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Anomalous Hall conductivity
(insulators and metals)
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A simple example: Two level system

H(ξ) = ξ · σ⃗ nondegenerate for ξ ̸= 0
= ξ (sinϑ cosφ σx + sinϑ sinφ σy + cosϑ σz)

lowest eigenvalue − ξ

lowest eigenvector |ψ(ϑ, φ)⟩ =
(

sin ϑ
2 e−iφ

− cos ϑ
2

)
Aϑ = i⟨ψ|∂ϑψ⟩ = 0

Aφ = i⟨ψ|∂φψ⟩ = sin2 ϑ

2

Ω = ∂ϑAφ − ∂φAϑ =
1
2
sinϑ

Ω gauge invariant

What about A? Obstruction!
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Integrating the Berry curvature

Gauss-Bonnet-Chern theorem (1940):

1
2π

∫
S2

Ω(ξ) · n dσ = topological integer ∈ Z

Integrating Ω(ϑ, φ) over [0, π]× [0,2π]:

1
2π

∫
dϑdφ

1
2
sinϑ = 1 Chern number C1

Measures the singularity at ξ = 0 (monopole)

Berry phase on any closed curve C on the sphere:
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spectrum of eigenvalues,

where |n(λ)〉 and En(λ) are eigenstates and eigenvalues, respectively, of H(λ).

Suppose that the values of λ change slowly along a smooth path in . Under
the adiabatic approximation, a system initially prepared in an eigenstate
|n(λ)〉 remains in the corresponding instantaneous eigenspace.

In the simplest case of a non-degenerate eigenvalue, the evolution of the
eigenstate is specified by the spectral decomposition (2.1) up to a phase
factor. This phase factor can be evaluated by solving the Schrödinger equation
under the constraint of the adiabatic approximation, yielding

where  is the usual dynamical phase, and the extra
phase factor is the geometric phase, φ. This phase has the form of a path
integral of a vector potential A (analogous to the electromagnetical vector
potential) called the Berry connection, whose components are

As the eigenstates |n(λ)〉  are defined up to an arbitrary phase factor, the
Berry connection is not uniquely defined. Nevertheless, when the path integral
in expression (2.2) is performed on a closed loop, its value is independent of
this arbitrary choice, and φ is uniquely defined. Berry was the first to recognize
that the additional phase factor in (2.2) has an inherent geometrical meaning:
it cannot be expressed as a single-valued function of λ, but it is a function of
the path followed by the state during its evolution. Surprisingly, the value of
this phase depends only on the geometry of the path, and not on the rate at
which it is traversed. Hence the name ‘geometric phase’.

The simplest, but still significant, example of a geometric phase is the one
obtained for a two-level system, such as a spin-1/2 particle in the presence of
a magnetic field. Its Hamiltonian is given by

where (θ, ϕ) determine the orientation of the magnetic field; 

 is a SU(2) transformation which rotates the
operator B.σ to the z-direction; and σ=(σx, σy, σz) is the vector of Pauli's
operators, given by

With this parametrization, the Hamiltonian can be represented as a vector on a
sphere, centred in the point of degeneracy of the Hamiltonian (|B|=0), as
shown in figure 1.

Figure 1

The geometric phase is
proportional to the solid
angle spanned by the
Hamiltonian with respect to
its degeneracy point.

For θ=ϕ=0, we have U=  and the two eigenstates of the system given by |+〉

γ ≡
∮

C
A(ξ) · dξ

=
1
2
× (solid angle spanned)
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where |n(λ)〉 and En(λ) are eigenstates and eigenvalues, respectively, of H(λ).

Suppose that the values of λ change slowly along a smooth path in . Under
the adiabatic approximation, a system initially prepared in an eigenstate
|n(λ)〉 remains in the corresponding instantaneous eigenspace.

In the simplest case of a non-degenerate eigenvalue, the evolution of the
eigenstate is specified by the spectral decomposition (2.1) up to a phase
factor. This phase factor can be evaluated by solving the Schrödinger equation
under the constraint of the adiabatic approximation, yielding

where  is the usual dynamical phase, and the extra
phase factor is the geometric phase, φ. This phase has the form of a path
integral of a vector potential A (analogous to the electromagnetical vector
potential) called the Berry connection, whose components are

As the eigenstates |n(λ)〉  are defined up to an arbitrary phase factor, the
Berry connection is not uniquely defined. Nevertheless, when the path integral
in expression (2.2) is performed on a closed loop, its value is independent of
this arbitrary choice, and φ is uniquely defined. Berry was the first to recognize
that the additional phase factor in (2.2) has an inherent geometrical meaning:
it cannot be expressed as a single-valued function of λ, but it is a function of
the path followed by the state during its evolution. Surprisingly, the value of
this phase depends only on the geometry of the path, and not on the rate at
which it is traversed. Hence the name ‘geometric phase’.

The simplest, but still significant, example of a geometric phase is the one
obtained for a two-level system, such as a spin-1/2 particle in the presence of
a magnetic field. Its Hamiltonian is given by

where (θ, ϕ) determine the orientation of the magnetic field; 

 is a SU(2) transformation which rotates the
operator B.σ to the z-direction; and σ=(σx, σy, σz) is the vector of Pauli's
operators, given by

With this parametrization, the Hamiltonian can be represented as a vector on a
sphere, centred in the point of degeneracy of the Hamiltonian (|B|=0), as
shown in figure 1.

Figure 1

The geometric phase is
proportional to the solid
angle spanned by the
Hamiltonian with respect to
its degeneracy point.

For θ=ϕ=0, we have U=  and the two eigenstates of the system given by |+〉
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Bloch orbitals (noninteracting electrons in this talk)

Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

H|ψk⟩ = εk|ψk⟩
Hk|uk⟩ = εk|uk⟩ |uk⟩ = e−ik·r|ψk⟩ Hk = e−ik·rHeik·r

Berry connection and curvature (ξ → k):

A(k) = i⟨uk|∇kuk⟩
Ω(k) = i⟨∇kuk| × |∇kuk⟩ = −2 Im ⟨∂kx uk|∂ky uk⟩

BZ (or reciprocal cell) is a closed surface: 2d torus
Topological invariant:

C1 =
1

2π

∫
BZ

dk Ω(k) Chern number
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Bloch orbitals (noninteracting electrons in this talk)

Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

H|ψk⟩ = εk|ψk⟩
Hk|uk⟩ = εk|uk⟩ |uk⟩ = e−ik·r|ψk⟩ Hk = e−ik·rHeik·r

Berry connection and curvature (ξ → k):

A(k) = i⟨uk|∇kuk⟩
Ω(k) = i⟨∇kuk| × |∇kuk⟩ = −2 Im ⟨∂kx uk|∂ky uk⟩

BZ (or reciprocal cell) is a closed surface: 2d torus
Topological invariant:

C1 =
1

2π

∫
BZ

dk Ω(k) Chern number
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Many-band insulator (nb occupied bands)

Berry connection:

Aα(k) = i
nb∑

j=1

⟨ujk|∂αujk⟩

Metric-curvature tensor of the occupied manifold:

Fαβ(k) =

nb∑
j=1

⟨∂αujk|∂βujk⟩

−
nb∑

j,j ′=1

⟨∂αujk|uj ′k⟩ ⟨uj ′k|∂βujk⟩
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Metric and curvature of the occupied manifold

Quantum metric:

gαβ(k) = Re Fαβ(k)

Berry curvature:

Ωαβ(k) = −2 Im Fαβ(k) = −2 Im
nb∑

j=1

⟨∂αujk|∂βujk⟩

Curvature useful for metals as well:

Ωαβ(k) = −2 Im
∑

j

f (µ− ϵjk) ⟨∂αujk|∂βujk⟩
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ΩI as a bulk observable
I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)

Gauge-invariant quadratic spread of the WFs

ΩI = Vcell

∑
α

∫
dk

(2π)d gαα(k)

SWM sum rule for the longitudinal conductivity
of a band insulator:

ΩI =
ℏVcell

πe2

∫ ∞

ϵg/ℏ

dω
ω

∑
α

Re σαα(ω),

What about metals?
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Computing the Chern number

Discretized reciprocal cell
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Computing the Chern number

Discretized reciprocal cell

Periodic gauge choice:
where is the obstruction?
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Computing the Chern number

Discretized reciprocal cell

Curvature ≡ Berry phase per unit (reciprocal) area
Berry phase on a small square:

γ = −Im log ⟨uk1 |uk2⟩⟨uk2 |uk3⟩⟨uk3 |uk4⟩⟨uk4 |uk1⟩
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Computing the Chern number

Discretized reciprocal cell

Curvature ≡ Berry phase per unit (reciprocal) area
Berry phase on a small square:

γ = −Im log ⟨uk1 |uk2⟩⟨uk2 |uk3⟩⟨uk3 |uk4⟩⟨uk4 |uk1⟩

Which branch of Im log?
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Computing the Chern number

Discretized reciprocal cell

NonAbelian (many-band):

γ = −Im log det S(k1,k2)S(k2,k3)S(k3,k4)S(k4,k1)

Snn′(ks,ks′) = ⟨unks |unks′
⟩
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Outline

1 Generalities (Berry curvature, Chern number)

2 Haldanium & chern insulators

3 Other topological insulators

4 Noncrystalline insulators: single-point Chern number

5 Dual representation in coordinate space

6 Simulations on bounded Haldanium c⃝ flakes
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

Topologically trivial: C1 = 0.
Why?

