Integer Quantum Hall Effect
 (Dawn of topology in electronic structure)

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and DEMOCRITOS National Simulation Center, Istituto Officina dei Materiali, CNR, Trieste

Trieste, May 2012

Gaussian (a.k.a. CGS) units

- Permittivity of free space $\varepsilon_{0}=\frac{1}{4 \pi}$
- Permeability of free space $\mu_{0}=4 \pi$
- In vacuo $\mathbf{D} \equiv \mathbf{E}$ and $\mathbf{H} \equiv \mathbf{B}$
- All fields have the same dimensions
- Newtonian \& Hamiltonian mechanics:

$$
\begin{array}{r}
M \frac{d \mathbf{v}}{d t}=\mathbf{f}=Q\left(\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right) \\
\mathcal{H}=\frac{1}{2 M}\left(\mathbf{p}-\frac{Q}{c} \mathbf{A}(\mathbf{r})\right)^{2}+Q \Phi(\mathbf{r})
\end{array}
$$

Atomic Gaussian units

$$
\mathcal{H}=\frac{1}{2 M}\left(\mathbf{p}-\frac{1}{c} \mathbf{A}(\mathbf{r})\right)^{2}+Q \Phi(\mathbf{r})
$$

■ Schrödinger Hamiltonian for the electron

$$
\mathcal{H}=\frac{1}{2 m_{\mathrm{e}}}\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}(\mathbf{r})\right)^{2}-e \Phi(\mathbf{r})
$$

Warning: Other "atomic units" with $e=\sqrt{2}$

Atomic Gaussian units

$$
\mathcal{H}=\frac{1}{2 M}\left(\mathbf{p}-\frac{1}{c} \mathbf{A}(\mathbf{r})\right)^{2}+Q \Phi(\mathbf{r})
$$

■ Schrödinger Hamiltonian for the electron

$$
\mathcal{H}=\frac{1}{2 m_{\mathrm{e}}}\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}(\mathbf{r})\right)^{2}-e \Phi(\mathbf{r})
$$

- $m_{\mathrm{e}}=1, \quad \hbar=1, \quad e=1$,
($c=137$)
1 a.u. of energy = 1 hartree $=2$ rydberg $=27.21 \mathrm{eV}$

$$
\mathcal{H}=\frac{1}{2}\left(-i \nabla+\frac{1}{c} \mathbf{A}(\mathbf{r})\right)^{2}-\Phi(\mathbf{r})
$$

Warning: Other "atomic units" with $e=\sqrt{2}$

Atomic Gaussian units

$$
\mathcal{H}=\frac{1}{2 M}\left(\mathbf{p}-\frac{1}{c} \mathbf{A}(\mathbf{r})\right)^{2}+Q \Phi(\mathbf{r})
$$

■ Schrödinger Hamiltonian for the electron

$$
\mathcal{H}=\frac{1}{2 m_{\mathrm{e}}}\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}(\mathbf{r})\right)^{2}-e \Phi(\mathbf{r})
$$

$\square m_{\mathrm{e}}=1, \quad \hbar=1, \quad e=1, \quad(c=137)$
1 a.u. of energy = 1 hartree $=2$ rydberg $=27.21 \mathrm{eV}$

$$
\mathcal{H}=\frac{1}{2}\left(-i \nabla+\frac{1}{c} \mathbf{A}(\mathbf{r})\right)^{2}-\Phi(\mathbf{r})
$$

Warning: Other "atomic units" with $e=\sqrt{2}$

Outline

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

Figure from Kittel ISSP, Ch. 6

Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular cross-section is placed in a magnetic field B_{z}, as in (a). An electric field E_{x} applied across the end electrodes causes an electric current density j_{x} to flow down the rod. The drift velocity of the negatively-charged electrons immediately after the electric field is applied as shown in (b). The deflection in the $-y$ direction is caused by the magnetic field. Electrons accumulate on one face of the rod and a positive ion excess is established on the opposite face until, as in (c), the transverse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.

