Integer Quantum Hall Effect (Dawn of topology in electronic structure)

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and DEMOCRITOS National Simulation Center, Istituto Officina dei Materiali, CNR, Trieste

Trieste, May 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Gaussian (a.k.a. CGS) units

- Permittivity of free space $\varepsilon_0 = \frac{1}{4\pi}$
- Permeability of free space $\mu_0 = 4\pi$
- In vacuo $\mathbf{D} \equiv \mathbf{E}$ and $\mathbf{H} \equiv \mathbf{B}$
- All fields have the same dimensions

Newtonian & Hamiltonian mechanics:

$$M\frac{d\mathbf{v}}{dt} = \mathbf{f} = Q\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$$
$$\mathcal{H} = \frac{1}{2M}\left(\mathbf{p} - \frac{Q}{c}\mathbf{A}(\mathbf{r})\right)^2 + Q\Phi(\mathbf{r})$$

(日) (日) (日) (日) (日) (日) (日)

Atomic Gaussian units

$$\mathcal{H} = rac{1}{2M} \left(\mathbf{p} - rac{1}{c} \mathbf{A}(\mathbf{r})
ight)^2 + Q \Phi(\mathbf{r})$$

Schrödinger Hamiltonian for the electron

$$\mathcal{H} = \frac{1}{2m_{\rm e}} \left(-i\hbar \nabla + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right)^2 - e \Phi(\mathbf{r})$$

■ *m*_e = 1, *h* = 1, *e* = 1, (*c* = 137) 1 a.u. of energy = 1 hartree = 2 rydberg = 27.21 eV

$$\mathcal{H} = \frac{1}{2} \left(-i\nabla + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 - \Phi(\mathbf{r})$$

Warning: Other "atomic units" with $e = \sqrt{2}$

Atomic Gaussian units

$$\mathcal{H} = rac{1}{2M} \left(\mathbf{p} - rac{1}{c} \mathbf{A}(\mathbf{r})
ight)^2 + Q \Phi(\mathbf{r})$$

Schrödinger Hamiltonian for the electron

$$\mathcal{H} = \frac{1}{2m_{\rm e}} \left(-i\hbar \nabla + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right)^2 - e\Phi(\mathbf{r})$$

 $m_e = 1, \quad \hbar = 1, \quad e = 1, \quad (c = 137)$ 1 a.u. of energy = 1 hartree = 2 rydberg = 27.21 eV

$$\mathcal{H} = \frac{1}{2} \left(-i \nabla + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 - \Phi(\mathbf{r})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Warning: Other "atomic units" with $e = \sqrt{2}$

Atomic Gaussian units

$$\mathcal{H} = rac{1}{2M} \left(\mathbf{p} - rac{1}{c} \mathbf{A}(\mathbf{r})
ight)^2 + Q \Phi(\mathbf{r})$$

Schrödinger Hamiltonian for the electron

$$\mathcal{H} = \frac{1}{2m_{\rm e}} \left(-i\hbar \nabla + \frac{e}{c} \mathbf{A}(\mathbf{r}) \right)^2 - e\Phi(\mathbf{r})$$

 $m_e = 1, \quad \hbar = 1, \quad e = 1, \quad (c = 137)$ 1 a.u. of energy = 1 hartree = 2 rydberg = 27.21 eV

$$\mathcal{H} = \frac{1}{2} \left(-i\nabla + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 - \Phi(\mathbf{r})$$

Warning: Other "atomic units" with $e = \sqrt{2}$

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Figure from Kittel ISSP, Ch. 6

Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular cross-section is placed in a magnetic field B_c , as in (a). An electric field E_c applied across the end electrodes causes an electric current density j_c to flow down the rod. The drift velocity of the negatively-charged electrons immediately after the electric field is applied as shown in (b). The deflection in the -y direction is caused by the magnetic field. Electrons accumulate on one face of the rod and a positive ion excess is established on the opposite face until, as in (c), the transverse electric field lifeld) just cancels the Lorentz force due to the magnetic field.

