}(t) = 0$ along the path!

Localization vs. delocalization

$$\mathfrak{z} = \int_0^L dx \; \mathrm{e}^{j\frac{2\pi}{L}x} \, |\psi_0(x)|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Extremely localized distribution:

$$|\psi_0(x)|^2 = \sum_{m=-\infty}^{\infty} \delta(x - x_0 - mL) \quad \Rightarrow \quad \mathfrak{z} = e^{i\frac{2\pi}{L}x_0}$$

Extremely delocalized distribution:

$$|\psi_0(x)|^2 = \frac{1}{L} \quad \Rightarrow \quad \mathfrak{z} = 0$$

Current of the classical charges (1d)

• Charges $Q_{\ell} = \pm e$ at sites X_{ℓ} :

Dipole
$$d = \sum_{\ell} Q_{\ell} X_{\ell}$$
 ill-defined within PBCs

Dipole defined modulo *L*:

$$d = \frac{eL}{2\pi} \text{Im In } e^{i\frac{2\pi}{eL}\sum_{\ell}Q_{\ell}X_{\ell}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total current: one electron + classical charges

$$j_{x}^{(macro)} = \frac{e}{2\pi} \frac{d}{dt} \left(-\lim \ln \langle \psi_{0} | e^{i\frac{2\pi}{L}x} | \psi_{0} \rangle + \lim \ln e^{i\frac{2\pi}{eL}\sum_{\ell}Q_{\ell}X_{\ell}} \right)$$
$$= \frac{e}{2\pi} \frac{d}{dt} \lim \ln \langle \psi_{0} | e^{i\frac{2\pi}{L}\left(-x + \sum_{\ell}\frac{Q_{\ell}}{e}X_{\ell}\right)} | \psi_{0} \rangle$$

For a periodic evolution:

Transported charge = winding number of $\mathfrak{z}(t)$ (times *e*)

$$\mathfrak{z}_{\mathbf{X}}(t) = \langle \psi_0 | e^{i \frac{2\pi}{L} \left(-\mathbf{X} + \sum_{\ell} \frac{Q_{\ell}}{e} \mathbf{X}_{\ell} \right)} | \psi_0$$

A B > A B >

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Condensed system in 1d: N spinless electrons in a segment of lenght L:

$$\Psi_0=\Psi_0(x_1,x_2,\ldots x_j,\ldots x_N),$$

- L large with respect to atomic dimensions.
- Thermodynamic limit:

 $N \rightarrow \infty$, $L \rightarrow \infty$, $N/L = n_0$ constant.

• Ψ_0 periodic over each electronic variable x_i separately:

$$\Psi_0=\Psi_0(x_1,x_2,\ldots x_j,\ldots x_N)=\Psi_0(x_1,x_2,\ldots x_j+L,\ldots x_N)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The ultimate solution

VOLUME 80, NUMBER 9

PHYSICAL REVIEW LETTERS

2 MARCH 1998

Quantum-Mechanical Position Operator in Extended Systems

Raffaele Resta

INFM-Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy and Department of Physics, The Catholic University of America, Washington, D.C. 20064 (Received 15 September 1997)

The position operator (defined within the Schrödinger representation in the standard way) becomes meaningless when periodic boundary conditions are adopted for the wave function, as usual in condensed matter physics. I show how to define the position expectation value by means of a simple many-body operator acting on the wave function of the extended system. The relationships of the present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-2]

Nuclei (charge eZ_{ℓ}) & electrons (charge -e) altogether:

$$\mathfrak{z} = \langle \Psi_0 | \mathrm{e}^{j\frac{2\pi}{L} \left(-\sum_j x_j + \sum_\ell Z_\ell X_\ell \right)} | \Psi_0 \rangle$$

Adiabatic current & macroscopic polarization (1d):

$$j^{(macro)} = rac{e}{2\pi} rac{d}{dt} \operatorname{Im} \ln \mathfrak{z} \qquad P = rac{e}{2\pi} \operatorname{Im} \ln \mathfrak{z} = rac{e}{2\pi} \gamma$$