Hall effect (1879)

From Kittel ISSP (carriers of mass m and charge $-e$)

$$
\begin{gathered}
m\left(\frac{d \mathbf{v}}{d t}+\frac{1}{\tau} \mathbf{v}\right)=-e\left(\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right) \\
\text { Steady-state: } \quad \frac{d \mathbf{v}}{d t}=0
\end{gathered}
$$

Drude-Zener theory

$$
\mathbf{v}=-\frac{e}{m}\left(\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right)
$$

In 2d, set $E_{y}=0 ; \quad$ cyclotron frequency $\quad \omega_{\mathrm{c}}=\frac{e B}{m c}$

$$
\begin{aligned}
& v_{x}=-\frac{e \tau}{m} E_{x}-\omega_{\mathrm{c}} \tau v_{x} \\
& v_{y}=\omega_{\mathrm{c}} \tau v_{x}
\end{aligned}
$$

Hall conductivity

Current $\quad \mathbf{j}=-n e \mathbf{v} \quad(n$ carrier density)

$$
\begin{aligned}
j_{x} & =\frac{n e^{2} \tau}{m} E_{x}-\omega_{\mathrm{c}} \tau j_{x} \\
j_{y} & =\omega_{\mathrm{c}} \tau j_{x}
\end{aligned}
$$

In zero B field

$$
j_{x}=\sigma_{0} E_{x}, \quad \sigma_{0}=\frac{n e^{2} \tau}{m}
$$

In a B field

$$
\begin{aligned}
& j_{x}=\frac{\sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} E_{x}=\sigma_{x x} E_{x} \\
& j_{y}=\frac{\omega_{\mathrm{c}} \tau \sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} E_{x}=\sigma_{y x} E_{x}
\end{aligned}
$$

Conductivity vs. resistivity (classical \& quantum)

$$
\begin{gathered}
\binom{j_{x}}{j_{y}}=\left(\begin{array}{cc}
\sigma_{x x} & -\sigma_{y x} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)\binom{E_{x}}{E_{y}} \\
\stackrel{\leftrightarrow}{\rho}=(\stackrel{\leftrightarrow}{\sigma})^{-1} \\
\rho_{x x}=\frac{\sigma_{x x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}, \quad \rho_{x y}=\frac{\sigma_{y x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}
\end{gathered}
$$

- At $\mathbf{B}=0 \quad \rho_{x x}=1 / \sigma_{x x}$
$■$ In the nondissipative regime $(\mathbf{j} \cdot \mathbf{E}=0)$

Conductivity vs. resistivity (classical \& quantum)

$$
\begin{gathered}
\binom{j_{x}}{j_{y}}=\left(\begin{array}{cc}
\sigma_{x x} & -\sigma_{y x} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)\binom{E_{x}}{E_{y}} \\
\stackrel{\leftrightarrow}{\rho}=(\stackrel{\leftrightarrow}{\sigma})^{-1} \\
\rho_{x x}=\frac{\sigma_{x x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}, \quad \rho_{x y}=\frac{\sigma_{y x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}
\end{gathered}
$$

\square At $\mathbf{B}=0 \quad \rho_{X X}=1 / \sigma_{X x}$

- In the nondissipative regime ($\mathbf{j} \cdot \mathbf{E}=0$)

Conductivity vs. resistivity (classical \& quantum)

$$
\begin{gathered}
\binom{j_{x}}{j_{y}}=\left(\begin{array}{cc}
\sigma_{x x} & -\sigma_{y x} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)\binom{E_{x}}{E_{y}} \\
\stackrel{\leftrightarrow}{\rho}=(\stackrel{\leftrightarrow}{\sigma})^{-1} \\
\rho_{x x}=\frac{\sigma_{x x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}, \quad \rho_{x y}=\frac{\sigma_{y x}}{\sigma_{x x}^{2}+\sigma_{y x}^{2}}
\end{gathered}
$$

