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Synopsis of the geometrical observables in
condensed matter

(partitioned in two classes)

Raffaele Resta

Trieste, 2020
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Outline

1 Generalities

2 Class I observables: Bulk value defined modulo 2π

3 Class II observables: Exempt from 2π ambiguity

4 Local nature of class II observables
Anomalous Hall conductivity and orbital magnetization
SWM sum rule vs. local density of states

5 Beyond band-structure theory
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Metric, connection, curvature

|Ψκ⟩ a differentiable function of κ

Quantum metric gαβ(κ):

D2
κ,κ+dκ = gαβ(κ)dκαdκβ gauge-invariant

Berry connection Aα(κ):

φκ,κ+dκ = Aα(κ)dκα gauge-dependent

Berry curvature Ωαβ(κ) (curl of the connection):

Ωαβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβ
Aα(κ)]dκαdκβ

gauge-invariant



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Metric, connection, curvature

|Ψκ⟩ a differentiable function of κ

Quantum metric gαβ(κ):

D2
κ,κ+dκ = gαβ(κ)dκαdκβ gauge-invariant

Berry connection Aα(κ):

φκ,κ+dκ = Aα(κ)dκα gauge-dependent

Berry curvature Ωαβ(κ) (curl of the connection):

Ωαβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβ
Aα(κ)]dκαdκβ

gauge-invariant



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Metric, connection, curvature

|Ψκ⟩ a differentiable function of κ

Quantum metric gαβ(κ):

D2
κ,κ+dκ = gαβ(κ)dκαdκβ gauge-invariant

Berry connection Aα(κ):

φκ,κ+dκ = Aα(κ)dκα gauge-dependent

Berry curvature Ωαβ(κ) (curl of the connection):
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Aα(κ)]dκαdκβ

gauge-invariant
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Metric, connection, curvature

Quantum metric:

D2
κ,κ+dκ = gαβ(κ)dκαdκβ 2-form

Berry connection:

φκ,κ+dκ = Aα(κ)dκα 1-form

Berry curvature:

Ωαβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβ
Aα(κ)]dκαdκβ

2-form
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Metric, connection, curvature

Quantum metric 2-form:

gαβ(κ) = Re ⟨∂καΨκ|∂κβ
Ψκ⟩ − ⟨∂καΨκ|Ψκ⟩⟨Ψκ|∂κβ

Ψκ⟩

Berry connection (1-form):

Aα(κ) = i⟨Ψκ|∂καΨκ⟩

Berry curvature (2-form):

Ωαβ(κ) = −2 Im ⟨∂καΨκ|∂κβ
Ψκ⟩

Metric-curvature tensor (2-form):

Fαβ(κ) = gαβ(κ)−
i
2
Ωαβ(κ)
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Metric, connection, curvature

Quantum metric 2-form:

gαβ(κ) = Re ⟨∂καΨκ|∂κβ
Ψκ⟩ − ⟨∂καΨκ|Ψκ⟩⟨Ψκ|∂κβ

Ψκ⟩

Berry connection (1-form):

Aα(κ) = i⟨Ψκ|∂καΨκ⟩

Berry curvature (2-form):

Ωαβ(κ) = −2 Im ⟨∂καΨκ|∂κβ
Ψκ⟩

Metric-curvature tensor (2-form):

Fαβ(κ) = gαβ(κ)−
i
2
Ωαβ(κ)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

More general “geometrical” forms

So far, the only entries have been the state vectors

A typical more general “geometrical” 2-form:

⟨∂καΨκ|(Hκ − Eκ)|∂κβ
Ψκ⟩

Besides the state vectors, the Hamiltonian Hκ is the sole
legal ingredient

Why the combination (Hκ − Eκ)?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

More general “geometrical” forms

So far, the only entries have been the state vectors

A typical more general “geometrical” 2-form:

⟨∂καΨκ|(Hκ − Eκ)|∂κβ
Ψκ⟩

Besides the state vectors, the Hamiltonian Hκ is the sole
legal ingredient

Why the combination (Hκ − Eκ)?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

