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Single point formula

Mγ =
εγαβ

2c(2π)3 Im
∑

n

∫
BZ

dk ⟨∂αunk|(Hk + ϵnk − 2µ ) |∂βunk⟩

Discretized on a reciprocal-cell mesh for numerical
implementation.
Invariant by cell doubling.
Large supercell limit: Single point formula.

Mγ ≃
εγαβ
2cV

Im
∑

n

⟨∂αun0|(H0 + ϵn0 − 2µ ) |∂βun0⟩

|∂αun0⟩ =
∑
m ̸=n

|um0⟩
⟨um0| vα |un0⟩
ϵm0 − ϵn0

Good for Car-Parrinello simulations!
Even the Chern number can be evaluated single-point:
Is this an oxymoron?
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Convergence with supercell size
(D. Ceresoli & R.R.)

Chern number & orbital magnetization as a function of the
supercell size, evaluated using the single-point formulas for the
Haldane model Hamiltonian. The largest L corresponds to 2048
sites in the supercell.
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Outline

1 Single-point formula: Noncrystalline systems & supercells

2 Application: NMR shielding tensor

3 Geometrical observables: local vs. nonlocal

4 M and AHC as local properties
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Definition: The NMR shielding tensor

An external magnetic field Bext is applied to a finite
sample.
The field induces an orbital current: the total (shielded)
field inside the sample is B(r) = Bext + Bind(r).
Notice: B(r) depends on sample shape.
At nuclear site r = rs (to linear order):

Bind
s = −←→σ s · Bext , Bs = (1−←→σ s) · Bext

1−←→σ s =
∂Bs

∂Bext

The tensor←→σ s is the quantity actually measured.
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The field induces an orbital current: the total (shielded)
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An external magnetic field Bext is applied to a finite
sample.
The field induces an orbital current: the total (shielded)
field inside the sample is B(r) = Bext + Bind(r).
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Definition: The NMR shielding tensor

An external magnetic field Bext is applied to a finite
sample.
The field induces an orbital current: the total (shielded)
field inside the sample is B(r) = Bext + Bind(r).
Notice: B(r) depends on sample shape.
At nuclear site r = rs (to linear order):

Bind
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The tensor←→σ s is the quantity actually measured.
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Shape dependence

1−←→σ s =
∂Bs

∂Bext

Suppose we neglect the macroscopic induced field, thus
identifying the macroscopic total B field inside the material
with the external one Bext. Then

1−←→σ s =
∂Bs

∂B

This is exact for a sample in the form of a slab, and Bext

normal to the slab.
For other sample shapes, there is a (small) correction.
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Computations: (1) The “direct” approach
(F. Mauri & coworkers)

The only viable approach so far for crystalline systems.

1−←→σ s =
∂Bs

∂B
Evaluated via linear-response theory.
Finite-difference approach impossible: the crystalline
eigenfunctions in presence of a finite B field cannot be
evaluated.
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Computations: (1) The “direct” approach
(F. Mauri & coworkers)

The only viable approach so far for crystalline systems.
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∂Bs
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Evaluated via linear-response theory.
Finite-difference approach impossible: the crystalline
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Computations: (2) Our “converse” approach
Thonhauser, Mostofi, Marzari, Resta & Vanderbilt (JCP 2009)

Exploits the modern theory of orbital magnetization.

It has an exact electrical analogue, routinely used to
compute Born effective charges (for lattice dynamics) by
exploiting the modern theory of polarization (Berry phase).
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Computations: (2) Our “converse” approach
Thonhauser, Mostofi, Marzari, Resta & Vanderbilt (JCP 2009)

Exploits the modern theory of orbital magnetization.

It has an exact electrical analogue, routinely used to
compute Born effective charges (for lattice dynamics) by
exploiting the modern theory of polarization (Berry phase).
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The “converse” approach: main concept

1−←→σ s =
∂Bs

∂B

Bs can be ideally measured via the torque acting on a
classical magnetic (point) dipole at site rs:

Bs = − ∂E
∂ms

E is the energy per cell of a periodic lattice of such dipoles
(one per cell) in a macroscopic field B.

1−←→σ s = − ∂

∂B
∂E
∂ms

= − ∂

∂ms

∂E
∂B
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The “converse” approach: main concept

1−←→σ s =
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Bs can be ideally measured via the torque acting on a
classical magnetic (point) dipole at site rs:

Bs = − ∂E
∂ms

E is the energy per cell of a periodic lattice of such dipoles
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The “converse” approach, cont’d

M = − 1
Vcell

∂E
∂B

1−←→σ s = − ∂

∂ms

∂E
∂B

= Vcell
∂M
∂ms

.

