Orbital Magnetization in Condensed Matter: Part 1

Raffaele Resta

Trieste, 2020

Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences

Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences

Back to basics: Macroscopics

$$
\begin{aligned}
\mathbf{B} & =\mathbf{H}+4 \pi \mathbf{M} \\
\mathbf{M} & =\mathbf{M}_{\text {spin }}+\mathbf{M}_{\text {orbital }}
\end{aligned}
$$

- $\mathbf{M}_{\text {spin }}$ and $\mathbf{M}_{\text {orbital }}$ separately measurable
- Spontaneous \mathbf{M} (in $\mathbf{B}=0$) in ferromagnetic materials, orbital \& spin, due to spin-orbit interaction.
- Induced \mathbf{M} by a time-reversal-symmetry breaking perturbation (e.g. a macroscopic B field). \mathbf{M} is purely orbital in a nonmagnetic insulator.

Back to basics: Macroscopics

$$
\begin{aligned}
\mathbf{B} & =\mathbf{H}+4 \pi \mathbf{M} \\
\mathbf{M} & =\mathbf{M}_{\text {spin }}+\mathbf{M}_{\text {orbital }}
\end{aligned}
$$

■ $\mathbf{M}_{\text {spin }}$ and $\mathbf{M}_{\text {orbital }}$ separately measurable (really?)

- Spontaneous \mathbf{M} (in $\mathbf{B}=0$) in ferromagnetic materials, orbital \& spin, due to spin-orbit interaction.
- Induced \mathbf{M} by a time-reversal-symmetry breaking perturbation (e.g. a macroscopic B field). \mathbf{M} is purely orbital in a nonmagnetic insulator.

Back to basics: Macroscopics

$$
\begin{aligned}
\mathbf{B} & =\mathbf{H}+4 \pi \mathbf{M} \\
\mathbf{M} & =\mathbf{M}_{\text {spin }}+\mathbf{M}_{\text {orbital }}
\end{aligned}
$$

$■ \mathbf{M}_{\text {spin }}$ and $\mathbf{M}_{\text {orbital }}$ separately measurable (really?)

- Spontaneous \mathbf{M} (in $\mathbf{B}=0$) in ferromagnetic materials, orbital \& spin, due to spin-orbit interaction.
- Induced M by a time-reversal-symmetry breaking perturbation (e.g. a macroscopic B field). \mathbf{M} is purely orbital in a nonmagnetic insulator.

Back to basics: Macroscopics

$$
\begin{aligned}
\mathbf{B} & =\mathbf{H}+4 \pi \mathbf{M} \\
\mathbf{M} & =\mathbf{M}_{\text {spin }}+\mathbf{M}_{\text {orbital }}
\end{aligned}
$$

- $\mathbf{M}_{\text {spin }}$ and $\mathbf{M}_{\text {orbital }}$ separately measurable (really?)

■ Spontaneous \mathbf{M} (in $\mathbf{B}=0$) in ferromagnetic materials, orbital \& spin, due to spin-orbit interaction.
■ Induced \mathbf{M} by a time-reversal-symmetry breaking perturbation (e.g. a macroscopic B field).

Back to basics: Macroscopics

$$
\begin{aligned}
\mathbf{B} & =\mathbf{H}+4 \pi \mathbf{M} \\
\mathbf{M} & =\mathbf{M}_{\text {spin }}+\mathbf{M}_{\text {orbital }}
\end{aligned}
$$

- $\mathbf{M}_{\text {spin }}$ and $\mathbf{M}_{\text {orbital }}$ separately measurable (really?)

■ Spontaneous \mathbf{M} (in $\mathbf{B}=0$) in ferromagnetic materials, orbital \& spin, due to spin-orbit interaction.
■ Induced \mathbf{M} by a time-reversal-symmetry breaking perturbation (e.g. a macroscopic B field). \mathbf{M} is purely orbital in a nonmagnetic insulator.