More general “geometrical” forms

So far, the only entries have been the state vectors

A typical more general “geometrical” 2-form:
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Identifying κ with k, many-band case

Berry connection (insulators only):

Aα(k) = i
nb∑

j=1

⟨ujk|∂kαujk⟩

Metric-curvature tensor (including metals):

Fαβ(k) =
∑
ϵjk≤µ

⟨∂kαujk|∂kβujk⟩

−
∑

ϵjk,ϵj′k≤µ

⟨∂kαujk|uj ′k⟩ ⟨uj ′k|∂kβujk⟩
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P and M could not be more different!
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Similar problems vs. similar solutions

P(el)
α = −2ie

nb∑

j=1

∫

BZ

dk
(2π)d ⟨ujk|∂kαujk⟩ = −2e

∫

BZ

dk
(2π)d Aα(k)

Mγ = − ie
2!c

εγαβ
∑

εjk<µ

∫

BZ

dk
(2π)d ⟨∂kαujk| (Hk + ϵjk − 2µ) |∂kβujk⟩

Polarization
Gauge-dependent integrand
Integral of a 1-form
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization
Gauge-invariant integrand
Integral fo a 2-form
M is single-valued
Tinkering with the boundaries cannot alter M

Polarization

Insulators only
Gauge-dependent integrand
Integral of a 1-form
At bare bones, P is 1-dimensional
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization

Insulators and metals
Gauge-invariant integrand
Integral of a 2-form
At bare bones, M is 2-dimensional
M is single-valued
Tinkering with the boundaries cannot alter M
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Similar problems vs. similar solutions

P(el)
α = −2ie

nb∑

j=1

∫

BZ

dk
(2π)d ⟨ujk|∂kαujk⟩ = −2e

∫

BZ

dk
(2π)d Aα(k)

Mγ = − ie
2!c

εγαβ
∑

εjk<µ

∫

BZ

dk
(2π)d ⟨∂kαujk| (Hk + ϵjk − 2µ) |∂kβujk⟩

Polarization
Gauge-dependent integrand
Integral of a 1-form
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization
Gauge-invariant integrand
Integral fo a 2-form
M is single-valued
Tinkering with the boundaries cannot alter M

Polarization: prototipe of class I

Insulators only
Gauge-dependent integrand
Integral of a 1-form
At bare bones, P is 1-dimensional
Bulk P multiple valued
Tinkering with the boundaries can alter P

Orbital Magnetization: prototipe of class II

Insulators and metals
Gauge-invariant integrand
Integral of a 2-form
At bare bones, M is 2-dimensional
M is single-valued
Tinkering with the boundaries cannot alter M
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Message from modern differential geometry
(& algebraic topology)

Results due to Pontryagin, Cartan, Weyl, Chern, Simons....
(≃ first half of 20th century)

Features in odd vs. even dimension are quite different
2n-forms and (2n−1)-forms behave in quite different ways
Chern forms, and the (topological) Chern number only
exists in dimension 2n
Chern-Simons forms are instead (2n−1)-forms

The Berry connection entering the P in 1d formula is a
Chern-Simons 1-form
Does any Chern-Simons 3-form have physical meaning?
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Does any Chern-Simons 3-form have physical meaning?
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Outline

1 Generalities

2 Class I observables: Bulk value defined modulo 2π

3 Class II observables: Exempt from 2π ambiguity

4 Local nature of class II observables
Anomalous Hall conductivity and orbital magnetization
SWM sum rule vs. local density of states

5 Beyond band-structure theory
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The polarization “quantum”
D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993)

Bulk polarization P is a lattice, not a vector!
The value of P remains ambiguous until the sample
termination is specified