A molten salt

Electrons and nuclei in a cubic periodic cell of side L

$$\mathfrak{z}_{x}(t) = \langle \Psi_{0} | \mathrm{e}^{i \frac{2\pi}{L} \left(\sum_{j} x_{j} - \sum_{\ell} Z_{\ell} X_{\ell} \right)} | \Psi_{0}
angle \qquad \gamma_{x}(t) = \mathrm{Im} \, \mathrm{In} \, \mathfrak{z}_{x}(t)$$

Polarization and charge flux across the cell:

$$P_x(t) = -rac{e}{2\pi L^2} \gamma_x(t)$$
 $I_x(t) = -rac{e}{2\pi} rac{d}{dt} \gamma_x(t)$

Transported charge in time *T*:

$$Q = \int_0^T dt \ I_x(t) = -\frac{e}{2\pi} \int_0^T dt \ \frac{d}{dt} \gamma_x(t) = -\frac{e}{2\pi} [\gamma_x(T) - \gamma_x(0)]$$

Suppose that H(T) = H(0) for some T, then $\mathfrak{z}_X(T) = \mathfrak{z}_X(0)$ How much charge has been transported?

Thouless quantization of charge transport

- $\mathfrak{z}_{X}(t)$ traces a path in the complex plane, with $|\mathfrak{z}_{X}(t)| \leq 1$
- The transported charge is the winding number (times -e)
- Topological nature of Faraday's law!
- Winding number ill defined if $\mathfrak{z}_X(t) = 0$ along the path!

Thouless quantization of charge transport

- **3** $_{\mathfrak{Z}_{X}}(t)$ traces a path in the complex plane, with $|\mathfrak{Z}_{X}(t)| \leq 1$
- The transported charge is the winding number (times -e)

- Topological nature of Faraday's law!
- Winding number ill defined if $\mathfrak{z}(t) = 0$ along the path!

CP simulations yield adiabatic wavefunctions & trajectories

Numerical derivative: single-point Berry phase

$$j_{x}(t) = -rac{e}{2\pi L^{2}}rac{d}{dt}\gamma_{x}(t)$$
 $\simeq -rac{e}{2\pi L^{2}}rac{\gamma_{x}(t+\Delta t)-\gamma_{x}(t)}{\Delta t}$

Analytical derivative: linear response

$$j_{\alpha}(t) = rac{e}{L^3} \sum_{\ell=1}^{N} Z^*_{\ell,\alpha\beta}(t) \ v_{\ell,\beta}(t)$$

・ロト・日本・日本・日本・日本

Born effective charge tensors $\overleftrightarrow{}^{*}_{\ell}$ from DFPT

54 O atoms and 108 H atoms in a PBCs simulation cell in zero E field

Distribution of the $\overset{\leftrightarrow}{Z_{\ell}^{*}}$ tensors: diagonal (solid) & off-diagonal (dashed)

French, Hamel, & Redmer, Phys. Rev. Lett. 107, 185901 (2011)

Ionic conductivity

Fluctuation-dissipation theorem (Green-Kubo) for ionic conductivity:

$$\sigma = \frac{L^3}{3k_{\rm B}T} \int_0^\infty dt \, \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle$$

∃ 990

Topological quantization

The integer values $Z_0^* = -2$ and $Z_H^* = 1$ work much better than the actual $\langle Z_0^* \rangle$ and $\langle Z_H^* \rangle$ values!

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Topological explanation: F. Grasselli & S. Baroni, Nature Phys. **15**, 967 (2019

Topological quantization

The integer values $Z_0^* = -2$ and $Z_H^* = 1$ work much better than the actual $\langle Z_0^* \rangle$ and $\langle Z_H^* \rangle$ values!

