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Generalities (Berry curvature, Chern number)



A simple example: Two level system
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A simple example: Two level system

HE = €7 nondegenerate for £ # 0
= £ (sindcosp oy +sindsinp o, + cost o)

lowest eigenvalue — ¢

. sin Ye—i¥
lowest eigenvector |¢(¥, )) = 27
— COS 5

Ay = i(W|ogy) =0
9
Ay = i{W|0p0) =sin® 3
Q = aﬁAw—agpAﬁ:%sinﬁ

m Q gauge invariant
m What about .A? Obstruction!



Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
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Integrating the Berry curvature
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Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
1

— Q(&) - n do = topological integer € Z
27T S2

m Integrating (v, ) over [0, 7] x [0, 27]:
1 / dddy 1 sing =1 Chern number C;
2r 2

m Measures the singularity at £ = 0 (monopole)

m Berry phase on any closed curve C on the sphere:

T: o]
N \\_,, v = ]{CA(ﬁ)-dﬁ
e = % x (solid angle spanned)

-



Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons
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Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hik) = exlvx)

Heluk) = ex|uk) luk) = e ®Tyy)  Hk = e KT Hekr
m Berry connection and curvature (& — k):
A(k) = I'<Uk’VkUk>
Q(k) = i(Vkuk\ X ‘VkUk> =-2Im (6kxuk|8kyuk)

m BZ (or reciprocal cell) is a closed surface: 2d torus
Topological invariant:

Ci = 1 dk (k) Chern number
271' BZ



Many-band insulator (n, occupied bands)

m Berry connection:

My
=i Z u,k|6 U/k
j=1

m Metric-curvature tensor of the occupied manifold:

WE

Fop(k) = (OaUjk|OpUjk)

1

~.
Il

s

<8a Ujk‘uj’k> <Uj'k‘8/j'ujk>
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Metric and curvature of the occupied manifold

m Quantum metric:

9as(K) = Re Fop(K)
m Berry curvature:
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Metric and curvature of the occupied manifold

m Quantum metric:

9as(K) = Re Fop(K)
m Berry curvature:

My
Qus(K) = —21m Fop(k) = —21m > (0a Ul s )
=1

m Curvature useful for metals as well:

Qap(K) = —21m > f(1 — cj) (OaljlOpuk)
i



Q; as a bulk observable

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

m Gauge-invariant quadratic spread of the WFs

Q= cellZ/(z 7 9aa(K)

m SWM sum rule for the longitudinal conductivity
of a band insulator:

I Veent / dw
Q) = Re caal
1= 2 /h @ Z Taa(w),




Q; as a bulk observable

I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

m Gauge-invariant quadratic spread of the WFs

Q= cellZ/(z 7 9aa(K)

m SWM sum rule for the longitudinal conductivity
of a band insulator:

I Veent / dw
Q) = Re caal
1= 2 /h @ Z Taa(w),

m What about metals?



Computing the Chern number
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Computing the Chern number
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Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
®—0—0—0—0—6—6
*—0—0—0—0—0—@&

Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:

v = —Imlog (U, |Uk,) Uk, | Uks ) {Uks | Uk, ) (Uk, | Uk, )



Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
®—0—0—6—0—6—6
*—0—0—0—0—0—@&

Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:

v = —Im log (Uk, |Uk,) Uk, |Uks) { Uks | Uk, ) { Uk, | Uk, )

Which branch of Im log?



Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—&
®o—0—0—6—0—6—6
*—0—0—0—0—0—&

NonAbelian (many-band):
v = —Imlog det S(ki, k2)S(kz, k3)S(ks, ks)S(ks, k1)

Snr (Ks, Ks') = <Unks‘Unks,>
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Haldanium & chern insulators



Hexagonal boron nitride (& graphene)

Topologically trivial: Cy = 0.
Why?




Hexagonal boron nitride (& graphene)

Topologically trivial: Cy = 0.
Why?

Symmetry properties
m Time-reversal symmetry — Q(k) = —Q(—k) R

m Inversion symmetry — Q(k) = Q(—Kk)

m Need to break time-reversal invariance!
m B field in the quantum Hall effect (TKNN invariant)
m What about graphene?