Electric-magnetic analogies in continuous media

$$
\begin{array}{cc}
\mathbf{B}=\mathbf{H}+4 \pi \mathbf{M} & \mathbf{E}=\mathbf{D}-4 \pi \mathbf{P} \\
\nabla \times \mathbf{M}=\mathbf{j} / c & \nabla \cdot \mathbf{P}=-\rho
\end{array}
$$

- A dissipationless current circulates at the surface of a uniformly magnetized sample:

$$
\mathbf{K}_{\text {surface }}=\mathbf{c} \mathbf{M} \times \mathbf{n}
$$

- A surface charge piles up at the surface of a uniformly polarized sample:

Electric-magnetic analogies in continuous media

$$
\begin{array}{cc}
\mathbf{B}=\mathbf{H}+4 \pi \mathbf{M} & \mathbf{E}=\mathbf{D}-4 \pi \mathbf{P} \\
\nabla \times \mathbf{M}=\mathbf{j} / \mathrm{c} & \nabla \cdot \mathbf{P}=-\rho
\end{array}
$$

■ A dissipationless current circulates at the surface of a uniformly magnetized sample:

$$
\mathbf{K}_{\text {surface }}=c \mathbf{M} \times \mathbf{n}
$$

■ A surface charge piles up at the surface of a uniformly polarized sample:

Electric-magnetic analogies in continuous media

$$
\begin{array}{rl}
\mathbf{B}=\mathbf{H}+4 \pi \mathbf{M} & \mathbf{E}=\mathbf{D}-4 \pi \mathbf{P} \\
\nabla \times \mathbf{M}=\mathbf{j} / \mathrm{c} & \nabla \cdot \mathbf{P}=-\rho
\end{array}
$$

- A dissipationless current circulates at the surface of a uniformly magnetized sample:

$$
\mathbf{K}_{\text {surface }}=c \mathbf{M} \times \mathbf{n}
$$

- A surface charge piles up at the surface of a uniformly polarized sample:

$$
\sigma_{\text {surface }}=-\mathbf{P} \cdot \mathbf{n}
$$

Common drawback: The position operator

$$
\begin{aligned}
\mathbf{M} & =\frac{\mathbf{m}}{V}=\frac{1}{2 c V} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \\
\mathbf{P} & =\frac{\mathbf{d}}{V}=\frac{1}{V} \int d \mathbf{r} \mathbf{r} \rho(\mathbf{r})
\end{aligned}
$$

Surface terms contribute extensively to the dipole: so \mathbf{M} and \mathbf{P} are apparently surface properties

Common drawback: The position operator

$$
\begin{aligned}
\mathbf{M} & =\frac{\mathbf{m}}{\bar{V}}=\frac{1}{2 c V} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \\
\mathbf{P} & =\frac{\mathbf{d}}{V}=\frac{1}{V} \int d \mathbf{r} \rho(\mathbf{r})
\end{aligned}
$$

Surface terms contribute extensively to the dipole: so \mathbf{M} and \mathbf{P} are apparently surface properties

Not bulk ones!

Common drawback: The position operator

$$
\begin{aligned}
\mathbf{M} & =\frac{\mathbf{m}}{\bar{V}}=\frac{1}{2 c V} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \\
\mathbf{P} & =\frac{\mathbf{d}}{V}=\frac{1}{V} \int d \mathbf{r} \rho(\mathbf{r})
\end{aligned}
$$

Surface terms contribute extensively to the dipole: so \mathbf{M} and \mathbf{P} are apparently surface properties

Not bulk ones!

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has no surface by construction.

■ Any quantity defined or computed within PBC is by definition "bulk".

- However... The position operator \mathbf{r} is incompatible with Born-von Kármán PBCs.
- The matrix elements of r over Bloch orbitals are ill defined.
- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
- Breakthrough (1992 -): "Modern theory of polarization".

■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization".

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.

- Any quantity defined or computed within PBC is by definition "bulk".
- However. The nosition operator r is incompatible with Born-von Kármán PBCs.
\square The matrix elements of r over Bloch orbitals are ill defined.
- Because of this, the problem of macrosconic electric polarization remained unsolved until the early 1990s.

■ Breakthrough (1992 -): "Modern theory of polarization"
■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization".

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".

- However... The position operator r is incompatible with Born-von Kármán PBCs.
- The matrix elements of \mathbf{r} over Bloch orbitals are ill defined.
- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
■ Breakthrough (1992 -): "Modern theory of polarization"
- Magnetic analogue (2005 -) "Modern theory of orbital magnetization"

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".

■ However... The position operator r is incompatible with Born-von Kármán PBCs.

■ The matrix elements of r over Bloch orbitals are ill defined.

- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
■ Breakthrough (1992 -): "Modern theory of polarization"
■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization'

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".
■ However... The position operator \mathbf{r} is incompatible with Born-von Kármán PBCs.

- The matrix elements of rover Bloch orbitals are ill defined.
- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
- Breakthrough (1992 -): "Modern theory of polarization"

■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization"

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".

■ However... The position operator \mathbf{r} is incompatible with Born-von Kármán PBCs.

■ The matrix elements of \mathbf{r} over Bloch orbitals are ill defined.

- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.

■ Breakthrough (1992 -): "Modern theory of polarization"

- Magnetic analogue (2005 -) "Modern theory of orbital magnetization"

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".

■ However... The position operator \mathbf{r} is incompatible with Born-von Kármán PBCs.

■ The matrix elements of \mathbf{r} over Bloch orbitals are ill defined.

- Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
- Breakthrough (1992 -): "Modern theory of polarization"

■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization"

The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

■ The system has no surface by construction.
■ Any quantity defined or computed within PBC is by definition "bulk".

■ However... The position operator \mathbf{r} is incompatible with Born-von Kármán PBCs.

■ The matrix elements of \mathbf{r} over Bloch orbitals are ill defined.
■ Because of this, the problem of macroscopic electric polarization remained unsolved until the early 1990s.
■ Breakthrough (1992 -): "Modern theory of polarization".
■ Magnetic analogue (2005 -) "Modern theory of orbital magnetization".

Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences

Heuristically, by analogy with the electrical case

■ For an insulator, in absence of inversion symmetry, in zero E field, we have

$$
\mathbf{P}_{\text {electronic }}=-\frac{2 e}{V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r}\left|w_{n}\right\rangle
$$

- By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

■ Question: Is this the correct formula for the bulk magnetization

- Answer: No!

There is an additional term, having no electrical analogue.

Heuristically, by analogy with the electrical case

- For an insulator, in absence of inversion symmetry, in zero E field, we have

$$
\mathbf{P}_{\text {electronic }}=-\frac{2 e}{V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r}\left|w_{n}\right\rangle
$$

■ By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

$$
\mathbf{M}=-\frac{2 e}{2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times \mathbf{v}\left|w_{n}\right\rangle
$$

- Question: Is this the correct formula for the bulk magnetization
■ Answer: No!
There is an additional term, having no electrical analogue.

Heuristically, by analogy with the electrical case

■ For an insulator, in absence of inversion symmetry, in zero E field, we have

$$
\mathbf{P}_{\text {electronic }}=-\frac{2 e}{V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r}\left|w_{n}\right\rangle
$$

■ By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

$$
\mathbf{M}=-\frac{2 e}{2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times \mathbf{v}\left|w_{n}\right\rangle
$$

■ Question: Is this the correct formula for the bulk magnetization
■ Answer: No!

Heuristically, by analogy with the electrical case

■ For an insulator, in absence of inversion symmetry, in zero E field, we have

$$
\mathbf{P}_{\text {electronic }}=-\frac{2 e}{V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r}\left|w_{n}\right\rangle
$$

■ By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

$$
\mathbf{M}=-\frac{2 e}{2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times \mathbf{v}\left|w_{n}\right\rangle
$$

■ Question: Is this the correct formula for the bulk magnetization
■ Answer: No!
There is an additional term, having no electrical analogue.

From Wannier back to Bloch

$$
\mathbf{v}=\frac{i}{\hbar}[H, \mathbf{r}] ; \quad \psi_{n \mathbf{k}}(\mathbf{r})=\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}(\mathbf{r}) ; \quad H(\mathbf{k})=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} H \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}}
$$

- Electrical analogy once more:

From Wannier back to Bloch

$$
\begin{aligned}
\mathbf{v}= & \frac{i}{\hbar}[H, \mathbf{r}] ; \quad \psi_{n \mathbf{k}}(\mathbf{r})=\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}(\mathbf{r}) ; \quad H(\mathbf{k})=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} H \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} \\
\mathbf{M} & =-\frac{e}{2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times \mathbf{v}\left|w_{n}\right\rangle \\
& =-\frac{i e}{\hbar 2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times H \mathbf{r}\left|w_{n}\right\rangle \\
& =-\frac{i e}{\hbar 2 c(2 \pi)^{3}} \sum_{n \in \text { occupied }} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
\end{aligned}
$$

- Electrical analogy once more:

From Wannier back to Bloch

$$
\begin{aligned}
\mathbf{v}= & \frac{i}{\hbar}[H, \mathbf{r}] ; \quad \psi_{n \mathbf{k}}(\mathbf{r})=\mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}(\mathbf{r}) ; \quad H(\mathbf{k})=\mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} H \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} \\
\mathbf{M} & =-\frac{e}{2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times \mathbf{v}\left|w_{n}\right\rangle \\
& =-\frac{i e}{\hbar 2 c V_{\text {cell }}} \sum_{n \in \text { occupied }}\left\langle w_{n}\right| \mathbf{r} \times H \mathbf{r}\left|w_{n}\right\rangle \\
& =-\frac{i e}{\hbar 2 c(2 \pi)^{3}} \sum_{n \in \text { occupied }} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
\end{aligned}
$$

■ Electrical analogy once more:

$$
\mathbf{P}_{\text {electronic }}=-\frac{2 i e}{(2 \pi)^{3}} \sum_{n \in \text { occupied }} \int_{B Z} d \mathbf{k}\left\langle u_{n \mathbf{k}} \mid \partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

The Haldanium model material (Haldane, PRL 1988)

■ Honeycomb lattice in 2d, breaks time-reversal symmetry.

■ Insulator at half-filling (only the lowest band occupied).

- Zero flux through the unit cell: The macroscopic B field is zero; The Hamiltonian is lattice-periodical; Bloch \& Wannier orbitals exist.

The Haldanium model material (Haldane, PRL 1988)

■ Honeycomb lattice in 2d, breaks time-reversal symmetry.

■ Insulator at half-filling (only the lowest band occupied).

■ Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical; Bloch \& Wannier orbitals exist.

The Haldanium model material (Haldane, PRL 1988)

■ Honeycomb lattice in 2d, breaks time-reversal symmetry.

■ Insulator at half-filling (only the lowest band occupied).

■ Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical; Bloch \& Wannier orbitals exist.

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 C(2 \pi)^{2}} \int_{B Z} d k\left\langle\partial_{k} u_{k}\right| \times H(k)\left|\partial_{k} u_{k}\right\rangle
$$

■ (B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

- (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites).

Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

(B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

■ (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

■ (B) Finite system of area L^{2} cut from the bulk
(so-called "open" boundary conditions)

■ (A) numerically evaluated on a dense \mathbf{k}-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

- (B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

$$
M=\frac{1}{2 c L^{2}} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r})
$$

\square

- (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

- (B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

$$
M=\frac{1}{2 c L^{2}} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r})=\frac{1}{2 c L^{2}} \sum_{n \in \text { occupied }}\left\langle\varphi_{n}\right| \mathbf{r} \times \mathbf{v}\left|\varphi_{n}\right\rangle
$$

- (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

- (B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

$$
M=\frac{1}{2 c L^{2}} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r})=\frac{1}{2 c L^{2}} \sum_{n \in \text { occupied }}\left\langle\varphi_{n}\right| \mathbf{r} \times \mathbf{v}\left|\varphi_{n}\right\rangle
$$

■ (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Formula assessed via computer experiments

 (2d, single occupancy, single band, atomic units)■ (A) Periodic "bulk" system:

$$
M=-\frac{i}{2 c(2 \pi)^{2}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{\mathbf{k}}\right| \times H(\mathbf{k})\left|\partial_{\mathbf{k}} u_{\mathbf{k}}\right\rangle
$$

- (B) Finite system of area L^{2} cut from the bulk (so-called "open" boundary conditions)

$$
M=\frac{1}{2 c L^{2}} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r})=\frac{1}{2 c L^{2}} \sum_{n \in \text { occupied }}\left\langle\varphi_{n}\right| \mathbf{r} \times \mathbf{v}\left|\varphi_{n}\right\rangle
$$

■ (A) numerically evaluated on a dense k-point mesh; (B) evaluated for large L values (up to 2048 sites). Do they converge to the same limit?

Chasing the missing term: Localized-orbital (Boys/Wannier) analysis

- The Boys/Wannier localized orbitals at the sample edge carry a net current and contribute to \mathbf{M}.

Chasing the missing term: Localized-orbital (Boys/Wannier) analysis

■ The Boys/Wannier localized orbitals at the sample edge carry a net current and contribute to M.

The historical derivation

■ Even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.
\square This is possible only in trivial insulators: no Chern insulators, no metals

- Formulated in this way in Vanderbilt's textbook

The historical derivation

■ Even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.

- This is possible only in trivial insulators: no Chern insulators, no metals

■ Formulated in this way in Vanderbilt's textbook

The very first calculation for real materials

(D. Ceresoli, U. Gertsmann, A.P. Seitsonen, \& F. Mauri, 2010)

| Metal e | Expt. | FLAPW | | This method | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | LDA PBE | LDA | PBE |
| $b c c-\mathrm{Fe}[001]$ | 0.081 | 0.053 | 0.051 | 0.0640 | 0.0658 |
| $b c c-\mathrm{Fe}[111]$ | - | - | - | 0.0633 | 0.0660 |
| $h c p-\mathrm{Co}[001]$ | 0.133 | 0.069 | 0.073 | 0.0924 | 0.0957 |
| $h c p-\mathrm{Co}[100]$ | - | - | - | 0.0837 | 0.0867 |
| $f c-\mathrm{Ni}[111]$ | 0.063 | 0.038 | 0.037 | 0.0315 | 0.0519 |
| $f c c-\mathrm{Ni}[001]$ | - | - | - | 0.0308 | 0.0556 |

TABLE III: Orbital magnetization $\mathrm{M}(\mathrm{c})$ in $\mu_{E n}$ per atom of ferromagnetic metals parallel to the spin, for different spin orientationse. The easy axis for Fe, Co and Ni are, respectively, [001], [001] and [111]. Experimental reaults from Ref. 24; ELAPW results from Ref. 5.

Caveat: Role of the core electrons in a pseudopotential framework

Outline

1 Generalities

2 Historical derivation of the theory

3 P vs. M: Analogies and differences

The textbook formulæ

$$
\begin{aligned}
& \mathbf{M}=\frac{\mathbf{m}}{V}=\frac{1}{2 c V} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \\
& \mathbf{P}=\frac{\mathbf{d}}{V}=\frac{1}{V} \int d \mathbf{r} \mathbf{r} \rho(\mathbf{r})
\end{aligned}
$$

The textbook formulæ

$$
\begin{aligned}
& \mathbf{M}=\frac{\mathbf{m}}{V}=\frac{1}{2 c V} \int d \mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \\
& \mathbf{P}=\frac{\mathbf{d}}{V}=\frac{1}{V} \int d \mathbf{r} \rho(\mathbf{r})
\end{aligned}
$$