For a 1d system polarization is defined modulo e

P =
e

2π
γ, the Berry phase γ is defined modulo 2π

In a centrosymmetric polymer P = −P:

either P = 0 mod e
or P = e/2 mod e

Kind of obvious if one adopts the “single-point Berry
phase” viewpoint!
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The polarization “quantum”
D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993)

Bulk polarization P is a lattice, not a vector!
The value of P remains ambiguous until the sample
termination is specified

For a 1d system polarization is defined modulo e

P =
e

2π
γ, the Berry phase γ is defined modulo 2π

In a centrosymmetric polymer P = −P:

either P = 0 mod e
or P = e/2 mod e

Kind of obvious if one adopts the “single-point Berry
phase” viewpoint!
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NonAbelian connection and curvature

Insulators only

NonAbelian connection matrix:

Aα,jj ′(k) = i⟨ujk|∂kαuj ′k⟩

NonAbelian curvature matrix:

Ωαβ,jj ′(k) = ∂kαAβ,jj ′(k)− ∂kβAα,jj ′(k)
= i( ⟨∂kαujk|∂kβuj ′k⟩ − ⟨∂kβujk|∂kαujk⟩ )
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Chern-Simons 1-form & 3-form

1d BZ integral of the Chern-Simons 1-form:

γ(el) =

∫
BZ

dkx tr {Ax(kx)} (physical meaning: polarization)

3d BZ integral of the Chern-Simons 3-form:

θ = − 1
4π

εαγβ

∫
BZ
dk tr

{
Aα(k)∂kβAγ(k)−

2i
3
Aα(k)Aβ(k)Aγ(k)

}
Formula taken from the mathematical literature
θ gauge-invariant modulo 2π
Does θ have any physical meaning?
Yes: “Axion” term in magnetoelectric response
(X.-L. Qi, T.L.Hughes, & S.-C. Zhang, PRB 2008)
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}
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Class I observables: γ and θ defined modulo 2π

Chern-Simons 1-form Polarization
(insulators only)

Chern-Simons 3-form Axion term in magnetoelectrics
(insulators only)

⟨O⟩ =
∫

BZ

dk
(2π)d f(k)

Integrand f(k) is gauge-dependent
Bulk ⟨O⟩ defined modulo 2π (in dimensionless units)
For a bounded sample ⟨O⟩ depends on termination
In presence of some “protecting” symmetry
both γ and θ are Z2 topological invariants
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Outline

1 Generalities

2 Class I observables: Bulk value defined modulo 2π

3 Class II observables: Exempt from 2π ambiguity

4 Local nature of class II observables
Anomalous Hall conductivity and orbital magnetization
SWM sum rule vs. local density of states

5 Beyond band-structure theory
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Common features

Time-reversal odd Time-reversal even
Anomalous Hall conductivity Souza-Wilkens-Martin sum rule

Magneto-optical sum rule ??
Orbital magnetization Drude weight

⟨O⟩ =
∫

BZ

dk
(2π)d fαβ(k)

Integrand fαβ(k) gauge-independent
No modulo 2π ambiguity
For a bounded sample ⟨O⟩ independent of termination
Tinkering with the boundaries cannot change ⟨O⟩
All of them admit a local representation



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Common features

Time-reversal odd Time-reversal even
Anomalous Hall conductivity Souza-Wilkens-Martin sum rule

Magneto-optical sum rule ??
Orbital magnetization Drude weight

⟨O⟩ =
∫

BZ

dk
(2π)d fαβ(k)

Integrand fαβ(k) gauge-independent
No modulo 2π ambiguity
For a bounded sample ⟨O⟩ independent of termination
Tinkering with the boundaries cannot change ⟨O⟩
All of them admit a local representation
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Synoptic table of class II observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)

Anomalous Hall conductivity Souza-Wilkens-Martin sum rule
metals and insulators insulators only

Magneto-optical sum rule ??
metals and insulators
Orbital magnetization Drude weight
metals and insulators metals only

On the same row: k-integral of the same fαβ(k)
Left: Imaginary antisymmetric term
Right Real symmetric term

