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Generalities
Class | observables: Bulk value defined modulo 27
Class Il observables: Exempt from 27 ambiguity

Local nature of class Il observables
m Anomalous Hall conductivity and orbital magnetization
m SWM sum rule vs. local density of states

Beyond band-structure theory
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Metric, connection, curvature

m V) a differentiable function of

m Quantum metric g,s(x):
D% k+dr = Gap(K)dradrs  gauge-invariant
m Berry connection A, (k):
Ok ktdk = Aa(K)dEq gauge-dependent
m Berry curvature Q,3(x) (curl of the connection):
Qup(K)dradrg = [0k, Ag(k) — OxzAa(k)]|dradrg

gauge-invariant



Metric, connection, curvature

m Quantum metric:
szc,n+dn = gop(Kr)dradkp 2-form
m Berry connection:
Vi kt+dk = Aa(K)dRq 1-form
m Berry curvature:
Qop(k)dradrg = [0k, Ag(k) — Ok Aa(k)]dradrp

2-form



Metric, connection, curvature

m Quantum metric 2-form:
9ap(k) = Re (0x.Vk|0k; Vi) = (O VE|VE) (VK |0k, Vi)
m Berry connection (1-form):
Au(rR) = I(Vk|0k, Vi)
m Berry curvature (2-form):

Qag(li'/) =-2Im <8,Qaw'{;,|8mﬁwlq,>



Metric, connection, curvature

m Quantum metric 2-form:
9ap(k) = Re (0x.Vk|0k; Vi) = (O VE|VE) (VK |0k, Vi)
m Berry connection (1-form):
Au(rR) = I(Vk|0k, Vi)
m Berry curvature (2-form):
Qap(k) = —21m (0, V|0, Vi)
m Metric-curvature tensor (2-form):

Faplk) = Gup() — 2 Qup(x)
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More general “geometrical” forms

m So far, the only entries have been the state vectors

m A typical more general “geometrical” 2-form:
(OkaVik|(Hk — Ek)|0x; Vi)

m Besides the state vectors, the Hamiltonian Hg is the sole
legal ingredient

m Why the combination (Hk — Ex)?



ldentifying « with k, many-band case

m Berry connection (insulators only):

My
Aa(K) = 1> (Up|Ok, ui)
j=1

m Metric-curvature tensor (including metals):

Fop(K) = > (Ok, U0k, Uik)

EkSH
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P and M could not be more different!
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m Polarization

Insulators only

Gauge-dependent integrand

Integral of a 1-form

At bare bones, P is 1-dimensional

Bulk P multiple valued

Tinkering with the boundaries can alter P

m Orbital Magnetization

Insulators and metals

Gauge-invariant integrand

Integral of a 2-form

At bare bones, M is 2-dimensional

M is single-valued

Tinkering with the boundaries cannot alter M



They could not be more different!
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m Polarization: profotlpe of class |

Insulators only

Gauge-dependent integrand

Integral of a 1-form

At bare bones, P is 1-dimensional

Bulk P multiple valued

Tinkering with the boundaries can alter P

m Orbital Magnetization: prototipe of class Il

Insulators and metals

Gauge-invariant integrand

Integral of a 2-form

At bare bones, M is 2-dimensional

M is single-valued

Tinkering with the boundaries cannot alter M



Message from modern differential geometry

(& algebraic topology)

Results due to Pontryagin, Cartan, Weyl, Chern, Simons....
(= first half of 20th century)

m Features in odd vs. even dimension are quite different
m 2n-forms and (2n—1)-forms behave in quite different ways

m Chern forms, and the (topological) Chern number only
exists in dimension 2n

m Chern-Simons forms are instead (2n—1)-forms



Message from modern differential geometry

(& algebraic topology)

Results due to Pontryagin, Cartan, Weyl, Chern, Simons....
(= first half of 20th century)

m Features in odd vs. even dimension are quite different
m 2n-forms and (2n—1)-forms behave in quite different ways

m Chern forms, and the (topological) Chern number only
exists in dimension 2n

m Chern-Simons forms are instead (2n—1)-forms

m The Berry connection entering the P in 1d formula is a
Chern-Simons 1-form

m Does any Chern-Simons 3-form have physical meaning?
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Class | observables: Bulk value defined modulo 27



The polarization “quantum”

D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993)

m Bulk polarization P is a lattice, not a vector!

m The value of P remains ambiguous until the sample
termination is specified



The polarization “quantum”

D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993)

m Bulk polarization P is a lattice, not a vector!

m The value of P remains ambiguous until the sample
termination is specified

m For a 1d system polarization is defined modulo e

P= 23% the Berry phase ~ is defined modulo 27
T



The polarization “quantum”

D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993)

m Bulk polarization P is a lattice, not a vector!

m The value of P remains ambiguous until the sample
termination is specified

m For a 1d system polarization is defined modulo e

P= 23% the Berry phase ~ is defined modulo 27
T

m In a centrosymmetric polymer P = —P:
m either P=0mod e
mor P=e/2mod e

m Kind of obvious if one adopts the “single-point Berry
phase” viewpoint!



