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Chapter 1

Introduction

1.1 About the present Notes

These Notes grew up as background material for an advanced undergraduate course
delivered at the University of Trieste since March 2013 onwards. Even at that time,
there was no lack of background material, in the form of comprehensive review
papers, all of them state-of-the-art at the time of their publication. Some of these
reviews were authored or coauthored by me [1, 2, 3, 4, 5, 6, 7, 8, 9], and many
more by outstanding colleagues. A non exhaustive (and not updated) list of some
relatively recent reviews is: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. To
these I add the outstanding book by David Vanderbilt, appeared in 2018 [24].

The present Notes, posted at http://www-dft.ts.infn.it/~resta/, have been
continuously edited, updated, and augmented from 2013 to the present days. Some
Chapters have been completely rewritten for the 2021 release; given the very long
time span in which the editing has proceeded some repetitions are surely present. It
is also quite probable that some Sections are not mutually consistent, particularly
in the notations and symbols adopted.

Despite my best efforts, it is not possible to keep the pace with the most recent
developments, and with my viewpoint on them. These Notes will therefore remain—
probably in perpetuum—a kind of “work in progress”.

The present Notes include some Appendices whose topics are neither
“geometrical” nor “topological”, although some of their ingredients are calculated by
means of Berry phases and other geometrical tools. However, the Appendix topics
are regularly included in the course for which the present Notes are planned.

It is easy to guess these Notes will continue to be plagued by many typos and
even more serious errors. I kindly ask any reader spotting such occurrences to notify
me at resta@iom.cnr.it.
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Figure 1.1: The hallmark of topology, as
in many popular presentations. Hundreds
of figures like this, and even some very
perspicuous videos, can be downloaded
from the internet. The two closed surfaces
(“two-dimensional compact manifolds”)
have the same topological invariant g = 1,
which measures the number of handles.

1.2 What topology is about
Topology is defined as a branch of mathematics that describes properties which
remain unchanged under smooth deformations; such properties are usually labelled
by integer numbers, named topological invariants. The concepts and tools belonging
to topology are continuity and connectivity, open and closed sets, neighborhoods,
and the like.

Differentiability, or even a metric structure, are not needed; theorems are proved
under very general hypotheses, and are therefore very powerful, being applicable to
very diverse frameworks. The tradeoff is that proofs, and even definitions, look
clumsy and obscure to readers with the mathematical background of a typical
condensed matter physicist. The good news is that the topological properties
most relevant for electronic structure theory can be formulated in the more familiar
language of differential geometry.

At its simplest level, topology is the branch of mathematics used to classiify the
shapes of three-dimensional objects. Many introductions to topology start with the
statement that, to a topologist, a coffee cup and a doughnut are the same thing, as
in Fig. 1.1. Intuitively, the common feature of the two objects is the presence of
one, and only one, handle. The mathematical definition of “handle” is coming soon.

1.2.1 Gauss-Bonnet theorem
We start with the simplest example, a sphere, and a tangent plane at a given point.
In a local system of Cartesian coordinates on the plane the equation of the sphere
is

z = R−
√
R2 − x2 − y2 ≃ x2 + y2

2R
, (1.1)

and the Hessian matrix is

H =

(
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
=

(
1/R 0

0 1/R

)
. (1.2)
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Figure 1.2: A sphere of radius R, and
its tangent plane in a generic point. The
Gaussian curvature in this trivial case is
Ω = 1/R2.

The Gaussian curvature Ω is by definition the determinant of the Hessian at the
tangency point. It is obviously constant and equal to 1/R2 at any point of the
sphere; notice that the orientation of the z axis (either inwards or outwards) is
irrelevant. The integral of Ω over the whole closed surface is 4π.

Next we consider a smooth (i.e. twice differentiable) surface of arbitrary shape:
the Gaussian curvature is defined as the determinant of the Hessian at the tangent
plane, similarly to what we did for the sphere:

Ω = det

(
∂2z
∂x2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
. (1.3)

In general, Ω can be positive, negative (at a saddle point), or zero (e.g. for a plane
or a cylinder).

So far, we have looked at a 2d surface in a 3d space; but Gauss’ great intuition—
the ‘theorema egregium”—is that the concept of curvature is intrinsic to the 2d
surface itself. An ant crawling on the surface can measure the curvature in two
equivalent ways; either via parallel transport, or measuring angles. Suppose we join
three points on a surface by the shortest paths (geodesics). Then the sum of the
angles in the triangle is π on a flat surface, greater than π if Ω is positive (like on
the sphere), and smaller than π if Ω is negative. The angular mismatch per unit
area defines indeed the Gaussian curvature.

