Topology and Electronic Structure: Introduction

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and DEMOCRITOS National Simulation Center, IOM-CNR, Trieste

DF Trieste, 2014

Outline

1 Geometry in nonrelativistic QM

2 What topology is about

3 Surface charge in insulators

4 Integer quantum Hall effect \& TKNN invariant

Outline

1 Geometry in nonrelativistic QM

2 What topology is about

3 Surface charge in insulators

4 Integer quantum Hall effect \& TKNN invariant

Aharonov-Bohm, 1959

Fig. 15-6. The magnetic fleld and vector potential of a long solenoid.

Figure from Feynman, Vol. 2

Berry phase, 1984

■ Geometry makes its debut in nonrelativistic quantum mechanics and in electronic structure

■ Very simple concept, nonetheless missed by the founding fathers of QM in the 1920s and 1940s

■ Nowadays in any modern elementary QM textbook

Michael Berry

Outline

1 Geometry in nonrelativistic QM

2 What topology is about

3 Surface charge in insulators

4 Integer quantum Hall effect \& TKNN invariant

Topology

- Branch of mathematics that describes properties which remain unchanged under smooth deformations
- Such properties are often labeled by integer numbers: topological invariants
- Founding concepts: continuity and connectivity, open \& closed sets, neighborhood......
- Differentiability or even a metric not needed (although most welcome!)

Topology

- Branch of mathematics that describes properties which remain unchanged under smooth deformations
- Such properties are often labeled by integer numbers: topological invariants
- Founding concepts: continuity and connectivity, open \& closed sets, neighborhood......
- Differentiability or even a metric not needed (although most welcome!)

A coffee cup and a doughnut are the same

Topological invariant: genus (=1 here)

Gaussian curvature: sphere

In a local set of coordinates in the tangent plane
$z=R-\sqrt{R^{2}-x^{2}-y^{2}} \simeq \frac{x^{2}+y^{2}}{2 R}$

Hessian

$$
H=\left(\begin{array}{cc}
1 / R & 0 \\
0 & 1 / R
\end{array}\right)
$$

Gaussian curvature: sphere

In a local set of coordinates in the tangent plane

$$
z=R-\sqrt{R^{2}-x^{2}-y^{2}} \simeq \frac{x^{2}+y^{2}}{2 R}
$$

Hessian

$$
H=\left(\begin{array}{cc}
1 / R & 0 \\
0 & 1 / R
\end{array}\right)
$$

Gaussian curvature

$$
K=\operatorname{det} H=\frac{1}{R^{2}}
$$

Gaussian curvature: sphere

In a local set of coordinates in the tangent plane

$$
z=R-\sqrt{R^{2}-x^{2}-y^{2}} \simeq \frac{x^{2}+y^{2}}{2 R}
$$

Hessian

$$
H=\left(\begin{array}{cc}
1 / R & 0 \\
0 & 1 / R
\end{array}\right)
$$

Gaussian curvature

$$
K=\operatorname{det} H=\frac{1}{R^{2}}
$$

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2
$$

Positive and negative curvature

Smooth surface, local set of coordinates on the tangent plane

$$
K=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial^{2} z}{\partial x^{2}} & \frac{\partial^{2} z}{\partial x \partial y} \\
\frac{\partial^{2} z}{\partial y \partial x} & \frac{\partial^{2} z}{\partial y^{2}}
\end{array}\right)
$$

Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g)
$$

■ Genus g integer: counts the number of "handles"
■ Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)
■ Differentiability not needed

Gauss-Bonnet theorem (1848)

Over a smooth closed surface:

$$
\frac{1}{2 \pi} \int_{S} d \sigma K=2(1-g)
$$

■ Genus g integer: counts the number of "handles"

- Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)
- Differentiability not needed

Nonsmooth surfaces: Polyhedra

Euler characteristic $\quad \chi=V-E+F$

Name	Image	Vertices \boldsymbol{V}	Edges \boldsymbol{E}	Faces \boldsymbol{F}	Euler characteristic: $\boldsymbol{V}-\boldsymbol{E}+\boldsymbol{F}$
Tetrahedron		4	6	4	$\mathbf{2}$
Hexahedron or cube		8	12	6	$\mathbf{2}$
Octahedron		6	12	8	$\mathbf{2}$
Dodecahedron		20	30	12	$\mathbf{2}$
Icosahedron		12	30	20	$\mathbf{2}$