The “Haldanium” paradigm (F.D.M. Haldane, 1988)

+ staggered B field




The “Haldanium” paradigm (F.D.M. Haldane, 1988)

staggered B field

4 TN 13,67

/
/

Tight-binding parameters: 2
m 1st-neighbor hopping t “
m staggered onsite +A E o5 : ‘
m complex 2nd-neighbor tye®

c=0

0 0.5
¢ [in units of ]

Phase diagram



Topological order

[ 0.5
@ [in units of @]

m Ground state wavefunctions differently “knotted” in k space
m Topological order very robust

m C; switched only via a metallic state: “cutting the knot”

m Displays quantum Hall effect at B=0



Bulk-boundary correspondence

Ci1#0

bulk ribbon



Wannier functions do not exist when C; 40

(Thouless, 1984)

m Proof by absurd. If WFs exist then
k) =Y _e"FIR)
R
m This implies

lvkig) = [Yk) (so called “periodic gauge”)



Wannier functions do not exist when C; 40

(Thouless, 1984)

m Proof by absurd. If WFs exist then
k) =Y _e"FIR)
R
m This implies

lvkig) = [Yk) (so called “periodic gauge”)

m When C; # 0 a periodic gauge in the whole BZ does not
exist: topological obstruction



Simulation by T. Thonhauser & D. Vanderbilt, 2006

— 500 x 500 ! L

-- 400 x 400 T T

— 300 x 300 q

--- 200 x 200 —
-+ 100 x 100

FIG. 8. Gauge-independent part ); and gauge-dependent part Q
of the spread functional for the Haldane model as a function of the
k-mesh density.



Chern insulators

m Besides Haldanium (a very popular computational
material), do Chern insulators exist in nature?

m First synthetized in China in 2013

m Also called QAHE (quantum anomalous Hall effect). Why?

m Nonexotic ferromagnetic metals in 3d (Ni, Co, Fe) show
AHE: Hall effect in zero B field.

Nonquantized: Berry curvature integrated within the
Fermi volume.
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Other topological insulators



Time-reversal symmetric topological insulators

m In2d:
m Kane-Mele model Hamiltonian, 2005
m A novel invariant, two-valued (Z,)
m Zero order picture: two copies of the Haldane model



Time-reversal symmetric topological insulators

m In 2d:

m Kane-Mele model Hamiltonian, 2005
m A novel invariant, two-valued (Z,)
m Zero order picture: two copies of the Haldane model
m Discovered: Hg,Cd;_,Te quantum wells, 2007
(L. Molenkamp & al.)



Time-reversal symmetric topological insulators

m In 2d:

m Kane-Mele model Hamiltonian, 2005
m A novel invariant, two-valued (Z,)
m Zero order picture: two copies of the Haldane model
m Discovered: Hg,Cd;_,Te quantum wells, 2007
(L. Molenkamp & al.)

m In 3d:

m Predicted by Fu, Kane, and Mele in 2007
m Discovered: Bi,Sbq_y, 2008 (M.Z. Hasan & al.)



2012 O. E. Buckley Condensed Matter Physics Prize

m “For the theoretical prediction and experimental
observation of the quantum spin Hall effect, opening the
field of topological insulators”

m Charles L. Kane (U. Pennsylvania)
Laurens W. Molenkamp (U. Wirzburg, Germany)
Shoucheng Zhang (Stanford U.)
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Noncrystalline insulators: single-point Chern number



Computing the Chern number

T —0—0—0—0—0—&
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Computing the Chern number

Cell doubling:

m Reciprocal cell reduced fourfold
m # of states increased fourfold

m the states are the same

m C; invariant

o0 0 0—0—0—©¢
®o—0—0—6—6—0—6
*—0—0—0—0—0—&

® © © 0—0—0—6
0 0 06—0—0—©&




Computing the Chern number

Cell doubling:

m Reciprocal cell reduced fourfold
m # of states increased fourfold

m the states are the same

m C; invariant

—0—0—0—0—0—&
®—0—0—6—0—6—6
*—0—0—0—0—0—&

Down to the very minimum:
m One state on many loops — Many states on a single loop

m The gauge is now periodical throughout:
Where is the obstruction?

m Eventually, Cy is a k = 0 property!