Hall effect (1879)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

From Kittel ISSP (carriers of mass m and charge -e)

$$m\left(rac{d\mathbf{v}}{dt}+rac{1}{ au}\mathbf{v}
ight)=-e\left(\mathbf{E}+rac{1}{c}\mathbf{v} imes\mathbf{B}
ight)$$

Steady-state: $rac{d\mathbf{v}}{dt}=0$

Drude-Zener theory

$$\mathbf{v} = -\frac{\mathbf{e}\tau}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$$

In 2d, set $E_y = 0$; cyclotron frequency $\omega_c = \frac{eB}{mc}$

$$\begin{aligned} \mathbf{v}_{\mathbf{x}} &= -\frac{\mathbf{e}\tau}{m} \mathbf{E}_{\mathbf{x}} - \omega_{\mathrm{c}}\tau \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{y}} &= \omega_{\mathrm{c}}\tau \mathbf{v}_{\mathbf{x}} \end{aligned}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Hall conductivity

Current $\mathbf{j} = -ne\mathbf{v}$ (*n* carrier density)

$$\begin{aligned} j_x &= \frac{ne^2\tau}{m}E_x - \omega_{\rm c}\tau j_x \\ j_y &= \omega_{\rm c}\tau j_x \end{aligned}$$

In zero B field

$$j_x = \sigma_0 E_x, \qquad \sigma_0 = \frac{ne^2\tau}{m}$$

In a **B** field

$$j_x = \frac{\sigma_0}{1 + (\omega_c \tau)^2} E_x = \sigma_{xx} E_x$$
$$j_y = \frac{\omega_c \tau \sigma_0}{1 + (\omega_c \tau)^2} E_x = \sigma_{yx} E_x$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conductivity vs. resistivity (classical & quantum)

$$\begin{pmatrix} j_x \\ j_y \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & -\sigma_{yx} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$
$$\stackrel{\leftrightarrow}{\rho} = (\stackrel{\leftrightarrow}{\sigma})^{-1}$$
$$\rho_{xx} = \frac{\sigma_{xx}}{\sigma_{xx}^2 + \sigma_{yx}^2}, \qquad \rho_{xy} = \frac{\sigma_{yx}}{\sigma_{xx}^2 + \sigma_{yx}^2}$$

At $\mathbf{B} = 0$ $\rho_{xx} = 1/\sigma_{xx}$ In the nondissipative regime ($\mathbf{j} \cdot \mathbf{E} = 0$)

> $\sigma_{xx} = 0$ and $\rho_{xx} = 0$ $\rho_{xy} = 1/\sigma_{yx}$

> > ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conductivity vs. resistivity (classical & quantum)

$$\begin{pmatrix} j_x \\ j_y \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & -\sigma_{yx} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$
$$\stackrel{\leftrightarrow}{\rho} = (\stackrel{\leftrightarrow}{\sigma})^{-1}$$
$$\rho_{xx} = \frac{\sigma_{xx}}{\sigma_{xx}^2 + \sigma_{yx}^2}, \qquad \rho_{xy} = \frac{\sigma_{yx}}{\sigma_{xx}^2 + \sigma_{yx}^2}$$
$$\blacksquare \text{ At } \mathbf{B} = 0 \qquad \rho_{xx} = 1/\sigma_{xx}$$

In the nondissipative regime $(\mathbf{j} \cdot \mathbf{E} = 0)$

 $\sigma_{xx} = 0$ and $\rho_{xx} = 0$ $\rho_{xy} = 1/\sigma_{yx}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conductivity vs. resistivity (classical & quantum)

$$\begin{pmatrix} j_{x} \\ j_{y} \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & -\sigma_{yx} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix}$$
$$\stackrel{\leftrightarrow}{\rho} = (\stackrel{\leftrightarrow}{\sigma})^{-1}$$
$$\rho_{xx} = \frac{\sigma_{xx}}{\sigma_{xx}^{2} + \sigma_{yx}^{2}}, \qquad \rho_{xy} = \frac{\sigma_{yx}}{\sigma_{xx}^{2} + \sigma_{yx}^{2}}$$