\square At $\mathbf{B}=0 \quad \rho_{x x}=1 / \sigma_{x x}$
\square In the nondissipative regime $(\mathbf{j} \cdot \mathbf{E}=0)$

$$
\begin{gathered}
\sigma_{x x}=0 \quad \text { and } \quad \rho_{x x}=0 \\
\rho_{x y}=1 / \sigma_{y x}
\end{gathered}
$$

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

$$
\begin{gathered}
\sigma_{0}=\frac{n e^{2} \tau}{m} \quad \sigma_{x x}=\frac{\sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} \quad \sigma_{y x}=\frac{\omega_{\mathrm{c}} \tau \sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} \\
\text { At } \mathrm{B}=0 \quad \sigma_{x x}=\sigma_{0} \quad \text { diverges } \\
\text { At } \mathrm{B} \neq 0 \quad \text { for } \quad \tau>1 / \omega_{\mathrm{c}} \\
\sigma_{x x}=0, \quad \rho_{x x}=0 \quad \text { (longitudinal resistivity) } \\
\quad \rho_{x y}=\frac{1 / \sigma_{y x}=\frac{m \omega_{c}}{n e^{2}}=\frac{m}{n e^{2}} \frac{\text { eB }}{m c}}{\text { (Hall resistivity) }}
\end{gathered}
$$

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

$$
\sigma_{0}=\frac{n e^{2} \tau}{m} \quad \sigma_{x x}=\frac{\sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} \quad \sigma_{y x}=\frac{\omega_{\mathrm{c}} \tau \sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}}
$$

■ At $\mathbf{B}=0 \quad \sigma_{x x}=\sigma_{0} \quad$ diverges

- At $\mathbf{B} \neq 0 \quad$ for

(Hall resistivity)

Nondissipative limit ($\tau \rightarrow \infty$, classical Drude-Zener)

$$
\sigma_{0}=\frac{n e^{2} \tau}{m} \quad \sigma_{x x}=\frac{\sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}} \quad \sigma_{y x}=\frac{\omega_{\mathrm{c}} \tau \sigma_{0}}{1+\left(\omega_{\mathrm{c}} \tau\right)^{2}}
$$

\square At $\mathbf{B}=0 \quad \sigma_{x x}=\sigma_{0} \quad$ diverges
\square At $\mathbf{B} \neq 0 \quad$ for $\quad \tau \gg 1 / \omega_{c}$

$$
\begin{aligned}
\sigma_{x x} & =0, \quad \rho_{x x}=0 \quad \text { (longitudinal resistivity) } \\
\rho_{x y} & =1 / \sigma_{y x}=\frac{m \omega_{\mathrm{c}}}{n e^{2}}=\frac{m}{n e^{2}} \frac{e B}{m c} \\
& =\frac{1}{n e c} B \quad \text { (Hall resistivity) }
\end{aligned}
$$

Multiplying and dividing by h

■ In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?

- $n=N / A \quad$ (number of carrriers per unit area)

- Φ magnetic flux through area A $h / e^{2} \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$\nu=$ (number of electrons)/(number of flux quanta)

Multiplying and dividing by h

■ In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?

- $n=N / A \quad$ (number of carrriers per unit area)

- Φ magnetic flux through area A $h / e^{2} \simeq 25813 \Omega$ (natural resistance unit) ν dimensionless

$\nu=$ (number of electrons)/(number of flux quanta)

Multiplying and dividing by h

■ In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?
$\square n=N / A \quad$ (number of carrriers per unit area)

$$
\rho_{x y}=\frac{1}{n e c} B=\frac{A B}{N e c}=\frac{\Phi}{N e c}=\frac{1}{\nu} \frac{h}{e^{2}}
$$

■ Φ magnetic flux through area A $h / e^{2} \simeq 25813 \Omega$ (natural resistance unit)
ν dimensionless

$\nu=$ (number of electrons)/(number of flux quanta)

Multiplying and dividing by h

■ In 2d resistance/resistivity and conductance/conductivity have the same dimensions: do they coincide?
■ $n=N / A \quad$ (number of carrriers per unit area)

$$
\rho_{x y}=\frac{1}{n e c} B=\frac{A B}{N e c}=\frac{\Phi}{N e c}=\frac{1}{\nu} \frac{h}{e^{2}}
$$