Need to break time-reversal invariance!
B field in the quantum Hall effect (TKNN invariant)
What about graphene?
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nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the
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Topologically trivial: C1 = 0.
Why?

Symmetry properties
Time-reversal symmetry → Ω(k) = −Ω(−k)
Inversion symmetry → Ω(k) = Ω(−k)
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(a)

(b)

Fig. 1. Berry curvature Ω (in units of a2) in the conduction
band of boron nitride as a function of the Bloch wavevector
(kx, ky) (in units of 1/a) in the entire Brillouin zone for ∆/t =

0.1. The lattice vectors have been taken as a1 =
√

3
2 aex+ 3

2aey ,

a2 = −
√

3
2 aex + 3

2aey. (a) Three dimensional plot (kx, ky , Ω).
(b) Contours of iso-curvature in the Brillouin zone.

symmetry (Ω(k + G) = Ω(k)) of the triangular Bravais
lattice.

The orbital magnetic moment is easily obtained from
M = eε0Ω and is shown in Figure 2.

Because of time reversal symmetry, the curvature sat-
isfies Ω(−k) = −Ω(k) and its integral over the entire BZ
vanishes. As inversion symmetry is absent Ω(−k) "= Ω(k).

The Berry phase for a cyclotron orbit C of constant en-
ergy ε0 is Γ (C) = πWC [1− ∆

|ε0| ] where WC ≡ −α
∮

C dθ/2π
is the winding number, which is ±1 when encircling a val-
ley (because of a vortex in θ) and 0 when the orbit is
around the Γ point, see Figure 3.

(a)

(b)

Fig. 2. Orbital magnetic moment M (in units of e t a2/!) in
the conduction band of boron nitride as a function of the Bloch
wavevector (kx, ky) (in units of 1/a) in the entire Brillouin
zone for ∆/t = 0.1. (a) Three dimensional plot (kx, ky,M).
(b) Contours of iso-M in the Brillouin zone.

A saddle point in the energy dispersion at |ε0| =√
∆2 + t2 separates the cyclotron orbits which encircle the

two valleys from the cyclotron orbit which encircle the Γ
point in the BZ. As a consequence,

Γ (C) = − αξπ[1 −∆/|ε0|] if ∆ ≤ |ε0| <
√
∆2 + t2

(i.e. WC = −αξ = ±1)

= 0 if
√
∆2 + t2 < |ε0| ≤

√
∆2 + (3t)2

(i.e. WC = 0). (38)

We checked this simple expression for the Berry phase
along a cyclotron orbit numerically by directly comput-
ing the integral of the curvature in k space over the area
encircled by the cyclotron orbit.

Ω(k)

Need to break time-reversal invariance!
B field in the quantum Hall effect (TKNN invariant)
What about graphene?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The “Haldanium” paradigm (F.D.M. Haldane, 1988)

2/5/12 1:06 PMUltrathin hexagonal boron nitride films

Page 1 of 2http://www.physik.unizh.ch/groups/grouposterwalder/kspace/BNhome/BNhome.htm

home

ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction
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Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the
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f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.

CERESOLI et al. PHYSICAL REVIEW B 74, 024408 !2006"

024408-10

Tight-binding parameters:
1st-neighbor hopping t1
staggered onsite ±∆

complex 2nd-neighbor t2eiϕ

approached, the gap at K gets smaller and smaller. Finally,
exactly at !! / t2"cr the bands touch at K in such a way that the
dispersion relation is linear. Such points are also referred to
as Dirac points. When going further into the Chern-insulator
region, the bands separate again. Note that our specific
choice of t1=1 and t2=1/3 prevents the bands from overlap-
ping. If ! and t2 sin " are both chosen to be zero, two Dirac
points form at K and K! and the Haldane model then be-
comes an appropriate model for a graphene sheet.20

In the normal-insulator region of the Haldane model the
Chern number of each band is zero, so that the total Chern
number !the sum of the Chern numbers of the upper and
lower bands" is obviously also zero. When the phase bound-
ary is crossed, the Chern numbers of the upper and lower
bands become ±1, but their sum still remains zero. The clo-
sure and reopening of the gap as the NI/CI boundary is
crossed corresponds to the “donation” of a Chern unit from
one band to another through the temporarily formed Dirac
point. In the present case, the total Chern number must al-
ways remain zero because the model, having a tight-binding
form, assumes Wannier representability of the overall band
space and a nonzero Chern number is inconsistent with such
an assumption. More generally, the total Chern number of a
group of bands should not change when a gap closure and

reopening occurs among the bands of the group, as long as
the gaps between this group and any lower or higher bands
remains open.

It is possible to argue on very general grounds that a finite
sample cut from a Chern insulator must have conductive
channels, otherwise known as chiral edge states, that circu-
late around the perimeter of the sample21 in much the same
way as for the quantum Hall effect.22,23 It is therefore of
interest to investigate the electronic structure of the Haldane
model from the point of view of the surface band structure.
We consider a sample that is finite in the b3 direction !spe-
cifically, 30 cells wide" and has periodic boundary conditions
along the b2 direction #the bi are defined above Eq. !4"$; its
states can be labeled by a wave vector ky running from −# /a
to +# /a, where a is the repeat unit in the y direction. The
energy eigenvalues are plotted versus ky for several values of
! / t2 in Fig. 4. At first sight, the surface band structure shows
qualitatively the same information as the bulk band structure
in Fig. 3. For ! / t2=6, the valence and conduction bands are
separated by a finite gap. At the Chern transition a Dirac
point forms, showing the characteristic linear dispersion ex-
pected around such a point. However, when we go deeper
into the Chern insulator, the surface band structure reveals a
new behavior: one surface band now crosses from the lower
manifold to the upper one with increasing ky, and another
crosses in the opposite direction. Further inspection shows
that the upgoing and downgoing states are localized to the
right and left surfaces of the strip, respectively. Thus, if the
Fermi level lies in the bulk gap, there will be metallic states
with Fermi velocities parallel to the surfaces and with oppo-
site orientation—i.e., a chiral !counterclockwise" circulation
of edge states around the perimeter of the sample, as ex-
pected.
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FIG. 2. Chern number of the bottom band of the Haldane model
as a function of the parameters " and ! / t2 !t1=1, t2=1/3". The
vertical line shows the range of parameters that we have chosen for
all our calculations.
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FIG. 3. Band structure of the Haldane model along some high-
symmetry lines for several values of ! / t2 along the path marked in
Fig. 2. The inset shows a magnification of the bands at K. Note that
at !! / t2"cr the dispersion is linear.
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FIG. 4. Energy vs wave vector ky for the Haldane model in a
strip geometry 30 cells wide along the b3 direction and extending
infinitely along b2 direction. For ! / t2$ !! / t2"cr !bottom panel",
chiral edge states are visible.
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symmetry as an applied magnetic field would), in simplified models 
introduced in around 2003 it can lead to a quantum spin Hall effect, 
in which electrons with opposite spin angular momentum (commonly 
called spin up and spin down) move in opposite directions around the 
edge of the droplet in the absence of an external magnetic field2 (Fig. 2b). 
These simplified models were the first steps towards understanding 
topological insulators. But it was unclear how realistic the models were: 
in real materials, there is mixing of spin-up and spin-down electrons, 
and there is no conserved spin current. It was also unclear whether the 
edge state of the droplet in Fig. 2b would survive the addition of even 
a few impurities.