Topological explanation: F. Grasselli & S. Baroni, Nature Phys. **15**, 967 (2019)

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Classical fluctuation-dissipation formula

Imaginary part (absorptive) of the dielectric constant:

$$arepsilon''(\omega) = 4\pi \chi(\omega) = rac{2\pi \, \omega}{3k_{
m B}T \, L^3} \int_{-\infty}^{\infty} dt \; {
m e}^{i\omega t} \langle {f d}(t) \cdot {f d}(0)
angle$$

d $(t) = L^3 \mathbf{P}(t)$ extensive dipole of the simulation cell

$$\varepsilon''(\omega) = \frac{2\pi L^3 \omega}{k_{\rm B}T} \int_{-\infty}^{\infty} dt \, {\rm e}^{i\omega t} \langle P_x(t) \, P_x(0) \rangle$$
$$= \frac{2\pi L^3 \omega}{k_{\rm B}T} \left(\frac{1}{2\pi L^2}\right)^2 \int_{-\infty}^{\infty} dt \, {\rm e}^{i\omega t} \langle \gamma_x(t) \, \gamma_x(0) \rangle$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Car-Parrinello (ab-initio MD) simulation for water (W. Chen, M. Sharma, R. Resta, G. Galli,& R. Car, PRB 2008)

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Phase, distance, localization (one electron in 1d)

γ = Im In 3 → ⟨x₀⟩ center of the electron distribution
 The center is ill-defined when 3 = 0

Extremely localized vs. extremely delocalized $|\psi_0(x)|^2 = \delta(x-x_0) \longrightarrow \mathfrak{z} = e^{i\frac{2\pi}{L}x_0}, \quad |\psi_0(x)|^2 = \frac{1}{L} \longrightarrow \mathfrak{z} = \mathbf{0}$

Quadratic spread: - (^L/_{2π})² ln |₃|²,
Quantum pseudodistance: D²₁₂ = - ln |⟨ψ₁|ψ₂⟩|²

Phase, distance, localization (one electron in 1d)

$$\int_{0}^{L} dx \ e^{i\frac{2\pi}{L}x} |\psi_0(x)|^2 = \langle \psi_0| e^{i\frac{2\pi}{L}x} |\psi_0\rangle$$

γ = Im In 3 → ⟨x₀⟩ center of the electron distribution
 The center is ill-defined when 3 = 0

Extremely localized vs. extremely delocalized $|\psi_0(x)|^2 = \delta(x-x_0) \longrightarrow \mathfrak{z} = e^{i\frac{2\pi}{L}x_0}, \quad |\psi_0(x)|^2 = \frac{1}{L} \longrightarrow \mathfrak{z} = \mathbf{0}$

- Quadratic spread: $-\left(\frac{L}{2\pi}\right)^2 \ln |\mathfrak{z}|^2$,
- Quantum pseudodistance: $D_{12}^2 = -\ln |\langle \psi_1 | \psi_2 \rangle|^2$

Theory of the insulating state

$$\mathfrak{z}_{N} = \langle \Psi_{0} | \mathrm{e}^{-i \frac{2\pi}{L} \sum_{j} x_{j}} | \Psi_{0} \rangle$$

Electronic term in polarization

$$P^{(\mathrm{el})} = rac{e}{2\pi} \mathrm{Im} \log \lim_{N \to \infty} \mathfrak{z}_N$$

It is impossible to define polarization whenever

$$\lim_{N\to\infty}\mathfrak{z}_N=0$$

all insulators:
$$\lim_{N \to \infty} |\mathfrak{z}_N| = 1$$
 all metals: $\lim_{N \to \infty} \mathfrak{z}_N = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Resta-Sorella localization length R. Resta & S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

$$\lambda^{2} = -\lim_{N \to \infty} \frac{1}{N} \left(\frac{L}{2\pi}\right)^{2} \ln |\mathfrak{z}_{N}|^{2}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Intensive quantity (tensor in 3d)
- λ is finite in all insulators
- \checkmark λ diverges in all metals

- Very general: all kinds of insulators:
 - Correlated insulator
 - Independent electrons, crystalline a.k.a. "band insulator"
 - Independent electrons, disordered
 - Quantum Hall insulator

Band insulators vs. band metals

PBCs over 14 cells: L = Ma, M = 14 in this drawing: 14 Bloch vectors in the Brillouin zone.

14 occupied orbitals in the insulating state (N = M), 7 occupied orbitals in the metallic state (N = M/2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystalline system of independent electrons Before the thermodynamic limit: *N* and *L* finite

• $|\Psi_0\rangle$ is written as a determinant of occupied Bloch orbitals, in **both** the insulating and the metallic case.

Key difference:

The whole band is used to build the insulating $|\Psi_0\rangle$, while only one half of the band is used for the metallic $|\Psi_0\rangle$.