P and M as reciprocal-space integrals

- 1992: Polarization (insulators)

$$
P_{\alpha}=-\frac{2 i e}{(2 \pi)^{d}} \sum_{j=1}^{n_{\mathrm{b}}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle u_{j \mathbf{k}} \mid \partial_{\alpha} u_{j \mathbf{k}}\right\rangle+P_{\alpha}^{(\text {nuclei })}
$$

■ 2005-06: Orbital magnetization (including metals)

$$
M_{\gamma}=-\frac{i e}{2 \hbar c} \varepsilon_{\gamma \alpha \beta} \sum_{j} \int_{\epsilon_{\mathbf{j} \mathbf{k}} \leq \mu} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle\partial_{\alpha} u_{j \mathbf{k}}\right|\left(H_{\mathbf{k}}+\epsilon_{j \mathbf{k}}-2 \mu\right)\left|\partial_{\beta} u_{j \mathbf{k}}\right\rangle
$$

P and M as reciprocal-space integrals

- 1992: Polarization (insulators)

$$
P_{\alpha}=-\frac{2 i e}{(2 \pi)^{d}} \sum_{j=1}^{n_{\mathrm{b}}} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle u_{j \mathbf{k}} \mid \partial_{\alpha} u_{j \mathbf{k}}\right\rangle+P_{\alpha}^{(\text {nuclei) })}
$$

■ 2005-06: Orbital magnetization (including metals)

$$
M_{\gamma}=-\frac{i e}{2 \hbar c} \varepsilon_{\gamma \alpha \beta} \sum_{j} \int_{\epsilon_{j \mathbf{k}} \leq \mu} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle\partial_{\alpha} u_{j \mathbf{k}}\right|\left(H_{\mathbf{k}}+\epsilon_{j \mathbf{k}}-2 \mu\right)\left|\partial_{\beta} u_{j \mathbf{k}}\right\rangle
$$

■ Do they have anything in common?

They could not be more different!

$$
\begin{aligned}
& P_{\alpha}^{(a)}=-2 i e \sum_{j=1}^{m_{0}} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle u_{\mathbf{k}} \mid \partial_{k_{a}} u_{j k}\right\rangle=-2 e \int_{\mathbf{B Z}} \frac{d \mathbf{k}}{(2 \pi)^{d}} \mathcal{A}_{\alpha}(\mathbf{k}) \\
& M_{\gamma}=-\frac{i e}{2 \hbar c} \varepsilon_{\gamma \beta \beta} \sum_{\varepsilon_{k}\langle\mu} \int_{\bar{B} z} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle\partial_{k_{k}} u_{\mu k}\left(H_{\mathbf{k}}+\epsilon_{\boldsymbol{k}}-2 \mu\right) \mid \partial_{k_{\beta}} u_{k k}\right\rangle
\end{aligned}
$$

■ Polarization

- Insulators only
- Gauge-dependent integrand
- Integral of a 1-form
- At bare bones, \mathbf{P} is 1-dimensional
- Bulk \mathbf{P} multiple valued
- Tinkering with the boundaries can alter \mathbf{P}

■ Orbital Magnetization

- Insulators and metals
- Gauge-invariant integrand
- Integral of a 2 -form
- At bare bones, \mathbf{M} is 2-dimensional

■ \mathbf{M} is single-valued
■ Tinkering with the boundaries cannot alter M

They could not be more different!

$$
\begin{aligned}
& P_{\alpha}^{(d)}=-2 i e \sum_{j=1}^{n_{0}} \int_{\mathrm{BZ}} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle u_{k \mathbf{k}} \mid \partial_{k_{a}} u_{k}\right\rangle=-2 e \int_{\mathbf{B Z}} \frac{d \mathbf{k}}{(2 \pi)^{d}} \mathcal{A}_{\alpha}(\mathbf{k}) \\
& M_{\gamma}=-\frac{i e}{2 h \bar{c}} \varepsilon_{\gamma \beta \beta} \sum_{\varepsilon_{\mu}<\mu} \int_{\mathbf{z} z} \frac{d \mathbf{k}}{(2 \pi)^{d}}\left\langle\partial_{k_{0}} u_{\mu k}\right|\left(H_{\mathbf{k}}+\epsilon_{\mathcal{k}}-2 \mu\right)\left|\partial_{k_{\beta}} u_{\mu_{k}}\right\rangle \\
& \text { ■ Polarization: prototype of class I observables }
\end{aligned}
$$

