Berry's Geometric Phase

Aharonov-Bohm \& Related Physics

Raffaele Resta

Dipartimento di Fisica, Università di Trieste
2015

Outline

1 Aharonov-Bohm revisited

2 Born-Oppenheimer approx. in molecules $(\mathbf{B}=0)$

3 The \mathbb{Z}_{2} topological invariant

4 Born-Oppenheimer approx. in molecules $(\mathbf{B} \neq 0)$

Outline

1 Aharonov-Bohm revisited

2 Born-Oppenheimer approx. in molecules $(\mathbf{B}=0)$

3 The \mathbb{Z}_{2} topological invariant

4 Born-Oppenheimer approx. in molecules $(\mathbf{B} \neq 0)$

A quantum system in zero field

The parameter $\boldsymbol{\xi}$

No magnetic field, box centered at the origin:

$$
\left[\frac{1}{2} p^{2}+V(\mathbf{r})\right] \chi(\mathbf{r})=\varepsilon \chi(\mathbf{r}), \quad \chi(\mathbf{r}) \quad \text { real function }
$$

Parameter $\boldsymbol{\xi} \rightarrow$ the box position: $\quad H(\mathbf{R})=\frac{1}{2} p^{2}+V(\mathbf{r}-\mathbf{R})$

$$
\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle=\chi(\mathbf{r}-\mathbf{R})
$$

If there is a magnetic field (somewhere):

$$
H(R)=\frac{1}{2}\left[p+\frac{e}{c} A(r)\right]^{2}+V(r-R)
$$

The parameter $\boldsymbol{\xi}$

No magnetic field, box centered at the origin:

$$
\left[\frac{1}{2} p^{2}+V(\mathbf{r})\right] \chi(\mathbf{r})=\varepsilon \chi(\mathbf{r}), \quad \chi(\mathbf{r}) \quad \text { real function }
$$

Parameter $\boldsymbol{\xi} \rightarrow$ the box position: $\quad H(\mathbf{R})=\frac{1}{2} p^{2}+V(\mathbf{r}-\mathbf{R})$

$$
\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle=\chi(\mathbf{r}-\mathbf{R})
$$

If there is a magnetic field (somewhere):

$$
\begin{gathered}
H(\mathbf{R})=\frac{1}{2}\left[\mathbf{p}+\frac{e}{c} \mathbf{A}(\mathbf{r})\right]^{2}+V(\mathbf{r}-\mathbf{R}) \\
\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle=\mathrm{e}^{-i \varphi(\mathbf{r})} \chi(\mathbf{r}-\mathbf{R}) \\
\varphi(\mathbf{r})=\frac{e}{\hbar c} \int_{\mathbf{R}}^{\mathbf{r}} \mathbf{A}\left(\mathbf{r}^{\prime}\right) \cdot d \mathbf{r}^{\prime}
\end{gathered}
$$

Berry connection \& Berry phase

Formal solution!
However: In the region where $\mathbf{B}(\mathbf{r})$ vanishes, $\varphi(\mathbf{r})$ is a single valued function of \mathbf{r}, and $\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle$ is an "honest" electronic wavefunction.

What about the dependence on the "slow" parameter \mathbf{R} ?
Berry connection:

$$
i\left\langle\psi(\mathbf{R}) \mid \nabla_{\mathbf{R}} \psi(\mathbf{R})\right\rangle=i\left\langle\chi(\mathbf{R}) \mid \nabla_{\mathbf{R}} \chi(\mathbf{R})\right\rangle-\frac{e}{\hbar c} \mathbf{A}(\mathbf{R})
$$

Berry phase:

$$
\gamma=-\frac{e}{\hbar c} \oint_{C} \mathbf{A}(\mathbf{R}) \cdot d \mathbf{R}
$$

Berry connection \& Berry phase

Formal solution!
However: In the region where $\mathbf{B}(\mathbf{r})$ vanishes, $\varphi(\mathbf{r})$ is a single valued function of \mathbf{r}, and $\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle$ is an "honest" electronic wavefunction.

What about the dependence on the "slow" parameter \mathbf{R} ?
Berry connection:

Berry phase:

Berry connection \& Berry phase

Formal solution!

However: In the region where $\mathbf{B}(\mathbf{r})$ vanishes, $\varphi(\mathbf{r})$ is a single valued function of \mathbf{r}, and $\langle\mathbf{r} \mid \psi(\mathbf{R})\rangle$ is an "honest" electronic wavefunction.

What about the dependence on the "slow" parameter \mathbf{R} ?
Berry connection:

$$
i\left\langle\psi(\mathbf{R}) \mid \nabla_{\mathbf{R}} \psi(\mathbf{R})\right\rangle=i\left\langle\chi(\mathbf{R}) \mid \nabla_{\mathbf{R}} \chi(\mathbf{R})\right\rangle-\frac{e}{\hbar c} \mathbf{A}(\mathbf{R})
$$

Berry phase:

$$
\gamma=-\frac{e}{\hbar c} \oint_{C} \mathbf{A}(\mathbf{R}) \cdot d \mathbf{R}
$$

A closer look at the Berry phase γ

$$
\gamma=-\frac{e}{\hbar c} \oint_{C} \mathbf{A}(\mathbf{R}) \cdot d \mathbf{R}=-\frac{e}{\hbar c} \phi
$$

- In this problem (and only in this problem):

The "geometric vector potential" coincides with the magnetic vector potential (times a constant)

- $\frac{e}{h c}$ is the "flux quantum": $\gamma=-2 \pi \frac{\phi}{\Phi_{0}}$
- Only the fractional part of Φ / Φ_{0} is relevant
- The Berry phase γ is observable (mod 2π)

A closer look at the Berry phase γ

$$
\gamma=-\frac{e}{\hbar c} \oint_{C} \mathbf{A}(\mathbf{R}) \cdot d \mathbf{R}=-\frac{e}{\hbar c} \phi
$$

■ In this problem (and only in this problem):
The "geometric vector potential" coincides with the magnetic vector potential (times a constant)

- $\frac{e}{h c}$ is the "flux quantum": $\gamma=-2 \pi \frac{\phi}{\Phi_{0}}$
- Only the fractional part of Φ / Φ_{0} is relevant
- The Berry phase γ is observable $(\bmod 2 \pi)$

A closer look at the Berry phase γ

$$
\gamma=-\frac{e}{\hbar c} \oint_{C} \mathbf{A}(\mathbf{R}) \cdot d \mathbf{R}=-\frac{e}{\hbar c} \phi
$$

■ In this problem (and only in this problem):
The "geometric vector potential" coincides with the magnetic vector potential (times a constant)

- $\frac{e}{h c}$ is the "flux quantum": $\gamma=-2 \pi \frac{\phi}{\Phi_{0}}$
- Only the fractional part of Φ / Φ_{0} is relevant
- The Berry phase γ is observable $(\bmod 2 \pi)$

Bottom line (no paradox!)

Significance of Electromagnetic Potentials in the Quantum Theory

Y. Aharonov and D. Bohm
H. H. Wills Physics Laboratory, University of Bristol, Bristol, England
(Received May 28, 1959; revised manuscript received June 16, 1959)

In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest further possible developments in the interpretation of the potentials.

Outline

1 Aharonov-Bohm revisited

2 Born-Oppenheimer approx. in molecules $(\mathbf{B}=0)$

3 The \mathbb{Z}_{2} topological invariant

4 Born-Oppenheimer approx. in molecules $(\mathbf{B} \neq 0)$

Reexamining the Born-Oppenheimer approximation

$$
\mathcal{H}([\mathbf{R}],[\mathbf{x}])=-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}+H_{\mathrm{el}}([\mathbf{R}],[\mathbf{x}])
$$

[$\mathbf{x}]$: electronic degrees of freedom (orbital \& spin) [$\mathbf{R}]$: nuclear coordinates \mathbf{R}_{j}
$-i \hbar \nabla_{\mathbf{R}_{j}}$: canonical nuclear momenta

$$
\begin{aligned}
H_{\mathrm{el}}([\mathbf{R}],[\mathbf{x}]) & =\text { electronic kinetic energy } \\
& + \text { electron-electron interaction } \\
& + \text { electron-nuclear interaction } \\
& + \text { nuclear-nuclear interaction }
\end{aligned}
$$

Recipe

■ Product ansatz: $\Psi([\mathbf{R}],[\mathbf{x}])=\left\langle[\mathbf{x}] \mid \Psi_{\text {el }}([\mathbf{R}])\right\rangle \Phi([\mathbf{R}])$
\square Solve the electronic Schrödinger equation at fixed \mathbf{R}_{j} :

$$
H_{\mathrm{el}}([\mathbf{R}],[\mathbf{x}])\left\langle[\mathbf{x}] \mid \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle=E_{\mathrm{el}}([\mathbf{R}])\left\langle[\mathbf{x}] \mid \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle
$$

■ Use $E_{\mathrm{el}}([\mathbf{R}])$ as the potential energy for nuclear motion:

$$
\left(-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}+E_{\mathrm{el}}([\mathbf{R}])\right) \Phi([\mathbf{R}])=E \Phi([\mathbf{R}])
$$

- Textbook example: Vibrational levels of a biatomic molecule.

■ On many occasions, the nuclear motion can be considered as purely classical (Schrödinger \longrightarrow Newton).

Recipe

■ Product ansatz: $\Psi([\mathbf{R}],[\mathbf{x}])=\left\langle[\mathbf{x}] \mid \Psi_{\text {el }}([\mathbf{R}])\right\rangle \Phi([\mathbf{R}])$
\square Solve the electronic Schrödinger equation at fixed \mathbf{R}_{j} :

$$
H_{\mathrm{el}}([\mathbf{R}],[\mathbf{x}])\left\langle[\mathbf{x}] \mid \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle=E_{\mathrm{el}}([\mathbf{R}])\left\langle[\mathbf{x}] \mid \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle
$$

■ Use $E_{\mathrm{el}}([\mathbf{R}])$ as the potential energy for nuclear motion:

$$
\left(-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}+E_{\mathrm{el}}([\mathbf{R}])\right) \Phi([\mathbf{R}])=E \Phi([\mathbf{R}])
$$

■ Textbook example: Vibrational levels of a biatomic molecule.
■ On many occasions, the nuclear motion can be considered as purely classical (Schrödinger \longrightarrow Newton).

A closer look at the Born-Oppenheimer recipe

■ Product ansatz: $\Psi([\mathbf{R}],[\mathbf{x}])=\left\langle[\mathbf{x}] \mid \Psi_{\text {el }}([\mathbf{R}])\right\rangle \Phi([\mathbf{R}])$
■ The operator $\nabla_{\mathbf{R}_{j}}$ acting on $\Psi([\mathbf{R}],[\mathbf{x}])$:

$$
\begin{aligned}
\nabla_{\mathbf{R}_{j}} \psi([\mathbf{R}],[\mathbf{x}]) & =\left\langle[\mathbf{x}] \mid \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle \nabla_{\mathbf{R}_{j}} \Phi([\mathbf{R}]) \\
& +\left\langle[\mathbf{x}] \mid \nabla_{\mathbf{R}_{j}} \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle \Phi([\mathbf{R}])
\end{aligned}
$$

$■$ Multiplying by $\left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid[\mathbf{x}]\right\rangle$ and integrating in $d[\mathbf{x}]$:

$$
\begin{aligned}
\int d[\mathbf{x}] & \left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid[\mathbf{x}]\right\rangle \nabla_{\mathbf{R}_{j}} \Psi([\mathbf{R}],[\mathbf{x}]) \\
= & \left(\nabla_{\mathbf{R}_{j}}+\left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid \nabla_{\mathbf{R}_{j}} \Psi_{\mathrm{el}}([\mathbf{R}])\right\rangle\right) \Phi([\mathbf{R}])
\end{aligned}
$$

■ Nuclear kinetic energy, after [\mathbf{x}] is "integrated out":

$$
\mathcal{T}_{\mathrm{N}}=\sum_{j} \frac{\hbar^{2}}{2 M_{j}}\left(-i \hbar \nabla_{\mathbf{R}_{j}}-i \hbar\left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid \nabla_{\mathbf{R}_{j}} \psi_{\mathrm{el}}([\mathbf{R}])\right\rangle\right)^{2}
$$

A term was missing!

■ Naive Born-Oppenheimer approximation:

$$
\left(\mathcal{T}_{\mathrm{N}}+E_{\mathrm{el}}([\mathbf{R}])\right) \Phi([\mathbf{R}])=E \Phi([\mathbf{R}]), \quad \mathcal{T}_{\mathrm{N}}=-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}
$$

■ More accurate Born-Oppenheimer approximation:

- The electronic Berry connection acts as a "geometric vector potential" in the nuclear Hamiltonian
- In most cases the correction is neglected: Why?

A term was missing!

■ Naive Born-Oppenheimer approximation:

$$
\left(\mathcal{T}_{\mathrm{N}}+E_{\mathrm{el}}([\mathbf{R}])\right) \Phi([\mathbf{R}])=E \Phi([\mathbf{R}]), \quad \mathcal{T}_{\mathrm{N}}=-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}
$$

■ More accurate Born-Oppenheimer approximation:

$$
\mathcal{T}_{\mathrm{N}}=\sum_{j} \frac{1}{2 M_{j}}\left(-i \hbar \nabla_{\mathbf{R}_{j}}-i \hbar\left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid \nabla_{\mathbf{R}_{j}} \psi_{\mathrm{el}}([\mathbf{R}])\right\rangle\right)^{2}
$$

■ The electronic Berry connection acts as a "geometric vector potential" in the nuclear Hamiltonian

■ In most cases the correction is neglected: Why?

A term was missing!

■ Naive Born-Oppenheimer approximation:

$$
\left(\mathcal{T}_{\mathrm{N}}+E_{\mathrm{el}}([\mathbf{R}])\right) \Phi([\mathbf{R}])=E \Phi([\mathbf{R}]), \quad \mathcal{T}_{\mathrm{N}}=-\sum_{j} \frac{\hbar^{2}}{2 M_{j}} \nabla_{\mathbf{R}_{j}}^{2}
$$

■ More accurate Born-Oppenheimer approximation:

$$
\mathcal{T}_{\mathrm{N}}=\sum_{j} \frac{1}{2 M_{j}}\left(-i \hbar \nabla_{\mathbf{R}_{j}}-i \hbar\left\langle\Psi_{\mathrm{el}}([\mathbf{R}]) \mid \nabla_{\mathbf{R}_{j}} \psi_{\mathrm{el}}([\mathbf{R}])\right\rangle\right)^{2}
$$

■ The electronic Berry connection acts as a "geometric vector potential" in the nuclear Hamiltonian

■ In most cases the correction is neglected: Why?