(日) (日) (日) (日) (日) (日) (日)

Insulators vs. metal

- Zero determinant in the metallic case!
- In a band metal $\lambda^2 = \infty$ even at finite N
- In a band insulator $\lambda^2 \propto I^{(SWM)} \propto WFs$ quadratic spread

Wannier functions, one dimension, single band

 \blacksquare $L \rightarrow \infty$, *k* continuous:

$$X_{\ell} = \ell a \qquad \ket{w_{\ell}} = rac{a}{2\pi} \int_{\mathrm{BZ}} dk \; \mathrm{e}^{ikX_{\ell}} \ket{\psi_k}$$

• L = Ma finite, k_j discrete:

$$|\boldsymbol{w}_{\ell}\rangle = \frac{1}{M}\sum_{j=1}^{M}\mathrm{e}^{i\boldsymbol{k}_{j}\boldsymbol{X}_{\ell}}|\psi_{\boldsymbol{k}_{j}}\rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Caveat: Gauge arbitrariness in $|\psi_{k_i}\rangle$

Invariance of the many-body ground state

- So far, we have written $|\Psi_0\rangle$ an *N*-particle Slater determinant of Bloch orbitals.
- Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
- We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
 - The occupied manifold is the whole band:
 |Ψ₀⟩ is invariant by such unitary transformation.
 - |Ψ₀⟩ can be equivalently written as an *N*-particle Slater determinant of Wannier orbitals.

What about the metallic case?

Invariance of the many-body ground state

- So far, we have written $|\Psi_0\rangle$ an *N*-particle Slater determinant of Bloch orbitals.
- Any determinant is invariant for unitary transformation of the vectors (orbitals) within the occupied manifold.
- We transform the Bloch (delocalized) orbitals into Wannier (localized) orbitals.
- In the insulating case:
 - The occupied manifold is the whole band:
 |Ψ₀⟩ is invariant by such unitary transformation.
 - |Ψ₀⟩ can be equivalently written as an *N*-particle Slater determinant of Wannier orbitals.

What about the metallic case?

Invariance of the many-body ground state (cont'd)

Infinite L $(M \to \infty)$

$$\ket{w_\ell} = rac{a}{2\pi} \int_{\mathrm{BZ}} dk \; \mathrm{e}^{ikX_\ell} \ket{\psi_k}$$

$$\int_{-\infty}^{\infty} dx \, |\langle x | w_{\ell} \rangle|^2 = 1 \qquad \text{finite!}$$
Invariance of the many-body ground state (cont'd)

Infinite L $(M \to \infty)$

$$\ket{w_\ell} = rac{a}{2\pi} \int_{\mathrm{BZ}} dk \; \mathrm{e}^{ikX_\ell} \ket{\psi_k}$$

$$\int_{-\infty}^{\infty} dx \, |\langle x | w_{\ell} \rangle|^2 = 1 \qquad \text{finite!}$$

With the optimal choice of the gauge:

 $|\langle x | w_{\ell} \rangle| \to 0$ exponentially for $x \to \pm \infty$ $\langle w_n | x^2 | w_n \rangle - |\langle w_n | x | w_n \rangle|^2$ minimum

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The minimum "quadratic spread" is equal to the RS λ^2
- The spread diverges in the metallic case.
- Caveat: In 3d there are some complications: Marzari-Vanderbilt MLWFs (1997).

With the optimal choice of the gauge:

 $|\langle x | w_{\ell} \rangle| o 0$ exponentially for $x \to \pm \infty$

$$\langle w_n | x^2 | w_n \rangle - |\langle w_n | x | w_n \rangle|^2$$
 minimum

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The minimum "quadratic spread" is equal to the RS λ^2
- The spread diverges in the metallic case.
- Caveat: In 3*d* there are some complications: Marzari-Vanderbilt MLWFs (1997).

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

Spontaneous polarization of a ferroelectric R. Resta, Ferroelectrics **136**, 51 (1992)

The physical observable is the integrated transient current:

$$\mathbf{P}_{s} = \int_{0}^{\Delta t} \mathbf{j}(t) \, dt \qquad = \int_{0}^{1} d\lambda \, \frac{d}{d\lambda} \mathbf{P}_{\text{electronic}} + \Delta \mathbf{P}_{\text{nuclear}}$$

Any current is mostly related to the **phase** of the wavefunction (not to the square modulus!)