NonAbelian connection and curvature

m Insulators only

m NonAbelian connection matrix:
A jr (K) = i{Uj| Ok, Upi)
m NonAbelian curvature matrix:

Qupji(K) = Ok, Apj(K) — 5kﬂ«4a,jj/(k)
= I( <8ka Ujk’@kﬁ Uj’k> — <8k5 ujk’aka Ujk) )



Chern-Simons 1-form & 3-form

m 1d BZ integral of the Chern-Simons 1-form:

~(€) —/ dky tr {Ax(kx)} (physical meaning: polarization)
BZ
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m 1d BZ integral of the Chern-Simons 1-form:

~(€) —/ dky tr {Ax(kx)} (physical meaning: polarization)
BZ

m 3d BZ integral of the Chern-Simons 3-form:
o
saw / dk tr { K0k, Ay (K) — SIAa(k)Ag(k)Ay(k)}

m Formula taken from the mathematical literature
m ¢ gauge-invariant modulo 27
m Does 0 have any physical meaning?



Chern-Simons 1-form & 3-form

m 1d BZ integral of the Chern-Simons 1-form:

~(€) —/ dky tr {Ax(kx)} (physical meaning: polarization)
BZ

m 3d BZ integral of the Chern-Simons 3-form:
o
saw / dk tr { K0k, Ay (K) — SIAa(k)AB(k)AV(k)}

m Formula taken from the mathematical literature

m ¢ gauge-invariant modulo 27

m Does 0 have any physical meaning?

m Yes: “Axion” term in magnetoelectric response
(X.-L. Qi, T.L.Hughes, & S.-C. Zhang, PRB 2008)



Class | observables: v and 6 defined modulo 27

Chern-Simons 1-form Polarization
(insulators only)
Chern-Simons 3-form | Axion term in magnetoelectrics
(insulators only)

(©) = /(2"’7:‘)(, i(k)

m Integrand §(k) is gauge-dependent
m Bulk (O) defined modulo 27 (in dimensionless units)
m For a bounded sample (O) depends on termination

m In presence of some “protecting” symmetry
both v and ¢ are Z, topological invariants
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Class |l observables: Exempt from 27 ambiguity



Common features

] Time-reversal odd \ Time-reversal even \
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule
Magneto-optical sum rule ??
Orbital magnetization Drude weight

o=/ (2‘”7:‘)(, s (K)

m Integrand f,s3(k) gauge-independent

m No modulo 27 ambiguity

m For a bounded sample (O) independent of termination
m Tinkering with the boundaries cannot change (O)



Common features

] Time-reversal odd \ Time-reversal even \
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule
Magneto-optical sum rule ??
Orbital magnetization Drude weight

o=/ (2‘”7:‘)(, s (K)

m Integrand f,s3(k) gauge-independent

m No modulo 27 ambiguity

m For a bounded sample (O) independent of termination
m Tinkering with the boundaries cannot change (O)

m All of them admit a local representation



Synoptic table of class Il observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule

metals and insulators insulators only
Magneto-optical sum rule ??

metals and insulators

Orbital magnetization Drude weight

metals and insulators metals only

m On the same row: k-integral of the same f,3(k)

m Left: Imaginary antisymmetric term
m Right Real symmetric term



Synoptic table of class Il observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule
metals and insulators insulators only
Magneto-optical sum rule ??

metals and insulators

Orbital magnetization Drude weight

metals and insulators metals only

m On the same row: k-integral of the same f,3(k)

m Left: Imaginary antisymmetric term
m Right Real symmetric term

m Two are sum rules: why?
The Souza-Wilkens-Martin sum rule:
m Measures the WFs gauge-invariant quadratic spread
m Diverges in all metals



Synoptic table of class Il observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule

metals and insulators insulators only
Magneto-optical sum rule 2?

metals and insulators

Orbital magnetization Drude weight

metals and insulators metals only

m T-odd observables

m Only make sense for d > 2

m Don’'t make much difference between insulators and metals
m T-even observables

m They make sense even in 1d (yet based on a 2-form)
m Behave very differently in insulators and metals



Synoptic table of class Il observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)
Anomalous Hall conductivity | Souza-Wilkens-Martin sum rule

metals and insulators insulators only
Magneto-optical sum rule 2?

metals and insulators

Orbital magnetization Drude weight

metals and insulators metals only

m T-odd observables

m Only make sense for d > 2

m Don’t make much difference between insulators and metals
m T-even observables

m They make sense even in 1d (yet based on a 2-form)

m Behave very differently in insulators and metals

m |s this qualitative difference a Fermi-surface effect?