In 2005, a key theoretical advance was made by Kane and Mele3. 
They used more realistic models, without a conserved spin current, 
and showed how some of the physics of the quantum spin Hall effect 
can survive. They found a new type of topological invariant that could 
be computed for any 2D material and would allow the prediction of 
whether the material had a stable edge state. This allowed them to show 
that, despite the edge not being stable in many previous models, there are 
realistic 2D materials that would have a stable edge state in the absence of 
a magnetic field; the resultant 2D state was the first topological insulator 
to be understood. This non-magnetic insulator has edges that act like 
perfectly conducting one-dimensional electronic wires at low tempera-
tures, similar to those in the quantum Hall effect.

Subsequently, Bernevig, Hughes and Zhang made a theoretical 
prediction that a 2D topological insulator with quantized charge con-
ductance along the edges would be realized in (Hg,Cd)Te quantum 
wells4. The quantized charge conductance was indeed observed in this 
system, as a quantum-Hall-like plateau in zero magnetic field, in 2007 
(ref. 5). These experiments are similar to those on the quantum Hall 
effect in that they require, at least so far, low temperature and artificial 
2D materials (quantum wells), but they differ in that no magnetic field 
is needed.

Going 3D
The next important theoretical development, in 2006, was the 
realization6–8 that even though the quantum Hall effect does not general-
ize to a genuinely 3D state, the topological insulator does, in a subtle way. 
Although a 3D ‘weak’ topological insulator can be formed by layering 
2D versions, similar to layered quantum Hall states, the resultant state 
is not stable to disorder, and its physics is generally similar to that of the 
2D state. In weak topological insulators, a dislocation (a line-like defect 

in the crystal) will always contain a quantum wire like that at the edge 
of the quantum spin Hall effect (discussed earlier), which may allow 2D 
topological insulator physics to be observed in a 3D material9.

There is also, however, a ‘strong’ topological insulator, which has a 
more subtle relationship to the 2D case; the relationship is that in two 
dimensions it is possible to connect ordinary insulators and topologi-
cal insulators smoothly by breaking time-reversal symmetry7. Such a 
continuous interpolation can be used to build a 3D band structure that 
respects time-reversal symmetry, is not layered and is topologically non-
trivial. It is this strong topological insulator that has protected metallic 
surfaces and has been the focus of experimental activity.

Spin–orbit coupling is again required and must mix all components of 
the spin. In other words, there is no way to obtain the 3D strong topologi-
cal insulator from separate spin-up and spin-down electrons, unlike in 
the 2D case. Although this makes it difficult to picture the bulk physics of 
the 3D topological insulator (only the strong topological insulator will be 
discussed from this point), it is simple to picture its metallic surface6.

The unusual planar metal that forms at the surface of topological 
insulators ‘inherits’ topological properties from the bulk insulator. 
The simplest manifestation of this bulk–surface connection occurs at 
a smooth surface, where momentum along the surface remains well 
defined: each momentum along the surface has only a single spin state 
at the Fermi level, and the spin direction rotates as the momentum 
moves around the Fermi surface (Fig. 3). When disorder or impurities 
are added at the surface, there will be scattering between these surface 
states but, crucially, the topological properties of the bulk insulator do 
not allow the metallic surface state to vanish — it cannot become local-
ized or gapped. These two theoretical predictions, about the electronic 
structure of the surface state and the robustness to disorder of its metallic 
behaviour, have led to a flood of experimental work on 3D topological 
insulators in the past two years.

Experimental realizations
The first topological insulator to be discovered was the alloy BixSb1−x, 
the unusual surface bands of which were mapped in an angle-resolved 
photoemission spectroscopy (ARPES) experiment10,11. In ARPES exper-
iments, a high-energy photon is used to eject an electron from a crystal, 
and then the surface or bulk electronic structure is determined from an 
analysis of the momentum of the emitted electron. Although the surface 
structure of this alloy was found to be complex, this work launched a 
search for other topological insulators.

Figure 1 | Metallic states are born when a surface unties ‘knotted’ electron 
wavefunctions. a, An illustration of topological change and the resultant 
surface state. The trefoil knot (left) and the simple loop (right) represent 
different insulating materials: the knot is a topological insulator, and the 
loop is an ordinary insulator. Because there is no continuous deformation 
by which one can be converted into the other, there must be a surface where 
the string is cut, shown as a string with open ends (centre), to pass between 
the two knots; more formally, the topological invariants cannot remain 

defined. If the topological invariants are always defined for an insulator, 
then the surface must be metallic. b, The simplest example of a knotted 3D 
electronic band structure (with two bands)35, known to mathematicians as 
the Hopf map. The full topological structure would also have linked fibres 
on each ring, in addition to the linking of rings shown here. The knotting 
in real topological insulators is more complex as these require a minimum 
of four electronic bands, but the surface structure that appears is relatively 
simple (Fig. 3).
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approached, the gap at K gets smaller and smaller. Finally,
exactly at !! / t2"cr the bands touch at K in such a way that the
dispersion relation is linear. Such points are also referred to
as Dirac points. When going further into the Chern-insulator
region, the bands separate again. Note that our specific
choice of t1=1 and t2=1/3 prevents the bands from overlap-
ping. If ! and t2 sin " are both chosen to be zero, two Dirac
points form at K and K! and the Haldane model then be-
comes an appropriate model for a graphene sheet.20

In the normal-insulator region of the Haldane model the
Chern number of each band is zero, so that the total Chern
number !the sum of the Chern numbers of the upper and
lower bands" is obviously also zero. When the phase bound-
ary is crossed, the Chern numbers of the upper and lower
bands become ±1, but their sum still remains zero. The clo-
sure and reopening of the gap as the NI/CI boundary is
crossed corresponds to the “donation” of a Chern unit from
one band to another through the temporarily formed Dirac
point. In the present case, the total Chern number must al-
ways remain zero because the model, having a tight-binding
form, assumes Wannier representability of the overall band
space and a nonzero Chern number is inconsistent with such
an assumption. More generally, the total Chern number of a
group of bands should not change when a gap closure and

reopening occurs among the bands of the group, as long as
the gaps between this group and any lower or higher bands
remains open.

It is possible to argue on very general grounds that a finite
sample cut from a Chern insulator must have conductive
channels, otherwise known as chiral edge states, that circu-
late around the perimeter of the sample21 in much the same
way as for the quantum Hall effect.22,23 It is therefore of
interest to investigate the electronic structure of the Haldane
model from the point of view of the surface band structure.
We consider a sample that is finite in the b3 direction !spe-
cifically, 30 cells wide" and has periodic boundary conditions
along the b2 direction #the bi are defined above Eq. !4"$; its
states can be labeled by a wave vector ky running from −# /a
to +# /a, where a is the repeat unit in the y direction. The
energy eigenvalues are plotted versus ky for several values of
! / t2 in Fig. 4. At first sight, the surface band structure shows
qualitatively the same information as the bulk band structure
in Fig. 3. For ! / t2=6, the valence and conduction bands are
separated by a finite gap. At the Chern transition a Dirac
point forms, showing the characteristic linear dispersion ex-
pected around such a point. However, when we go deeper
into the Chern insulator, the surface band structure reveals a
new behavior: one surface band now crosses from the lower
manifold to the upper one with increasing ky, and another
crosses in the opposite direction. Further inspection shows
that the upgoing and downgoing states are localized to the
right and left surfaces of the strip, respectively. Thus, if the
Fermi level lies in the bulk gap, there will be metallic states
with Fermi velocities parallel to the surfaces and with oppo-
site orientation—i.e., a chiral !counterclockwise" circulation
of edge states around the perimeter of the sample, as ex-
pected.
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FIG. 2. Chern number of the bottom band of the Haldane model
as a function of the parameters " and ! / t2 !t1=1, t2=1/3". The
vertical line shows the range of parameters that we have chosen for
all our calculations.
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FIG. 3. Band structure of the Haldane model along some high-
symmetry lines for several values of ! / t2 along the path marked in
Fig. 2. The inset shows a magnification of the bands at K. Note that
at !! / t2"cr the dispersion is linear.
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FIG. 4. Energy vs wave vector ky for the Haldane model in a
strip geometry 30 cells wide along the b3 direction and extending
infinitely along b2 direction. For ! / t2$ !! / t2"cr !bottom panel",
chiral edge states are visible.

