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m Discretized on a reciprocal-cell mesh for numerical
implementation.

m Invariant by cell doubling.

m Large supercell limit: Single point formula.
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m Good for Car-Parrinello simulations!
m Even the Chern number can be evaluated single-point:
Is this an oxymoron?



Convergence with supercell size

(D. Ceresoli & R.R.)
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Chern number & orbital magnetization as a function of the
supercell size, evaluated using the single-point formulas for the
Haldane model Hamiltonian. The largest L corresponds to 2048

sites in the supercell.
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Definition: The NMR shielding tensor

m An external magnetic field B! is applied to a finite
sample.

m The field induces an orbital current: the total (shielded)
field inside the sample is B(r) = B®! + B"(r).
Notice: B(r) depends on sample shape.

m At nuclear site r = rs (to linear order):

BIY=-G- B™, Bs=(1- %) B
;o _ 0B
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m The tensor ‘7’ s is the quantity actually measured.
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Shape dependence
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m Suppose we neglect the macroscopic induced field, thus
identifying the macroscopic total B field inside the material
with the external one B®. Then
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m This is exact for a sample in the form of a slab, and B®
normal to the slab.

m For other sample shapes, there is a (small) correction.
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Computations: (1) The “direct” approach

(F. Mauri & coworkers)

m The only viable approach so far for crystalline systems.

oB
1-F=—22
75~ 9B
m Evaluated via linear-response theory.

m Finite-difference approach impossible: the crystalline
eigenfunctions in presence of a finite B field cannot be
evaluated.




Computations: (2) Our “converse” approach

Thonhauser, Mostofi, Marzari, Resta & Vanderbilt (JCP 2009)

m Exploits the modern theory of orbital magnetization.



Computations: (2) Our “converse” approach

Thonhauser, Mostofi, Marzari, Resta & Vanderbilt (JCP 2009)

m Exploits the modern theory of orbital magnetization.

m |t has an exact electrical analogue, routinely used to
compute Born effective charges (for lattice dynamics) by
exploiting the modern theory of polarization (Berry phase).
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m B; can be ideally measured via the torque acting on a
classical magnetic (point) dipole at site rg:

o€

Bs = —
S omg

m & is the energy per cell of a periodic lattice of such dipoles
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The “converse” approach, cont'd

1 0&
M=—————

VcellaB
1_?32 g 0& oM

“omgoB ~ celigm,’

m In words:

1 — &’ is the macroscopic orbital magnetization linearly
induced by a classical point dipole at rg and its periodic
replicas.

m Computations by finite differences, switching on the mg
perturbation and evaluating the induced macroscopic
magnetization M.

m |f we “switch off” the electronic response, then
OM/Omg = 1/Vcell’ as it must be.



NMR shielding tensor for H in selected molecules

experiment direct converse
Ho 26.26 26.2 26.2
HF 28.51 28.4 28.5
CHy4 30.61 30.8 31.0
CoH> 29.26 28.8 28.9
CoHy 25.43 24.7 24.8
CoHs 29.86 30.2 30.4

Hydrogen NMR chemical shielding o, in ppm, for several
different molecules.
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experiment direct converse
Ho 26.26 26.2 26.2
HF 28.51 28.4 28.5
CHy4 30.61 30.8 31.0
CoH> 29.26 28.8 28.9
CoHy 25.43 24.7 24.8
CoHs 29.86 30.2 30.4

Hydrogen NMR chemical shielding o, in ppm, for several
different molecules.

Pseudopotential PW calculations in a large supercell.

Core contribution added according to the theory of Pickard &
Mauri (2003).



NMR shielding tensor for H in liquid water
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average over 640 H atoms.
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Five snapshots, 64 molecule-supercell:
average over 640 H atoms.

Average and spread very similar to what previously found with
the direct method (and smaller supercells).
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Local vs. nonlocal observables

m Implicitly requires:
m Crystalline system
m Homogenous noncrystalline system (supercell)

m Useless for macroscopically inhomogeneous systems



Physical property of a given region

m Any k-space approach is useless!
m Can we address the geometrical observables in r-space?