At $\mathbf{B} = 0$ $\rho_{xx} = 1/\sigma_{xx}$ In the nondissipative regime ($\mathbf{j} \cdot \mathbf{E} = 0$)

> $\sigma_{xx}=0$ and $ho_{xx}=0$ $ho_{xy}=1/\sigma_{yx}$

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

---2

$$\sigma_{0} = \frac{me^{-\tau}}{m} \qquad \sigma_{xx} = \frac{\sigma_{0}}{1 + (\omega_{c}\tau)^{2}} \qquad \sigma_{yx} = \frac{\omega_{c}\tau\sigma_{0}}{1 + (\omega_{c}\tau)^{2}}$$

$$fat \mathbf{B} = 0 \qquad \sigma_{xx} = \sigma_{0} \qquad \text{diverges}$$

$$fat \mathbf{B} \neq 0 \qquad \text{for} \qquad \tau \gg 1/\omega_{c}$$

$$\sigma_{xx} = 0, \qquad \rho_{xx} = 0 \qquad \text{(longitudinal resistivity)}$$

$$\rho_{xy} = 1/\sigma_{yx} = \frac{m\omega_{c}}{ne^{2}} = \frac{m}{ne^{2}} \frac{eB}{mc}$$

$$= \frac{1}{me^{2}} \frac{B}{mc} \qquad \text{(Hall resistivity)}$$

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

 no^2-

$$\sigma_{0} = \frac{me \tau}{m} \qquad \sigma_{xx} = \frac{\sigma_{0}}{1 + (\omega_{c}\tau)^{2}} \qquad \sigma_{yx} = \frac{\omega_{c}\tau\sigma_{0}}{1 + (\omega_{c}\tau)^{2}}$$
At **B** = 0 $\sigma_{xx} = \sigma_{0}$ diverges
At **B** \neq 0 for $\tau \gg 1/\omega_{c}$

$$\sigma_{xx} = 0, \qquad \rho_{xx} = 0 \qquad \text{(longitudinal resistivity)}$$

$$\rho_{xy} = 1/\sigma_{yx} = \frac{m\omega_{c}}{ne^{2}} = \frac{m}{ne^{2}} \frac{eB}{mc}$$

$$= \frac{1}{nec}B \qquad \text{(Hall resistivity)}$$

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

$$\sigma_{0} = \frac{ne^{2}\tau}{m} \qquad \sigma_{xx} = \frac{\sigma_{0}}{1 + (\omega_{c}\tau)^{2}} \qquad \sigma_{yx} = \frac{\omega_{c}\tau\sigma_{0}}{1 + (\omega_{c}\tau)^{2}}$$

$$At \mathbf{B} = 0 \qquad \sigma_{xx} = \sigma_{0} \quad \text{diverges}$$

$$At \mathbf{B} \neq 0 \quad \text{for} \quad \tau \gg 1/\omega_{c}$$

$$\sigma_{xx} = 0, \qquad \rho_{xx} = 0 \quad (\text{longitudinal resistivity})$$

$$\rho_{xy} = 1/\sigma_{yx} = \frac{m\omega_{c}}{ne^{2}} = \frac{m}{ne^{2}} \frac{eB}{mc}$$

$$= \frac{1}{nec}B \qquad (\text{Hall resistivity})$$

In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?

■ n = N/A (number of carrriers per unit area)

$$\rho_{xy} = \frac{1}{nec}B = \frac{AB}{Nec} = \frac{\Phi}{Nec} = \frac{1}{\nu}\frac{h}{e^2}$$

• Φ magnetic flux through area *A* $h/e^2 \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$$u = \frac{N\Phi_0}{\Phi}$$
 filling factor, $\Phi_0 = \frac{hc}{e}$ flux quantum

(日) (日) (日) (日) (日) (日) (日)

In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?

