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Aharonov-Bohm, 1959

Figure from Feynman, Vol. 2



. . . . . .

Berry phase, 1984

Geometry makes its debut in nonrelativistic quantum
mechanics and in electronic structure

Very simple concept, nonetheless missed by the founding
fathers of QM in the 1920s and 1940s

Nowadays in any modern elementary QM textbook
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Topology

Branch of mathematics that describes properties which
remain unchanged under smooth deformations

Such properties are often labeled by integer numbers:
topological invariants

Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

Differentiability or even a metric not needed
(although most welcome!)
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A coffee cup and a doughnut are the same
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Certified Math Geek.

 

Math Mug (set theory):
If you consider the set of all sets that have
never been considered ....

 

 

Math Mug - Topology
To a Topologist This is a Doughnut

 

 

Math Mug:
Real Life is a Special Case
(black background)

 

Topological Classification
Objects with holes can be classified topologically as
follows:

No holes Genus 0

One hole Genus 1

Two holes Genus 2

Three holes Genus 3

 

EXAMPLES

The above shapes are topologically equivalent
and are of Genus 0

Properties of Space

http://cosmology.uwinnipeg.ca/Cosmology/Properties-of-Space.htm (7 of 11) [03/01/2002 7:23:17 PM]

Topological invariant: genus (=1 here)
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Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane

z = R −
√

R2 − x2 − y2 ≃ x2 + y2

2R

Hessian H =

(
1/R 0

0 1/R

)
Gaussian curvature K = det H =

1
R2

1
2π

∫
S

dσ K = 2
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Positive and negative curvature

2/3/12 4:27 PMBob Gardner's "Relativity and Black Holes" Special Relativity

Page 6 of 9http://www.etsu.edu/physics/plntrm/relat/curv.htm

>
For example, a plane tangent to a sphere lies entirely on one side of the sphere, and so a sphere is of positive
curvature. In fact, a sphere of radius r is of curvature 1/r2.

A saddle shaped surface (or more precisely, a hyperbolic paraboloid) is of negative curvature. A tangent
plane lies on both sides of the surface. Here, the point of tangency is red and the points of intersection are
blue. Pringles potato chips are familiar examples of sections of a hyperbolic paraboloid.
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A cylinder is of zero curvature since a tangent plane lies on one side of the cylinder and the points of
intersection (here in blue) are a line containing the point of tangency. Also, of course, a plane is of zero
curvature.

If two surfaces have the same curvature, we can smoothly transform one into the other without changing
distances (the transformation is called an isometry). For example, a sheet of paper (used here to represent a
curvature zero plane) can be rolled up to form a cylinder (which also has zero curvature). However, we
cannot role the paper smoothly into a sphere (which is of positive curvature). For example, if we try to
giftwrap a basketball, then the paper will overlap itself and have to be crumpled. We also cannot role the
paper smoothly over a saddle shaped surface (which is of negative curvature) since this would require ripping
the paper.

The curvature of a surface is also related to the geometry of the surface.

Smooth surface, local set of coordinates on the tangent plane

K = det

(
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
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Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

1
2π

∫
S

dσ K = 2(1 − g)

Genus g integer: counts the number of “handles”
Same g for homeomorphic surfaces
(continuous stretching and bending into a new shape)
Differentiability not needed

2/3/12 5:21 PMLotsa 'Splainin' 2 Do: Are all mathematicians crazy?

Page 2 of 8http://lotsasplainin.blogspot.com/2007/11/are-all-mathematicians-crazy.html

Here comes the crazy part. Solving the Poincaré Conjecture comes with a prize

of... $1,000,000! (Put your pinky finger to your mouth like Dr. Evil if you feel so

inclined.)

Grisha doesn't want it.

Separate from that cash, Grisha has been awarded the Fields Medal, equivalent

to the Nobel Prize in math, which also comes with a nice clump of cash. (There

is no Nobel Prize in math.)

Grisha doesn't want it.

Maybe his mama could talk some sense into this boy. But taking a look at this

Rasputin lookin' mofo, if she could talk sense into him, she'd probably start by

not dressin' him funny anymore.