■ Φ magnetic flux through area A $h / e^{2} \simeq 25813 \Omega$ (natural resistance unit)
ν dimensionless
$\nu=\frac{N \Phi_{0}}{\Phi} \quad$ filling factor, $\quad \Phi_{0}=\frac{h c}{e} \quad$ flux quantum
$\nu=$ (number of electrons)/(number of flux quanta)

Experiment (von Klitzing 1980, Nobel prize 1985)

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda

Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany
and
M. Pepper

Cavendish Labovatory, Cambridge CB3 OHE, United Kingdom (Received 30 May 1980)
Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

FIG. 2. Hall resistance R_{H}, and device resistance, $R_{p p}$, between the potential probes as a function of the gate voltage V_{g} in a region of gate voltage corresponding to a fully occupied, lowest ($n=0$) Landau level. The plateau in R_{H} has a value of $6453.3 \pm 0.1 \Omega$. The geometry of the device was $L=400 \mu \mathrm{~m}, W=50 \mu \mathrm{~m}$, and $L_{p p}$ $=130 \mu \mathrm{~m} ; B=13 \mathrm{~T}$.
> $h / e^{2}=25812.807557(18) \Omega=1$ klitzing Since 1990 a new metrology standard

Experiment (von Klitzing 1980, Nobel prize 1985)

PHYSICAL REVIEW LETTERS
11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

and

G. Dorda

Forschungslaboratorien der Siemens AG, D-8000 München, Federal Republic of Germany
and
M. Pepper

Cavendish Labovatory, Cambridge CB3 OHE, United Kingdom (Received 30 May 1980)
Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

FIG. 2. Hall resistance R_{H}, and device resistance, $R_{p p}$, between the potential probes as a function of the gate voltage V_{k} in a region of gate voltage corresponding to a fully occupied, lowest ($n=0$) Landau level. The plateau in R_{H} has a value of $6453.3 \pm 0.1 \Omega$. The geometry of the device was $L=400 \mu \mathrm{~m}, W=50 \mu \mathrm{~m}$, and $L_{p p}$ $=130 \mu \mathrm{~m} ; B=13 \mathrm{~T}$.
$h / e^{2}=25812.807557(18) \Omega=1$ klitzing Since 1990 a new metrology standard In the original experiment (MOSFET): $\quad \nu=4$

More recent experiments

GaAs-GaAIAs heterojunction, at 30 mK

Outline

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

Hamiltonian in B field (flat substrate potential)

N noninteracting (\& spin-polarized) electrons in zero potential:

$$
\hat{H}=\frac{1}{2 m_{\mathrm{e}}} \sum_{i=1}^{N}\left[\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right]^{2}
$$

■ Gaussian units

- m_{e} electron mass

■ -e electron charge

- $\frac{1}{m_{e}}\left(\mathbf{p}_{i}+\frac{e}{c} \mathbf{A}\left(\mathbf{r}_{i}\right)\right)$ velocity

■ $\mathbf{p}_{i}=-i \hbar \nabla_{i}$ canonical momentum
■ $\mathbf{B}=\nabla \times \mathbf{A}(\mathbf{r})$

Landau gauge

Everything in 2d;
B uniform, along z.

$$
A_{x}=0, \quad A_{y}=B x
$$

For each electron the Hamiltonian is

$$
H(x, y)=\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left[-\frac{\partial^{2}}{\partial x^{2}}+\left(-i \frac{\partial}{\partial y}+\frac{e}{\hbar c} B x\right)^{2}\right]
$$

Landau ansatz $\psi_{k}(x, y)=e^{i k y} \varphi_{k}(x)$

Harmonic oscillator in 1d

Landau gauge

Everything in 2d; B uniform, along z.