The Gauss-Bonnet theorem states that for any closed smooth surface

1

2π

∫
S

dσ Ω = 2(1− g), (1.4)

where g is a nonnegative integer, called the “genus” of the surface. Surfaces which
can be continuously deformed into each other (i.e. “homeomorphic”) have the same
genus. For the sphere and any surface homeomorphic to it g = 0; both the coffee
cup and the doughnut, Fig. 1.1 have g = 1; a double-handle cup has g = 2. The
genus is thus the mathematical definition for the number of handles. Notice also
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that an ant crawling on a nontrivial (g > 0) surface may walk around some closed
paths that cannot be smoothly shrunk to a point on the surface.

1.2.2 Euler characteristic
We have considered smooth surfaces so far, but topological invariants are based on
the more general condition of continuity, and—to the delight of mathematicians—
unsurprisingly can be defined even for pathological surfaces (“manifolds” in
topology-speak). The simplest non smooth case addresses polyhedra, where the
Gaussian curvature is either zero (on the faces) or singular (at vertices and edges).

The Euler characteristic is defined as χ = V −E +F , where V is the number of
vertices, E is the number of edges, and F is the number of faces. If we address the set
of regular polyhedra (tetrahedron, cube, octahedron, dodecahedron, icosahedron) it
is easily verified that χ = 2. All these surfaces can be continuously deformed into
(“are homeomeorphic to”) each other, and into a sphere. In fact there is a one-
to-one relationship between the Euler characteristic and the genus: χ = 2(1 − g).
Polyhedra can also have χ ̸= 2, like the doughnut-shaped one shown in Fig. 1.4.

1.3 Electronic wavefunctions
In the domain of electronic structure, the typical object addressed via geometrical
and/or topological concepts is the electronic ground state of some system. Whenever
an observable effect has the nature of a topological invariant, i.e. it is an integer
number, two remarkable features occur. (1) The observable is measurable in
principle with infinite precision (10−9 is actually attained for the quantum Hall
effect). (2) The observable is very robust under even strong variations of the
sample conditions; a very disruptive perturbation is needed to switch from one

Figure 1.3: Some surfaces and their genus

4



Figure 1.4: A doughnut shaped polyhe-
dron. This surface has Euler characteris-
tic χ = 0 or, equivalently, genus g = 1.

integer to another. Topology concerns mostly insulators: in this case the disruptive
perturbation amounts to crossing a metallic state.

These Notes are entirely devoted to physical properties having a topological
and/or geometrical character. I am not sure of always using the right semantics.
Loosely speaking, I would use the term “topological” for something which is
quantized, and “geometrical” for something which is not. The framework and the
mathematical tools are often the same for quantized and nonquantized quantities,
the former frequently occurring as special cases of the latter.

The Berry phase is the typical geometrical quantity which is not quantized,
although it can be quantized in high-symmetry cases. The macroscopic polarization
of a solid is a Berry phase, and is obviously (from an experimental viewpoint) a
nonquantized observable. Nonetheless, there are aspects of the modern theory of
polarization that I would define topological. The same applies to other geometrical
properties considered in this Notes. It is reassuring that even other authors often
use “geometrical” and “topological” as synonymous, and that an illustrious author
like Michael Berry confesses an original mistake about the semantics [25].

Finally, a few words about the many calculations cited and sometimes briefly
outlined here. Unless otherwise stated, the term “first-principle calculations”,
when referred to a condensed matter system, means density functional calculations;
independent-electron eigenfunctions and eigenvalues are the Kohn-Sham (KS) ones.
Despite these Notes mostly address a computational physics readership, no technical
details are given (basis sets, pseudopotentials, functionals...); they are obviously
detailed in the original literature, while the focus here is on the physical properties.

1.4 Units
We use Gaussian electromagnetic units throughout: these have the advantage (at
variance with SI units) that electric and magnetic fields have the same dimensions.
Furthermore, the nasty ε0 and µ0 disappear; SI formulæ are converted by setting
4πε0 = 1 and 4π/µ0 = 1. Gaussian units are elegant and simple, and symmetric in
dealing with electric and magnetic fields; they somewhat hide the fact that magnetic
energies are typically much smaller—by a factor 1/1372—of electrical energies.