Observables cast as gauge-invariant in form

m Band projector (gauge-invariant):

Pe= Y luw)(ul

€jkSH

m The integrand f,s(K), being gauge-invariant, is expressible
in terms of k-derivatives of P

m All class Il observables are rooted in a 2-form
m Common entry in f,5(k) in all cases:

Products of the kind: (OkaPk) (0K Px)



T-odd class Il observables

m Defined in the same way in insulators and metals



T-odd class Il observables

m Defined in the same way in insulators and metals

m Anomalous Hall conductivity:

_ ie? dk
Re U(gﬂ)(o) = _h/ (2 ) Trcell{Pk [8/( Pk, 8k97)k]}
BZ

m Magneto-optical sum rule:

0 _ ire? dk
|m/0 dcu 0&5)((4)): 2h2 (2 )dTrcell{(Hk M)[ak Pk?akﬁpk]}

m Orbital Magnetization:

ie dk

= — TCe _
oho (2 ) I 11{’Hk u|Vk7>k kaPk}



Role of the Fermi surface

m Band projector and its derivative:

Pe= Y 0(— k) [Uw) (Ul
J

KPx = — Y 0(1— ei) (Oew) |U) (Ul
i
+ )00 — ) (k) Okl + |up) (ki)
j
m ¢-like singularity only for metals
m ¢-term annihilated by antisymmetrization in T-odd cases
m Metallic J-term does contribute in T-even cases



T-evenclass |l observables

m Souza-Wilkens-Martin sum rule in insulators:

Xdwoo (1) 7€ _dk_
/0 S Reow) = TRe [ g Tl P (96,706, PW)

m What about metals?



T-evenclass |l observables

m Souza-Wilkens-Martin sum rule in insulators:

do pe D) - 7€ dk_
/0 UR o, ( ) 7 Re - (Zﬂ)dTrcell{,Pk(8kapk)(akﬂ7)k)}

m What about metals?

m Drude weight:

2
mTe n
D.g = 5ag

2 e2
27 e / oy Teenl 1o = (0. Pi) (9, P}

m D,3 = 0ininsulators;
in metals use the regular term only in Ok Pk.
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Local nature of class Il observables



Kohn’s “nearsightedness” principle (1996)

m W. Kohn: “The principle applies to the one particle density
matrix but not to individual eigenfunctions”

m Expressions in terms of P both in k-space and in r-space
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Local nature of class Il observables
m Anomalous Hall conductivity and orbital magnetization



Densities in Haldanium flakes
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m Tensor fields in r-space:

Sap(r) = Im(r| P [ra, P][rs, P|r)
Map(r) = Im(r[[H — pl[ra, P][rs, PIIN.

m S.s5(r) and M,5(r) are “densities” well defined even
for disordered and/or inhomogeneous bounded samples



QAHC in Haldanium flakes at half filling
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m Topological “density” §,5(r) along the central line(top)
m Site occupancy (bottom)



AHC in Haldanium metal/metal heterojunctions
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Orbital magnetization in insulators and metals
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m 1/L convergence with size: 51y, [ dr r x jmcro)(r)

m Much better convergence: 5% c,.3Try {95}
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Local nature of class Il observables

m SWM sum rule vs. local density of states



A metal-semiconductor heterojunction

m (001)Al/GaAs heterojunction

m The local density of states at the Fermi level
is the obvious marker to discriminate
insulating vs. metallic regions



Local density of states at the Fermi level
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The problem

m The local density of states at the Fermi level
cannot work for Anderson insulators: gapless

m The OBCs quantum metric
m Diverges in all metals
m Converge to a finite value in all insulators
m It can probe a inhomogeneous system locally



Tight binding 1d binary crystal

H=Y (glnil—tli+ 1§l —thG+1])
J

Diagonal disorder: t fixed, ¢, — 5 = A fixed

Crystalline case:
ABABABABABABABABABABABABABABABABABAB.............

Disordered case:
ABAABABBABABBAABABABBABAABABBABABBAA ............

Random choice with equal probability, average over many
replicas.



Density of states

100+

m At half filling both (crystalline and disordered) are insulating

m At any other filling the crystalline is conducting and the
disordered is insulating.



Simulations for 1d heterojunctions

A. Marrazzo and R. Resta, Phys. Rev. Lett. 122, 166602 (2019)

Local Souza-Wilkens-Martin sum rule.
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Beyond band-structure theory



Formulae for correlated & disordered systems

(in a different Hilbert space)

Chern-Simons 1-form

Polarization
yes

Chern-Simons 3-form

Axion term in magnetoelectrics

no

Time-reversal odd
(antisymmetric 2-forms)

Time-reversal even
(symmetric 2-forms)

Anomalous Hall conductivity

Souza-Wilkens-Martin sum rule

Orbital magnetization
no

yes (insulators) yes
Magneto-optical sum rule Drude weight

yes yes

2??
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