$$
A_{x}=0, \quad A_{y}=B x
$$

For each electron the Hamiltonian is

$$
H(x, y)=\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left[-\frac{\partial^{2}}{\partial x^{2}}+\left(-i \frac{\partial}{\partial y}+\frac{e}{\hbar c} B x\right)^{2}\right]
$$

Landau ansatz $\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)$

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \mathrm{e}^{i k y} \varphi_{k}^{\prime \prime}(x)+\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(k+\frac{e B}{\hbar c} x\right)^{2} \mathrm{e}^{i k y} \varphi_{k}(x)=\varepsilon_{k} \mathrm{e}^{i k y} \varphi_{k}(x)
$$

Landau gauge

Everything in 2d; B uniform, along z.

$$
A_{x}=0, \quad A_{y}=B x
$$

For each electron the Hamiltonian is

$$
H(x, y)=\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left[-\frac{\partial^{2}}{\partial x^{2}}+\left(-i \frac{\partial}{\partial y}+\frac{e}{\hbar c} B x\right)^{2}\right]
$$

Landau ansatz $\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)$

$$
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} e^{i k y} \varphi_{k}^{\prime \prime}(x)+\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(k+\frac{e B}{\hbar c} x\right)^{2} \mathrm{e}^{i k y} \varphi_{k}(x)=\varepsilon_{k} \mathrm{e}^{i k y} \varphi_{k}(x)
$$

Harmonic oscillator in 1d

Landau oscillator

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(k+\frac{e B}{\hbar c} x\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x) \\
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{1}{2} m_{\mathrm{e}}\left(\frac{e B}{m_{\mathrm{e}} c}\right)^{2}\left(x+\frac{\hbar c}{e B} k\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x)
\end{aligned}
$$

Harmonic oscillator
■ Center in $x_{k}=-\frac{\hbar c}{e B} k=-\ell^{2} k$
$\ell=(\hbar c / e B)^{1 / 2}$ "magnetic length" (diverges for $\left.B \rightarrow 0\right)$

- Frequency $\omega_{\mathrm{c}}=\frac{e B}{m_{\mathrm{e}} C} \quad$ cyclotron frequency (classical, Gaussian units)

Landau oscillator

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(k+\frac{e B}{\hbar c} x\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x) \\
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{1}{2} m_{\mathrm{e}}\left(\frac{e B}{m_{\mathrm{e}} c}\right)^{2}\left(x+\frac{\hbar c}{e B} k\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x)
\end{aligned}
$$

Harmonic oscillator
■ Center in $x_{k}=-\frac{\hbar c}{e B} k=-\ell^{2} k$
$\ell=(\hbar c / e B)^{1 / 2}$ "magnetic length" (diverges for $B \rightarrow 0$)
\square Frequency $\omega_{\mathrm{c}}=\frac{e B}{m_{\mathrm{e}} C}$

Landau oscillator

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{\hbar^{2}}{2 m_{\mathrm{e}}}\left(k+\frac{e B}{\hbar c} x\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x) \\
-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \varphi_{k}^{\prime \prime}(x)+\frac{1}{2} m_{\mathrm{e}}\left(\frac{e B}{m_{\mathrm{e}} c}\right)^{2}\left(x+\frac{\hbar c}{e B} k\right)^{2} \varphi_{k}(x) & =\varepsilon_{k} \varphi_{k}(x)
\end{aligned}
$$

Harmonic oscillator
■ Center in $x_{k}=-\frac{\hbar c}{e B} k=-\ell^{2} k$
$\ell=(\hbar c / e B)^{1 / 2}$ "magnetic length" (diverges for $B \rightarrow 0$)
■ Frequency $\omega_{\mathrm{c}}=\frac{e B}{m_{e} C} \quad$ cyclotron frequency (classical, Gaussian units)

Eigenvalues and eigenvectors

\square Spectrum independent of k : $\quad \varepsilon_{n}=\left(n+\frac{1}{2}\right) \omega_{\mathrm{c}}$

- Ground-state orbitals (LLL):

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)=\mathrm{e}^{i k y} \chi\left(x+\ell^{2} k\right)
$$