For a single particle, the Newton equation of motion and the Hamiltonian read,
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respectively

M
dv

dt
= f = Q

(
E+

1

c
v ×B

)
, (1.5)

H =
1

2M

(
p− Q

c
A(r)

)2

+QΦ(r). (1.6)

Generally, Gaussian electromagnetic units are associated to mechanical cgs units,
but this is no means necessary. In electronic structure theory, it is expedient to
associate Gaussian electromagnetic units with atomic units (a.u.), defined as e2 = 1,
me = 1, ℏ = 1. The unit of energy is the hartree (1 Ha = 2 Ry = 27.21 eV). In
the present Notes the electron charge is −e, with e > 0; this sign choice agrees with
most (but not all) the recent literature. For instance, the very popular review of
Ref [1] adopts the symbol e for the “algebraic” electron charge (e < 0).

The speed of light in a.u. is c = 137. This immediately hints at why the largest
atomic number Z in the periodic table is Z ≃ 100: in fact the core electrons have
(in a.u.) energies of the order of Z2, hence velocities of the order of Z.

1.5 Symbols
I am faced here with two contrasting issues: adopting the symbols most currently
used in the literature, and adopting different symbols for different objects. This
proved to be near to impossible in a work of the present kind, if baroque symbols
are to be ruled out. When I started writing the present Notes in 2013 I adopted
A,A,A,A,A , all with a different meaning; similarly, I use P, P̂ ,P,P ,P. After
much editing over the years, I found unavoidable to use—in different Chapters or
Sections—the same symbol for different objects or even different symbols for the
same object. For instance, depending on the context, the symbol P may indicate a
projector or, otherwise, a one-dimensional electrical polarization. Therefore caution
is in order when extrapolating a given symbol from its own context.

1.6 Gauge and flux
We consider here a simple exercise which plays the role of a very important paradigm;
it illustrates basic concepts and results which are going to reappear several times all
along the present Notes.

We address the single-particle Hamiltonian

H =
1

2m
(p+

e

c
A)2 + V (r), (1.7)

6



where the vector potential A is independent of space and time. It is usually said
that A is a pure gauge, meaning with this that it does not affect the fields:

B = ∇×A ≡ 0, E = −1

c

∂A

∂t
≡ 0. (1.8)

1.6.1 Classical mechanics
Let us first adopt a classical viewpoint. The Hamilton equation of motions are

ṗ = −∂H
∂r

= −∇V (r) (1.9)

ṙ =
∂H

∂p
=

1

m
(p+

e

c
A). (1.10)

From these we get
p = mṙ− e

c
A, (1.11)

which leads to the Newton equation of motion

mr̈ = −∇V (r). (1.12)

The bottom line looks quite obvious: a pure gauge has no effect. A basic tenet of
classical mechanics is that the equations of motion can always be directly expressed
in terms of the forces (i.e. the fields), while the potentials—scalar and vector—are
auxiliary quantities, devoid of physical meaning.

1.6.2 Quantum mechanics, open boundary conditions
Next we switch to quantum mechanics. It is expedient to rewrite Eq. (1.7) as

H(κ) =
1

2m
(p+ ℏκ)2 + V (r), κ =

e

cℏ
A, (1.13)

where κ, having the dimensions of an inverse length, will be referred to as “twist”
in the following. The Schrödinger equation is

H(κ)|ψn(κ)⟩ = ϵn(κ)|ψn(κ)⟩. (1.14)

The eigenvectors and eigenvalues of the Schrödinger equation depend on the
boundary conditions assumed.

The so-called open boundary conditions (OBCs) require that the bound
eigenstates are square-integrable over R3. Let |ψn(0)⟩ be a nondegenerate eigenstate
of the “untwisted” Hamiltonian within OBCs. Then the state e−iκ·r|ψn(0)⟩
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obviously obeys OBCs as well, and also obeys Eq. (1.14) with a κ-independent
eigenvalue. Therefore it coincides with the n-th eigenstate |ψn(κ)⟩ of the twisted
Hamiltonian; notice that this eigenstate is arbitrary by a κ-dependent phase factor.

We conclude that a pure gauge within OBCs affects the wavefunction, but does
not affect any of the observable quantities, such as expectation values, density, and
current. We spell this, in jargon, by saying that the “twist” is easily “gauged away”
within OBCs.