Two are sum rules: why?
The Souza-Wilkens-Martin sum rule:

Measures the WFs gauge-invariant quadratic spread
Diverges in all metals
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Synoptic table of class II observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)

Anomalous Hall conductivity Souza-Wilkens-Martin sum rule
metals and insulators insulators only

Magneto-optical sum rule ??
metals and insulators
Orbital magnetization Drude weight
metals and insulators metals only

On the same row: k-integral of the same fαβ(k)
Left: Imaginary antisymmetric term
Right Real symmetric term

Two are sum rules: why?
The Souza-Wilkens-Martin sum rule:

Measures the WFs gauge-invariant quadratic spread
Diverges in all metals
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Synoptic table of class II observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)

Anomalous Hall conductivity Souza-Wilkens-Martin sum rule
metals and insulators insulators only

Magneto-optical sum rule ??
metals and insulators
Orbital magnetization Drude weight
metals and insulators metals only
T-odd observables

Only make sense for d ≥ 2
Don’t make much difference between insulators and metals

T-even observables
They make sense even in 1d (yet based on a 2-form)
Behave very differently in insulators and metals

Is this qualitative difference a Fermi-surface effect?
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Synoptic table of class II observables

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)

Anomalous Hall conductivity Souza-Wilkens-Martin sum rule
metals and insulators insulators only

Magneto-optical sum rule ??
metals and insulators
Orbital magnetization Drude weight
metals and insulators metals only
T-odd observables

Only make sense for d ≥ 2
Don’t make much difference between insulators and metals

T-even observables
They make sense even in 1d (yet based on a 2-form)
Behave very differently in insulators and metals

Is this qualitative difference a Fermi-surface effect?
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Observables cast as gauge-invariant in form

Band projector (gauge-invariant):

Pk =
∑
ϵjk≤µ

|ujk⟩⟨ujk|

The integrand fαβ(k), being gauge-invariant, is expressible
in terms of k-derivatives of Pk

All class II observables are rooted in a 2-form
Common entry in fαβ(k) in all cases:

Products of the kind: (∂kαPk)(∂kβPk)
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T-odd class II observables

Defined in the same way in insulators and metals

Anomalous Hall conductivity:

Re σ
(−)
αβ (0) = − ie2

ℏ

∫
BZ

dk
(2π)d Trcell{Pk [ ∂kαPk, ∂kβPk]}

Magneto-optical sum rule:

Im
∫ ∞

0
dω σ

(−)
αβ (ω) =

iπe2

2ℏ2

∫
BZ

dk
(2π)d Trcell{(Hk−µ)[∂kαPk, ∂kβPk]}

Orbital Magnetization:

M =
ie

2ℏc

∫
BZ

dk
(2π)d Trcell{|Hk − µ|∇kPk ×∇kPk}
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T-odd class II observables

Defined in the same way in insulators and metals

Anomalous Hall conductivity:

Re σ
(−)
αβ (0) = − ie2

ℏ

∫
BZ

dk
(2π)d Trcell{Pk [ ∂kαPk, ∂kβPk]}

Magneto-optical sum rule:

Im
∫ ∞

0
dω σ

(−)
αβ (ω) =

iπe2

2ℏ2

∫
BZ

dk
(2π)d Trcell{(Hk−µ)[∂kαPk, ∂kβPk]}

Orbital Magnetization:

M =
ie

2ℏc

∫
BZ

dk
(2π)d Trcell{|Hk − µ|∇kPk ×∇kPk}
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Role of the Fermi surface

Band projector and its derivative:

Pk =
∑

j

θ(µ− ϵjk) |ujk⟩⟨ujk|

∂kPk = −
∑

j

δ(µ− ϵjk) (∂kϵjk) |ujk⟩⟨ujk|

+
∑

j

θ(µ− ϵjk) (|ujk⟩⟨∂kujk|+ |ujk⟩⟨∂kujk|)

δ-like singularity only for metals
δ-term annihilated by antisymmetrization in T-odd cases
Metallic δ-term does contribute in T-even cases
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T-evenclass II observables

Souza-Wilkens-Martin sum rule in insulators:∫ ∞

0

dω
ω

Re σ
(+)
αβ (ω) =

πe2

ℏ
Re

∫
BZ

dk
(2π)d Trcell{Pk ( ∂kαPk)(∂kβPk)}

What about metals?