INSULATOR/CHERN-INSULATOR TRANSITION IN THE… PHYSICAL REVIEW B 74, 235111 !2006"
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Ground state wavefunctions differently “knotted” in k space
Topological order very robust
C1 switched only via a metallic state: “cutting the knot”
Displays quantum Hall effect at B = 0
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Bulk-boundary correspondence

C1 ̸= 0

C1 = 0

J. Phys. A: Math. Theor. 44 (2011) 113001 Topical Review

(c)(b)(a)

(d )

(g)(e) (f )

Figure 2. (a) The bulk spectrum of Haldane Hamiltonian (equation (1)) (t = 0 and η = 0.1) as
a function of (k1, k2). (b) The energy spectrum of the same Hamiltonian when restricted on an
infinitely long ribbon with open boundary conditions at the two edges. The spectrum is represented
as a function of k parallel to the ribbon’s edges. (c) The local density of states (see equation (6)) of
the ribbon, plotted as an intensity map in the plane of energy (vertical axis) and unit cell number
along the red line shown in panel (d) (horizontal axis). Blue/red colors correspond to low/high
values. (d) Illustration of the ribbon used in the calculations shown in panels (b, c) and (f, g). The
ribbon was 50 unit cells wide. (e–g) Same as (a–c) but for t = 0.1 and τ = 0.

bring major qualitative differences. For some values such as t = 0.1 and η = 0, the energy
spectrum for the ribbon geometry displays an insulating energy gap, while for values like
t = 0 and η = 0.1 it does not. Things become even more intriguing if we look at this spectrum
as a function of the momentum parallel to the direction of the ribbon. Examining panels (b)
and (f ) of figure 2, we see that when t = 0 and η = 0.1, the spectrum displays two solitary
energy bands crossing the bulk insulating gap. For t = 0.1 and η = 0, we can still see two
solitary bands but they do not cross the bulk insulating gap. If we let the computer run for
a while, picking random points in the (t, η) plane, it will slowly reveal that this plane splits
into regions were the model displays bands that cross the insulating gap like in figure 2(b) and
regions where the insulating gap remains open like in figure 2(f ). These regions are shown
in figure 3.

It is instructive to also take a look at the maps of the local density of states
(LDOS):

ρ(ε,n) = 1
π

Im{(H0 − ε − i0+)−1(n,n)}, (6)

which will reveal the spatial distribution of the quantum states. The ρ(ε,n) written above
depends on three variables, the energy plus the two spatial coordinates, but for a homogeneous

9

bulk ribbon
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Wannier functions do not exist when C1 ̸= 0
(Thouless, 1984)

Proof by absurd. If WFs exist then

|ψk⟩ =
∑

R

eik·R|R⟩

This implies

|ψk+G⟩ = |ψk⟩ (so called “periodic gauge”)

When C1 ̸= 0 a periodic gauge in the whole BZ does not
exist: topological obstruction
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Wannier functions do not exist when C1 ̸= 0
(Thouless, 1984)

Proof by absurd. If WFs exist then

|ψk⟩ =
∑

R

eik·R|R⟩

This implies

|ψk+G⟩ = |ψk⟩ (so called “periodic gauge”)

When C1 ̸= 0 a periodic gauge in the whole BZ does not
exist: topological obstruction
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Simulation by T. Thonhauser & D. Vanderbilt, 2006

!̃ = !
R!0

"#0"r"R$"2 %15&

are gauge-invariant and gauge-dependent contributions, re-
spectively. The gauge-invariant part has been shown to be a
useful measure for characterizing the system: !I is finite in
insulators and diverges in metals.9 As for Chern insulators,
Resta’s recent argument that !I should remain finite in a
quantum Hall fluid26 may hint that this could be the case in a
crystalline Chern insulator as well.

MV also gave corresponding k-space expressions for the
two parts of the functional. Defining the metric tensor g"#

=Re#""uk"Qk""#uk$ where Qk=1− "uk$#uk" %and ""=" /"k"&,
these two quantities can be rewritten as

!I =
A

%2$&2'
BZ

dkTr(g%k&) %16&

and

!̃ =
A

%2$&2'
BZ

dk"A%k& − Ā"2, %17&

where A is the unit cell area, Tr(g)=gxx+gyy, and Ā is the
BZ average of A%k& defined just above Eq. %3&.

In the case of a Chern insulator, the use of the real-space
expressions %14& and %15& becomes problematic, since well-
localized WF’s cannot be constructed. Nevertheless, the
reciprocal-space expressions %16& and %17& remain well de-
fined. It is interesting, then, to see how these quantities be-
have in a Chern insulator. Do each of these quantities remain
finite, or does one or both of them diverge? Also, what is the
behavior of these quantities as one approaches the NI/CI
phase boundary?

To answer these questions, we have computed the quan-
tities in Eqs. %16& and %17& using the finite-difference ver-
sions of these equations given in Eqs. %34& and %36& of Ref. 7.
For the calculation of the gauge-dependent part !̃, we have
fixed our gauge such that "%k$ is real for all k on the lower-
energy site in the home unit cell. The results are plotted in
Fig. 8 for different densities of the k mesh. We confirm that
!I is indeed finite inside the Chern-insulator region, as well
as in the normal-insulator region. At the critical value of
%& / t2&cr*3.67, however, !I diverges logarithmically with
the number of k points. Furthermore, !̃ is finite in the nor-
mal insulator region, but diverges logarithmically with the
number of k points for Chern insulators. This latter behavior
is consistent with the presence of a vortex in the phases of
the "wk$ around point ka, which causes A to diverge as "k
−ka"−1 and imparts a logarithmic divergence to Eq. %17&. It
follows that the total spread ! is finite in normal insulators
and divergent in Chern insulators. Heuristically, it is tempt-
ing to associate this divergence with the presence of the me-
tallic chiral edge states that are required to exist in Chern
insulators %see Sec. III&, but it is unclear precisely how these
features are related.

VI. DECAY OF THE DENSITY MATRIX

The decay of the density matrix is a fundamental property
of a system, and it is closely connected to the electron local-
ization. It was first studied by Kohn for one-dimensional
insulators,27 and many others have investigated this topic
thereafter.8–10,26,28,29

For periodic samples the density matrix is defined as

'%r,r!& =
A

%2$&2 !
n=1

occ '
BZ

dk%nk
* %r&%nk%r!& , %18&

where we assume that the wave functions %nk are normalized
to one unit cell of area A. If the wave functions are written in
terms of some basis functions ()

k%r&,

%nk%r& = !
)

Cn)
k ()

k%r& , %19&

this becomes

'%r,r!& =
A

%2$&2 !
n=1

occ

!
)*
'

BZ
dkCn)

k*Cn*
k ()

k*%r&(*
k%r!& .

%20&

The Cn)
k are the eigenvectors obtained by diagonalizing the

model Hamiltonian—in our case Eq. %4&. In a tight-binding
model, the basis functions ()

k%r& are made up of localized
orbitals ( at sites r):

()
k%r& = !

R
eik·%R+r)&(„r − %R + r)&… . %21&

Inserting Eq. %21& into Eq. %20& gives

'%r,r!& = !
RR!
)*

+)*%R! − R&(*%r − R − r)&(%r! − R! − r*& ,

%22&

where

0.05
0.10
0.15
0.20
0.25

Ω
I

2 3 4 5 6
∆/t2

0.25

0.50

0.75

1.00

1.25

Ω̃

500 × 500
400 × 400
300 × 300
200 × 200
100 × 100

C C = 0= 1

FIG. 8. Gauge-independent part !I and gauge-dependent part !̃
of the spread functional for the Haldane model as a function of the
k-mesh density.

T. THONHAUSER AND DAVID VANDERBILT PHYSICAL REVIEW B 74, 235111 %2006&

235111-6
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Chern insulators

Besides Haldanium (a very popular computational
material), do Chern insulators exist in nature?

First synthetized in China in 2013

Also called QAHE (quantum anomalous Hall effect). Why?

Nonexotic ferromagnetic metals in 3d (Ni, Co, Fe) show
AHE: Hall effect in zero B field.
Nonquantized: Berry curvature integrated within the
Fermi volume.
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Outline

1 Generalities (Berry curvature, Chern number)

2 Haldanium & chern insulators

3 Other topological insulators

4 Noncrystalline insulators: single-point Chern number

5 Dual representation in coordinate space

6 Simulations on bounded Haldanium c⃝ flakes
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Time-reversal symmetric topological insulators

In 2d:
Kane-Mele model Hamiltonian, 2005
A novel invariant, two-valued (Z2)
Zero order picture: two copies of the Haldane model
Discovered: HgxCd1−xTe quantum wells, 2007
(L. Molenkamp & al.)

In 3d:
Predicted by Fu, Kane, and Mele in 2007
Discovered: BixSb1−x , 2008 (M.Z. Hasan & al.)
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Time-reversal symmetric topological insulators

In 2d:
Kane-Mele model Hamiltonian, 2005
A novel invariant, two-valued (Z2)
Zero order picture: two copies of the Haldane model
Discovered: HgxCd1−xTe quantum wells, 2007
(L. Molenkamp & al.)

In 3d:
Predicted by Fu, Kane, and Mele in 2007
Discovered: BixSb1−x , 2008 (M.Z. Hasan & al.)
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Time-reversal symmetric topological insulators

In 2d:
Kane-Mele model Hamiltonian, 2005
A novel invariant, two-valued (Z2)
Zero order picture: two copies of the Haldane model
Discovered: HgxCd1−xTe quantum wells, 2007
(L. Molenkamp & al.)

In 3d:
Predicted by Fu, Kane, and Mele in 2007
Discovered: BixSb1−x , 2008 (M.Z. Hasan & al.)
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2012 O. E. Buckley Condensed Matter Physics Prize

“For the theoretical prediction and experimental
observation of the quantum spin Hall effect, opening the
field of topological insulators”

Charles L. Kane (U. Pennsylvania)
Laurens W. Molenkamp (U. Würzburg, Germany)
Shoucheng Zhang (Stanford U.)
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Outline

1 Generalities (Berry curvature, Chern number)

2 Haldanium & chern insulators

3 Other topological insulators

4 Noncrystalline insulators: single-point Chern number

5 Dual representation in coordinate space

6 Simulations on bounded Haldanium c⃝ flakes
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Computing the Chern number
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Computing the Chern number

Cell doubling:

Reciprocal cell reduced fourfold
# of states increased fourfold
the states are the same
C1 invariant
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Computing the Chern number

Cell doubling:

Reciprocal cell reduced fourfold
# of states increased fourfold
the states are the same
C1 invariant

Down to the very minimum:
One state on many loops → Many states on a single loop
The gauge is now periodical throughout:
Where is the obstruction?
Eventually, C1 is a k = 0 property!
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Interpretation of the single point formula

In the large supercell limit

C1 =
1

2π

∫
BZ

dk Ω(k) → 1
2π

(2π)2

Ac
Ω(0)

Chern number → curvature per unit sample area:
no integration

Ω(0) is a linear response of the ground state to an
infinitesimal “twist” or “flux” in the many-body Hamiltonian:

Ĥ(k) =
1

2me

N∑
i=1

|pi +
e
c

A(ri) + ℏk|2 + V̂

Ω(0) = i
N∑

n=1

( ⟨∂k1un0|∂k2un0⟩ − ⟨∂k2un0|∂k1un0⟩ )
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Interpretation of the single point formula

In the large supercell limit

C1 =
1

2π

∫
BZ

dk Ω(k) → 1
2π

(2π)2

Ac
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Chern number → curvature per unit sample area:
no integration

Ω(0) is a linear response of the ground state to an
infinitesimal “twist” or “flux” in the many-body Hamiltonian:
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2me
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Convergence with supercell size
(D. Ceresoli & R.R. 2007)

Chern number as a function of the
supercell size, evaluated using the
single-point formulas for the Haldane
model Hamiltonian. The largest L cor-
responds to 2048 sites in the super-
cell.
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AHC and M as reciprocal-space integrals

Intrinsic term in anomalous Hall conductivity:

Re σ(−)
αβ = −e2

ℏ

∫
BZ

dk
(2π)d Ωαβ(k)

=
2e2

ℏ
∑
εjk<µ

∫
BZ

dk
(2π)d Im ⟨∂αujk|∂βujk⟩

Extrinsic terms:
Necessarily present in metals
Absent in insulators:
Quantum anomalous Hall effect (QAHE)

Orbital magnetization:

Mγ =
e

2ℏc
εγαβ

∑
εjk<µ

∫
BZ

dk
(2π)d Im ⟨∂αujk| (Hk+ϵjk−2µ) |∂βujk⟩
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ℏ
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Mγ =
e

2ℏc
εγαβ

∑
εjk<µ

∫
BZ

dk
(2π)d Im ⟨∂αujk| (Hk+ϵjk−2µ) |∂βujk⟩
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1 Generalities (Berry curvature, Chern number)

2 Haldanium & chern insulators

3 Other topological insulators

4 Noncrystalline insulators: single-point Chern number

5 Dual representation in coordinate space

6 Simulations on bounded Haldanium c⃝ flakes
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Manifesto: k space vs. r space

Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

Genuine bulk properties should also be measurable:
Inside finite samples (e.g. bounded crystallites)
In noncrystalline samples
In macroscopically inhomogeneous samples
(e.g. heterojunctions)

In all such cases, the k vector does not make any sense!

Is it possible to get rid of k vectors and provide instead a
geometrical marker directly in r space?
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Manifesto: k space vs. r space

Periodic boundary conditions and k vectors are a (very
useful) creation of our mind: they do not exist in nature.

Genuine bulk properties should also be measurable:
Inside finite samples (e.g. bounded crystallites)
In noncrystalline samples
In macroscopically inhomogeneous samples
(e.g. heterojunctions)

In all such cases, the k vector does not make any sense!

Is it possible to get rid of k vectors and provide instead a
geometrical marker directly in r space?
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Bounded samples with square-integrable orbitals

One-body density matrix, a.k.a. ground-state projector:

P =
∑
ϵj<µ

|φj⟩⟨φj | (spinless)

P allows to evaluate any ground-state observable
(for independent electrons)

Tensor fields in r-space:

Fαβ(r) = Im ⟨r| P [rα,P] [rβ,P] |r⟩
Mαβ(r) = Im ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩.

In the bulk of a crystallite the two tensor fields
F(r) and M(r) are lattice-periodical
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Bounded samples with square-integrable orbitals

One-body density matrix, a.k.a. ground-state projector:

P =
∑
ϵj<µ

|φj⟩⟨φj | (spinless)

P allows to evaluate any ground-state observable
(for independent electrons)

Tensor fields in r-space:

Fαβ(r) = Im ⟨r| P [rα,P] [rβ,P] |r⟩
Mαβ(r) = Im ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩.

In the bulk of a crystallite the two tensor fields
F(r) and M(r) are lattice-periodical
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Geometrical observables as traces per unit volume

Anomalous Hall conductivity:

σ
(−)
αβ = −2e2

ℏ
Im TrV {Fαβ} (insulators and metals)

Orbital magnetization:

Mγ =
e

2ℏc
εγαβTrV {Mαβ} (insulators and metals)
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Haldanium flake (OBCs)

RAPID COMMUNICATIONS

RAFFAELLO BIANCO AND RAFFAELE RESTA PHYSICAL REVIEW B 84, 241106(R) (2011)

Equation (4) becomes then the trace over a crystal cell of a
real-space operator:

C = − 1
π

(2π )2

Ac

Im trcell{PxQy}

= 4π

Ac

Im trcell{PxPy}, (6)

where the symmetry of the missing term yields the second
line. By exploiting the general properties of projectors and of
the trace, Eq. (6) can be recast in several equivalent ways.
For lattice models, a similar real-space formula has been
demonstrated in 2006 by Kitaev;13 our proof does not rely
on lattice models and generalizes Kitaev’s result to realistic
implementations.

Subsequent work adopting Kitaev’s formula was invariably
rooted in k space within a toroidal geometry, for a system
without boundaries, and was based on traces.14–17 Finite
systems within open boundary conditions look problematic.
In fact, if we replace the trace over the cell with the trace over
the whole sample, the identity

Im tr{PxPy} = 1
2i

tr{[PxP,PyP ]} (7)

guarantees a zero result, whenever P projects over a finite-
dimensional manifold. This confirms that the global topology
is trivial within open boundary conditions, and also hints
that traces must be avoided when addressing finite and/or
inhomogeneous samples.

At variance with previous work based on Kitaev’s formula,
we propose here to directly address the commutator in Eq. (7)
before taking the trace. Let X̃ be the projected x coordinate

X̃(r,r′) =
∫

dr′′ P (r,r′′)x ′′P (r′′,r′), (8)

and similarly Ỹ ; we then identify the topological marker with
the local Chern number as10

C(r) = −2π i

∫
dr′[X̃(r,r′)Ỹ (r′,r) − Ỹ (r,r′)X̃(r′,r)]. (9)

Our definition holds within both periodic and open boundary
conditions; given the shortsightedness of P , in a region of
crystalline periodicity, the cell average of C(r) coincides
with the Chern number C owing to Eq. (6). We expect the
dimensionless function C(r) to fluctuate over microscopic
dimensions; in the nonperiodic case, the cell average has
to be replaced with the macroscopic average, defined as in
electrostatics (see, e.g., Jackson18).

