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Gaussian (a.k.a. CGS) units

Permittivity of free space ε0 = 1
4π

Permeability of free space µ0 = 4π
In vacuo D ≡ E and H ≡ B
All fields have the same dimensions

Newtonian & Hamiltonian mechanics:
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Atomic Gaussian units
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Schrödinger Hamiltonian for the electron
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− eΦ(r)

me = 1, ~ = 1, e = 1, (c = 137)
1 a.u. of energy = 1 hartree = 2 rydberg = 27.21 eV
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− Φ(r)

Warning: Other “atomic units” with e =
√

2
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Outline

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect
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Figure from Kittel ISSP, Ch. 6
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Hall effect (1879)

1. Brief historic sketch

1880: discovery of the normal Hall effect (E.R. Hall)

1881: discovery of the anomalous Hall effect (E.R. Hall)

1893 – 1950: numerous experimental studies of AHE 
(A. Kundt, A.W. Smith, A. Perrier, E.M. Pugh, J. Smit, ...) Edwin R. Hall

1954: first quantitative theory of the AHE (Karplus and Luttinger):
anomalous velocity current due to the spin-orbit coupling

1955: skew scattering contribution (J. Smit)

1957 - 1958: systematic theory of AHE with effect of scattering (Kohn, Luttinger)

1970: side-jump mechanism (Berger)
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Drude-Zener theory

v = −eτ
m

(
E +

1
c

v × B
)2. Symmetry considerations
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Hall conductivity

Current j = −ne v (n carrier density)

jx =
ne2τ

m
Ex − ωcτ jx

jy = ωcτ jx

In zero B field

jx = σ0Ex , σ0 =
ne2τ

m
In a B field

jx =
σ0

1 + (ωcτ)2 Ex = σxxEx

jy =
ωcτσ0

1 + (ωcτ)2 Ex = σyxEx
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Conductivity vs. resistivity (classical & quantum)

(
jx
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=
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Ey

)
↔
ρ= (

↔
σ )−1
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xx + σ2

yx
, ρxy =

σyx

σ2
xx + σ2

yx

At B = 0 ρxx = 1/σxx

In the nondissipative regime (j · E = 0)

σxx = 0 and ρxx = 0

ρxy = 1/σyx
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Nondissipative limit (τ → ∞, classical Drude-Zener)

σ0 =
ne2τ

m
σxx =

σ0

1 + (ωcτ)2 σyx =
ωcτσ0

1 + (ωcτ)2

At B = 0 σxx = σ0 diverges

At B ̸= 0 for τ ≫ 1/ωc

σxx = 0, ρxx = 0 (longitudinal resistivity)

ρxy = 1/σyx =
mωc

ne2 =
m

ne2
eB
mc

=
1

nec
B (Hall resistivity)
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Multiplying and dividing by h

In 2d resistance/resistivity and conductance/conductivity
have the same dimensions: do they coincide?
n = N/A (number of carrriers per unit area)

ρxy =
1

nec
B =

AB
Nec

=
Φ

Nec
=

1
ν

h
e2

Φ magnetic flux through area A
h/e2 ≃ 25813 Ω (natural resistance unit)
ν dimensionless

ν =
NΦ0

Φ
filling factor, Φ0 =

hc
e

flux quantum

ν = (number of electrons)/(number of flux quanta)
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Experiment (von Klitzing 1980, Nobel prize 1985)

. . . . . .

The quantum Hall effect
(both integer and fractional)

ρ11 = σ11
σ2

11+σ2
12

ρ12 = − σ12
σ2

11+σ2
12

In the QH regime σ12 is quantized and σ11 = 0:
−→ The system is insulating

h/e2 = 25812.807557(18) Ω = 1 klitzing
Since 1990 a new metrology standard
In the original experiment (MOSFET): ν = 4
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More recent experiments

GaAs-GaAlAs heterojunction, at 30mK
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Hamiltonian in B field (flat substrate potential)

N noninteracting (& spin-polarized) electrons in zero potential:

Ĥ =
1

2me

N∑
i=1

[
pi +

e
c

A(ri)
]2

Gaussian units
me electron mass
−e electron charge
1

me

(
pi + e

c A(ri)
)

velocity
pi =−i~∇i canonical momentum
B = ∇× A(r)
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Landau gauge

Everything in 2d; B uniform, along z.

Ax = 0, Ay = Bx

For each electron the Hamiltonian is

H(x , y) =
~2

2me

[
− ∂2

∂x2 +

(
−i

∂

∂y
+

e
~c

Bx
)2

]
Landau ansatz ψk (x , y) = eikyφk (x)

− ~2

2me
eikyφ′′

k (x) +
~2

2me

(
k +

eB
~c

x
)2

eikyφk (x) = εk eikyφk (x).