Drude weight:

Dαβ =
πe2n

m
δαβ

− 2πe2

ℏ2 Re
∫

BZ

dk
(2π)d Trcell{|Hk − µ|(∂kαPk)(∂kβPk)}

Dαβ = 0 in insulators;
in metals use the regular term only in ∂kαPk.
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T-evenclass II observables

Souza-Wilkens-Martin sum rule in insulators:∫ ∞

0

dω
ω

Re σ
(+)
αβ (ω) =

πe2

ℏ
Re

∫
BZ

dk
(2π)d Trcell{Pk ( ∂kαPk)(∂kβPk)}

What about metals?

Drude weight:

Dαβ =
πe2n

m
δαβ

− 2πe2

ℏ2 Re
∫

BZ

dk
(2π)d Trcell{|Hk − µ|(∂kαPk)(∂kβPk)}

Dαβ = 0 in insulators;
in metals use the regular term only in ∂kαPk.
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Outline

1 Generalities

2 Class I observables: Bulk value defined modulo 2π

3 Class II observables: Exempt from 2π ambiguity

4 Local nature of class II observables
Anomalous Hall conductivity and orbital magnetization
SWM sum rule vs. local density of states

5 Beyond band-structure theory
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Kohn’s “nearsightedness” principle (1996)

W. Kohn: “The principle applies to the one particle density
matrix but not to individual eigenfunctions”

Expressions in terms of P both in k-space and in r-space
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Outline

1 Generalities

2 Class I observables: Bulk value defined modulo 2π

3 Class II observables: Exempt from 2π ambiguity

4 Local nature of class II observables
Anomalous Hall conductivity and orbital magnetization
SWM sum rule vs. local density of states

5 Beyond band-structure theory
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Densities in Haldanium flakes
RAPID COMMUNICATIONS

ANTIMO MARRAZZO AND RAFFAELE RESTA PHYSICAL REVIEW B 95, 121114(R) (2017)

where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Equation (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units (also
known as klitzing−1)—is dimensionless for d = 2, while it has
the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-diagonal
elements over the |ψjk⟩ and |ujk⟩ are well defined. Exploiting
some results from linear-response theory [9], one may prove
that

Qkr|ujk⟩ = iQk|∂kujk⟩ (5)

whenever j labels an occupied state at the given k. We may
thus write the Berry curvature as a trace:

'αβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their
complementary), Eqs. (1) and (2), it is easy to prove the identity

1
Vcell

∫

cell
dr ⟨r|PrαQrβ |r⟩ =

∫

BZ
[dk] Tr {PkrαQkrβ}. (7)

This identity has been known since a few years ago [6,10–14]
for the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to the
metallic case as well. The left-hand of Eq. (7) has two out-
standing virtues: (i) it is expressed directly in the Schrödinger
representation, making no reference to reciprocal space, and
(ii) it can be adopted as such for supercells of arbitrarily large
size, thus extending the concept of geometrical AHC to dis-
ordered systems, such as alloys, as well as “dirty” metals and
insulators. We thus recast Eqs. (4) and (7) in the compact form,

σαβ = 2e2

h̄
Im TrV {PrαQrβ}

= −2e2

h̄
Im TrV {P [rα,P] [rβ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospect, the approach of Ref. [5] is equivalent to
evaluating Eq. (8) over the folded BZ of the superlattice. Indeed
Eq. (8), when applied to a dirty metal, combines the nominally
intrinsic contribution—as defined for the clean metal—to some
extrinsic contributions of geometrical nature. Following the
arguments of Ref. [5] we argue here that Eq. (8) may yield
the sum of the intrinsic and side-jump contributions to the
AHC, while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either insulators
or metals, either crystalline or disordered, but it has only been
proved for an unbounded and macroscopically homogeneous
system within periodic boundary conditions. The next issue
is whether one may adopt Eq. (8) locally, in order to
address inhomogeneous systems (e.g., heterojunctions) or
even bounded samples (e.g., crystallites).