Spontaneous polarization of a ferroelectric R. Resta, Ferroelectrics **136**, 51 (1992)

The physical observable is the integrated transient current:

$$\mathbf{P}_{s} = \int_{0}^{\Delta t} \mathbf{j}(t) \, dt \qquad = \int_{0}^{1} d\lambda \, \frac{d}{d\lambda} \mathbf{P}_{\text{electronic}} + \Delta \mathbf{P}_{\text{nuclear}}$$

Any current is mostly related to the **phase** of the wavefunction (not to the square modulus!)

The second Vanderbilt & King-Smith paper

PHYSICAL REVIEW B

VOLUME 48, NUMBER 7

15 AUGUST 1993-I

Electric polarization as a bulk quantity and its relation to surface charge

David Vanderbilt and R. D. King-Smith

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849 (Received 26 January 1993)

A definition of the electric polarization of an insulating crystalline solid is given in terms of the centers of charge of the Wannier functions of the occupied bands. The change of this quantity under an adiabatic evolution of the Hamiltonian has previously been shown to correspond to the physical change in polarization. Here, we show that the polarization as defined above also has a direct and predictive relationship to the surface charge which accumulates at an insulating surface or interface.

Instead of addressing ΔP , it is possible to define P "itself"

However....

P is not a vector, it is a lattice!

P is only defined modulo a "quantum"

The second Vanderbilt & King-Smith paper

PHYSICAL REVIEW B

VOLUME 48, NUMBER 7

15 AUGUST 1993-I

(日) (日) (日) (日) (日) (日) (日)

Electric polarization as a bulk quantity and its relation to surface charge

David Vanderbilt and R. D. King-Smith

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849 (Received 26 January 1993)

A definition of the electric polarization of an insulating crystalline solid is given in terms of the centers of charge of the Wannier functions of the occupied bands. The change of this quantity under an adiabatic evolution of the Hamiltonian has previously been shown to correspond to the physical change in polarization. Here, we show that the polarization as defined above also has a direct and predictive relationship to the surface charge which accumulates at an insulating surface or interface.

Instead of addressing △P, it is possible to define P "itself"

However....

P is not a vector, it is a lattice!

P is only defined modulo a "quantum"

Center of charge (1d & quasi-1d systems)

According e.g. to **Kittel textbook P** is nonzero when "....the **center** of positive charge does not coincide with the **center** of negative charge"

■ *N* spinless electrons in a segment of lenght *L*:

$$\Psi_0=\Psi_0(x_1,x_2,\ldots x_j,\ldots x_N),$$

Periodic boundary conditions:

 $\Psi_0 = \Psi_0(x_1, x_2, \dots, x_j, \dots, x_N) = \Psi_0(x_1, x_2, \dots, x_j + L, \dots, x_N)$

■ Nuclei of charge eZ_{ℓ} at sites X_{ℓ}

Centers of charge:

$$\sum_{\ell} Z_{\ell} X_{\ell} - \langle \Psi_0 | \sum_j X_j | \Psi_0 \rangle$$

Center of charge (1d & quasi-1d systems)

According e.g. to **Kittel textbook P** is nonzero when "....the **center** of positive charge does not coincide with the **center** of negative charge"

■ *N* spinless electrons in a segment of lenght *L*:

$$\Psi_0=\Psi_0(x_1,x_2,\ldots x_j,\ldots x_N),$$

Periodic boundary conditions:

$$\Psi_0=\Psi_0(x_1,x_2,\ldots x_j,\ldots x_N)=\Psi_0(x_1,x_2,\ldots x_j+L,\ldots x_N)$$