 \blacksquare n = N/A (number of carriers per unit area)

$$\rho_{xy} = \frac{1}{nec}B = \frac{AB}{Nec} = \frac{\Phi}{Nec} = \frac{1}{\nu}\frac{h}{e^2}$$

• Φ magnetic flux through area *A* $h/e^2 \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$$\nu = \frac{N\Phi_0}{\Phi}$$
 filling factor, $\Phi_0 = \frac{hc}{e}$ flux quantum

(日) (日) (日) (日) (日) (日) (日)

- In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?
- n = N/A (number of carrriers per unit area)

$$\rho_{xy} = \frac{1}{nec}B = \frac{AB}{Nec} = \frac{\Phi}{Nec} = \frac{1}{\nu}\frac{h}{e^2}$$

• Φ magnetic flux through area *A* $h/e^2 \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$$u = \frac{N\Phi_0}{\Phi}$$
 filling factor, $\Phi_0 = \frac{hc}{e}$ flux quantum

(日) (日) (日) (日) (日) (日) (日)

- In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?
- n = N/A (number of carrriers per unit area)

$$\rho_{xy} = \frac{1}{nec}B = \frac{AB}{Nec} = \frac{\Phi}{Nec} = \frac{1}{\nu}\frac{h}{e^2}$$

• Φ magnetic flux through area *A* $h/e^2 \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$$u = \frac{N\Phi_0}{\Phi}$$
 filling factor, $\Phi_0 = \frac{hc}{e}$ flux quantum

Experiment (von Klitzing 1980, Nobel prize 1985)

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany

and

M. Pepper Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom (Received 30 May 1980)

Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

$h/e^2 = 25812.807557(18) \Omega = 1$ klitzing Since 1990 a new metrology standard In the original experiment (MOSFET): $\nu = 4$

FIG. 2. Hall resistance R_{H_1} and device resistance, R_{pp} , between the potential probes as a function of the gate voltage V_{μ} in a region of gate voltage corresponding to a fully occupied, lowest (w=0) Landau level. The geometry of the device was $L = 400 \ \mu m$, $W = 50 \ \mu m$, and $L_{pp} = 130 \ \mu m$ is $13 \ T$.

Experiment (von Klitzing 1980, Nobel prize 1985)

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany

and

M. Pepper Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom (Received 30 May 1980)

Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

 $h/e^2 = 25812.807557(18) \Omega = 1$ klitzing Since 1990 a new metrology standard In the original experiment (MOSFET): $\nu = 4$

FIG. 2. Hall resistance R_{H_1} and device resistance, R_{pp} , between the potential probes as a function of the gate voltage V_{μ} in a region of gate voltage corresponding to a fully occupied, lowest (w=0) Landau level. The geometry of the device was $L = 400 \ \mu m$, $W = 50 \ \mu m$, and $L_{pp} = 130 \ \mu m$ is $13 \ T$.

500

More recent experiments

GaAs-GaAlAs heterojunction, at 30mK

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

Hamiltonian in **B** field (flat substrate potential)

N noninteracting (& spin-polarized) electrons in zero potential:

$$\hat{H} = \frac{1}{2m_{\rm e}} \sum_{i=1}^{N} \left[\mathbf{p}_i + \frac{e}{c} \mathbf{A}(\mathbf{r}_i) \right]^2$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Gaussian units
- *m*_e electron mass
- -e electron charge

a
$$\frac{1}{m_e} \left(\mathbf{p}_i + \frac{e}{c} \mathbf{A}(\mathbf{r}_i) \right)$$
 velocity

p_i =
$$-i\hbar \nabla_i$$
 canonical momentum

$$\blacksquare \ \mathbf{B} = \nabla \times \mathbf{A}(\mathbf{r})$$

Landau gauge

Everything in 2d; **B** uniform, along *z*.