- Insulators only
- Gauge-dependent integrand
- Integral of a 1-form
- At bare bones, \mathbf{P} is 1-dimensional
- Bulk \mathbf{P} multiple valued
- Tinkering with the boundaries can alter \mathbf{P}

■ Orbital Magnetization:
prototype of class II observables

- Insulators and metals
- Gauge-invariant integrand
- Integral of a 2 -form
- At bare bones, \mathbf{M} is 2-dimensional
- \mathbf{M} is single-valued

■ Tinkering with the boundaries cannot alter M

Insulators, metals, and more

■ Magnetization in a "normal" (zero-Chern-number) insulator proof obtained via WFs:

$$
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n \in \text { occupied }} \int_{\mathrm{BZ}} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

■ Magnetization in metals \& Chern insulators:

$$
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

Relationship to Hall conductivity

■ Magnetization in a metal \& in a Chern insulator

$$
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

- This is the intrinsic part of the AHE (in metals)

■ In 2d, integrated over the BZ, it gives the quantized Hall conductivity in a Chern insulator

- What has $d \mathbf{M} / d \mu$ to do with the Hall conductivity?

Relationship to Hall conductivity

■ Magnetization in a metal \& in a Chern insulator

$$
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

$$
\frac{d \mathbf{M}}{d \mu} \propto \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k} i\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
$$

- This is the intrinsic part of the AHE (in metals)

■ In 2d, integrated over the BZ, it gives the quantized Hall conductivity in a Chern insulator

- What has $d \mathbf{M} / d \mu$ to do with the Hall conductivity?

Relationship to Hall conductivity

■ Magnetization in a metal \& in a Chern insulator

$$
\begin{gathered}
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle \\
\frac{d \mathbf{M}}{d \mu} \propto \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k} i\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
\end{gathered}
$$

■ This is the intrinsic part of the AHE (in metals)

- In 2d, integrated over the BZ, it gives the quantized Hall conductivity in a Chern insulator
- What has $d \mathbf{M} / d \mu$ to do with the Ha ll conductivity?

Relationship to Hall conductivity

■ Magnetization in a metal \& in a Chern insulator

$$
\begin{gathered}
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle \\
\frac{d \mathbf{M}}{d \mu} \propto \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k} i\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
\end{gathered}
$$

■ This is the intrinsic part of the AHE (in metals)
■ In 2d, integrated over the BZ, it gives the quantized Hall conductivity in a Chern insulator

- What has $d \mathrm{M} / d \mu$ to do with the Hall conductivity?

Relationship to Hall conductivity

■ Magnetization in a metal \& in a Chern insulator

$$
\begin{gathered}
\mathbf{M}=-\frac{i e}{\hbar c(2 \pi)^{3}} \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k}\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times[H(\mathbf{k})+\varepsilon(\mathbf{k})-2 \mu]\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle \\
\frac{d \mathbf{M}}{d \mu} \propto \sum_{n} \int_{\varepsilon_{n}(\mathbf{k})<\mu} d \mathbf{k} i\left\langle\partial_{\mathbf{k}} u_{n \mathbf{k}}\right| \times\left|\partial_{\mathbf{k}} u_{n \mathbf{k}}\right\rangle
\end{gathered}
$$

■ This is the intrinsic part of the AHE (in metals)
■ In 2d, integrated over the BZ, it gives the quantized Hall conductivity in a Chern insulator
■ What has $d \mathbf{M} / d \mu$ to do with the Hall conductivity?