Nuclei of charge eZ_l at sites X_l
 Centers of charge:

$$\sum_{\ell} Z_{\ell} X_{\ell} - \langle \Psi_0 | \sum_j x_j | \Psi_0 \rangle$$

Center of charge, better

- Within PBCs coordinates are actually angles
- The two "centers" must be defined modulo L
- Their difference must be origin-invariant

$$\sum_{\ell} Z_{\ell} X_{\ell} - \langle \Psi_0 | \sum_j x_j | \Psi_0 \rangle$$
$$\longrightarrow \frac{L}{2\pi} \text{Im In } e^{i\frac{2\pi}{L} \sum_{\ell} Z_{\ell} X_{\ell}} + \frac{L}{2\pi} \text{Im In } \langle \Psi_0 | e^{-i\frac{2\pi}{L} \sum_j x_j} | \Psi_0 \rangle$$

■ Polarization in 1*d* (R. Resta, PRL 1998):

$$P = \frac{e}{2\pi} \text{Im In } \langle \Psi_0 | e^{i\frac{2\pi}{L} \left(\sum_{\ell} Z_{\ell} X_{\ell} - \sum_j X_j \right)} | \Psi_0 \rangle$$

(日) (日) (日) (日) (日) (日) (日)

Center of charge, better

- Within PBCs coordinates are actually angles
- The two "centers" must be defined modulo L
- Their difference must be origin-invariant

$$\sum_{\ell} Z_{\ell} X_{\ell} - \langle \Psi_0 | \sum_j x_j | \Psi_0 \rangle$$
$$\longrightarrow \frac{L}{2\pi} \text{Im In } e^{j\frac{2\pi}{L} \sum_{\ell} Z_{\ell} X_{\ell}} + \frac{L}{2\pi} \text{Im In } \langle \Psi_0 | e^{-j\frac{2\pi}{L} \sum_j x_j} | \Psi_0 \rangle$$

Polarization in 1*d* (R. Resta, PRL 1998):

$$P = \frac{e}{2\pi} \text{Im In } \langle \Psi_0 | e^{j\frac{2\pi}{L} \left(\sum_{\ell} Z_{\ell} X_{\ell} - \sum_j X_j \right)} | \Psi_0 \rangle$$

Berry phase & the "quantum"

$$\gamma = \text{Im In } \langle \Psi_0 | \mathrm{e}^{j \frac{2\pi}{L} \left(\sum_\ell Z_\ell X_\ell - \sum_j x_j
ight)} | \Psi_0
angle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$P_x = e rac{\gamma}{2\pi}$$
 defined modulo e

γ is the Berry phase in disguise
 γ includes the nuclear contribution

Outline

- 1 Faraday laws of electrolysis
- 2 Modern view of a liquid
- 3 A flavor of topology
- 4 The adiabatic current
- 5 The "electron-in-broth" formula (one electron)
- 6 Many electrons in broth: transport and conductivity

- 7 Infrared spectra
- 8 Insulators vs. metals
- 9 Polarization
- **10** A \mathbb{Z}_2 topological invariant

A 1d insulator (polyacetylene), different terminations

Guess for a centrosymmetric polymer: $\mathbf{P} = 0$. Is this right?

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Dipole per monomer (Kudin, Car, & Resta, JCP 2007)

\mathbb{Z}_2 classification of centrosymmetric polymers

 \mathbb{Z}_2 -even: $P = 0 \mod e$ Alternant polyacetylene, model molecular crystal.....

 \mathbb{Z}_2 -odd: $P = e/2 \mod e$ Model ionic crystal....

Z₂ invariant topological:

- Independent e.g. of ionicity difference
- Independent of the theory level (tight-binding, first-principle...)
- Robust by continuous deformation of the wavefunction

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

\mathbb{Z}_2 classification of centrosymmetric polymers

 \mathbb{Z}_2 -even: $P = 0 \mod e$ Alternant polyacetylene, model molecular crystal.....

 \mathbb{Z}_2 -odd: $P = e/2 \mod e$ Model ionic crystal....

Z₂ invariant **topological**:

- Independent e.g. of ionicity difference
- Independent of the theory level (tight-binding, first-principle...)
- Robust by continuous deformation of the wavefunction

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simple tight-binding Hamiltonians

 \mathbb{Z}_2 -even: Onsite ϵ_i constant, alternating hoppings t and t'

 \mathbb{Z}_2 -odd: Constant hopping t, alternating ϵ_i

Z₂ invariant protected by centrosymmetry

When joining the two with a continuous & centrosymmetric deformation of the Hamiltonian the gap closes!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの