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Aharonov-Bohm revisited



A quantum system in zero field
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The parameter &

No magnetic field, box centered at the origin:
[;pz + V(r)] x(r) =ex(r),  x(r) real function

Parameter £ — the box position: ~ H(R) = %p2+ V(r—R)
(rl(R)) = x(r — R)



The parameter &

No magnetic field, box centered at the origin:
[;pz + V(r)] x(r)=ex(r),  x(r) real function

Parameter £ — the box position: ~ H(R) = %p2+ V(r—R)

(rl4(R)) = x(r - R)
If there is a magnetic field (somewhere):

H(R) = %[p + SA(r)]2 +V(r—R)
(r[v(R)) = e #x(r - R)
M = e/rA(r’)-dr’
e Jr



Berry connection & Berry phase

Formal solution!
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Formal solution!

However: In the region where B(r) vanishes, ¢(r) is a single
valued function of r, and (r|¢(R)) is an “honest” electronic

wavefunction.



Berry connection & Berry phase

Formal solution!

However: In the region where B(r) vanishes, ¢(r) is a single
valued function of r, and (r|¢(R)) is an “honest” electronic
wavefunction.

What about the dependence on the “slow” parameter R?

Berry connection:

i(V(R)|Vri(R)) = i(x(R)|Vax(R)) — - A(R)

Berry phase:
e
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m [n this problem (and only in this problem):
The “geometric vector potential” coincides with the
magnetic vector potential (times a constant)



A closer look at the Berry phase ~

m [n this problem (and only in this problem):
The “geometric vector potential” coincides with the
magnetic vector potential (times a constant)

m 2 is the “flux quantum™ v = —2mg>
m Only the fractional part of ®/® is relevant
m The Berry phase ~ is observable (mod 27)



Bottom line (no paradox!)
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Significance of Electromagnetic Potentials in the Quantum Theory

Y. Auaroxov axp D. Boam
H. H. Wills Physics Laboratory, University of Brisiol, Bristol, England
(Received May 28, 1959; revised manuscript received June 16, 1959)

In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum
domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where all the fields (and therefore the forces on the particles)
vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest
further possible developments in the interpretation of the potentials,
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Born-Oppenheimer approx. in molecules (B = 0)



Reexamining the Born-Oppenheimer approximation

2
HRL X)) = -3 ijv%, + Ha([RI, [X]
i

[x]: electronic degrees of freedom (orbital & spin)
[R]: nuclear coordinates R;
—ih Vg;: canonical nuclear momenta

Ha([R],[X]) = electronic kinetic energy
electron-electron interaction
electron-nuclear interaction
nuclear-nuclear interaction

+ 4+



m Product ansatz: W([R], [x]) = ([x] [Va([R])) ®([R])
m Solve the electronic Schrbdinger equation at fixed R;:

Hel([R], [x]) { [x] [Wei([R])) = Ea([R]) { [x] [Wa([R]))

m Use E,([R]) as the potential energy for nuclear motion:

2
( _ jMvaj+Eel([R1)) @(R]) = £ &([R])

J



Recipe

m Product ansatz: W([R], [x]) = ([x] [Va([R])) ®([R])
m Solve the electronic Schrbdinger equation at fixed R;:

Hel([R], [x]) { [x] [Wei([R])) = Ea([R]) { [x] [Wa([R]))

m Use E,([R]) as the potential energy for nuclear motion:

2
( / o 7 +Eel([nl)> o([R]) = E o([R])

m Textbook example: Vibrational levels of a biatomic
molecule.

m On many occasions, the nuclear motion can be considered
as purely classical (Schrédinger — Newton).



A closer look at the Born-Oppenheimer recipe

m Product ansatz: W([R], [x]) = ([X] |Wa([R])) ®([R])
m The operator Vg, acting on W([R], [x]):

VRV([R] [x]) = ([x][Wa([R]))Vr®([R])
+ ([X]1VR Ve ([R])®([R])

m Multiplying by (Wi ([R]) | [x]) and integrating in d[x]:
JdxXl - (Wa([R]) [ X]) Ve W([R], [x])
= (VR + (Va([R) [V, Wa([R]) ) ®([R])

m Nuclear kinetic energy, after [x] is “integrated out”:

2
A=Y ;ij (—ihVRj — ih{ Wa([R]) \VR/"’el([R])>)2
]



A term was missing!

m Naive Born-Oppenheimer approximation:

(75 + Ea(lRD) o(R]) = ES(R]).  Tu=—> 517 VR,



A term was missing!

m Naive Born-Oppenheimer approximation:
n? _,
(7% + Ea([RD)) ®(R) = E®(R]),  Tx=-> 5V
;7 eM
m More accurate Born-Oppenheimer approximation:
1 . . 2
TN = ; o, (= i Va(IR) Ve V(IR )

m The electronic Berry connection acts as a “geometric
vector potential” in the nuclear Hamiltonian



A term was missing!

m Naive Born-Oppenheimer approximation:

(75 + Ea(lRD) o(R]) = ES(R]).  Tu=—> 517 VR,

m More accurate Born-Oppenheimer approximation:
1 . . 2
T =3 g7 (1, = b Va(IRD Ve V(IR )
j

m The electronic Berry connection acts as a “geometric
vector potential” in the nuclear Hamiltonian

m In most cases the correction is neglected: Why?



The hydrogen (or sodium) trimer, LCAO

s ([BI+IC) —2[A))

5([C)—[B))

= J5UAHBIHC))

m Equilateral geometry, 3 valence electrons: degenerate
HOMO (81 = 62)

m Broken-symmetry equilibrium geometry: isosceles
Jahn-Teller splitting (¢4 # &)



The hydrogen (or sodium) trimer, LCAO

s ([BI+IC) —2[A))

5([C)—[B))

= ﬁ( [A)+[B)+[C) )

m Equilateral geometry, 3 valence electrons: degenerate
HOMO (81 = 62)

m Broken-symmetry equilibrium geometry: isosceles
Jahn-Teller splitting (¢4 # &)

|1) is the HOMO, |2) is the LUMO



Born-Oppenheimer surfaces

pseudorotation



Born-Oppenheimer surfaces

pseudorotation

“conical intersection”

a.k.a. “diabolical point”



Nuclear dynamics

Ea(&) = Ea(§) v-independent
1
Ea(§) = k(€ + 2&mn ©)

Lowest BO surface:
minimum in &min

1
Ec1(émin) = —5k &in = —Emr




Nuclear dynamics

Ea(&) = Ea(§) v-independent
1
Ea(§) = k(€ + 2&mn ©)

Lowest BO surface:
minimum in &min

1
Ec1(émin) = —5k &in = —Emr

m Classical: Free motion at valley’s bottom, M = 3m
& transverse oscillations

m Quantized pseudorotations:

D mn(€,9) o Hn(ag) e~ (EEmin)? gim?
mEZ, n:071’27'”
Ground state: m=0, n=0



H. C. Longuet-Higgins et al. (1958)

***** ***** G0 G0

The electronic wfn (r|¢.(£)) changes sign (a = phase)

The total win W(&,r) = (r|ve(€)) P(€) must be single-valued
Even the nuclear wfn must change sign

= Different quantization rules!
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***** ***** G0 G0

The electronic wfn (r|¢.(£)) changes sign (a = phase)
The total win W(&,r) = (r|ve(€)) P(€) must be single-valued
Even the nuclear wfn must change sign

= Different quantization rules!

S mn(€, ) o< Hp(af) ei%(éigmi")z em
m half-integer, n=0,1,2,...
Ground state: m = },n=0



H. C. Longuet-Higgins et al. (1958)

€) [A) 1C> \A> \C) [B

The electronic wfn (r|¢.(£)) changes sign (a = phase)
The total win W(&,r) = (r|ve(€)) P(€) must be single-valued
Even the nuclear wfn must change sign

= Different quantization rules!

®mn(€,9) o< Hn(af) e 5 (E—nin)? oimI

m half-integer, n=0,1,2,...

Ground state: m = },n=0

Observable effectin QM, no effect in CM

(the system does not visit the conical intersection)



Molecular Aharonov-Bohm effect

Aharonov-Bohm effect (real B field):

@ 7{44 7271'2 mod 27
A 0

Molecular Aharonov-Bohm effect (B = 0):

:%A(g)-dg:w mod 27
c



Molecular Aharonov-Bohm effect

Aharonov-Bohm effect (real B field):

[0)
y = 740 A(€)-dg = -2ry moder

Molecular Aharonov-Bohm effect (B = 0):

7:7{A(£)-d£:7r mod 2r
C

Same as having a ¢-like flux tube at the conical intersection

¢ = % (half-quantum, a.k.a. “r flux”)



Berry phase: discrete algorithm

WIS S o
; )

)
= — Imlog (¢(&1)|4(£2)) (¥ (€2)|1(&3)) - - - ((En)I¥(€4))

N3 £)) o [C)—|A)

[¥(€1)) o |B) =[C) [¥(&2)) o [B)—[A)



Berry phase: discrete algorithm

N
— A i it L) : ) ’W’(&jﬂ)}
v ; i+ R £

)
= — Imlog (¢(&1)|4(£2)) (¥ (€2)|1(&3)) - - - ((En)I¥(€4))

N3 £)) o [C)—|A)

[¥(€1)) o |B) =[C) [¥(&2)) o [B)—[A)

1

(WV(&1)|P(&2)) (V(&2)[¥(&3)) ((€3)1W0(&4)) = -3
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The Z, topological invariant



Topology & conical intersections

Herzberg & Longuet-Higgins, 1963:

It shows that a conically self-intersecting potential surface has a different topolo-
gical character from a pair of distinct surfaces which happen to meet at a point.
Indeed, if an electronic wave function changes sign when we move round a closed
loop in configuration space, we can conclude that somewhere inside the loop there
must be a singular point at which the wave function is degenerate; in other words,
there must be a genuine conical intersection, leading to an upper or lower sheet of

the surface, as the case may be.

Berry phase ~
m Topologically trivial: v = 0 mod 27 = 7 x (0 mod 2)
m Topologically nontrivial: v = 7 mod 27 = = x (1 mod 2)

m Topological invariant € Z,
(Zo = additive group of the integers mod 2)



Robustness of the topological invariant

Two-valued topological invariant:
The Z, index is either 0 or 1 (mod 2)

m The index is robust against deformations of the path C,
provided it does not cross the “obstruction”

m The index is very robust against continuous deformations
of Hamiltonian & wave function,
provided the HOMO-LUMO gap does not close
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Two-valued topological invariant:
The Z, index is either 0 or 1 (mod 2)

m The index is robust against deformations of the path C,
provided it does not cross the “obstruction”

m The index is very robust against continuous deformations
of Hamiltonian & wave function,
provided the HOMO-LUMO gap does not close

m We can even “continuously deformate” the wfn into the
exact correlated one (if ground state non degenerate)



Robustness of the topological invariant

Two-valued topological invariant:
The Z, index is either 0 or 1 (mod 2)

m The index is robust against deformations of the path C,
provided it does not cross the “obstruction”

m The index is very robust against continuous deformations
of Hamiltonian & wave function,
provided the HOMO-LUMO gap does not close

m We can even “continuously deformate” the wfn into the
exact correlated one (if ground state non degenerate)

m Key role of time-reversal invariance

m In modern jargon:
Zo invariant is “protected” by time-reversal symmetry
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Born-Oppenheimer approx. in molecules (B # 0)



BO approx. for the H atom, B =0

H(R,r) = —mvngHe](n,r)
K2 e?
Ha(R.r) = _%VE_“—R;

Lowest BO surface:

E.(R) = const = —%, (Fla(R)) o e~IFRI/a0
0



BO approx. for the H atom, B =0

H(R,r) = —mva + Ha(R,T)
n _, e?
FaRr) = —ooVr 1 —R
Lowest BO surface:
e2
Eq(R) =const = ———,  (r|ga(R)) xc e~ IFRl/2
24
. 2 _, g2
2.2 2 ,
EBo(k) — h°k ¢ \UBO(R7 r) x e*lrfRI/ao e/k~R

2M  2a,’



Compare exact with Born-Oppenheimer approx.

HR.1) = 27:6/\2/1v2 - 2hr2n : Ir i2R|
Separable using: R = Am, f=r—R
Elk) = 2(I\fjfm) a /;:(2) BT mm+MM
Eso(k) = h;\/j 2e:o

| E(k) = Ego(k
m/;\zn—m() BO()



Compare exact with Born-Oppenheimer approx.