■ Infinite degeneracy: one orbital for each k

■ Electron confined in a vertical strip centered at $l^{2} k$

- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Eigenvalues and eigenvectors

\square Spectrum independent of k : $\quad \varepsilon_{n}=\left(n+\frac{1}{2}\right) \omega_{\mathrm{c}}$

- Ground-state orbitals (LLL):

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)=\mathrm{e}^{i k y} \chi\left(x+\ell^{2} k\right)
$$

- Infinite degeneracy: one orbital for each k

■ Electron confined in a vertical strip centered at $\ell^{2} k$

- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Eigenvalues and eigenvectors

\square Spectrum independent of k : $\quad \varepsilon_{n}=\left(n+\frac{1}{2}\right) \omega_{c}$

- Ground-state orbitals (LLL):

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)=\mathrm{e}^{i k y} \chi\left(x+\ell^{2} k\right)
$$

$$
\chi(x)=\left(\frac{1}{\pi \ell^{2}}\right)^{1 / 4} \mathrm{e}^{-x^{2} /\left(2 \ell^{2}\right)}
$$

■ Infinite degeneracy: one orbital for each k
■ Electron confined in a vertical strip centered at $\ell^{2} k$

- What about the current?
- Any unitary transformation of the LLL orbitals is an eigenfunction

Eigenvalues and eigenvectors

■ Spectrum independent of k : $\quad \varepsilon_{n}=\left(n+\frac{1}{2}\right) \omega_{\mathrm{c}}$

- Ground-state orbitals (LLL):

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \varphi_{k}(x)=\mathrm{e}^{i k y} \chi\left(x+\ell^{2} k\right)
$$

$$
\chi(x)=\left(\frac{1}{\pi \ell^{2}}\right)^{1 / 4} \mathrm{e}^{-x^{2} /\left(2 \ell^{2}\right)}
$$

■ Infinite degeneracy: one orbital for each k
■ Electron confined in a vertical strip centered at $\ell^{2} k$
■ What about the current?

- Any unitary transformation of the LLL orbitals is an eigenfunction

Counting the states (discretize k)

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \chi\left(x-\ell^{2} k\right) \quad \chi(x)=\left(\frac{1}{\pi \ell^{2}}\right)^{1 / 4} \mathrm{e}^{-x^{2} /\left(2 \ell^{2}\right)}
$$

■ Periodic boundary conditions in $y: \quad k_{i+1}-k_{i}=\frac{2 \pi}{L}$
■ Horizontal distance between neighboring orbitals: $\frac{2 \pi \ell^{2}}{L}$

- Area covered by one state: $2 \pi \ell^{2}$ Number of states in each LL: $\quad \mathcal{N}=\frac{A}{2 \pi \ell^{2}}$
- Magnetic flux: $\Phi=A B=\mathcal{N} 2 \pi \ell^{2} B=\mathcal{N} \frac{2 \pi \hbar c}{e}=\mathcal{N} \frac{h c}{e}=\mathcal{N} \Phi_{0}$
- Flux quantum: $\Phi_{0}=\frac{h c}{e} \quad\left(\Phi_{0}=\frac{h}{e}\right.$ in SI units)
- Φ_{0} a universal constant

Counting the states (discretize k)

$$
\psi_{k}(x, y)=\mathrm{e}^{i k y} \chi\left(x-\ell^{2} k\right) \quad \chi(x)=\left(\frac{1}{\pi \ell^{2}}\right)^{1 / 4} \mathrm{e}^{-x^{2} /\left(2 \ell^{2}\right)}
$$