The hydrogen (or sodium) trimer, LCAO

$$
\begin{aligned}
& |2\rangle=\frac{1}{\sqrt{6}}(|\mathrm{~B}\rangle+|\mathrm{C}\rangle-2|\mathrm{~A}\rangle) \\
& |1\rangle=\frac{1}{\sqrt{2}}(|\mathrm{C}\rangle-|\mathrm{B}\rangle) \\
& |0\rangle=\frac{1}{\sqrt{3}}(|\mathrm{~A}\rangle+|\mathrm{B}\rangle+|\mathrm{C}\rangle)
\end{aligned}
$$

■ Equilateral geometry, 3 valence electrons: degenerate $\operatorname{HOMO}\left(\varepsilon_{1}=\varepsilon_{2}\right)$
■ Broken-symmetry equilibrium geometry: isosceles Jahn-Teller splitting $\left(\varepsilon_{1} \neq \varepsilon_{2}\right)$

The hydrogen (or sodium) trimer, LCAO

$$
\begin{aligned}
& |2\rangle=\frac{1}{\sqrt{6}}(|\mathrm{~B}\rangle+|\mathrm{C}\rangle-2|\mathrm{~A}\rangle) \\
& |1\rangle=\frac{1}{\sqrt{2}}(|\mathrm{C}\rangle-|\mathrm{B}\rangle) \\
& |0\rangle=\frac{1}{\sqrt{3}}(|\mathrm{~A}\rangle+|\mathrm{B}\rangle+|\mathrm{C}\rangle)
\end{aligned}
$$

■ Equilateral geometry, 3 valence electrons: degenerate $\operatorname{HOMO}\left(\varepsilon_{1}=\varepsilon_{2}\right)$
■ Broken-symmetry equilibrium geometry: isosceles Jahn-Teller splitting $\left(\varepsilon_{1} \neq \varepsilon_{2}\right)$
$|1\rangle$ is the HOMO, $|2\rangle$ is the LUMO

Born-Oppenheimer surfaces

Born-Oppenheimer surfaces

pseudorotation

"conical intersection"
a.k.a. "diabolical point"

Nuclear dynamics

$$
\begin{aligned}
& E_{\mathrm{el}}(\xi)=E_{\mathrm{el}}(\xi) \quad \vartheta \text {-independent } \\
& E_{\mathrm{el}}(\xi)=\frac{1}{2} k\left(\xi^{2} \pm 2 \xi_{\min } \xi\right) \\
& \text { Lowest BO surface: } \\
& \quad \text { minimum in } \xi_{\min } \\
& E_{\mathrm{el}}\left(\xi_{\min }\right)=-\frac{1}{2} k \xi_{\min }^{2}=-E_{\mathrm{JT}}
\end{aligned}
$$

- Classical: Free motion at valley's bottom, $M=3 m$ \& transverse oscillations
- Quantlzed pseudorotattons:
$\Phi_{m n}(\xi, \vartheta) \propto H_{n}(\alpha \xi) \mathrm{e}^{-\frac{\omega}{2}\left(\xi-\xi_{\text {min }}\right)^{2}} \mathrm{e}^{i m \vartheta}$
$m \in \mathbb{Z}, \quad n=0,1,2$,
Ground state: $m=0, n=0$

Nuclear dynamics

$$
\begin{aligned}
& E_{\mathrm{el}}(\xi)=E_{\mathrm{el}}(\xi) \quad \vartheta \text {-independent } \\
& E_{\mathrm{el}}(\xi)=\frac{1}{2} k\left(\xi^{2} \pm 2 \xi_{\min } \xi\right) \\
& \text { Lowest BO surface: } \\
& \quad \text { minimum in } \xi_{\min } \\
& E_{\mathrm{el}}\left(\xi_{\min }\right)=-\frac{1}{2} k \xi_{\min }^{2}=-E_{\mathrm{JT}}
\end{aligned}
$$

■ Classical: Free motion at valley's bottom, $M=3 m$ \& transverse oscillations

- Quantized pseudorotations:
$\Phi_{m n}(\xi, \vartheta) \propto H_{n}(\alpha \xi) \mathrm{e}^{-\frac{\omega}{2}\left(\xi-\xi_{\text {min }}\right)^{2}} \mathrm{e}^{i m \vartheta}$ $m \in \mathbb{Z}, \quad n=0,1,2, \ldots$
Ground state: $m=0, n=0$

H. C. Longuet-Higgins et al. (1958)

$\mid \mathrm{B})-|\mathrm{A}\rangle$

$|C\rangle-|A\rangle$

$|C\rangle-|B\rangle$

The electronic wfn $\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle$ changes sign (a π phase)
The total wfn $\Psi(\boldsymbol{\xi}, \mathbf{r})=\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle \Phi(\boldsymbol{\xi})$ must be single-valued
Even the nuclear wfn must change sign
\Rightarrow Different quantization rules!

m half-integer, $\quad n=0,1,2$,
Ground state: $m=\frac{1}{2}, n=0$
Observable effect in QM, no effect in CM
(the system does not visit the conical intersection)