FIG. 1. A typical “Haldanium” flake. We have considered flakes
with up to 10 506 sites, all with the same aspect ratio; the one shown
here has 1190 sites. In order to probe the AHC locality we evaluate
the trace per unit area either on the central cell (two sites) or on the
“bulk” region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

The locality of the AHC was investigated in Ref. [6],
where it was shown—for the insulating case only—that the
topological AHC can indeed be evaluated from Eq. (8) for
bounded and/or macroscopically inhomogeneous systems.
The concept of “topological marker” was proposed therein;
in the following we are going to show that Eq. (8) yields an
analogous “geometrical marker”, effective in the metallic case
as well. The very important feature pointed out by Ref. [6] is
that—when a bounded sample is addressed—the trace per unit
volume has to be evaluated using only some inner region of the
sample, and not the whole sample. If the bounded system is a
crystallite, one evaluates, e.g., the left-hand side of Eq. (7) over
its central cell; in the large-crystallite limit one recovers the
bulk value of the AHC. In all the cases dealt with in Ref. [6] the
convergence with size proved to be very fast: this was attributed
to the exponential decay of the one-body density matrix in insu-
lators (nearsightedness [7]), as already said in the introduction.
For the metallic case we are going to explore in the following
an uncharted territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
present kind is the one proposed by Haldane in 1988 [1]. It is
a tight-binding 2d Hamiltonian on a honeycomb lattice with
on-site energies ±(, first-neighbor hopping t1, and second-
neighbor hopping t2 = |t2|eiφ , which provides time-reversal
symmetry breaking. The model is insulating at half filling
and metallic at any other filling. Our bounded samples are
rectangular Haldanium flakes such as the one shown in Fig. 1;
the corresponding simulations for lattice-periodical samples,
with Bloch orbitals, are performed by means of the PythTB
code [15]. Oscillations as a function of the flake size occur
in the metallic case; as customary, we adopt a regularizing
“smearing” technique.

In Fig. 2 we plot—as a function of the Fermi level µ—the
dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} = h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in Eq. (9)
equals minus the Chern number C1 in the quantized insulating

121114-2

Tensor fields in r-space:

Fαβ(r) = Im ⟨r| P [rα,P] [rβ,P] |r⟩
Mαβ(r) = Im ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩.

Fαβ(r) and Mαβ(r) are “densities” well defined even
for disordered and/or inhomogeneous bounded samples
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QAHC in Haldanium flakes at half filling RAPID COMMUNICATIONS

MAPPING TOPOLOGICAL ORDER IN COORDINATE SPACE PHYSICAL REVIEW B 84, 241106(R) (2011)

FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological “density” Fαβ(r) along the central line(top)
Site occupancy (bottom)
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AHC in Haldanium metal/metal heterojunctions

RAPID COMMUNICATIONS

LOCALITY OF THE ANOMALOUS HALL CONDUCTIVITY PHYSICAL REVIEW B 95, 121114(R) (2017)

FIG. 2. AHC as a function of the Fermi level µ for a 3422-site
flake. Top: trivial insulator when µ is in the gap; bottom: topological
insulator (C1 = −1) when µ is in the gap. See text about labels: Cell,
Bulk, and PBCs. All calculations adopt a “smearing” s = 0.05.

case [16]: nonzero C1 reveals the nontrivial (topological)
nature of the insulating ground state. Each panel displays
the trace per unit area, Eq. (9), evaluated in three different
ways: over the central two sites (labeled “Cell”), evaluated
over 1/4 of the sites (labeled “Bulk”), and evaluated as the
usual integral of the Berry curvature for an unbounded sample
(labeled “PBCs”). The plots show that averaging over the bulk
region provides a better convergence. The two plots refer to
two different sets of parameters: in both cases we set t1 = 1
and φ = 0.25, while " = 2 the for top plot and " = 1/3 for
the bottom plot. It is perspicuous from the figure that when µ
is in the gap region the former choice yields a trivial insulator,
and the latter a topological one (C1 = −1).