Electrical polarization and orbital magnetization, again

P — d V/drr (mlCI‘O)()

V

m

- +(micro)
M = v 2CV/drr><| (r)

m These r-space formulas are definitely NOT local!
m The multivalued nature of P rules out any local description

m Instead, M can be recast in a local form
(similar in spirit to an integration by parts):
m R. Bianco & R. Resta, PRL 2013 (insulators)
m A. Marrazzo & R. Resta, PRL 2016 (metals)
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Single-particle orbitals (Hartree-Fock or Kohn-Sham): ,(r)

Density matrix (spinless electrons):

P(rr)= > ¢n(t)uy(r)

n=occupied

m P(r,r') uniquely determines all ground state properties
(including the independent-electron wave function)

m Embeds the information about any g.s. observable

m The dipoles (electric and magnetic) of a finite crystallite
are trivial functions of P(r,r’) but...
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Density matrix in a crystal (single band)

PER) = X el - g [ )

n=occupied

For a condensed system in the thermodynamic limit:

m In the bulk of the material P(r,r’) is independent of
boundary conditions (either periodic or “open”)

m Does the bulk part of P(r,r’) contain the information
to evaluate P and M?
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In the bulk of insulators (either topologically trivial or nontrivial):
P(r,r)| oce” 112 for|r—r| — o0

(A related to the valence-conduction energy gap)
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Nearsighted QM Maxwell demon

IP(r, )| oce T2 for [r—¥| - oo

The poor demon sits well inside the sample:
m Cannot see beyond \

m Cannot see the sample boundary
m Cannot distinguish between periodic and “open” BCs
m Can he measure Pand M ?



A 1d insulator (polyacetylene), different terminations
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Our demon, sitting in the bulk, would guess P = 0. Is he right?



Polarization of a centrosymmetric polymer
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Right answer: P =0 modulo e
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The modern theories: P and M as BZ integrals

m Single band, spinless electrons, no macroscopic fields

Hlk) = exlv)

Heluk) = ex|uk) lug) = e ®Tlyy)  Hi = e KTHe®T

m 1992-93: Polarization

P = Poyclei + Im /Bzdk <Uk|VkUk>

e
(2n)®

m 2005-06: Orbital Magnetization

/ dk (Vkuk| x (Hk + ek — 2p) | VkUk)
" he (27r



Modern theory of magnetization

m The k-space formula for M has no “quantum”
indeterminacy

m Tinkering with the boundaries does not alter the M value

m A Maxwell demon sitting deeply in the material is able to
measure M even without “seeing” the boundaries

m The bulk P(r,r") determines M unambiguously
— even for topological insulators



Modern theory of magnetization

m The k-space formula for M has no “quantum”
indeterminacy

m Tinkering with the boundaries does not alter the M value

m A Maxwell demon sitting deeply in the material is able to
measure M even without “seeing” the boundaries

m The bulk P(r,r") determines M unambiguously
— even for topological insulators

m May we obtain the M value directly from P(r,r’) in r space,
avoiding the “detour” in k space?
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The “Haldanium” workhorse in our simulations

Tight-binding parameters:
m 1st-neighbor hopping t
m staggered onsite +A
m complex 2nd-neighbor e/

Zero flux per cell (no Landau levels!)
Insulating (either trivial or topological) at half filling
Metallic at any other filling
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Sample of 2550 sites, line with 50 sites



A flake of Haldanium (OBC)

Sample of 2550 sites, line with 50 sites

Can our demon (nearsighted, sitting in the bulk of the
sample) measure the M value?



Anomalous Hall conductivity and orbital magnetization

m One-body density matrix, a.k.a. ground-state projector:

P=> le){gl (spinless)

§<p
m Tensor fields in r-space:

Sap(r) = Im(r[Pra, P][rs, PIIr)
Map(r) = Im (e[ [H = pl o, P [rs, PIIF).

m F,s(r) and M,s(r) are “densities” well defined even
for disordered and/or inhomogeneous bounded samples



Orbital magnetization a a function of the Fermi level

A. Marrazzo and R. Resta, Phys. Rev. Lett. 116, 137201 (2016)
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At convergence all formulas coincide:
m Textbook formula: 51, [ dr r x jmicro)(r)
m M, = =308 Joy IK (Dal| (Hi + €k — 211) |95 Uk)
m Our novel formula: 57-c,5Try {Mas}
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Why is our formula for M better than the trivial one?

1 . e
m_20/drr><|(r)_—ZC/dr(r|Pr><v\r>

m = —Zi;/dr (K| |H = ul[r, P] x [r, P]|F)



Why is our formula for M better than the trivial one?

1 - e
m:20/drr><|(r)_—20/dr<r|Pr><vr>

m =g [ o ([ =l [r. P x 1P

(similar in spirit to an integration by parts)



Fast convergence in both insulator and metal
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m 1/L convergence with size: 51y, [ dr r x jmcro)(r)

m Much better convergence: 5% c,.3Try {95}
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