The gauge invariance of C(r) as defined in Eq. (9) deserves a
comment. The ground-state projector P is invariant by unitary
transformations of the occupied orbitals among themselves,
but not by a change of the magnetic gauge. However, the
unitary operator which transforms P is local in coordinate
space, thus ensuring gauge invariance of C(r).

We validate our formal findings by performing simulations
on the Haldane model Hamiltonian;19 it comprises a 2D
honeycomb lattice with two tight-binding sites per primitive
cell with site energies ±", real first-neighbor hoppings t1, and
complex second-neighbor hoppings t2e

±iφ . As a function of
the parameters, this 2D model system may have either C = 0
or C = ±1, according to the phase diagram shown in Fig. 1.

FIG. 1. Chern number of the bottom band of the Haldane model
as a function of the parameters φ and "/t2 (t1 = 1,t2 = 1/3). The
points marked with letters (a)–(e) in this phase diagram are relevant
for the subsequent discussion and figures. In order to avoid special
features, the φ parameter is not a multiple of π/4.

This model has been previously used in several simulations,
providing invaluable insight into orbital magnetization5,20,21

as well as into nontrivial topological features of the electronic
wave function.5,9,19,22,23 At half filling the system is insulating,
except when " = t2 sin φ = 0. In this Rapid Communication
we study, within open boundary conditions, finite flakes of
rectangular shape cut from the bulk, as shown in Fig. 2. We
have addressed homogenous samples where the Hamiltonian
is chosen from various points of the phase diagram (Fig. 1) as
well as disordered and inhomogeneous samples.

Two typical plots for crystalline samples are shown in Fig. 3,
where we have chosen the two points (b) and (c) in Fig. 1,
with C = 0 and C = 1, respectively. The plots confirm that
the local Chern numbers C(i) are equal to either 0 or 1 (as
expected) in the bulk of the sample, while they deviate in the
boundary region. In both cases the negative values compensate
for the positive ones, given that the sum of the C(i) over the
whole sample vanishes. This compensation is most interesting
when C = 1 (right-hand panel). A size analysis shows that the
minimum negative C(i) value scales as L (linear dimension of

FIG. 2. A typical flake, with 2550 sites, showing the honeycomb
lattice of the Haldane model (Ref. 19). The 50 sites on the horizontal
line will be used in all the subsequent one-dimensional plots.
Black and gray circles indicate nonequivalent sites (with on-site
energies ±").

241106-2

Sample of 1190 sites
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Normal insulator & Chern insulator (crystalline) RAPID COMMUNICATIONS

MAPPING TOPOLOGICAL ORDER IN COORDINATE SPACE PHYSICAL REVIEW B 84, 241106(R) (2011)

FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)
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Haldanium alloy (normal & Chern)RAPID COMMUNICATIONS

MAPPING TOPOLOGICAL ORDER IN COORDINATE SPACE PHYSICAL REVIEW B 84, 241106(R) (2011)

FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Haldanium heterojunctions

RAPID COMMUNICATIONS

MAPPING TOPOLOGICAL ORDER IN COORDINATE SPACE PHYSICAL REVIEW B 84, 241106(R) (2011)

FIG. 3. Local Chern number (top) and site occupancy (bottom)
for the 50 sites along the line shown in Fig. 2. Left-hand panel: Point
(b) in the phase diagram, Fig. 1. Right-hand panel: Point (c). Notice
the different scales.

the sample): The reason is that the number of bulk sites scales
as L2, while the perimeter scales as L.

We have studied both polar (! != 0) and nonpolar (! = 0)
cases. While in the latter case the two sites are equivalent, they
are no longer so in the former case. This clearly appears in the
site occupancies, also shown Fig. 3. What is surprising is that
the corresponding C(i) values do not show any site alternance,
while we expect only their cell (or macroscopic) average to be
equal to one. We conjecture this to be due to extra symmetry
present in the Haldane model Hamiltonian, actually broken in
disordered samples, discussed below (see Fig. 5).

We have also investigated a few points in the phase
diagram close to the transition between C = 0 and C = 1
at fixed !/t2 = 3.67 and various φ values. Given the finite
size of the system the transition cannot be sharp. The exact
transition for an infinite system occurs at φ/π = 0.25; our
results show that in the bulk of the sample the local Chern
number is zero up to φ/π " 0.17 and one from φ/π " 0.29
onward. At intermediate values the boundary region broadens
considerably and indeed invades the whole sample: This is
shown in Fig. 4.

FIG. 4. Local Chern number for a few points on the line
!/t2 = 3.67, i.e., on the (b)–(c) segment in Fig. 1, close to the
transition from C = 0 to C = 1. The exact transition occurs at
φ/π = 0.25; our five plots correspond (bottom to top) to φ/π =
0.17,0.25,0.27,0.29,0.33.

FIG. 5. Local Chern number (top) and site occupancy (bottom)
for disordered systems (see text). Left-hand panel: Disordered system
along the line (a)–(b) in the phase diagram, Fig. 1. Right-hand panel:
Line (c)–(d). Notice the different scales.

Typical results for disordered—and macroscopically
homogenous—samples are shown in Fig. 5. In the left-hand
panel the sign of ! alternates between the two sublattices,
while its modulus is chosen at random (with uniform distribu-
tion) in the (a)–(b) segment of Fig. 1. In the right-hand panel
the value of ! is chosen at random in the (c)–(d) segment. It
appears clearly that the local Chern numbers C(i) in the bulk
of the sample oscillate around a macroscopic average C = 0
(left-hand panel) and C = 1 (right-hand panel).

Next we show in Fig. 6 our topological marker across a
heterojunction between regions of different topological order,
in two typical cases: a normal insulator joined to a C = 1
insulator, and a junction where C changes sign. In both cases
the marker maps very perspicuously the actual topological
order in the two bulklike regions, while it oscillates at the
interface and at the sample boundary. The virtue of our r-space
approach is clearly demonstrated; the conventional k-space
approach to topological order cannot separate different regions
of inhomogeneous samples.

Finally we analyze the present results from the viewpoint
of the modern theory of the insulating state.7,8 Both Eqs. (1)

FIG. 6. Local Chern number (top) and site occupancy (bottom)
across heterojunctions. Left-hand panel: Hamiltonian parameters as
in (a) and in (b) for the left- and the right-hand halves of the sample,
respectively. Right-hand panel: Parameters as in (e) and in (c) for left-
and the right-hand halves of the sample.

241106-3

Topological marker (top); site occupancy (bottom)
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Metallic Haldanium
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

+ “some magnetism”

f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.
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Metallic at any other filling
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ultrathin hexagonal boron nitride (h-BN)
films on metals

Willi Auwärter, Matthias Muntwiler, Martina Corso, Thomas Greber
and Jürg Osterwalder

Physics Institute, University of Zurich, 12/12/03

Boron nitrides represent a class of materials with promising properties
[1]. They are thermally stable, chemically inert and insulating. Pairs of
boron and nitrogen atoms are isoelectronic to pairs of carbon atoms.
Therefore, boron nitrides show a similar structural variety as carbon
solids, including graphitic hexagonal
boron nitride (h-BN) and diamond-like
cubic boron nitride (c-BN) [2], onion-
like fullerenes [3], and multi- and
single-wall nanotubes [4,5].
Differences arise due to the
reluctance, in boron nitrides, to form B-
B or N-N bonds which excludes
pentagon formation and thus the synthesis of simple fullerenes
analogous to e.g. C60. In our work we concentrate on hexagonal boron
nitride, that is often called "white graphite" due to its color and the layer
structure similar to graphite. The combination of being an electric
insulator and a good thermal conductor that is stable up to high
temperatures and the easy machinability makes h-BN an interesting
material for many technical applications. The photograph below shows
two boron nitride blocks. Weakly
physisorbed layers of h-BN on metal
surfaces have been studied for about a
decade [6]. Well-ordered films can be
grown by thermal decomposition of
borazine (HBNH)3 on transition metal

surfaces [7]. In most cases studied so
far the film growth was observed to be self-limiting at one monolayer;
beyond that the sticking coefficient of the precursor molecule becomes
exceedingly small. Most of the work has been concentrated on the

introduction

h-BN on Nickel  

h-BN on Rhodium  

+ “some magnetism”

f!!"" =
1

1 + exp#!" − !"/#$
. !54"

In all subsequent calculations, we set #=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential ! with $ fixed at % /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
!48" and we compare it to the extrapolated value from finite
samples, from L=8 !289 sites" to L=16 !1089 sites". We
verified that a k-point mesh of 100&100 gives well con-
verged results for the bulk formula !48".

The orbital magnetization as a function of the chemical
potential for $=% /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. !48", whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a !
value of about −4.1. Then, as the filling increases, the first
!lowest" band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when ! is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of !, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands !see Fig. 3".

C. Chern insulating case

In order to check the validity of our heuristic Eq. !48" for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero !actually, ±1".

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±',
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i(, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed !for C= ±1"
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. !48", which was also analyti-
cally proved. In the present work we address the C!0 insu-
lating case, where instead we have no proof of Eq. !48" yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters '=1, t1=1, and %t2%=1/3. As a function of the flux
parameter $, this system undergoes a transition from zero
Chern number to %C%=1 when %sin $%)1/&3.

First we checked the validity of Eq. !48" in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of $ by Eq.
!48" at a fixed ! value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix ! in the middle of the gap; for consistency,
the finite-size calculations are performed at the same !
value, using the Fermi-Dirac distribution of Eq. !54". The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20&20 unit cells !800 sites". The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
!46" and !48", in the Chern-insulating case.

Next, we checked the validity of Eq. !48" for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential !. To this aim we keep the model Hamiltonian
fixed, choosing $=0.7%; for ! in the gap this yields a Chern
insulator. The behavior of the magnetization while ! varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in !, the slope being determined
by the lowest-band Chern number according to Eq. !49".

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential ! for $=% /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
!48".

FIG. 6. Four unit cells of the Haldane model. Filled !open"
circles denote sites with E0=−' !+'". Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei$. Arrows indicate sign of the phase $ for second-
neighbor hopping.
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AHC in metals

Extrinsic mechanisms:
Side jump
Skew scattering

Since the early 2000’s
An important contribution is intrinsic
Geometrical property of the ground state
(Fermi-volume integral of the Berry curvature)
Nonquantized version of QAHE in insulators

We have proved that it is local in r-space
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AHC as a function of the Fermi level
A. Marrazzo and R. Resta, Phys. Rev. B 95, 121114(R) (2017)

Solid line:
Usual k-space expression (Fermi-volume integral)

Symbols: Our r-space “geometrical marker”
RAPID COMMUNICATIONS

LOCALITY OF THE ANOMALOUS HALL CONDUCTIVITY PHYSICAL REVIEW B 95, 121114(R) (2017)

FIG. 2. AHC as a function of the Fermi level µ for a 3422-site
flake. Top: trivial insulator when µ is in the gap; bottom: topological
insulator (C1 = −1) when µ is in the gap. See text about labels: Cell,
Bulk, and PBCs. All calculations adopt a “smearing” s = 0.05.

case [16]: nonzero C1 reveals the nontrivial (topological)
nature of the insulating ground state. Each panel displays
the trace per unit area, Eq. (9), evaluated in three different
ways: over the central two sites (labeled “Cell”), evaluated
over 1/4 of the sites (labeled “Bulk”), and evaluated as the
usual integral of the Berry curvature for an unbounded sample
(labeled “PBCs”). The plots show that averaging over the bulk
region provides a better convergence. The two plots refer to
two different sets of parameters: in both cases we set t1 = 1
and φ = 0.25, while " = 2 the for top plot and " = 1/3 for
the bottom plot. It is perspicuous from the figure that when µ
is in the gap region the former choice yields a trivial insulator,
and the latter a topological one (C1 = −1).

Figure 2 proves our major claim: the geometri-
cal/topological AHC, for both metals and insulators, is indeed
a local property of the electronic ground state and can be
evaluated for a bounded sample, where the orbitals are square
integrable and the concept of reciprocal space does not make
any sense. What differentiates insulators from metals is only
the kind of convergence with the system size: exponential
in the former case, power law in the latter. We show a
typical convergence study in Fig. 3, where we have chosen
a metallic flake with µ = −2.5 and the Hamiltonian for which
the corresponding insulator is trivial: top panel of Fig. 2. As for
the previous figure, averaging over the bulk region provides a
better convergence than taking the trace on the central two-site

FIG. 3. Convergence of AHC evaluated locally as a function of
the flake size. Parameters as in the top panel of Fig. 2, and µ = −2.5.
The quantity σxy(∞) is obtained via extrapolation in the large flake
limit. A smearing s = 0.05 is adopted.

cell. Interpolations in both panels clearly show that the AHC
convergence to the bulk value is of the order L−3, where L is
the linear size of the flake.

FIG. 4. Local AHC for an heterojunction, where the left and
right halves of the flake are two different metals (see text). For this
calculation the flake has 10 506 sites; our local function is shown on a
line of 102 sites (grey area in Fig. 1). The two horizontal lines (labeled
“PBCs”) show the corresponding Berry-curvature calculations.

121114-3
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FIG. 2. AHC as a function of the Fermi level µ for a 3422-site
flake. Top: trivial insulator when µ is in the gap; bottom: topological
insulator (C1 = −1) when µ is in the gap. See text about labels: Cell,
Bulk, and PBCs. All calculations adopt a “smearing” s = 0.05.

case [16]: nonzero C1 reveals the nontrivial (topological)
nature of the insulating ground state. Each panel displays
the trace per unit area, Eq. (9), evaluated in three different
ways: over the central two sites (labeled “Cell”), evaluated
over 1/4 of the sites (labeled “Bulk”), and evaluated as the
usual integral of the Berry curvature for an unbounded sample
(labeled “PBCs”). The plots show that averaging over the bulk
region provides a better convergence. The two plots refer to
two different sets of parameters: in both cases we set t1 = 1
and φ = 0.25, while " = 2 the for top plot and " = 1/3 for
the bottom plot. It is perspicuous from the figure that when µ
is in the gap region the former choice yields a trivial insulator,
and the latter a topological one (C1 = −1).

Figure 2 proves our major claim: the geometri-
cal/topological AHC, for both metals and insulators, is indeed
a local property of the electronic ground state and can be
evaluated for a bounded sample, where the orbitals are square
integrable and the concept of reciprocal space does not make
any sense. What differentiates insulators from metals is only
the kind of convergence with the system size: exponential
in the former case, power law in the latter. We show a
typical convergence study in Fig. 3, where we have chosen
a metallic flake with µ = −2.5 and the Hamiltonian for which
the corresponding insulator is trivial: top panel of Fig. 2. As for
the previous figure, averaging over the bulk region provides a
better convergence than taking the trace on the central two-site

FIG. 3. Convergence of AHC evaluated locally as a function of
the flake size. Parameters as in the top panel of Fig. 2, and µ = −2.5.
The quantity σxy(∞) is obtained via extrapolation in the large flake
limit. A smearing s = 0.05 is adopted.

cell. Interpolations in both panels clearly show that the AHC
convergence to the bulk value is of the order L−3, where L is
the linear size of the flake.

FIG. 4. Local AHC for an heterojunction, where the left and
right halves of the flake are two different metals (see text). For this
calculation the flake has 10 506 sites; our local function is shown on a
line of 102 sites (grey area in Fig. 1). The two horizontal lines (labeled
“PBCs”) show the corresponding Berry-curvature calculations.
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AHC in Haldanium metal/metal heterojunctions
A. Marrazzo and R. Resta, Phys. Rev. B 95, 121114(R) (2017)
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FIG. 2. AHC as a function of the Fermi level µ for a 3422-site
flake. Top: trivial insulator when µ is in the gap; bottom: topological
insulator (C1 = −1) when µ is in the gap. See text about labels: Cell,
Bulk, and PBCs. All calculations adopt a “smearing” s = 0.05.

case [16]: nonzero C1 reveals the nontrivial (topological)
nature of the insulating ground state. Each panel displays
the trace per unit area, Eq. (9), evaluated in three different
ways: over the central two sites (labeled “Cell”), evaluated
over 1/4 of the sites (labeled “Bulk”), and evaluated as the
usual integral of the Berry curvature for an unbounded sample
(labeled “PBCs”). The plots show that averaging over the bulk
region provides a better convergence. The two plots refer to
two different sets of parameters: in both cases we set t1 = 1
and φ = 0.25, while " = 2 the for top plot and " = 1/3 for
the bottom plot. It is perspicuous from the figure that when µ
is in the gap region the former choice yields a trivial insulator,
and the latter a topological one (C1 = −1).

Figure 2 proves our major claim: the geometri-
cal/topological AHC, for both metals and insulators, is indeed
a local property of the electronic ground state and can be
evaluated for a bounded sample, where the orbitals are square
integrable and the concept of reciprocal space does not make
any sense. What differentiates insulators from metals is only
the kind of convergence with the system size: exponential
in the former case, power law in the latter. We show a
typical convergence study in Fig. 3, where we have chosen
a metallic flake with µ = −2.5 and the Hamiltonian for which
the corresponding insulator is trivial: top panel of Fig. 2. As for
the previous figure, averaging over the bulk region provides a
better convergence than taking the trace on the central two-site

FIG. 3. Convergence of AHC evaluated locally as a function of
the flake size. Parameters as in the top panel of Fig. 2, and µ = −2.5.
The quantity σxy(∞) is obtained via extrapolation in the large flake
limit. A smearing s = 0.05 is adopted.

cell. Interpolations in both panels clearly show that the AHC
convergence to the bulk value is of the order L−3, where L is
the linear size of the flake.

FIG. 4. Local AHC for an heterojunction, where the left and
right halves of the flake are two different metals (see text). For this
calculation the flake has 10 506 sites; our local function is shown on a
line of 102 sites (grey area in Fig. 1). The two horizontal lines (labeled
“PBCs”) show the corresponding Berry-curvature calculations.
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Orbital magnetization a a function of the Fermi level
A. Marrazzo and R. Resta, Phys. Rev. Lett. 116, 137201 (2016)

In either insulating or metallic systems, the integrated
values provided by Eqs. (1), (3), and (4) are identical,
but the integrands therein are quite different. This is similar
to what happens when integrating a function by parts; we
also stress that any reference to microscopic currents has
disappeared in Eq. (5).
Only the insulating case has been addressed so far, where

it has been proved [6–9] that Eq. (4) has the outstanding
virtue of providing a local expression for M ¼ m=V:
instead of evaluating the trace over the whole system, as
in Eq. (4), we may evaluate the trace per unit volume in the
bulk region of the sample. Notably, this converges (in the
large system limit) much faster than the textbook definition
based on Eqs. (1) and (3), where the boundary contribution
to the integral is extensive (see also Fig. 4 below).
The metallic case has not been addressed yet; in this

work we investigate the behavior of MðrÞ, Eq. (4), in
metallic 2D samples by means of simulations based on
tight-binding model Hamiltonians. Our samples are finite
flakes within OBCs, where the volume V is replaced by
area A. We remind the reader that if one instead adopts
periodic boundary conditions, M has a known expression
as a reciprocal-space integral [4], which, however, only
applies to magnetization in either a vanishing or commen-
surate macroscopic B field. In this Letter we present OBC
test-case simulations for both B ¼ 0 and B ≠ 0; the former
case adopts rectangular flakes like the one shown in Fig. 1,
while the latter adopts square flakes. For reasons thor-
oughly discussed below, the two cases present completely
different features.
The paradigmatic model for breaking time-reversal

symmetry without a macroscopic B field is the Haldane
Hamiltonian [11], adopted here as well as by several
authors in the past. Our choice of parameters is first-
and second-neighbor hopping t1 ¼ 1 and t2 ¼ eiϕ=3, with
ϕ ¼ 0.25π, and onsite energies $Δ, with Δ ¼ 1.5. With
respect to the insulating case, the metallic one is

computationally more demanding: in fact, finite-size effects
induce large oscillations (as a function of the flake size)
when the Fermi level μ is not in an energy gap. As usual, we
deal with this problem by adopting the “smearing” tech-
nique: what we present here is the result of a combined
large-size and small-smearing finite-size analysis. Here, we
adopt Fermi-Dirac smearing, although we stress that we are
not addressing M at finite temperature [12,13]: the smear-
ing is a mere computational tool.
For orientation, we start showing in Fig. 2 the converged

magnetization M of our Haldanium flake as a function of μ
over the whole range: M depends on μ in the metallic range
and stays constant, while μ sweeps the gap [14]. Next, in our
metallic test case we set μ ¼ −1.7, rather far from the band
edges (see Fig. 2); we therefore have a sizable Fermi surface
(a Fermi loop in 2D), which in turn guarantees a nonzero
Drudeweight. As recognized by Haldane himself, this model
system is a good paradigm for the anomalous Hall effect in
metals [15]. Our simulations also confirm that the OBC’s
localization tensor diverges with the flake size [16,17].

FIG. 1. A typical “Haldanium” flake. We have considered
flakes with up to 8190 sites, all with the same aspect ratio; the one
shown here has 1806 sites. In order to probe locality, the field
MðrÞ, Eq. (5), is averaged either on the central cell (two sites) or
on the “bulk” region (1=4 of the sites).

−
−
−
−
−

− − − −

FIG. 2. The magnetization of a large flake (6162 sites) as a
function of the Fermi level μ. The valence-conduction gap is
between ε ¼ −0.4 and ε ¼ −1.0; our metallic simulations are at
μ ¼ −1.7, shown as a vertical line.

FIG. 3. Convergence with flake size of the standard formula,
Eqs. (1) and (3), in log-log scale; a typical metallic (μ ¼ −1.7 in
the valence band) and a typical insulating (μ ¼ −0.7 at midgap)
case are shown. The interpolating straight lines clearly show the
1=L convergence.

PRL 116, 137201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

137201-2

At convergence all formulas coincide:
Textbook formula: 1

2cV

∫
dr r × j(micro)(r)

Mγ = − ie
2ℏc εγαβ

∫
FV dk ⟨∂αujk| (Hk + ϵjk − 2µ) |∂βujk⟩

Our novel formula: e
2ℏc εγαβTrV {Mαβ}
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Fast convergence in both insulator and metal

We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.

PRL 116, 137201 (2016) P HY S I CA L R EV I EW LE T T ER S
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We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.
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1/L convergence with size: 1
2cV

∫
dr r × j(micro)(r)

Much better convergence: e
2ℏc εγαβTrV {Mαβ}
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Why is our local M formula better than textbooks’ one?

Textbooks: bounded sample in the large-V limit:

Mγ =
1

2cV
εγαβ

∫
dr rα j(micro)

β (r)

= − e
2cV

εγαβ
∑
ϵj<µ

∫
dr ⟨φj | rα vβ |φj⟩

= − e
2cV

εγαβTr {P rαvβ}

P =
∑
ϵj<µ

|φj⟩⟨φj |, vβ =
i
ℏ
[H, rβ]

Mγ = − ie
2ℏcV

εγαβTr {P rαHrβ}
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Why is our local M formula better than textbooks’ one?

Textbooks formula:

Mγ = − ie
2ℏcV

εγαβTr {P rαHrβ}

Our formula:

Mγ = − ie
2ℏcV

εγαβTr {|H − µ| [rα,P] [rβ,P]}

They provide the same M value at any finite V :
Where is the key difference?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why is our local M formula better than textbooks’ one?

Textbooks formula:

Mγ = − ie
2ℏcV

εγαβTr {P rαHrβ}

Our formula:

Mγ = − ie
2ℏcV

εγαβTr {|H − µ| [rα,P] [rβ,P]}

They provide the same M value at any finite V :
Where is the key difference?
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Why is our local M formula better than textbooks’ one?

Mγ = − ie
2ℏcV

εγαβTr {P rαHrβ}

= − ie
2ℏcV

εγαβ

∫
dr ⟨r| P rαHrβ |r⟩

Mγ = − ie
2ℏcV

εγαβTr {|H − µ| [rα,P] [rβ,P]}

= − ie
2ℏcV

εγαβ

∫
dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩

The integral values are identical
The integrands are very different
Similar in spirit to an integration by parts
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Why is our local M formula better than textbooks’ one?

Integral dominated by boundary contributions:

Mγ = − ie
2ℏcV

εγαβ

∫
dr ⟨r| P rαHrβ |r⟩

Integral boundary-insensitive:

Mγ = − ie
2ℏcV

εγαβ

∫
dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩

Integrand lattice-periodical in the bulk region:

1
V

∫
sample

dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩

≃ 1
Vcell

∫
cell

dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩
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Why is our local M formula better than textbooks’ one?

Integral dominated by boundary contributions:

Mγ = − ie
2ℏcV

εγαβ

∫
dr ⟨r| P rαHrβ |r⟩

Integral boundary-insensitive:

Mγ = − ie
2ℏcV

εγαβ

∫
dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩

Integrand lattice-periodical in the bulk region:

1
V

∫
sample

dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩

≃ 1
Vcell

∫
cell

dr ⟨r| |H − µ| [rα,P] [rβ,P] |r⟩
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