Matty Boy, can you 'splain the Poincaré Conjecture to your gentle readers,

some of whom have serious issues with the math?

Let's give it a shot.

In the picture above, we have three different objects, a sphere, a torus and a

Klein bottle. We are going to consider only the surface of each, which we can

think of as a two dimensional thing in a three dimensional world.

The sphere is the easiest of these. It splits the three dimensional world into

three parts: the inside of the sphere, (known as a ball), the skin of the sphere

and the outside.

A torus is the next easiest. There is an inside, the skin and the outside, but

there's the "hole in the middle", which makes a torus different from a sphere in

mathematically important ways.

Then we have the physically impossible model that is the Klein bottle. It can be
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Rechercher

Recherche avancée    

Appareils de cuisine à gaz (8)

Appareils dessert et accessoires (10)

Lounge (11)

Matériel de table (9)

Assiettes et porcelaine divers (19)

Couverts (20)

Verres (19)

Matériel buffet (16)

Tables et chaises (14)

Etales d'animation équipés (2)

Accessoires (32)

Fournitures café (9)

Frais de livraison (5)

Buffets roulants à bièrre/frigo (9)

Accessoires apéro (23)

Matériel de cuisine (8)

Appareils de cuisine électrics (13)

Linge de table & chaise (32)

Chapiteaux et chauffages (9)

2 Débordeurs Elégance avec 1
corde noire ou bordeaux

14,00EUR

14,00EUR

 Qu'y-a-t-il dans mon panier ?
Enlever Produit(s) Qté. Total

Lubiana tasse
potage-consommé
blanche 32 cl

1 0,22EUR

Sous-total : 0,22EUR
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Nonsmooth surfaces: Polyhedra

Euler characteristic χ = V − E + F2/3/12 5:27 PMEuler characteristic - Wikipedia, the free encyclopedia

Page 2 of 10http://en.wikipedia.org/wiki/Euler_characteristic

This result is known as Euler's polyhedron formula or theorem. It corresponds to the Euler characteristic
of the sphere (i.e. χ = 2), and applies identically to spherical polyhedra. An illustration of the formula on
some polyhedra is given below.

Name Image Vertices
V

Edges
E

Faces
F

Euler characteristic:
V − E + F

Tetrahedron 4 6 4 2

Hexahedron or cube 8 12 6 2

Octahedron 6 12 8 2

Dodecahedron 20 30 12 2

Icosahedron 12 30 20 2

The surfaces of nonconvex polyhedra can have various Euler characteristics;

Name Image Vertices
V

Edges
E

Faces
F

Euler characteristic:
V − E + F

Tetrahemihexahedron 6 12 7 1

Octahemioctahedron 12 24 12 0

Cubohemioctahedron 12 24 10 −2

Great icosahedron 12 30 20 2

2/3/12 5:34 PMToroidal polyhedron - Wikipedia, the free encyclopedia

Page 1 of 2http://en.wikipedia.org/wiki/Toroidal_polyhedron

A polyhedral torus can be constructed
to approximate a torus surface, from a
net of quadrilateral faces, like this 6x4
example.

This toroidal polyhedron
constructed from
equilateral triangles, is a
Stewart toroid. It can be
seen as a "ring" of 8
octahedra attached
together.

Toroidal polyhedron
From Wikipedia, the free encyclopedia

In geometry, a toroidal polyhedron is a polyhedron with a genus of
1 or greater, representing topological torus surfaces.

Non-self-intersecting toroidal polyhedra are embedded tori, while
self-intersecting toroidal polyhedra are toroidal as abstract polyhedra,
which can be verified by their Euler characteristic (0 or less) and
orientability (orientable), and their self-intersecting realization in
Euclidean 3-space is a polyhedral immersion.

Contents
1 Stewart toroids
2 Császár and Szilassi polyhedra
3 Self-intersecting tori
4 See also
5 References
6 External links

Stewart toroids
A special category of toroidal polyhedra are constructed exclusively by
regular polygon faces, no intersections, and a further restriction that adjacent
faces may not exist in the same plane. These are called Stewart toroids,
named after Professor Bonnie Stewart who explored their existence.