H. C. Longuet-Higgins et al. (1958)

$\mid \mathrm{B})-|\mathrm{A}\rangle$

$|C\rangle-|A\rangle$

$|C\rangle-|B\rangle$

The electronic wfn $\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle$ changes sign (a π phase)
The total wfn $\Psi(\boldsymbol{\xi}, \mathbf{r})=\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle \Phi(\boldsymbol{\xi})$ must be single-valued
Even the nuclear wfn must change sign
\Rightarrow Different quantization rules!
$\Phi_{m n}(\xi, \vartheta) \propto H_{n}(\alpha \xi) \mathrm{e}^{-\frac{\omega}{2}\left(\xi-\xi_{\text {min }}\right)^{2}} \mathrm{e}^{i m \vartheta}$ m half-integer, $\quad n=0,1,2, \ldots$
Ground state: $m=\frac{1}{2}, n=0$

H. C. Longuet-Higgins et al. (1958)

$|B\rangle-|A\rangle$

$|C\rangle-|A\rangle$

$|C\rangle-|B\rangle$

The electronic wfn $\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle$ changes sign (a π phase)
The total wfn $\Psi(\boldsymbol{\xi}, \mathbf{r})=\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\boldsymbol{\xi})\right\rangle \Phi(\boldsymbol{\xi})$ must be single-valued
Even the nuclear wfn must change sign
\Rightarrow Different quantization rules!
$\Phi_{m n}(\xi, \vartheta) \propto H_{n}(\alpha \xi) \mathrm{e}^{-\frac{\omega}{2}\left(\xi-\xi_{\text {min }}\right)^{2}} \mathrm{e}^{i m \vartheta}$
m half-integer, $\quad n=0,1,2, \ldots$
Ground state: $m=\frac{1}{2}, n=0$
Observable effect in QM, no effect in CM (the system does not visit the conical intersection)

Molecular Aharonov-Bohm effect

Aharonov-Bohm effect (real B field):

$$
\gamma=\oint_{C} \mathcal{A}(\xi) \cdot d \xi=-2 \pi \frac{\Phi}{\Phi_{0}} \quad \bmod 2 \pi
$$

Molecular Aharonov-Bohm effect $(B=0)$:

$$
\gamma=\oint_{C} \mathcal{A}(\xi) \cdot d \xi=\pi \quad \bmod 2 \pi
$$

Same as having a δ-like flux tube at the conical intersection

Molecular Aharonov-Bohm effect

Aharonov-Bohm effect (real B field):

$$
\gamma=\oint_{C} \mathcal{A}(\xi) \cdot d \xi=-2 \pi \frac{\Phi}{\Phi_{0}} \quad \bmod 2 \pi
$$

Molecular Aharonov-Bohm effect $(\mathbf{B}=0)$:

$$
\gamma=\oint_{C} \mathcal{A}(\boldsymbol{\xi}) \cdot d \boldsymbol{\xi}=\pi \quad \bmod 2 \pi
$$

Same as having a δ-like flux tube at the conical intersection

$$
\Phi=\frac{\Phi_{0}}{2} \quad \text { (half-quantum, a.k.a. " } \pi \text { flux") }
$$

Berry phase: discrete algorithm

$$
\begin{aligned}
& \gamma=\sum_{j=1}^{N} \Delta \varphi_{j, j+1} \\
& =-\operatorname{Im} \log \left\langle\psi\left(\boldsymbol{\xi}_{1}\right) \mid \psi\left(\boldsymbol{\xi}_{2}\right)\right\rangle\left\langle\psi\left(\boldsymbol{\xi}_{2}\right) \mid \psi\left(\boldsymbol{\xi}_{3}\right)\right\rangle \ldots\left\langle\psi\left(\boldsymbol{\xi}_{N}\right) \mid \psi\left(\boldsymbol{\xi}_{1}\right)\right\rangle
\end{aligned}
$$

$$
N=3
$$

Berry phase: discrete algorithm

$$
\begin{aligned}
& \gamma=\sum_{j=1}^{N} \Delta \varphi_{j, j+1} \\
& =-\operatorname{Im} \log \left\langle\psi\left(\boldsymbol{\xi}_{1}\right) \mid \psi\left(\boldsymbol{\xi}_{2}\right)\right\rangle\left\langle\psi\left(\boldsymbol{\xi}_{2}\right) \mid \psi\left(\boldsymbol{\xi}_{3}\right)\right\rangle \ldots\left\langle\psi\left(\boldsymbol{\xi}_{N}\right) \mid \psi\left(\boldsymbol{\xi}_{1}\right)\right\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\boldsymbol{N}=3 \\
& \left\langle\psi\left(\boldsymbol{\xi}_{1}\right)\right\rangle \propto|\mathrm{B}\rangle-|\mathrm{C}\rangle
\end{array} \quad\left|\psi\left(\boldsymbol{\xi}_{2}\right)\right\rangle \propto|\mathrm{B}\rangle-|\mathrm{A}\rangle
$$

Outline

1 Aharonov-Bohm revisited

2 Born-Oppenheimer approx. in molecules $(\mathbf{B}=0)$

3 The \mathbb{Z}_{2} topological invariant

4 Born-Oppenheimer approx. in molecules $(\mathbf{B} \neq 0)$

Topology \& conical intersections

Herzberg \& Longuet-Higgins, 1963:

It shows that a conically self-intersecting potential surface has a different topological character from a pair of distinct surfaces which happen to meet at a point. Indeed, if an electronic wave function changes sign when we move round a closed loop in configuration space, we can conclude that somewhere inside the loop there must be a singular point at which the wave function is degenerate; in other words, there must be a genuine conical intersection, leading to an upper or lower sheet of the surface, as the case may be.

Berry phase γ

■ Topologically trivial: $\gamma=0 \bmod 2 \pi=\pi \times(0 \bmod 2)$
■ Topologically nontrivial: $\gamma=\pi \bmod 2 \pi=\pi \times(1 \bmod 2)$
■ Topological invariant $\in \mathbb{Z}_{2}$
($\mathbb{Z}_{2}=$ additive group of the integers mod 2)

Robustness of the topological invariant

Two-valued topological invariant:
The \mathbb{Z}_{2} index is either 0 or $1(\bmod 2)$

- The index is robust against deformations of the path C, provided it does not cross the "obstruction"
- The index is very robust against continuous deformations of Hamiltonian \& wave function, provided the HOMO-LUMO gap does not close
- We can even "continuously deformate" the wfn into the exact correlated one (if ground state non degenerate)
■ Key role of time-reversal invariance
- In modern jargon: \mathbb{Z}_{2} invariant is "protected" by time-reversal symmetry

Robustness of the topological invariant

Two-valued topological invariant:
The \mathbb{Z}_{2} index is either 0 or $1(\bmod 2)$

- The index is robust against deformations of the path C, provided it does not cross the "obstruction"
■ The index is very robust against continuous deformations of Hamiltonian \& wave function, provided the HOMO-LUMO gap does not close
- We can even "continuously deformate" the wfn into the exact correlated one (if ground state non degenerate)
- Key role of time-reversal invariance
- In modern jargon: \mathbb{Z}_{2} invariant is "protected" by time-reversal symmetry

Robustness of the topological invariant

Two-valued topological invariant:
The \mathbb{Z}_{2} index is either 0 or $1(\bmod 2)$

- The index is robust against deformations of the path C, provided it does not cross the "obstruction"
■ The index is very robust against continuous deformations of Hamiltonian \& wave function, provided the HOMO-LUMO gap does not close
- We can even "continuously deformate" the wfn into the exact correlated one (if ground state non degenerate)
■ Key role of time-reversal invariance
- In modern jargon:
\mathbb{Z}_{2} invariant is "protected" by time-reversal symmetry

Outline

1 Aharonov-Bohm revisited

2 Born-Oppenheimer approx. in molecules $(\mathbf{B}=0)$

3 The \mathbb{Z}_{2} topological invariant

4 Born-Oppenheimer approx. in molecules $(\mathbf{B} \neq 0)$

BO approx. for the H atom, $\mathbf{B}=0$

$$
\begin{aligned}
\mathcal{H}(\mathbf{R}, \mathbf{r}) & =-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}+H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) \\
H_{\mathrm{el}(}(\mathbf{R}, \mathbf{r}) & =-\frac{\hbar^{2}}{2 m} \nabla_{\mathbf{r}}^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
\end{aligned}
$$

Lowest BO surface:

$$
E_{\mathrm{el}}(\mathbf{R})=\text { const }=-\frac{e^{2}}{2 \mathrm{a}_{0}}, \quad\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\mathbf{R})\right\rangle \propto \mathrm{e}^{-|\mathbf{r}-\mathbf{R}| / a_{0}}
$$

BO approx. for the H atom, $\mathbf{B}=0$

$$
\begin{aligned}
\mathcal{H}(\mathbf{R}, \mathbf{r}) & =-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}+H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) \\
H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) & =-\frac{\hbar^{2}}{2 m} \nabla_{\mathbf{r}}^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
\end{aligned}
$$

Lowest BO surface:

$$
\begin{gathered}
E_{\text {el }}(\mathbf{R})=\text { const }=-\frac{e^{2}}{2 a_{0}}, \quad\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\mathbf{R})\right\rangle \propto \mathrm{e}^{-|\mathbf{r}-\mathbf{R}| / a_{0}} \\
\text { BO Recipe: } \quad-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2} \Phi(\mathbf{R})-\frac{e^{2}}{2 a_{0}} \Phi(\mathbf{R})=E \Phi(\mathbf{R}) \\
E_{\mathrm{BO}}(\mathbf{k})=\frac{\hbar^{2} k^{2}}{2 M}-\frac{e^{2}}{2 a_{0}}, \quad \psi_{\mathrm{BO}}(\mathbf{R}, \mathbf{r}) \propto \mathrm{e}^{-|\mathbf{r}-\mathbf{R}| / a_{0}} \mathrm{e}^{\mathrm{i} \cdot \mathbf{R}}
\end{gathered}
$$