In words:
1−←→σ s is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rs and its periodic
replicas.
Computations by finite differences, switching on the ms
perturbation and evaluating the induced macroscopic
magnetization M.
If we “switch off” the electronic response, then
∂M/∂ms = 1/Vcell, as it must be.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “converse” approach, cont’d

M = − 1
Vcell

∂E
∂B

1−←→σ s = − ∂

∂ms

∂E
∂B

= Vcell
∂M
∂ms

.

In words:
1−←→σ s is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rs and its periodic
replicas.
Computations by finite differences, switching on the ms
perturbation and evaluating the induced macroscopic
magnetization M.
If we “switch off” the electronic response, then
∂M/∂ms = 1/Vcell, as it must be.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “converse” approach, cont’d

M = − 1
Vcell

∂E
∂B

1−←→σ s = − ∂

∂ms

∂E
∂B

= Vcell
∂M
∂ms

.

In words:
1−←→σ s is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rs and its periodic
replicas.
Computations by finite differences, switching on the ms
perturbation and evaluating the induced macroscopic
magnetization M.
If we “switch off” the electronic response, then
∂M/∂ms = 1/Vcell, as it must be.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “converse” approach, cont’d

M = − 1
Vcell

∂E
∂B

1−←→σ s = − ∂

∂ms

∂E
∂B

= Vcell
∂M
∂ms

.

In words:
1−←→σ s is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rs and its periodic
replicas.
Computations by finite differences, switching on the ms
perturbation and evaluating the induced macroscopic
magnetization M.
If we “switch off” the electronic response, then
∂M/∂ms = 1/Vcell, as it must be.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “converse” approach, cont’d

M = − 1
Vcell

∂E
∂B

1−←→σ s = − ∂

∂ms

∂E
∂B

= Vcell
∂M
∂ms

.

In words:
1−←→σ s is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rs and its periodic
replicas.
Computations by finite differences, switching on the ms
perturbation and evaluating the induced macroscopic
magnetization M.
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M = − 1
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= Vcell
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1−←→σ s is the macroscopic orbital magnetization linearly
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NMR shielding tensor for H in selected molecules

experiment direct converse
H2 26.26 26.2 26.2
HF 28.51 28.4 28.5
CH4 30.61 30.8 31.0
C2H2 29.26 28.8 28.9
C2H4 25.43 24.7 24.8
C2H6 29.86 30.2 30.4

Hydrogen NMR chemical shielding σ, in ppm, for several
different molecules.

Pseudopotential PW calculations in a large supercell.

Core contribution added according to the theory of Pickard &
Mauri (2003).
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CH4 30.61 30.8 31.0
C2H2 29.26 28.8 28.9
C2H4 25.43 24.7 24.8
C2H6 29.86 30.2 30.4

Hydrogen NMR chemical shielding σ, in ppm, for several
different molecules.

Pseudopotential PW calculations in a large supercell.

Core contribution added according to the theory of Pickard &
Mauri (2003).
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NMR shielding tensor for H in liquid water

Five snapshots, 64 molecule-supercell:
average over 640 H atoms.

Average and spread very similar to what previously found with
the direct method (and smaller supercells).
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NMR shielding tensor for H in liquid water

Five snapshots, 64 molecule-supercell:
average over 640 H atoms.

Average and spread very similar to what previously found with
the direct method (and smaller supercells).
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Outline

1 Single-point formula: Noncrystalline systems & supercells

2 Application: NMR shielding tensor

3 Geometrical observables: local vs. nonlocal

4 M and AHC as local properties
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Local vs. nonlocal observables

Most nongeometrical observables are local
(e.g. spin magnetization)
They are meaningful for inhomogeneous systems
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Local vs. nonlocal observables

Most nongeometrical observables are local
(e.g. spin magnetization)
They are meaningful for inhomogeneous systems
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Local vs. nonlocal observables

⟨O⟩ =
∫

BZ

dk
(2π)d f(k)

Implicitly requires:
Crystalline system
Homogenous noncrystalline system (supercell)

Useless for macroscopically inhomogeneous systems
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Physical property of a given region

Any k-space approach is useless!
Can we address the geometrical observables in r-space?
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Electrical polarization and orbital magnetization, again

P =
d
V

=
1
V

∫
dr r ρ(micro)(r)

M =
m
V

=
1

2cV

∫
dr r× j(micro)(r)

These r-space formulas are definitely NOT local!
The multivalued nature of P rules out any local description
Instead, M can be recast in a local form
(similar in spirit to an integration by parts):

R. Bianco & R. Resta, PRL 2013 (insulators)
A. Marrazzo & R. Resta, PRL 2016 (metals)
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One-body density matrix, a.k.a. ground-state projector

Single-particle orbitals (Hartree-Fock or Kohn-Sham): ψn(r)

Density matrix (spinless electrons):

P(r, r′) =
∑

n= occupied

ψn(r)ψ∗
n(r

′)

P(r, r′) uniquely determines all ground state properties
(including the independent-electron wave function)

Embeds the information about any g.s. observable

The dipoles (electric and magnetic) of a finite crystallite
are trivial functions of P(r, r′) but. . .
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Density matrix (spinless electrons):
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∑

n= occupied

ψn(r)ψ∗
n(r

′)

P(r, r′) uniquely determines all ground state properties
(including the independent-electron wave function)

Embeds the information about any g.s. observable

The dipoles (electric and magnetic) of a finite crystallite
are trivial functions of P(r, r′) but. . .
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One-body density matrix, a.k.a. ground-state projector

Single-particle orbitals (Hartree-Fock or Kohn-Sham): ψn(r)

Density matrix (spinless electrons):

P(r, r′) =
∑

n= occupied

ψn(r)ψ∗
n(r

′)

P(r, r′) uniquely determines all ground state properties
(including the independent-electron wave function)

Embeds the information about any g.s. observable

The dipoles (electric and magnetic) of a finite crystallite
are trivial functions of P(r, r′) but. . .
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Density matrix in a crystal (single band)

P(r, r′) =
∑

n= occupied

φn(r)φ∗
n(r

′) → Vcell

(2π)3

∫
BZ

dk ψk(r)ψ∗
k(r

′)

For a condensed system in the thermodynamic limit:

In the bulk of the material P(r, r′) is independent of
boundary conditions (either periodic or “open”)

Does the bulk part of P(r, r′) contain the information
to evaluate P and M?
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Density matrix in a crystal (single band)

P(r, r′) =
∑

n= occupied

φn(r)φ∗
n(r

′) → Vcell

(2π)3

∫
BZ

dk ψk(r)ψ∗
k(r

′)

For a condensed system in the thermodynamic limit:

In the bulk of the material P(r, r′) is independent of
boundary conditions (either periodic or “open”)

Does the bulk part of P(r, r′) contain the information
to evaluate P and M?
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Nearsightedness ( c⃝ by W. Kohn)

︸ ︷︷ ︸
λ

In the bulk of insulators (either topologically trivial or nontrivial):

|P(r, r′)| ∝ e−|r−r′|/λ for |r− r′| → ∞

(λ related to the valence-conduction energy gap)
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Nearsightedness ( c⃝ by W. Kohn)

︸ ︷︷ ︸
λ

In the bulk of insulators (either topologically trivial or nontrivial):

|P(r, r′)| ∝ e−|r−r′|/λ for |r− r′| → ∞

(λ related to the valence-conduction energy gap)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Nearsighted QM Maxwell demon

|P(r, r′)| ∝ e−|r−r′|/λ for |r− r′| → ∞

︸ ︷︷ ︸
λ

The poor demon sits well inside the sample:
Cannot see beyond λ
Cannot see the sample boundary
Cannot distinguish between periodic and “open” BCs
Can he measure P and M ?
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Cannot see the sample boundary
Cannot distinguish between periodic and “open” BCs
Can he measure P and M ?
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A 1d insulator (polyacetylene), different terminations

Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA
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A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.
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Our demon, sitting in the bulk, would guess P = 0. Is he right?
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Polarization of a centrosymmetric polymer

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.

194902-7 Dipole moment quantization in polymers J. Chem. Phys. 127, 194902 !2007"
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Nearsighted QM Maxwell demon

|P(r, r′)| ∝ e−|r−r′|/λ for |r − r′| → ∞

︸ ︷︷ ︸

λ
The poor demon sits well inside the sample:

Cannot see beyond λ
Cannot see the sample boundary
Cannot distinguish between periodic and “open” BCs
Has no idea of what a k vector is
Can he detect topological order?

nearsightness range

Right answer: P = 0 modulo e
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Outline

1 Single-point formula: Noncrystalline systems & supercells

2 Application: NMR shielding tensor

3 Geometrical observables: local vs. nonlocal

4 M and AHC as local properties
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The modern theories: P and M as BZ integrals

Single band, spinless electrons, no macroscopic fields

H|ψk⟩ = εk|ψk⟩
Hk|uk⟩ = εk|uk⟩ |uk⟩ = e−ik·r|ψk⟩ Hk = e−ik·rHeik·r

1992-93: Polarization

P = Pnuclei +
e

(2π)3 Im
∫
BZ

dk ⟨uk|∇kuk⟩

2005-06: Orbital Magnetization

M =
e

ℏc(2π)3 Im
∫
BZ

dk ⟨∇kuk| × (Hk + εk − 2µ) |∇kuk⟩
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Modern theory of magnetization

The k-space formula for M has no “quantum”
indeterminacy

Tinkering with the boundaries does not alter the M value

A Maxwell demon sitting deeply in the material is able to
measure M even without “seeing” the boundaries

The bulk P(r, r′) determines M unambiguously
— even for topological insulators

May we obtain the M value directly from P(r, r′) in r space,
avoiding the “detour” in k space?
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Modern theory of magnetization

The k-space formula for M has no “quantum”
indeterminacy

Tinkering with the boundaries does not alter the M value

A Maxwell demon sitting deeply in the material is able to
measure M even without “seeing” the boundaries

The bulk P(r, r′) determines M unambiguously
— even for topological insulators

May we obtain the M value directly from P(r, r′) in r space,
avoiding the “detour” in k space?
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The “Haldanium” workhorse in our simulations
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

+ “some magnetism”

Tight-binding parameters:
1st-neighbor hopping t1
staggered onsite ±∆
complex 2nd-neighbor t2eiϕ

f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.

CERESOLI et al. PHYSICAL REVIEW B 74, 024408 !2006"

024408-10

Zero flux per cell (no Landau levels!)
Insulating (either trivial or topological) at half filling
Metallic at any other filling
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procedure as in the previous section, we compute the orbital
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!48" and we compare it to the extrapolated value from finite
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verged results for the bulk formula !48".
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value of about −4.1. Then, as the filling increases, the first
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netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
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bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".
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as a realization of the quantum Hall effect in the absence of
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pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".
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function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.

CERESOLI et al. PHYSICAL REVIEW B 74, 024408 !2006"

024408-10

Zero flux per cell (no Landau levels!)
Insulating (either trivial or topological) at half filling
Metallic at any other filling
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where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Equation (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units (also
known as klitzing−1)—is dimensionless for d = 2, while it has
the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-diagonal
elements over the |ψjk⟩ and |ujk⟩ are well defined. Exploiting
some results from linear-response theory [9], one may prove
that

Qkr|ujk⟩ = iQk|∂kujk⟩ (5)

whenever j labels an occupied state at the given k. We may
thus write the Berry curvature as a trace:

'αβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their
complementary), Eqs. (1) and (2), it is easy to prove the identity

1
Vcell

∫

cell
dr ⟨r|PrαQrβ |r⟩ =

∫

BZ
[dk] Tr {PkrαQkrβ}. (7)

This identity has been known since a few years ago [6,10–14]
for the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to the
metallic case as well. The left-hand of Eq. (7) has two out-
standing virtues: (i) it is expressed directly in the Schrödinger
representation, making no reference to reciprocal space, and
(ii) it can be adopted as such for supercells of arbitrarily large
size, thus extending the concept of geometrical AHC to dis-
ordered systems, such as alloys, as well as “dirty” metals and
insulators. We thus recast Eqs. (4) and (7) in the compact form,

σαβ = 2e2

h̄
Im TrV {PrαQrβ}

= −2e2

h̄
Im TrV {P [rα,P] [rβ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospect, the approach of Ref. [5] is equivalent to
evaluating Eq. (8) over the folded BZ of the superlattice. Indeed
Eq. (8), when applied to a dirty metal, combines the nominally
intrinsic contribution—as defined for the clean metal—to some
extrinsic contributions of geometrical nature. Following the
arguments of Ref. [5] we argue here that Eq. (8) may yield
the sum of the intrinsic and side-jump contributions to the
AHC, while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either insulators
or metals, either crystalline or disordered, but it has only been
proved for an unbounded and macroscopically homogeneous
system within periodic boundary conditions. The next issue
is whether one may adopt Eq. (8) locally, in order to
address inhomogeneous systems (e.g., heterojunctions) or
even bounded samples (e.g., crystallites).

FIG. 1. A typical “Haldanium” flake. We have considered flakes
with up to 10 506 sites, all with the same aspect ratio; the one shown
here has 1190 sites. In order to probe the AHC locality we evaluate
the trace per unit area either on the central cell (two sites) or on the
“bulk” region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

The locality of the AHC was investigated in Ref. [6],
where it was shown—for the insulating case only—that the
topological AHC can indeed be evaluated from Eq. (8) for
bounded and/or macroscopically inhomogeneous systems.
The concept of “topological marker” was proposed therein;
in the following we are going to show that Eq. (8) yields an
analogous “geometrical marker”, effective in the metallic case
as well. The very important feature pointed out by Ref. [6] is
that—when a bounded sample is addressed—the trace per unit
volume has to be evaluated using only some inner region of the
sample, and not the whole sample. If the bounded system is a
crystallite, one evaluates, e.g., the left-hand side of Eq. (7) over
its central cell; in the large-crystallite limit one recovers the
bulk value of the AHC. In all the cases dealt with in Ref. [6] the
convergence with size proved to be very fast: this was attributed
to the exponential decay of the one-body density matrix in insu-
lators (nearsightedness [7]), as already said in the introduction.
For the metallic case we are going to explore in the following
an uncharted territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
present kind is the one proposed by Haldane in 1988 [1]. It is
a tight-binding 2d Hamiltonian on a honeycomb lattice with
on-site energies ±(, first-neighbor hopping t1, and second-
neighbor hopping t2 = |t2|eiφ , which provides time-reversal
symmetry breaking. The model is insulating at half filling
and metallic at any other filling. Our bounded samples are
rectangular Haldanium flakes such as the one shown in Fig. 1;
the corresponding simulations for lattice-periodical samples,
with Bloch orbitals, are performed by means of the PythTB
code [15]. Oscillations as a function of the flake size occur
in the metallic case; as customary, we adopt a regularizing
“smearing” technique.

In Fig. 2 we plot—as a function of the Fermi level µ—the
dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} = h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in Eq. (9)
equals minus the Chern number C1 in the quantized insulating

121114-2

Sample of 2550 sites, line with 50 sites

Can our demon (nearsighted, sitting in the bulk of the
sample) measure the M value?
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where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Equation (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units (also
known as klitzing−1)—is dimensionless for d = 2, while it has
the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-diagonal
elements over the |ψjk⟩ and |ujk⟩ are well defined. Exploiting
some results from linear-response theory [9], one may prove
that

Qkr|ujk⟩ = iQk|∂kujk⟩ (5)

whenever j labels an occupied state at the given k. We may
thus write the Berry curvature as a trace:

'αβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their
complementary), Eqs. (1) and (2), it is easy to prove the identity

1
Vcell

∫

cell
dr ⟨r|PrαQrβ |r⟩ =

∫

BZ
[dk] Tr {PkrαQkrβ}. (7)

This identity has been known since a few years ago [6,10–14]
for the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to the
metallic case as well. The left-hand of Eq. (7) has two out-
standing virtues: (i) it is expressed directly in the Schrödinger
representation, making no reference to reciprocal space, and
(ii) it can be adopted as such for supercells of arbitrarily large
size, thus extending the concept of geometrical AHC to dis-
ordered systems, such as alloys, as well as “dirty” metals and
insulators. We thus recast Eqs. (4) and (7) in the compact form,

σαβ = 2e2

h̄
Im TrV {PrαQrβ}

= −2e2

h̄
Im TrV {P [rα,P] [rβ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospect, the approach of Ref. [5] is equivalent to
evaluating Eq. (8) over the folded BZ of the superlattice. Indeed
Eq. (8), when applied to a dirty metal, combines the nominally
intrinsic contribution—as defined for the clean metal—to some
extrinsic contributions of geometrical nature. Following the
arguments of Ref. [5] we argue here that Eq. (8) may yield
the sum of the intrinsic and side-jump contributions to the
AHC, while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either insulators
or metals, either crystalline or disordered, but it has only been
proved for an unbounded and macroscopically homogeneous
system within periodic boundary conditions. The next issue
is whether one may adopt Eq. (8) locally, in order to
address inhomogeneous systems (e.g., heterojunctions) or
even bounded samples (e.g., crystallites).

FIG. 1. A typical “Haldanium” flake. We have considered flakes
with up to 10 506 sites, all with the same aspect ratio; the one shown
here has 1190 sites. In order to probe the AHC locality we evaluate
the trace per unit area either on the central cell (two sites) or on the
“bulk” region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

The locality of the AHC was investigated in Ref. [6],
where it was shown—for the insulating case only—that the
topological AHC can indeed be evaluated from Eq. (8) for
bounded and/or macroscopically inhomogeneous systems.
The concept of “topological marker” was proposed therein;
in the following we are going to show that Eq. (8) yields an
analogous “geometrical marker”, effective in the metallic case
as well. The very important feature pointed out by Ref. [6] is
that—when a bounded sample is addressed—the trace per unit
volume has to be evaluated using only some inner region of the
sample, and not the whole sample. If the bounded system is a
crystallite, one evaluates, e.g., the left-hand side of Eq. (7) over
its central cell; in the large-crystallite limit one recovers the
bulk value of the AHC. In all the cases dealt with in Ref. [6] the
convergence with size proved to be very fast: this was attributed
to the exponential decay of the one-body density matrix in insu-
lators (nearsightedness [7]), as already said in the introduction.
For the metallic case we are going to explore in the following
an uncharted territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
present kind is the one proposed by Haldane in 1988 [1]. It is
a tight-binding 2d Hamiltonian on a honeycomb lattice with
on-site energies ±(, first-neighbor hopping t1, and second-
neighbor hopping t2 = |t2|eiφ , which provides time-reversal
symmetry breaking. The model is insulating at half filling
and metallic at any other filling. Our bounded samples are
rectangular Haldanium flakes such as the one shown in Fig. 1;
the corresponding simulations for lattice-periodical samples,
with Bloch orbitals, are performed by means of the PythTB
code [15]. Oscillations as a function of the flake size occur
in the metallic case; as customary, we adopt a regularizing
“smearing” technique.

In Fig. 2 we plot—as a function of the Fermi level µ—the
dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} = h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in Eq. (9)
equals minus the Chern number C1 in the quantized insulating

121114-2

Sample of 2550 sites, line with 50 sites

Can our demon (nearsighted, sitting in the bulk of the
sample) measure the M value?
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Anomalous Hall conductivity and orbital magnetization

One-body density matrix, a.k.a. ground-state projector:

P =
∑
ϵj<µ

|φj⟩⟨φj | (spinless)

Tensor fields in r-space:

Fαβ(r) = Im ⟨r| P [rα,P] [rβ,P] |r⟩
Mαβ(r) = Im ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩.

Fαβ(r) and Mαβ(r) are “densities” well defined even
for disordered and/or inhomogeneous bounded samples
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Orbital magnetization a a function of the Fermi level
A. Marrazzo and R. Resta, Phys. Rev. Lett. 116, 137201 (2016)

In either insulating or metallic systems, the integrated
values provided by Eqs. (1), (3), and (4) are identical,
but the integrands therein are quite different. This is similar
to what happens when integrating a function by parts; we
also stress that any reference to microscopic currents has
disappeared in Eq. (5).
Only the insulating case has been addressed so far, where

it has been proved [6–9] that Eq. (4) has the outstanding
virtue of providing a local expression for M ¼ m=V:
instead of evaluating the trace over the whole system, as
in Eq. (4), we may evaluate the trace per unit volume in the
bulk region of the sample. Notably, this converges (in the
large system limit) much faster than the textbook definition
based on Eqs. (1) and (3), where the boundary contribution
to the integral is extensive (see also Fig. 4 below).
The metallic case has not been addressed yet; in this

work we investigate the behavior of MðrÞ, Eq. (4), in
metallic 2D samples by means of simulations based on
tight-binding model Hamiltonians. Our samples are finite
flakes within OBCs, where the volume V is replaced by
area A. We remind the reader that if one instead adopts
periodic boundary conditions, M has a known expression
as a reciprocal-space integral [4], which, however, only
applies to magnetization in either a vanishing or commen-
surate macroscopic B field. In this Letter we present OBC
test-case simulations for both B ¼ 0 and B ≠ 0; the former
case adopts rectangular flakes like the one shown in Fig. 1,
while the latter adopts square flakes. For reasons thor-
oughly discussed below, the two cases present completely
different features.
The paradigmatic model for breaking time-reversal

symmetry without a macroscopic B field is the Haldane
Hamiltonian [11], adopted here as well as by several
authors in the past. Our choice of parameters is first-
and second-neighbor hopping t1 ¼ 1 and t2 ¼ eiϕ=3, with
ϕ ¼ 0.25π, and onsite energies $Δ, with Δ ¼ 1.5. With
respect to the insulating case, the metallic one is

computationally more demanding: in fact, finite-size effects
induce large oscillations (as a function of the flake size)
when the Fermi level μ is not in an energy gap. As usual, we
deal with this problem by adopting the “smearing” tech-
nique: what we present here is the result of a combined
large-size and small-smearing finite-size analysis. Here, we
adopt Fermi-Dirac smearing, although we stress that we are
not addressing M at finite temperature [12,13]: the smear-
ing is a mere computational tool.
For orientation, we start showing in Fig. 2 the converged

magnetization M of our Haldanium flake as a function of μ
over the whole range: M depends on μ in the metallic range
and stays constant, while μ sweeps the gap [14]. Next, in our
metallic test case we set μ ¼ −1.7, rather far from the band
edges (see Fig. 2); we therefore have a sizable Fermi surface
(a Fermi loop in 2D), which in turn guarantees a nonzero
Drudeweight. As recognized by Haldane himself, this model
system is a good paradigm for the anomalous Hall effect in
metals [15]. Our simulations also confirm that the OBC’s
localization tensor diverges with the flake size [16,17].

FIG. 1. A typical “Haldanium” flake. We have considered
flakes with up to 8190 sites, all with the same aspect ratio; the one
shown here has 1806 sites. In order to probe locality, the field
MðrÞ, Eq. (5), is averaged either on the central cell (two sites) or
on the “bulk” region (1=4 of the sites).

−
−
−
−
−

− − − −

FIG. 2. The magnetization of a large flake (6162 sites) as a
function of the Fermi level μ. The valence-conduction gap is
between ε ¼ −0.4 and ε ¼ −1.0; our metallic simulations are at
μ ¼ −1.7, shown as a vertical line.

FIG. 3. Convergence with flake size of the standard formula,
Eqs. (1) and (3), in log-log scale; a typical metallic (μ ¼ −1.7 in
the valence band) and a typical insulating (μ ¼ −0.7 at midgap)
case are shown. The interpolating straight lines clearly show the
1=L convergence.

PRL 116, 137201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

137201-2

At convergence all formulas coincide:
Textbook formula: 1

2cV

∫
dr r× j(micro)(r)

Mγ = − ie
2ℏc εγαβ

∫
FV dk ⟨∂αujk| (Hk + ϵjk − 2µ) |∂βujk⟩

Our novel formula: e
2ℏc εγαβTrV {Mαβ}
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Why is our formula for M better than the trivial one?
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where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Equation (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units (also
known as klitzing−1)—is dimensionless for d = 2, while it has
the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-diagonal
elements over the |ψjk⟩ and |ujk⟩ are well defined. Exploiting
some results from linear-response theory [9], one may prove
that

Qkr|ujk⟩ = iQk|∂kujk⟩ (5)

whenever j labels an occupied state at the given k. We may
thus write the Berry curvature as a trace:

'αβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their
complementary), Eqs. (1) and (2), it is easy to prove the identity

1
Vcell

∫

cell
dr ⟨r|PrαQrβ |r⟩ =

∫

BZ
[dk] Tr {PkrαQkrβ}. (7)

This identity has been known since a few years ago [6,10–14]
for the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to the
metallic case as well. The left-hand of Eq. (7) has two out-
standing virtues: (i) it is expressed directly in the Schrödinger
representation, making no reference to reciprocal space, and
(ii) it can be adopted as such for supercells of arbitrarily large
size, thus extending the concept of geometrical AHC to dis-
ordered systems, such as alloys, as well as “dirty” metals and
insulators. We thus recast Eqs. (4) and (7) in the compact form,

σαβ = 2e2

h̄
Im TrV {PrαQrβ}

= −2e2

h̄
Im TrV {P [rα,P] [rβ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospect, the approach of Ref. [5] is equivalent to
evaluating Eq. (8) over the folded BZ of the superlattice. Indeed
Eq. (8), when applied to a dirty metal, combines the nominally
intrinsic contribution—as defined for the clean metal—to some
extrinsic contributions of geometrical nature. Following the
arguments of Ref. [5] we argue here that Eq. (8) may yield
the sum of the intrinsic and side-jump contributions to the
AHC, while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either insulators
or metals, either crystalline or disordered, but it has only been
proved for an unbounded and macroscopically homogeneous
system within periodic boundary conditions. The next issue
is whether one may adopt Eq. (8) locally, in order to
address inhomogeneous systems (e.g., heterojunctions) or
even bounded samples (e.g., crystallites).

FIG. 1. A typical “Haldanium” flake. We have considered flakes
with up to 10 506 sites, all with the same aspect ratio; the one shown
here has 1190 sites. In order to probe the AHC locality we evaluate
the trace per unit area either on the central cell (two sites) or on the
“bulk” region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

The locality of the AHC was investigated in Ref. [6],
where it was shown—for the insulating case only—that the
topological AHC can indeed be evaluated from Eq. (8) for
bounded and/or macroscopically inhomogeneous systems.
The concept of “topological marker” was proposed therein;
in the following we are going to show that Eq. (8) yields an
analogous “geometrical marker”, effective in the metallic case
as well. The very important feature pointed out by Ref. [6] is
that—when a bounded sample is addressed—the trace per unit
volume has to be evaluated using only some inner region of the
sample, and not the whole sample. If the bounded system is a
crystallite, one evaluates, e.g., the left-hand side of Eq. (7) over
its central cell; in the large-crystallite limit one recovers the
bulk value of the AHC. In all the cases dealt with in Ref. [6] the
convergence with size proved to be very fast: this was attributed
to the exponential decay of the one-body density matrix in insu-
lators (nearsightedness [7]), as already said in the introduction.
For the metallic case we are going to explore in the following
an uncharted territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
present kind is the one proposed by Haldane in 1988 [1]. It is
a tight-binding 2d Hamiltonian on a honeycomb lattice with
on-site energies ±(, first-neighbor hopping t1, and second-
neighbor hopping t2 = |t2|eiφ , which provides time-reversal
symmetry breaking. The model is insulating at half filling
and metallic at any other filling. Our bounded samples are
rectangular Haldanium flakes such as the one shown in Fig. 1;
the corresponding simulations for lattice-periodical samples,
with Bloch orbitals, are performed by means of the PythTB
code [15]. Oscillations as a function of the flake size occur
in the metallic case; as customary, we adopt a regularizing
“smearing” technique.