$$A_x = 0, \qquad A_y = Bx$$

For each electron the Hamiltonian is

$$H(x,y) = \frac{\hbar^2}{2m_{\rm e}} \left[-\frac{\partial^2}{\partial x^2} + \left(-i\frac{\partial}{\partial y} + \frac{e}{\hbar c}Bx \right)^2 \right]$$

Landau ansatz $\psi_k(x, y) = e^{iky}\varphi_k(x)$

$$-\frac{\hbar^2}{2m_{\rm e}}{\rm e}^{iky}\varphi_k''(x)+\frac{\hbar^2}{2m_{\rm e}}\left(k+\frac{eB}{\hbar c}x\right)^2{\rm e}^{iky}\varphi_k(x)=\varepsilon_k\;{\rm e}^{iky}\varphi_k(x).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Harmonic oscillator in 1d

Landau gauge

Everything in 2d; **B** uniform, along *z*.

$$A_x = 0, \qquad A_y = Bx$$

For each electron the Hamiltonian is

$$H(x,y) = \frac{\hbar^2}{2m_{\rm e}} \left[-\frac{\partial^2}{\partial x^2} + \left(-i\frac{\partial}{\partial y} + \frac{e}{\hbar c}Bx \right)^2 \right]$$

Landau ansatz $\psi_k(x, y) = e^{iky}\varphi_k(x)$

$$-\frac{\hbar^2}{2m_{\rm e}}{\rm e}^{iky}\varphi_k''(x)+\frac{\hbar^2}{2m_{\rm e}}\left(k+\frac{eB}{\hbar c}x\right)^2{\rm e}^{iky}\varphi_k(x)=\varepsilon_k\;{\rm e}^{iky}\varphi_k(x).$$

Harmonic oscillator in 1d

Landau gauge

Everything in 2d; **B** uniform, along *z*.

$$A_x = 0, \qquad A_y = Bx$$

For each electron the Hamiltonian is

$$H(x,y) = \frac{\hbar^2}{2m_{\rm e}} \left[-\frac{\partial^2}{\partial x^2} + \left(-i\frac{\partial}{\partial y} + \frac{e}{\hbar c}Bx \right)^2 \right]$$

Landau ansatz $\psi_k(x, y) = e^{iky}\varphi_k(x)$

$$-\frac{\hbar^2}{2m_{\rm e}}{\rm e}^{iky}\varphi_k''(x)+\frac{\hbar^2}{2m_{\rm e}}\left(k+\frac{eB}{\hbar c}x\right)^2{\rm e}^{iky}\varphi_k(x)=\varepsilon_k\;{\rm e}^{iky}\varphi_k(x).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Harmonic oscillator in 1d

Landau oscillator

$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{\hbar^2}{2m_e}\left(k + \frac{eB}{\hbar c}x\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$
$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{1}{2}m_e\left(\frac{eB}{m_e c}\right)^2\left(x + \frac{\hbar c}{eB}k\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$

Harmonic oscillator

Center in $x_k = -\frac{\hbar c}{eB}k = -\ell^2 k$ $\ell = (\hbar c/eB)^{1/2}$ "magnetic length" (diverges for $B \to 0$)

Frequency $\omega_c = \frac{eB}{m_c c}$ cyclotron frequency (classical, Gaussian units)

Landau oscillator

$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{\hbar^2}{2m_e}\left(k + \frac{eB}{\hbar c}x\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$
$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{1}{2}m_e\left(\frac{eB}{m_e c}\right)^2\left(x + \frac{\hbar c}{eB}k\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$

Harmonic oscillator

Center in $x_k = -\frac{\hbar c}{eB}k = -\ell^2 k$ $\ell = (\hbar c/eB)^{1/2}$ "magnetic length" (diverges for $B \to 0$)

Frequency $\omega_{c} = \frac{eB}{m_{e}c}$ cyclotron frequency (classical, Gaussian units)