Compare exact with Born-Oppenheimer approx.

$$
\mathcal{H}(\mathbf{R}, \mathbf{r})=-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{\mathbf{r}}^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
$$

Separable using: $\quad \tilde{\mathbf{R}}=\frac{M \mathbf{R}+m \mathbf{r}}{M+m}, \quad \tilde{\mathbf{r}}=\mathbf{r}-\mathbf{R}$

$$
\begin{aligned}
E(\mathbf{k}) & =\frac{\hbar^{2} k^{2}}{2(M+m)}-\frac{\mu e^{2}}{2 a_{0}}, \quad \mu=\frac{m M}{m+M} \\
E_{\mathrm{BO}}(\mathbf{k}) & =\frac{\hbar^{2} k^{2}}{2 M}-\frac{e^{2}}{2 a_{0}} \\
\lim _{m / M \rightarrow 0} E(\mathbf{k}) & =E_{\mathrm{BO}}(\mathbf{k})
\end{aligned}
$$

Compare exact with Born-Oppenheimer approx.

$$
\mathcal{H}(\mathbf{R}, \mathbf{r})=-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{\mathbf{r}}^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
$$

Separable using: $\quad \tilde{\mathbf{R}}=\frac{M \mathbf{R}+m \mathbf{r}}{M+m}, \quad \tilde{\mathbf{r}}=\mathbf{r}-\mathbf{R}$

$$
\begin{aligned}
E(\mathbf{k}) & =\frac{\hbar^{2} k^{2}}{2(M+m)}-\frac{\mu e^{2}}{2 a_{0}}, \quad \mu=\frac{m M}{m+M} \\
E_{\mathrm{BO}}(\mathbf{k}) & =\frac{\hbar^{2} k^{2}}{2 M}-\frac{e^{2}}{2 a_{0}}, \quad k \ll \frac{1}{a_{0}} \\
\lim _{m / M \rightarrow 0} E(\mathbf{k}) & =E_{\mathrm{BO}}(\mathbf{k})
\end{aligned}
$$

BO approx. for the H atom, $\mathbf{B} \neq 0$

 (Neglecting irrelevant spin-dependent terms)$$
\begin{aligned}
\mathcal{H}(\mathbf{R}, \mathbf{r}) & =\frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})\right]^{2}+H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) \\
H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) & =\frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{c} \mathbf{A}(\mathbf{r})\right]^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
\end{aligned}
$$

In a constant B field $\quad E_{\text {el }}(\mathbf{R})=E_{\text {el }}=$ const
Naive recipe: $\frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})\right]^{2} \Phi(\mathbf{R})-E_{\mathrm{el}} \Phi(\mathbf{R})=E \Phi(\mathbf{R})$

- Same kinetic energy as if the proton were "naked"
- Classical limit: the H atom is deflected by a I orentz force
- A neutral system is not deflected by a Lorentz force

$$
\begin{aligned}
\mathcal{H}(\mathbf{R}, \mathbf{r}) & =\frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})\right]^{2}+H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) \\
H_{\mathrm{el}}(\mathbf{R}, \mathbf{r}) & =\frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{c} \mathbf{A}(\mathbf{r})\right]^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|}
\end{aligned}
$$

$$
\text { In a constant B field } \quad E_{\mathrm{el}}(\mathbf{R})=E_{\mathrm{el}}=\text { const }
$$

Naive recipe: $\frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})\right]^{2} \Phi(\mathbf{R})-E_{\mathrm{el}} \Phi(\mathbf{R})=E \Phi(\mathbf{R})$

■ Same kinetic energy as if the proton were "naked"

- Classical limit: the H atom is deflected by a Lorentz force

■ A neutral system is not deflected by a Lorentz force

Solution of the paradox

"Screened" Born-Oppenheimer approximation:
Schmelcher, Cederbaum, \& Meyer, 1988

Better:

Berry Connection \& Berry curvature (same as for $\mathbf{B}=0$)

$$
\frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})\right]^{2} \rightarrow \frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})-\hbar \mathcal{A}(\mathbf{R})\right]^{2}
$$

- $\mathbf{A (R)}$ genuine vector potential of magnetic origin

■ $\mathcal{A}(\mathbf{R})=i\left\langle\psi_{\mathrm{el}}(\mathbf{R}) \mid \nabla_{\mathbf{R}} \psi_{\mathrm{el}}(\mathbf{R})\right\rangle$ Berry connection