Stewart also defined them as quasi-convex toroidal polyhedra if the convex
hull created no new edges (i.e. the holes can be filled by single planar
polygons).

Császár and Szilassi polyhedra
The Császár polyhedron is a seven-vertex toroidal polyhedron with 21 edges and 14 triangular faces. It and
the tetrahedron are the only known polyhedra in which every possible line segment connecting two vertices
forms an edge of the polyhedron. Its dual, the Szilassi polyhedron, has seven hexagonal faces that are all
adjacent to each other.

The Császár polyhedron has the fewest possible vertices of any toroidal polyhedron, and the Szilassi
polyhedron has the fewest possible faces of any toroidal polyhedron.

Self-intersecting tori

χ = 0

χ = 2(1 − g)
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Parallel transport on a curved surface

Parallel transport of a vector around a
closed loop (from A to N to B and
back to A) on the sphere. The angle
by which it twists, , is proportional
to the area inside the loop.

Parallel transport
From Wikipedia, the free encyclopedia

In geometry, parallel transport is a way of transporting geometrical
data along smooth curves in a manifold. If the manifold is equipped
with an affine connection (a covariant derivative or connection on the
tangent bundle), then this connection allows one to transport vectors
of the manifold along curves so that they stay parallel with respect to
the connection. Other notions of connection come equipped with
their own parallel transportation systems as well. For instance, a
Koszul connection in a vector bundle also allows for the parallel
transport of vectors in much the same way as with a covariant
derivative. An Ehresmann or Cartan connection supplies a lifting of
curves from the manifold to the total space of a principal bundle.
Such curve lifting may sometimes be thought of as the parallel
transport of reference frames.

The parallel transport for a connection thus supplies a way of, in
some sense, moving the local geometry of a manifold along a curve:
that is, of connecting the geometries of nearby points. There may be
many notions of parallel transport available, but a specification of
one — one way of connecting up the geometries of points on a curve
— is tantamount to providing a connection. In fact, the usual notion
of connection is the infinitesimal analog of parallel transport. Or, vice versa, parallel transport is the local
realization of a connection.

As parallel transport supplies a local realization of the connection, it also supplies a local realization of the
curvature known as holonomy. The Ambrose-Singer theorem makes explicit this relationship between
curvature and holonomy.

Contents

1 Parallel transport on a vector bundle
1.1 Recovering the connection from the parallel transport
1.2 Special case: The tangent bundle

2 Parallel transport in Riemannian geometry
2.1 Geodesics

3 Generalizations
4 Approximation: Schild's ladder
5 See also
6 References
7 External links

Parallel transport on a vector bundle

Angular mismatch α on a
closed contour
= integral of the Gaussian
curvature on the surface

Technical name:
Holonomy

Curvature
= Angular mismatch per unit
area
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Quantization of surface charge
(Theorem discovered & rediscovered several times 1966-1986)

Theorem:
If the bulk is an insulating & centrosymmetric crystal
If the surface is also insulating
Then the surface charge per unit surface area is
Q = e/2 × integer ∈ Z

Consequence:
Among the Q values dictated by topology, Nature chooses
the minimum energy one:

In 3d solids Q = 0: even polar surfaces are neutral!
. . . . . . provided they are insulating
In quasi-1d (polymers) Q ̸= 0 may occur
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How the theorem works: Polyacetylene

Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

Raffaele Resta
CNR-INFM DEMOCRITOS National Simulation Center, Via Beirut 2, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

!Received 18 June 2007; accepted 24 September 2007; published online 15 November 2007"

A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
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I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.

THE JOURNAL OF CHEMICAL PHYSICS 127, 194902 !2007"

0021-9606/2007/127"19!/194902/9/$23.00 © 2007 American Institute of Physics127, 194902-1

Downloaded 16 Nov 2007 to 147.122.10.31. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Centrosymmetric bulk:

Two different
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Dipole per cell = Qa
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either Q = 0 or Q = 1

final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.
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A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length
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FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.
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final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let "!r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$"%Û%"& . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant ", the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0%10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0%10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '&¯'( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.
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invalidate both the relation N =Nz and Eq. (4).
However, the experimental results strongly sug-
gest that such carriers do not invalidate Eq. (4).
At present there is both theoretical and experi-
mental investigation of this type of localiza-
tion.""" Ando' has suggested that the electrons
in impurity bands, arising from short range scat-
terers, do not contribute to the Hall current;
whereas the electrons in the Landau level give
rise to the same Hall current as that obtained
when all the electrons are in the level and can
move freely. Clearly this process must be oc-
curing but its range of validity must be carefully
examined as an accompaniment to highly accurate
measurements of Hall resistance.
For high-precision measurements we used a

normal resistance R, in series with the device.
The voltage drop, U„across R„and the voltages
UH and Upp across and along the device was meas-
ured with a high impedance voltmeter (R &2 x10'0

400

200.

0). The resistance R, was calibrated by the Phys-
ikalisch Technische Bundesanstalt, Braunschweig,
and had a value of Rp 9999.69 0 at a temperature
of 20'C. A typical result of the measured Hall
resistance R„=UH /I =UHR, /U„and the resis-
tance, R» =U»R, /U„between the potential
probes of the device is shown in Fig. 2 (J3 =13 T,
T =1.8 K). The minimum in cr„„atV, =23.6 P
corresponds to the minimum at V~ =8.7 V in Fig.
1, because the thicknesses of the gate oxides of
these two samples differ by a factor of 3.6. Our
experimental arrangement was not sensitive
enough to measure a value of R» of less than 0.1
0 which was found in the gate-voltage region
23.40 V& V &23.80 V. The Hall resistance in this
gate voltage region had a value of 6453.3+ 0.1 Q.
This inaccuracy of + 0.1 0 was due to the limited
sensitivity of the voltmeter. We would like to
mention that most of the samples, especially de-
vices with a small length-to-width ratio, showed
a minimum in the Hall voltage as a function of V
at gate voltage close to the left side of the plateau.
In Fig. 2, this minimum is relatively shallow and
has a value of 6452.87 0 at V~ =23.30 V.
In order to demonstrate the insensitivity of the

Hall resistance on the geometry of the device,
measurements on two samples with a length-to-
width ratio of I /W=0. 65 and I/W=25, respective-
ly, are plotted in Fig. 3. The gate-voltage scale
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FIG. 2. Hall resistance RH, and device resistance,
Rpp, between the potential probes as a function of the
gate voltage ~~ in a region of gate voltage correspond-
ing to a fully occupied, lowest (n =0) Landau level. The
plateau in RH has a value of 6453.3+ 0.1 Q. The geom-
etry of the device was I =400 pm, 8'=50 pm, and L»
=130 pm; B=13T.
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FIG. 3. Hall resistance RH for two samples with dif-
ferent geometry in a gate-voltage region V~ where the
n =0 Landau level is fully occupied. The recommended
value h/4e' is given as 6453.204 &.

496

Figure from von Klitzing et al. (1980).

Gate voltage Vg was supposed to
control the carrier density.

Plateau flat to five decimal figures

Natural resistance unit:
1 klitzing = h/e2 = 25812.807557(18) ohm.
This experiment: RH = klitzing / 4
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terers, do not contribute to the Hall current;
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rise to the same Hall current as that obtained
when all the electrons are in the level and can
move freely. Clearly this process must be oc-
curing but its range of validity must be carefully
examined as an accompaniment to highly accurate
measurements of Hall resistance.
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T =1.8 K). The minimum in cr„„atV, =23.6 P
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1, because the thicknesses of the gate oxides of
these two samples differ by a factor of 3.6. Our
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enough to measure a value of R» of less than 0.1
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More recent experiments

Plateaus accurate to nine decimal figures
In the plateau regions ρxx = 0 and σxx = 0:
“quantum Hall insulator”
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Topological invariant:
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From a clean sample (flat substrate potential)
To a dirty sample (disordered substrate potential)
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