Interpretation of the single point formula

m In the large supercell limit

1 1 (2r)?
Ci=p | dkQk) — 5-250(0)

- 271' BZ
Chern number —  curvature per unit sample area:
no integration




Interpretation of the single point formula

m In the large supercell limit

1 1 (27)2
= — k Q(k —
C1 271' BZ d ( ) - 27T AC
Chern number —  curvature per unit sample area:

no integration

Q(0)

m Q(0) is a linear response of the ground state to an
infinitesimal “twist” or “flux” in the many-body Hamiltonian:

Fi(k) = Z pi + A(r,) + hk[2+

2me

N
Q(0) = 1> ((Ok, Uno| Ok, Uno) — (Osg Uno| Ok, Uno) )

n=1



Convergence with supercell size

(D. Ceresoli & R.R. 2007)

Chern number as a function of the
supercell size, evaluated using the
single-point formulas for the Haldane
model Hamiltonian. The largest L cor-
responds to 2048 sites in the super-
cell.

Chern number

1.02

1.00

0.98

0.96 |

0.94

0.92

numerical —e—
analytical —e—
exact

0

0.05

01 015 02
1L



AHC and M as reciprocal-space integrals

m Intrinsic term in anomalous Hall conductivity:

2
- _ € dk
Reol) = —= | e Q.5(K)

262
= > /BZ {OaUjk| O3 Ujk)

Ejk<p

m Extrinsic terms:
m Necessarily present in metals
m Absent in insulators:
Quantum anomalous Hall effect (QAHE)



AHC and M as reciprocal-space integrals

m Intrinsic term in anomalous Hall conductivity:

2
- _ € dk
Reol) = —= (zﬂ)d Q.5(K)

2 2
R Bz (

m Extrinsic terms:
m Necessarily present in metals
m Absent in insulators:
Quantum anomalous Hall effect (QAHE)

m Orbital magnetization:

o crap Z / (D] (Hh+-ex—202) |05
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Dual representation in coordinate space



Manifesto: k space vs. r space

m Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

m Genuine bulk properties should also be measurable:
m Inside finite samples (e.g. bounded crystallites)
m In noncrystalline samples
m In macroscopically inhomogeneous samples
(e.g. heterojunctions)

m In all such cases, the k vector does not make any sense!



Manifesto: k space vs. r space

m Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

m Genuine bulk properties should also be measurable:

m Inside finite samples (e.g. bounded crystallites)

m In noncrystalline samples

m In macroscopically inhomogeneous samples
(e.g. heterojunctions)

m In all such cases, the k vector does not make any sense!

m |s it possible to get rid of k vectors and provide instead a
geometrical marker directly in r space?



Bounded samples with square-integrable orbitals

m One-body density matrix, a.k.a. ground-state projector:

P=>leplgl (spinless)

§<H

m P allows to evaluate any ground-state observable
(for independent electrons)



Bounded samples with square-integrable orbitals

m One-body density matrix, a.k.a. ground-state projector:

P = lg)pl (spinless)

§<H

m P allows to evaluate any ground-state observable
(for independent electrons)

m Tensor fields in r-space:

Sap(r) = Im(r[Pra, P][rs, PIIr)
Map(r) = Im (el [H = pl o, P [rs, PIIF).

m In the bulk of a crystallite the two tensor fields
§(r) and Mi(r) are lattice-periodical



Geometrical observables as traces per unit volume

m Anomalous Hall conductivity:

&5) = —zszlm Try {Sap} (insulators and metals)

m Orbital magnetization:

M, = 5w5TrV {M,s} (insulators and metals)

2hec
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A Simulations on bounded Haldanium® flakes



Haldanium flake (OBCs)
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Normal insulator & Chern insulator (crystalline)
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Haldanium alloy (normal & Chern)
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Haldanium heterojunctions
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Metallic Haldanium

“some magnetism”

+




Metallic Haldanium

+ ‘“some magnetism”

m Zero flux per cell (no Landau levels!)
m Insulating (either trivial or topological) at half filling
m Metallic at any other filling



AHC in metals

m Extrinsic mechanisms:
m Side jump
m Skew scattering

m Since the early 2000’s
m An important contribution is intrinsic
m Geometrical property of the ground state
(Fermi-volume integral of the Berry curvature)
m Nonquantized version of QAHE in insulators

m We have proved that it is local in r-space



AHC as a function of the Fermi level

A. Marrazzo and R. Resta, Phys. Rev. B 95, 121114(R) (2017)

m Solid line:
Usual k-space expression (Fermi-volume integral)

m Symbols: Our r-space “geometrical marker”

Oay [ €2/h units ]
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Trivial at half filling Topological at half filling



AHC in Haldanium metal/metal heterojunctions

A. Marrazzo and R. Resta, Phys. Rev. B 95, 121114(R) (2017)
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e—e Local marker oy (r)
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Orbital magnetization a a function of the Fermi level

A. Marrazzo and R. Resta, Phys. Rev. Lett. 116, 137201 (2016)
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At convergence all formulas coincide:
m Textbook formula: 51, [ dr r x jmicro)(r)
m M, = =308 Joy IK (Dal| (Hi + €k — 211) |95 Uk)
m Our novel formula: 57-c,5Try {Mas}

© units |

te
he
»
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Fast convergence in both insulator and metal

11 — 4.4
10.5 v@ﬁ,gﬁgggmgaa@w-@u»-gai 43
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g'g y o 1 a1l e E0s0080000060
& o4
8.5 m/A o
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Meen 0
7.5 .38
7 a7 Mpuk &
6.5 ] ’ a+b/VN
‘ 3.6 .
- (3 a 3.5 . . . . . . . .
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Insulator Metal

m 1/L convergence with size: 51y, [ dr r x jmcro)(r)

m Much better convergence: 5% c,.3Try {95}



Why is our local M formula better than textbooks’ one?

m Textbooks: bounded sample in the large-V limit:
M, = 2Cvgwﬁ/dr Io (m‘m’)(r)

— —geyees 3 [ dr el vsle)
§<H

= 2 V&Yang’ {P fan}

P=Yloplal Vo= i1

€<p

M, =— 2h VeWBTr {PryHrs}



Why is our local M formula better than textbooks’ one?

m Textbooks formula:

M, = — 2h Vam/gTr {ProHrs}

m Our formula:

M’y = 2ﬁ VE’YQBTr {’7‘[ M| [fa,P] [fg,P]}



Why is our local M formula better than textbooks’ one?

m Textbooks formula:

M, = — 2h Vangr {ProHrs}

m Our formula:

ie
b=~ oheyeres T UH — ul Ira, P s, P}

m They provide the same M value at any finite V:
Where is the key difference?



Why is our local M formula better than textbooks’ one?

M, = 2h VsmﬁTr {Prytrs}

i
= 2th€7aB/dr (F| P roHrz|r)

M’Y = 2h Ve’YaﬁTr {|,H :ul [I’a,P] [r57p]}

— =~ grayeen | A1l [P [ P

m The integral values are identical
m The integrands are very different
m Similar in spirit to an integration by parts



Why is our local M formula better than textbooks’ one?

m Integral dominated by boundary contributions:

ie
My = g e / dr (r| P r,Hrs |r)

m Integral boundary-insensitive:

ie
M= "oy / dr (r| [H = ul [ra, P] 75, P1IY)



Why is our local M formula better than textbooks’ one?

m Integral dominated by boundary contributions:

e
M’y = —th‘/&'»ya/j/dr <I’| PraHrﬁ |r>

m Integral boundary-insensitive:

ie
M,‘/ = —%Cvg,yag/dr <|” |H - ,Ua‘ [ra-/P] [rﬁ77)] |r>

m Integrand lattice-periodical in the bulk region:

1

v sample
1

VCCH cell

ar (r| [H — pl [ra, P] [rs, P]]r)

~

dr (r| [H — pl [ra, P] [rs, P1IF)
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