$$
\chi=2(1-g)
$$

Nonsmooth surfaces: Polyhedra

Euler characteristic $\quad \chi=V-E+F$

Name	Image	Vertices \boldsymbol{V}	Edges \boldsymbol{E}	Faces \boldsymbol{F}	Euler characteristic: $\boldsymbol{V}-\boldsymbol{E}+\boldsymbol{F}$
Tetrahedron		4	6	4	$\mathbf{2}$
Hexahedron or cube		8	12	6	$\mathbf{2}$
Octahedron		6	12	8	$\mathbf{2}$
Dodecahedron		20	30	12	$\mathbf{2}$
Icosahedron		12	30	20	$\mathbf{2}$

$$
\chi=2(1-g)
$$

Parallel transport on a curved surface

Parallel transport of a vector around a closed loop (from A to N to B and back to A) on the sphere. The angle by which it twists, α, is proportional to the area inside the loop.

Angular mismatch α on a closed contour
= integral of the Gaussian curvature on the surface

Technical name: Holonomy

Curvature

= Angular mismatch per unit area

Outline

1 Geometry in nonrelativistic QM

2 What topology is about

3 Surface charge in insulators

4 Integer quantum Hall effect \& TKNN invariant

Quantization of surface charge

(Theorem discovered \& rediscovered several times 1966-1986)

Theorem:

■ If the bulk is an insulating \& centrosymmetric crystal

- If the surface is also insulating

■ Then the surface charge per unit surface area is $Q=e / 2 \times$ integer $\in \mathbb{Z}$
Consequence:
\square Among the Q values dictated by topology, Nature chooses the minimum energy one:

- In 3d solids $Q=0$: even polar surfaces are neutral! provided they are insulating
- In quasi-1d (polymers) $Q \neq 0$ may occur

Quantization of surface charge

(Theorem discovered \& rediscovered several times 1966-1986)

Theorem:

■ If the bulk is an insulating \& centrosymmetric crystal

- If the surface is also insulating

■ Then the surface charge per unit surface area is $Q=e / 2 \times$ integer $\in \mathbb{Z}$
Consequence:

- Among the Q values dictated by topology, Nature chooses the minimum energy one:

■ In 3d solids $Q=0$: even polar surfaces are neutral!
provided they are insulating
■ In quasi-1d (polymers) $Q \neq 0$ may occur

Quantization of surface charge (Theorem discovered \& rediscovered several times 1966-1986)

Theorem:

■ If the bulk is an insulating \& centrosymmetric crystal

- If the surface is also insulating
\square Then the surface charge per unit surface area is $Q=e / 2 \times$ integer $\in \mathbb{Z}$
Consequence:
- Among the Q values dictated by topology, Nature chooses the minimum energy one:

■ In 3d solids $Q=0$: even polar surfaces are neutral!
....... provided they are insulating
■ In quasi-1d (polymers) $Q \neq 0$ may occur

How the theorem works: Polyacetylene

Centrosymmetric bulk:
Two different
asymmetric terminations

How the theorem works: Polyacetylene

Centrosymmetric bulk:

Two different asymmetric terminations

Dipole per cell = Qa

Here:
either $Q=0$ or $Q=1$

Outline

1 Geometry in nonrelativistic QM

2 What topology is about

3 Surface charge in insulators

4 Integer quantum Hall effect \& TKNN invariant

Debut of topology in electronic structure

Figure from von Klitzing et al. (1980).
Gate voltage V_{g} was supposed to control the carrier density.

Plateau flat to five decimal figures

Natural resistance unit:
 1 klitzing $=h / e^{2}=25812.807557(18)$ ohm.
 This experiment: $R_{\mathrm{H}}=$ klitzing / 4

Debut of topology in electronic structure

Figure from von Klitzing et al. (1980).
Gate voltage V_{g} was supposed to control the carrier density.

Plateau flat to five decimal figures
Natural resistance unit:
1 klitzing $=h / e^{2}=25812.807557$ (18) ohm.
This experiment: $R_{\mathrm{H}}=$ klitzing $/ 4$

More recent experiments

■ Plateaus accurate to nine decimal figures
\square In the plateau regions $\rho_{x x}=0$ and $\sigma_{x x}=0$: "quantum Hall insulator"

Continuous "deformation" of the wave function

■ Topological invariant:
Quantity that does not change under continuous deformation

> From a clean sample (flat substrate potential)
> To a dirty sample (disordered substrate potential)

Continuous "deformation" of the wave function

■ Topological invariant:
Quantity that does not change under continuous deformation

- From a clean sample (flat substrate potential)
- To a dirty sample (disordered substrate potential)

(a)

(b)