Figure 2 proves our major claim: the geometri-
cal/topological AHC, for both metals and insulators, is indeed
a local property of the electronic ground state and can be
evaluated for a bounded sample, where the orbitals are square
integrable and the concept of reciprocal space does not make
any sense. What differentiates insulators from metals is only
the kind of convergence with the system size: exponential
in the former case, power law in the latter. We show a
typical convergence study in Fig. 3, where we have chosen
a metallic flake with µ = −2.5 and the Hamiltonian for which
the corresponding insulator is trivial: top panel of Fig. 2. As for
the previous figure, averaging over the bulk region provides a
better convergence than taking the trace on the central two-site

FIG. 3. Convergence of AHC evaluated locally as a function of
the flake size. Parameters as in the top panel of Fig. 2, and µ = −2.5.
The quantity σxy(∞) is obtained via extrapolation in the large flake
limit. A smearing s = 0.05 is adopted.

cell. Interpolations in both panels clearly show that the AHC
convergence to the bulk value is of the order L−3, where L is
the linear size of the flake.

FIG. 4. Local AHC for an heterojunction, where the left and
right halves of the flake are two different metals (see text). For this
calculation the flake has 10 506 sites; our local function is shown on a
line of 102 sites (grey area in Fig. 1). The two horizontal lines (labeled
“PBCs”) show the corresponding Berry-curvature calculations.

121114-3

Geometrical “density” Fαβ(r)
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Orbital magnetization in insulators and metals

We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.
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We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
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MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ
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B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
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1/L convergence with size: 1
2cV

∫
dr r × j(micro)(r)

Much better convergence: e
2ℏc εγαβTrV {Mαβ}
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A metal-semiconductor heterojunction

(001)Al/GaAs heterojunction

The local density of states at the Fermi level
is the obvious marker to discriminate
insulating vs. metallic regions
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Local density of states at the Fermi level

LDOS
(macroscopic average)
at the Fermi level

Notice the evanescent
states
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The problem

The local density of states at the Fermi level
cannot work for Anderson insulators: gapless

The OBCs quantum metric
Diverges in all metals
Converge to a finite value in all insulators
It can probe a inhomogeneous system locally
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Tight binding 1d binary crystal

H =
∑

j

( ϵj |j⟩⟨j | − t |j + 1⟩⟨j | − t |j⟩⟨j + 1| )

Diagonal disorder: t fixed, ϵb − ϵa = ∆ fixed

Crystalline case:
ABABABABABABABABABABABABABABABABABAB.............

Disordered case:
ABAABABBABABBAABABABBABAABABBABABBAA ............

Random choice with equal probability, average over many
replicas.
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Density of states
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At half filling both (crystalline and disordered) are insulating
At any other filling the crystalline is conducting and the
disordered is insulating.
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Simulations for 1d heterojunctions
A. Marrazzo and R. Resta, Phys. Rev. Lett. 122, 166602 (2019)

Local Souza-Wilkens-Martin sum rule.