Harmonic oscillator in 1d
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Landau oscillator
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1
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φk (x) = εk φk (x)

Harmonic oscillator
Center in xk = − ~c

eB k = −ℓ2k
ℓ = (~c/eB)1/2 “magnetic length” (diverges for B → 0)

Frequency ωc = eB
mec cyclotron frequency

(classical, Gaussian units)
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Eigenvalues and eigenvectors

Spectrum independent of k : εn = (n + 1
2)ωc

Ground-state orbitals (LLL):

ψk (x , y) = eikyφk (x) = eikyχ(x + ℓ2k)

χ(x) =

(
1
πℓ2

)1/4

e−x2/(2ℓ2)

Infinite degeneracy: one orbital for each k
Electron confined in a vertical strip centered at ℓ2k
What about the current?
Any unitary transformation of the LLL orbitals is an
eigenfunction
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Counting the states (discretize k)

ψk (x , y) = eikyχ(x − ℓ2k) χ(x) =

(
1
πℓ2

)1/4

e−x2/(2ℓ2)

Periodic boundary conditions in y : ki+1 − ki = 2π
L

Horizontal distance between neighboring orbitals: 2πℓ2

L

Area covered by one state: 2πℓ2

Number of states in each LL: N = A
2πℓ2

Magnetic flux:
Φ = AB = N2πℓ2B = N 2π~c

e = N hc
e = NΦ0

Flux quantum: Φ0 = hc
e (Φ0 = h

e in SI units)
Φ0 a universal constant



. . . . . .

Counting the states (discretize k)

ψk (x , y) = eikyχ(x − ℓ2k) χ(x) =

(
1
πℓ2

)1/4

e−x2/(2ℓ2)

Periodic boundary conditions in y : ki+1 − ki = 2π
L

Horizontal distance between neighboring orbitals: 2πℓ2

L

Area covered by one state: 2πℓ2

Number of states in each LL: N = A
2πℓ2

Magnetic flux:
Φ = AB = N2πℓ2B = N 2π~c

e = N hc
e = NΦ0

Flux quantum: Φ0 = hc
e (Φ0 = h

e in SI units)
Φ0 a universal constant



. . . . . .

Density of states

At B = 0: D(ε) = constant = 2πmeA
h2

At B ̸= 0: Φ/Φ0 states in each LL

D(ε) =
Φ

Φ0

∞∑
n=1

δ

(
ε− (n +

1
2
)~ωc

)
maximum filling for each LL is ν = 1.



. . . . . .

Density of states

At B = 0: D(ε) = constant = 2πmeA
h2

At B ̸= 0: Φ/Φ0 states in each LL

D(ε) =
Φ

Φ0

∞∑
n=1

δ

(
ε− (n +

1
2
)~ωc

)
maximum filling for each LL is ν = 1.



. . . . . .

Density of states

How many states in the hatched region?∫ ε+~ωc

ε
dε′ D(ε′) = ~ωc

2πmeA
h2 =

Φ

Φ0
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What the experiment shows

In modern jargon: The plateaus are “topologically protected”
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Wavefunction “knotted” or “twisted”

a ba b

symmetry as an applied magnetic field would), in simplified models 
introduced in around 2003 it can lead to a quantum spin Hall effect, 
in which electrons with opposite spin angular momentum (commonly 
called spin up and spin down) move in opposite directions around the 
edge of the droplet in the absence of an external magnetic field2 (Fig. 2b). 
These simplified models were the first steps towards understanding 
topological insulators. But it was unclear how realistic the models were: 
in real materials, there is mixing of spin-up and spin-down electrons, 
and there is no conserved spin current. It was also unclear whether the 
edge state of the droplet in Fig. 2b would survive the addition of even 
a few impurities.

In 2005, a key theoretical advance was made by Kane and Mele3. 
They used more realistic models, without a conserved spin current, 
and showed how some of the physics of the quantum spin Hall effect 
can survive. They found a new type of topological invariant that could 
be computed for any 2D material and would allow the prediction of 
whether the material had a stable edge state. This allowed them to show 
that, despite the edge not being stable in many previous models, there are 
realistic 2D materials that would have a stable edge state in the absence of 
a magnetic field; the resultant 2D state was the first topological insulator 
to be understood. This non-magnetic insulator has edges that act like 
perfectly conducting one-dimensional electronic wires at low tempera-
tures, similar to those in the quantum Hall effect.

Subsequently, Bernevig, Hughes and Zhang made a theoretical 
prediction that a 2D topological insulator with quantized charge con-
ductance along the edges would be realized in (Hg,Cd)Te quantum 
wells4. The quantized charge conductance was indeed observed in this 
system, as a quantum-Hall-like plateau in zero magnetic field, in 2007 
(ref. 5). These experiments are similar to those on the quantum Hall 
effect in that they require, at least so far, low temperature and artificial 
2D materials (quantum wells), but they differ in that no magnetic field 
is needed.