- Periodic boundary conditions in y : $\quad k_{i+1}-k_{i}=\frac{2 \pi}{L}$
- Horizontal distance between neighboring orbitals: $\frac{2 \pi \pi^{2}}{L}$
- Area covered by one state: $2 \pi \ell^{2}$ Number of states in each LL: $\quad \mathcal{N}=\frac{A}{2 \pi \ell^{2}}$
- Magnetic flux:
$\Phi=A B=\mathcal{N} 2 \pi \ell^{2} B=\mathcal{N} \frac{2 \pi \hbar c}{e}=\mathcal{N} \frac{h c}{e}=\mathcal{N} \Phi_{0}$
- Flux quantum: $\Phi_{0}=\frac{h c}{e} \quad\left(\Phi_{0}=\frac{h}{e}\right.$ in SI units)
- Φ_{0} a universal constant

Density of states

- At $B=0: \quad \mathcal{D}(\varepsilon)=$ constant $=\frac{2 \pi m_{2} A}{h^{2}}$
- At $B \neq 0$: $\quad \Phi / \Phi_{0}$ states in each LL

Density of states

- At $B=0: \quad \mathcal{D}(\varepsilon)=$ constant $=\frac{2 \pi m_{2} A}{h^{2}}$

■ At $B \neq 0$: $\quad \Phi / \Phi_{0}$ states in each LL

$$
\mathcal{D}(\varepsilon)=\frac{\Phi}{\Phi_{0}} \sum_{n=1}^{\infty} \delta\left(\varepsilon-\left(n+\frac{1}{2}\right) \hbar \omega_{\mathrm{c}}\right)
$$

maximum filling for each $L L$ is $\nu=1$.

Density of states

■ How many states in the hatched region?

$$
\int_{\varepsilon}^{\varepsilon+\hbar \omega_{\mathrm{c}}^{\prime}} d \varepsilon^{\prime} \mathcal{D}\left(\varepsilon^{\prime}\right)=\hbar \omega_{\mathrm{c}} \frac{2 \pi m_{\mathrm{e}} A}{h^{2}}=\frac{\Phi}{\Phi_{0}}
$$

Outline

1 Classical Hall effect

2 2d noninteracting electrons in a magnetic field

3 Quantum Hall Effect

What the experiment shows

In modern jargon: The plateaus are "topologically protected"

Wavefunction "knotted" or "twisted"

■ Knotted in reciprocal space in nontrivial ways
■ The famous TKNN paper:
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
■ Integer numbers are very "robust"

Role of disorder

Current carried by delocalized states only

Varying the "inaccessible flux"

■ In a flat potential: $\varepsilon_{n}(\varphi)=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}\left(n+\frac{\varphi}{\Phi_{0}}\right)^{2}$
■ Hellmann-Feynman theorem (in any potential):

$$
v=\frac{1}{\hbar} \frac{\partial H}{\partial \kappa} \quad\left\langle\psi_{n}\right| v\left|\psi_{n}\right\rangle=\frac{1}{\hbar} \frac{d \epsilon_{n}(\kappa)}{d \kappa}
$$

■ Next: N noninteracting electrons in an arbitrary potential

Topological robustness of the current

$$
U=\sum_{n \in \text { occupied }} \epsilon_{n} \quad I=-\frac{1}{c} \frac{\partial U}{\partial \varphi}
$$

■ Independent of the substrate potential Independent on the number N of current carrying states

- Variation of a full flux quantum:

$$
\Delta U=U\left(\varphi+\Phi_{0}\right)-U(\varphi)=-\frac{\Phi_{0} I}{c}
$$

Laughlin's Gedankenexperiment (1981)

- The insertion of a flux quantum Φ_{0} maps the system into itself: how can the energy vary?
- Answer: an integer number ν of electrons is transferred from one edge to the other
\square If the edges are kept at voltage V_{y}, then

Laughlin's Gedankenexperiment (1981)

- The insertion of a flux quantum Φ_{0} maps the system into itself: how can the energy vary?
■ Answer: an integer number ν of electrons is transferred from one edge to the other
■ If the edges are kept at voltage V_{y}, then

$$
\nu e V_{y}=\Delta U=\frac{\Phi_{0} I_{x}}{c} ; \quad R_{\mathrm{H}}=V_{y} / I_{x}=\frac{\phi_{0}}{\nu c e}=\frac{1}{\nu} \frac{h}{e^{2}}
$$