Given that the second line of Eq. (2) is (minus) the trace
of the operator P½rα;P"½rβ;P", divided by the sample
volume, we address here the issue of whether the insulating
or metallic organization of the electrons in the ground state
(in Kohn’s words) can be probed by evaluating the trace per
unit volume locally, i.e., by integrating the local function

F αβðrÞ ¼ −hrjP½rα;P"½rβ;P"jri ð3Þ

over a small region in the bulk of the sample. For a
homogeneous bounded crystallite, we therefore are going
to replace Lαβ, Eq. (2), with its local counterpart, i.e.,

L̃αβ ¼
1

Vcell

Z

cell
drF αβðrÞ; ð4Þ

where the cell is chosen at the crystallite center. An
analogous approach is adopted for either the disordered
cases (where the central cell is replaced by a larger region)
and for inhomogeneous cases (where the cell is chosen in
the appropriate region). The main object of the present
Letter is the real symmetric part of L̃αβ, which we are going
to name localization marker.
We start with 1D bounded chains, by adopting a tight-

binding nearest-neighbor Hamiltonian. In the crystalline
two-band case the chain is either insulating or metallic
according towhether the Fermi level lies in the gap or across
a band; in the disordered case the spectrum is gapless, but the
chain is always Anderson insulating [16]. We adopt the
same Hamiltonian as in Ref. [12], where the metric tensor
L ¼ Lxx, Eq. (2), has been addressed; as shown therein, L
diverges in metallic chains while it converges—to very
different values—in the band-insulating and Anderson-
insulating cases.
We have performed simulations over 1D “heterojunctions”

of up to 6 000 sites, made of two homogenous half-chains, in
all the possible combinations of metal, band insulator, and
Anderson insulator; the most significant results are displayed
in Fig. 1 [17]. The top panel shows the LDOS (crystalline
versus disordered), very similar to the global density of states
published in Ref. [12] (gapped versus gapless). This LDOS
implies that by setting μ ¼ 0 the left and right half-chains are
band insulating and Anderson insulating, respectively, while
by setting μ ¼ −1 the left and right half-chains are metallic
and Anderson insulating, respectively. In both cases the
LDOS cannot discriminate correctly, while L̃ accomplishes
the task; the metric tensor L, also shown, yields a kind of
average over the whole chain.
Next we switch to 2D simulations with model tight-

binding Hamiltonians on a honeycomb lattice with two
sites per primitive cell [17]; a typical flake is displayed
in Fig. 2. The electronic structure is described by the
orthonormal basis set jχRl

i, where Rl is a site index. The
ground-state projector, Eq. (2), assumes then the general
form

P ¼
X

RlRm

P ðRl;RmÞjχRl
ihχRm

j: ð5Þ

We start with the validation of our local theory in the
simplest cases, where the trace per unit volume of Eq. (3)
clearly discriminates the metallic versus insulating regions
and provides indeed the same message as the LDOS. We
stress once more the conceptual difference: the former
approach probes the ground state, while the latter probes
the spectrum.
Some results are provided in detail in the Supplemental

Material [17]; here we only discuss the insulating (half-
filling) homogeneous case: Fig. 3 shows the Cartesian trace
of Lαβ, of L̃αβ, and of an analogous “bulk” quantity where
the integral in Eq. (4) is evaluated over N=4 sites (see
Fig. 2), as a function of the flake size. It is remarkable that

FIG. 1. Results for 1D heterojunctions. Top panel: LDOS for a
chain which is crystalline in the left half, and disordered in the
right half. Middle panel: L̃ marker for a μ ¼ 0 chain (band
insulating in the left half, and Anderson insulating in the right
half). Botton panel: L̃ marker for a μ ¼ −1 chain (metallic in the
left half, and Anderson insulating in the right half).

PHYSICAL REVIEW LETTERS 122, 166602 (2019)

166602-2

Left half-chain: Metal Right half-chain: Anderson insulator
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Formulæ for correlated & disordered systems
(in a different Hilbert space)

Chern-Simons 1-form Polarization
yes

Chern-Simons 3-form Axion term in magnetoelectrics
no

Time-reversal odd Time-reversal even
(antisymmetric 2-forms) (symmetric 2-forms)

Anomalous Hall conductivity Souza-Wilkens-Martin sum rule
yes (insulators) yes

Magneto-optical sum rule Drude weight
yes yes

Orbital magnetization ???
no
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