Going 3D
The next important theoretical development, in 2006, was the 
realization6–8 that even though the quantum Hall effect does not general-
ize to a genuinely 3D state, the topological insulator does, in a subtle way. 
Although a 3D ‘weak’ topological insulator can be formed by layering 
2D versions, similar to layered quantum Hall states, the resultant state 
is not stable to disorder, and its physics is generally similar to that of the 
2D state. In weak topological insulators, a dislocation (a line-like defect 

in the crystal) will always contain a quantum wire like that at the edge 
of the quantum spin Hall effect (discussed earlier), which may allow 2D 
topological insulator physics to be observed in a 3D material9.

There is also, however, a ‘strong’ topological insulator, which has a 
more subtle relationship to the 2D case; the relationship is that in two 
dimensions it is possible to connect ordinary insulators and topologi-
cal insulators smoothly by breaking time-reversal symmetry7. Such a 
continuous interpolation can be used to build a 3D band structure that 
respects time-reversal symmetry, is not layered and is topologically non-
trivial. It is this strong topological insulator that has protected metallic 
surfaces and has been the focus of experimental activity.

Spin–orbit coupling is again required and must mix all components of 
the spin. In other words, there is no way to obtain the 3D strong topologi-
cal insulator from separate spin-up and spin-down electrons, unlike in 
the 2D case. Although this makes it difficult to picture the bulk physics of 
the 3D topological insulator (only the strong topological insulator will be 
discussed from this point), it is simple to picture its metallic surface6.

The unusual planar metal that forms at the surface of topological 
insulators ‘inherits’ topological properties from the bulk insulator. 
The simplest manifestation of this bulk–surface connection occurs at 
a smooth surface, where momentum along the surface remains well 
defined: each momentum along the surface has only a single spin state 
at the Fermi level, and the spin direction rotates as the momentum 
moves around the Fermi surface (Fig. 3). When disorder or impurities 
are added at the surface, there will be scattering between these surface 
states but, crucially, the topological properties of the bulk insulator do 
not allow the metallic surface state to vanish — it cannot become local-
ized or gapped. These two theoretical predictions, about the electronic 
structure of the surface state and the robustness to disorder of its metallic 
behaviour, have led to a flood of experimental work on 3D topological 
insulators in the past two years.

Experimental realizations
The first topological insulator to be discovered was the alloy BixSb1−x, 
the unusual surface bands of which were mapped in an angle-resolved 
photoemission spectroscopy (ARPES) experiment10,11. In ARPES exper-
iments, a high-energy photon is used to eject an electron from a crystal, 
and then the surface or bulk electronic structure is determined from an 
analysis of the momentum of the emitted electron. Although the surface 
structure of this alloy was found to be complex, this work launched a 
search for other topological insulators.

Figure 1 | Metallic states are born when a surface unties ‘knotted’ electron 
wavefunctions. a, An illustration of topological change and the resultant 
surface state. The trefoil knot (left) and the simple loop (right) represent 
different insulating materials: the knot is a topological insulator, and the 
loop is an ordinary insulator. Because there is no continuous deformation 
by which one can be converted into the other, there must be a surface where 
the string is cut, shown as a string with open ends (centre), to pass between 
the two knots; more formally, the topological invariants cannot remain 

defined. If the topological invariants are always defined for an insulator, 
then the surface must be metallic. b, The simplest example of a knotted 3D 
electronic band structure (with two bands)35, known to mathematicians as 
the Hopf map. The full topological structure would also have linked fibres 
on each ring, in addition to the linking of rings shown here. The knotting 
in real topological insulators is more complex as these require a minimum 
of four electronic bands, but the surface structure that appears is relatively 
simple (Fig. 3).
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Knotted in reciprocal space in nontrivial ways
The famous TKNN paper:
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).
Integer numbers are very “robust”
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Role of disorder

Current carried by delocalized states only
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Varying the “inaccessible flux”

In a flat potential: εn(φ) = ~2

2m

(2π
L

)2
(

n + φ
Φ0

)2

Hellmann-Feynman theorem (in any potential):

v =
1
~
∂H
∂κ

⟨ψn|v |ψn⟩ =
1
~

dϵn(κ)
dκ

Next: N noninteracting electrons in an arbitrary potential
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Topological robustness of the current

U =
∑

n∈occupied

ϵn I = −1
c
∂U
∂φ

Independent of the substrate potential
Independent on the number N of current carrying states
Variation of a full flux quantum:

∆U = U(φ+ Φ0) − U(φ) = −Φ0I
c
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Laughlin’s Gedankenexperiment (1981)

The insertion of a flux quantum Φ0 maps the system into
itself: how can the energy vary?
Answer: an integer number ν of electrons is transferred
from one edge to the other
If the edges are kept at voltage Vy , then

νeVy = ∆U =
Φ0Ix

c
; RH = Vy/Ix =

ϕ0

νce
=

1
ν

h
e2
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