Landau oscillator

$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{\hbar^2}{2m_e}\left(k + \frac{eB}{\hbar c}x\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$
$$-\frac{\hbar^2}{2m_e}\varphi_k''(x) + \frac{1}{2}m_e\left(\frac{eB}{m_e c}\right)^2\left(x + \frac{\hbar c}{eB}k\right)^2\varphi_k(x) = \varepsilon_k \varphi_k(x)$$

Harmonic oscillator

• Center in $x_k = -\frac{\hbar c}{eB}k = -\ell^2 k$ $\ell = (\hbar c/eB)^{1/2}$ "magnetic length" (diverges for $B \to 0$)

Frequency $\omega_c = \frac{eB}{m_e c}$ cyclotron frequency (classical, Gaussian units)

Spectrum independent of k: ε_n = (n + ¹/₂)ω_c
 Ground-state orbitals (LLL):

$$\psi_k(\mathbf{x},\mathbf{y}) = \mathrm{e}^{iky}\varphi_k(\mathbf{x}) = \mathrm{e}^{iky}\chi(\mathbf{x}+\ell^2k)$$

$$\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$$

- Infinite degeneracy: one orbital for each k
- Electron confined in a vertical strip centered at $\ell^2 k$
- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Spectrum independent of *k*: $\varepsilon_n = (n + \frac{1}{2})\omega_c$

Ground-state orbitals (LLL):

$$\psi_k(\mathbf{x},\mathbf{y}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\varphi_k(\mathbf{x}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\chi(\mathbf{x}+\ell^2 k)$$

$$\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$$

- Infinite degeneracy: one orbital for each k
- Electron confined in a vertical strip centered at $\ell^2 k$
- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Spectrum independent of *k*: $\varepsilon_n = (n + \frac{1}{2})\omega_c$

Ground-state orbitals (LLL):

$$\psi_k(\mathbf{x},\mathbf{y}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\varphi_k(\mathbf{x}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\chi(\mathbf{x}+\ell^2\mathbf{k})$$

$$\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$$

- Infinite degeneracy: one orbital for each k
- Electron confined in a vertical strip centered at l²k
- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Spectrum independent of *k*: $\varepsilon_n = (n + \frac{1}{2})\omega_c$

Ground-state orbitals (LLL):

$$\psi_k(\mathbf{x},\mathbf{y}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\varphi_k(\mathbf{x}) = \mathrm{e}^{\mathrm{i}k\mathbf{y}}\chi(\mathbf{x}+\ell^2\mathbf{k})$$

$$\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$$

- Infinite degeneracy: one orbital for each k
- Electron confined in a vertical strip centered at l²k
- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Counting the states (discretize k)

$$\psi_k(x,y) = e^{iky}\chi(x-\ell^2 k)$$
 $\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$

 $\frac{2\pi\ell^2}{\ell}$

(日) (日) (日) (日) (日) (日) (日)

- Periodic boundary conditions in *y*: $k_{i+1} k_i = \frac{2\pi}{L}$
- Horizontal distance between neighboring orbitals:
- Area covered by one state: $2\pi\ell^2$ Number of states in each LL: $\mathcal{N} = \frac{A}{2\pi\ell^2}$
- Magnetic flux: Φ = AB = N2πℓ²B = N^{2πhc}/_e = N^{hc}/_e = NΦ₀

 Flux quantum: Φ₀ = hc/_e (Φ₀ = h/_e in SI units)
 Φ₀ a universal constant

Counting the states (discretize k)

$$\psi_k(x,y) = e^{iky}\chi(x-\ell^2 k)$$
 $\chi(x) = \left(\frac{1}{\pi\ell^2}\right)^{1/4} e^{-x^2/(2\ell^2)}$