HR.1) = 27:6/\2/1v2 - 2hr2n : Ir i2R|
Separable using: R = Am, f=r—R
Elk) = 2(I\fjfm) a /;:(2) BT mm+MM
Ego(k) = h;\lj - 26320’ k< ;O

| E(k) = Ego(k
m/;\zn—m() BO()



BO approx. for the H atom, B # 0

(Neglecting irrelevant spin-dependent terms)

1 ) e 2
HRT) = [—/th—EA(R)] + Ha(R, )
. e 2 e
Ha(R,r) = ﬁ[—:hv,JrEA(r)] T

In a constant B field E.(R) = E, = const

Naive recipe:

1 . e 2
SE [-mvn - EA(R)} ®(R) — E; ®(R) = E®(R)



BO approx. for the H atom, B # 0

(Neglecting irrelevant spin-dependent terms)

1 . e 2
HRT) = [—/th—EA(R)] + Ha(R, )
. e 2 e
Ha(Rr) = 5 [—mv,+6A(r)] T

In a constant B field E.(R) = E, = const

. 1 . e 2 B

Naive recipe: o [—/FNR — 6A(R)} ®(R) — Eq ¢(R) = E®(R)
m Same kinetic energy as if the proton were “naked”

m Classical limit: the H atom is deflected by a Lorentz force

m A neutral system is not deflected by a Lorentz force



Solution of the paradox

“Screened” Born-Oppenheimer approximation:
Schmelcher, Cederbaum, & Meyer, 1988

Better:
Berry Connection & Berry curvature (same as for B = 0)

—ihVR — iA(Fl)]2 [ IhVR — *A( ) — hA(R)r

1 1
2M 2M
m A(R) genuine vector potential of magnetic origin
m A(R) = i(va(R)|VR¢e(R)) Berry connection



Detailed reckoning in the central gauge

1 . e 2 e’

Ha(R,r) = ﬁ[—lhvr—l—%er} R
. e 2 ¢
Ha(0,r) = ﬁ[—/hv,Jrz—Cer} -=

(r|Ye(0)) = o(r) complex wfn, cylindrical symmetry



Detailed reckoning in the central gauge

1 . e 2 e
Hel(R,r) = ﬁ |:—Ihvr + ?CB X r:| — |I‘ — Rl
1 . e 2 ¢
H,:](O7 I‘) - ﬁ |:—1th + ?CB X ri| - 7
(e (0)) = o(r) complex wfn, cylindrical symmetry

(Fla(R)) = ¢ 2 B*R Jo(jr — R))

A(R) = i(1u(R) Vaa(R)) = 2B x R =~ A(R)
2
T = 21/\//[ iHVn —~ SAR) ~ RA(R) : thvz



Magnetic & geometric together

m H atom
m Paradox solved (both quantum nucleus & classical nucleus)
m In the classical limit no Lorentz force
m Hamiltonian (quantum & classical)
The Berry connection cancels the vector potential
m Newton Eq. (gauge invariant):
The Berry curvature cancels the magnetic field

m Molecule (rotations & vibrations in a B field)
m The two terms do not cancel
m They are of the same order of magnitude
m The geometric term is important even for classical nuclei:
“geometric Lorentz force” in Newton Eq.



B = 0 vs. B # 0 in Born-Oppenheimer

m B=0 (time-reversal symmetric)

Conical intersections = nontrivial geometric effects

The electronic wfn can be chosen as real

The Berry curvature vanishes (or is singular)

Classical nuclei not affected by geometric effects

The Berry phase only shows up when quantising the nuclei



B = 0 vs. B # 0 in Born-Oppenheimer

m B=0 (time-reversal symmetric)

Conical intersections = nontrivial geometric effects

The electronic wfn can be chosen as real

The Berry curvature vanishes (or is singular)

Classical nuclei not affected by geometric effects

The Berry phase only shows up when quantising the nuclei

m BA#A0 (time-reversal symmetry absent)

No singularity needed in the Born-Oppenheimer surface
The electronic wfn must be complex

The Berry curvature is generally nonzero

Classical nuclei are affected by geometric effects

The Berry curvature enters the Newton Eq. for the nuclei
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