Detailed reckoning in the central gauge

$$
\begin{aligned}
H_{\mathrm{el}}(\mathbf{R}, \mathbf{r})= & \frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{2 c} \mathbf{B} \times \mathbf{r}\right]^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|} \\
H_{\mathrm{el}}(0, \mathbf{r})= & \frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{2 c} \mathbf{B} \times \mathbf{r}\right]^{2}-\frac{e^{2}}{r} \\
\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(0)\right\rangle= & \tilde{\psi}_{0}(\mathbf{r}) \quad \text { complex wfn, cylindrical symmetry } \\
& \left\langle\mathrm{r} \mid \psi_{\mathrm{el}}(\mathrm{R})\right\rangle=e^{-2} \quad \\
\mathcal{A}(\mathrm{R})= & i\left\langle\psi_{\mathrm{el}}(\mathrm{R}) \mid \nabla_{\mathrm{R}} \psi_{\mathrm{el}}(\mathrm{R})\right\rangle=-\frac{e}{2 \hbar c} \mathrm{~B} \times \mathrm{R}=-\frac{e}{\hbar c} \mathrm{~A}(\mathrm{R}) \\
\tau_{\mathrm{N}}= & \frac{1}{2 M}\left[-i \hbar \nabla_{\mathrm{R}}-\frac{e}{C} \mathrm{~A}(\mathrm{R})-h \mathcal{A}(\mathrm{R})\right]^{2}=\frac{\hbar^{2}}{2 M} \nabla_{\mathrm{R}}^{2}
\end{aligned}
$$

Detailed reckoning in the central gauge

$$
\begin{aligned}
H_{\mathrm{el}}(\mathbf{R}, \mathbf{r})= & \frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{2 c} \mathbf{B} \times \mathbf{r}\right]^{2}-\frac{e^{2}}{|\mathbf{r}-\mathbf{R}|} \\
H_{\mathrm{el}}(0, \mathbf{r})= & \frac{1}{2 m}\left[-i \hbar \nabla_{\mathbf{r}}+\frac{e}{2 c} \mathbf{B} \times \mathbf{r}\right]^{2}-\frac{e^{2}}{r} \\
\left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(0)\right\rangle= & \tilde{\psi}_{0}(\mathbf{r}) \quad \text { complex wfn, cylindrical symmetry } \\
& \left\langle\mathbf{r} \mid \psi_{\mathrm{el}}(\mathbf{R})\right\rangle=\mathrm{e}^{-\frac{i e}{2 n o} \cdot \mathbf{B} \times \mathbf{R}} \tilde{\psi}_{0}(|\mathbf{r}-\mathbf{R}|) \\
\mathcal{A}(\mathbf{R})= & i\left\langle\psi_{\mathrm{el}}(\mathbf{R}) \mid \nabla_{\mathbf{R}} \psi_{\mathrm{el}}(\mathbf{R})\right\rangle=-\frac{e}{2 \hbar c} \mathbf{B} \times \mathbf{R}=-\frac{e}{\hbar c} \mathbf{A}(\mathbf{R}) \\
\mathcal{T}_{\mathrm{N}}= & \frac{1}{2 M}\left[-i \hbar \nabla_{\mathbf{R}}-\frac{e}{c} \mathbf{A}(\mathbf{R})-\hbar \mathcal{A}(\mathbf{R})\right]^{2}=\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}
\end{aligned}
$$

Magnetic \& geometric together

■ H atom

- Paradox solved (both quantum nucleus \& classical nucleus)
- In the classical limit no Lorentz force
- Hamiltonian (quantum \& classical) The Berry connection cancels the vector potential
- Newton Eq. (gauge invariant):

The Berry curvature cancels the magnetic field

- Molecule (rotations \& vibrations in a B field)
- The two terms do not cancel
- They are of the same order of magnitude

■ The geometric term is important even for classical nuclei: "geometric Lorentz force" in Newton Eq.

$\mathbf{B}=0$ vs. $\mathbf{B} \neq 0$ in Born-Oppenheimer

$■ \mathbf{B}=0 \quad$ (time-reversal symmetric)
■ Conical intersections \Rightarrow nontrivial geometric effects

- The electronic wfn can be chosen as real
- The Berry curvature vanishes (or is singular)

■ Classical nuclei not affected by geometric effects
■ The Berry phase only shows up when quantising the nuclei
■ $\mathbf{B} \neq 0 \quad$ (time-reversal symmetry absent)
■ No singularity needed in the Born-Oppenheimer surface

- The electronic wfn must be complex
- The Berry curvature is generally nonzero

■ Classical nuclei are affected by geometric effects

- The Berry curvature enters the Newton Eq. for the nuclei

$\mathbf{B}=0$ vs. $\mathbf{B} \neq 0$ in Born-Oppenheimer

■ $\mathbf{B}=0 \quad$ (time-reversal symmetric)

- Conical intersections \Rightarrow nontrivial geometric effects
- The electronic wfn can be chosen as real
- The Berry curvature vanishes (or is singular)
- Classical nuclei not affected by geometric effects

■ The Berry phase only shows up when quantising the nuclei
■ $\mathbf{B} \neq 0 \quad$ (time-reversal symmetry absent)
■ No singularity needed in the Born-Oppenheimer surface

- The electronic wfn must be complex

■ The Berry curvature is generally nonzero

- Classical nuclei are affected by geometric effects
- The Berry curvature enters the Newton Eq. for the nuclei