- Periodic boundary conditions in *y*: $k_{i+1} k_i = \frac{2\pi}{L}$
- Horizontal distance between neighboring orbitals: $\frac{2\pi\ell^2}{l}$
- Area covered by one state: $2\pi\ell^2$ Number of states in each LL: $\mathcal{N} = \frac{A}{2\pi\ell^2}$
- Magnetic flux: $\Phi = AB = \mathcal{N}2\pi\ell^2 B = \mathcal{N}\frac{2\pi\hbar c}{e} = \mathcal{N}\frac{hc}{e} = \mathcal{N}\Phi_0$
- Flux quantum: $\Phi_0 = \frac{hc}{e}$ ($\Phi_0 = \frac{h}{e}$ in SI units)

Φ₀ a universal constant

Density of states

At B = 0: $\mathcal{D}(\varepsilon) = \text{constant} = \frac{2\pi m_e A}{h^2}$ At $B \neq 0$: Φ/Φ_0 states in each LL

$$\mathcal{D}(\varepsilon) = \frac{\Phi}{\Phi_0} \sum_{n=1}^{\infty} \delta\left(\varepsilon - (n + \frac{1}{2})\hbar\omega_{\rm c}\right)$$

maximum filling for each LL is $\nu = 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Density of states

• At $B \neq 0$: Φ/Φ_0 states in each LL

$$\mathcal{D}(\varepsilon) = \frac{\Phi}{\Phi_0} \sum_{n=1}^{\infty} \delta\left(\varepsilon - (n + \frac{1}{2})\hbar\omega_{\rm c}\right)$$

maximum filling for each LL is $\nu = 1$.

Density of states

How many states in the hatched region?

$$\int_{\varepsilon}^{\varepsilon+\hbar\omega_{\rm c}} d\varepsilon' \, \mathcal{D}(\varepsilon') = \hbar\omega_{\rm c} \frac{2\pi m_{\rm e} A}{h^2} = \frac{\Phi}{\Phi_0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

What the experiment shows

In modern jargon: The plateaus are "topologically protected"

Wavefunction "knotted" or "twisted"

- Knotted in reciprocal space in nontrivial ways
- The famous TKNN paper:
 - D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. **49**, 405 (1982).
- Integer numbers are very "robust"

Role of disorder

Current carried by delocalized states only

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Varying the "inaccessible flux"

- In a flat potential: $\varepsilon_n(\varphi) = \frac{\hbar^2}{2m} \left(\frac{2\pi}{L}\right)^2 \left(n + \frac{\varphi}{\Phi_0}\right)^2$
- Hellmann-Feynman theorem (in any potential):

$$\mathbf{v} = \frac{1}{\hbar} \frac{\partial H}{\partial \kappa} \qquad \langle \psi_n | \mathbf{v} | \psi_n \rangle = \frac{1}{\hbar} \frac{d\epsilon_n(\kappa)}{d\kappa}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Next: N noninteracting electrons in an arbitrary potential

Topological robustness of the current

Independent of the substrate potential Independent on the number N of current carrying states

Variation of a full flux quantum:

$$\Delta U = U(\varphi + \Phi_0) - U(\varphi) = -\frac{\Phi_0 I}{c}$$

(日) (日) (日) (日) (日) (日) (日)

Laughlin's Gedankenexperiment (1981)

- The insertion of a flux quantum Φ₀ maps the system into itself: how can the energy vary?
- Answer: an integer number ν of electrons is transferred from one edge to the other
- If the edges are kept at voltage V_y , then

$$u e V_y = \Delta U = rac{\Phi_0 I_x}{c}; \qquad R_{\mathrm{H}} = V_y / I_x = rac{\phi_0}{\nu c e} = rac{1}{\nu} rac{h}{e^2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Laughlin's Gedankenexperiment (1981)

- The insertion of a flux quantum Φ₀ maps the system into itself: how can the energy vary?
- Answer: an integer number ν of electrons is transferred from one edge to the other
- If the edges are kept at voltage V_y , then

$$u e V_y = \Delta U = \frac{\Phi_0 I_x}{c}; \qquad R_{\rm H} = V_y / I_x = \frac{\phi_0}{\nu c e} = \frac{1}{\nu} \frac{h}{e^2}$$

(日) (日) (日) (日) (日) (日) (日)