In Fig. 2 we plot—as a function of the Fermi level µ—the
dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} = h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in Eq. (9)
equals minus the Chern number C1 in the quantized insulating

121114-2

m =
1
2c

∫
dr r× j(r) = − e

2c

∫
dr ⟨r|P r× v |r⟩

m = − ie
2ℏc

∫
dr ⟨r| |H − µ| [r,P]× [r,P] |r⟩
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where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Equation (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units (also
known as klitzing−1)—is dimensionless for d = 2, while it has
the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-diagonal
elements over the |ψjk⟩ and |ujk⟩ are well defined. Exploiting
some results from linear-response theory [9], one may prove
that

Qkr|ujk⟩ = iQk|∂kujk⟩ (5)

whenever j labels an occupied state at the given k. We may
thus write the Berry curvature as a trace:

'αβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their
complementary), Eqs. (1) and (2), it is easy to prove the identity

1
Vcell

∫

cell
dr ⟨r|PrαQrβ |r⟩ =

∫

BZ
[dk] Tr {PkrαQkrβ}. (7)

This identity has been known since a few years ago [6,10–14]
for the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to the
metallic case as well. The left-hand of Eq. (7) has two out-
standing virtues: (i) it is expressed directly in the Schrödinger
representation, making no reference to reciprocal space, and
(ii) it can be adopted as such for supercells of arbitrarily large
size, thus extending the concept of geometrical AHC to dis-
ordered systems, such as alloys, as well as “dirty” metals and
insulators. We thus recast Eqs. (4) and (7) in the compact form,

σαβ = 2e2

h̄
Im TrV {PrαQrβ}

= −2e2

h̄
Im TrV {P [rα,P] [rβ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospect, the approach of Ref. [5] is equivalent to
evaluating Eq. (8) over the folded BZ of the superlattice. Indeed
Eq. (8), when applied to a dirty metal, combines the nominally
intrinsic contribution—as defined for the clean metal—to some
extrinsic contributions of geometrical nature. Following the
arguments of Ref. [5] we argue here that Eq. (8) may yield
the sum of the intrinsic and side-jump contributions to the
AHC, while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either insulators
or metals, either crystalline or disordered, but it has only been
proved for an unbounded and macroscopically homogeneous
system within periodic boundary conditions. The next issue
is whether one may adopt Eq. (8) locally, in order to
address inhomogeneous systems (e.g., heterojunctions) or
even bounded samples (e.g., crystallites).

FIG. 1. A typical “Haldanium” flake. We have considered flakes
with up to 10 506 sites, all with the same aspect ratio; the one shown
here has 1190 sites. In order to probe the AHC locality we evaluate
the trace per unit area either on the central cell (two sites) or on the
“bulk” region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

The locality of the AHC was investigated in Ref. [6],
where it was shown—for the insulating case only—that the
topological AHC can indeed be evaluated from Eq. (8) for
bounded and/or macroscopically inhomogeneous systems.
The concept of “topological marker” was proposed therein;
in the following we are going to show that Eq. (8) yields an
analogous “geometrical marker”, effective in the metallic case
as well. The very important feature pointed out by Ref. [6] is
that—when a bounded sample is addressed—the trace per unit
volume has to be evaluated using only some inner region of the
sample, and not the whole sample. If the bounded system is a
crystallite, one evaluates, e.g., the left-hand side of Eq. (7) over
its central cell; in the large-crystallite limit one recovers the
bulk value of the AHC. In all the cases dealt with in Ref. [6] the
convergence with size proved to be very fast: this was attributed
to the exponential decay of the one-body density matrix in insu-
lators (nearsightedness [7]), as already said in the introduction.
For the metallic case we are going to explore in the following
an uncharted territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
present kind is the one proposed by Haldane in 1988 [1]. It is
a tight-binding 2d Hamiltonian on a honeycomb lattice with
on-site energies ±(, first-neighbor hopping t1, and second-
neighbor hopping t2 = |t2|eiφ , which provides time-reversal
symmetry breaking. The model is insulating at half filling
and metallic at any other filling. Our bounded samples are
rectangular Haldanium flakes such as the one shown in Fig. 1;
the corresponding simulations for lattice-periodical samples,
with Bloch orbitals, are performed by means of the PythTB
code [15]. Oscillations as a function of the flake size occur
in the metallic case; as customary, we adopt a regularizing
“smearing” technique.

In Fig. 2 we plot—as a function of the Fermi level µ—the
dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} = h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in Eq. (9)
equals minus the Chern number C1 in the quantized insulating

121114-2

m =
1
2c

∫
dr r× j(r) = − e

2c

∫
dr ⟨r|P r× v |r⟩

m = − ie
2ℏc

∫
dr ⟨r| |H − µ| [r,P]× [r,P] |r⟩

(similar in spirit to an integration by parts)
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Fast convergence in both insulator and metal

We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.
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We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.
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1/L convergence with size: 1
2cV

∫
dr r× j(micro)(r)

Much better convergence: e
2ℏc εγαβTrV {Mαβ}


	Single-point formula: Noncrystalline systems & supercells
	Application: NMR shielding tensor
	Geometrical observables: local vs. nonlocal
	M and AHC as local properties