1.6.3 Quantum mechanics, periodic boundary conditions
We assume periodic boundary conditions (PBCs) over a cubic box of side L, i.e. we
require the eigenstates of Eq. (1.14) to be Born-von-Kàrmàn periodic with period L
over x, y, and z at any given κ. Each Cartesian coordinate is therefore equivalent
to an angle, e.g. φx = 2πx/L.

If |ψn(0)⟩ is an eigenstate of the untwisted Hamiltonian within PBCs, then the
state e−iκ·r|ψn(0)⟩ obeys Eq. (1.14) with a κ-independent eigenvalue, but for a
general κ it does not obey PBCs, and therefore in general does not coincide with
the genuine eigenstate |ψn(κ)⟩. Within PBCs the spectrum of Eq. (1.14) depends
on the twist κ in a nontrivial way.

If |ψn(κ)⟩ is an eigenstate of Eq. (1.14) within PBCs with eigenvalue ϵn(κ), then
the auxiliary state |ψ̃n(κ)⟩ = eiκ·r|ψn(κ)⟩ obeys the untwisted (κ = 0) Schrödinger
equation, and quasi-periodical (a.k.a. “twisted” or “skewed”) boundary conditions:
at any two opposite faces of the cube the wavefunction differs by a κ-dependent
phase factor.

In other words the problem can be formulated in two equivalent ways: either
the Hamiltonian is κ-dependent, as in Eq. (1.14), and the boundary conditions are
κ-independent; or the Hamiltonian is κ-independent but the boundary conditions
are “twisted” in a κ-dependent way.

1.6.4 Example: Free particle in 1d
For the sake of simplicity, we consider Eq. (1.14) in 1d, and with V ≡ 0:

ℏ2

2m

(
−i d
dx

+ κ

)2

|ψn(κ)⟩ = ϵn(κ)|ψn(κ)⟩. (1.15)

The eigenfunctions within PBCs and the spectrum are

⟨x|ψn(κ)⟩ ∝ ei
2πn
L

x, n ∈ Z, (1.16)

ϵn(κ) =
ℏ2

2m

(
2πn

L
+ κ

)2

, (1.17)
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where the nontrivial κ-dependence is perspicuous. The velocity operator can be
written as

v =
1

ℏ
∂H

∂κ
, (1.18)

and the Hellmann-Feynman theorem yields

⟨ψn|v|ψn⟩ =
1

ℏ
dϵn(κ)

dκ
. (1.19)

We have introduced PBCs as a basic framework of condensed matter physics.
Many concepts (like the Bloch vector or the Fermi surface) make sense only within
PBCs. But we also may regard this problem as if the electrons were confined to a
circular rail of circumference L, as in Fig. 1.5. There is no field (electric or magnetic)
on the rail, but a constant vector potential of intensity A = cℏκ/e is present along
the rail; eigenvectors and eigenfunctions depend on its value.

1.6.5 Flux and flux quantum
The constant vector potential A on the circular rail corresponds to a magnetic flux
ϕ = LA threading the surface encircled by the rail, in a region not visited by the
electronic system; it has been appropriately called by some authors “inaccessible
flux”.

We further observe that the spectrum, Eq. (1.17), is periodic in κ with period
2π/L; alternatively, it is periodic in the flux ϕ with period ϕ0 = 2πℏc/e = hc/e,
the elementary flux quantum. In cgs units hc/e = 4.135 × 10−7 gauss cm2, while
in SI units ϕ0 = h/e = 4.136 × 10−15 Wb. Notice also that, in the framework of
superconductivity, the same symbol ϕ0 indicates one half of this (it refers to electron
pairs).

We stress that only the fractional part of the flux affects the results in a nontrivial
way. This is perspicuous if we recast Eq. (1.17) as

ϵn(ϕ) =
ℏ2

2m

(
2π

L

)2(
n+

ϕ

ϕ0

)2

. (1.20)

Figure 1.5: The electron motion is
confined to a circular rail. A constant
vector potential A = cℏκ/e along the rail,
as in Eq. (1.15), corresponds to vanishing
fields (electric and magnetic), yet the
spectrum depends on the “inaccessible
flux” threading the surface encircled by
the rail.
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The flux breaks time-reversal (T) symmetry (κ → −κ), and the spectrum is
nondegenerate, except when ϕ = 0 or ϕ = ϕ0/2, the latter also called “π flux”.
In these two cases (and in these cases only) the eigenfunctions can be chosen as real.

When the flux is varied with time, an emf is induced along the loop. Using
Eq. (1.19), the current is

I = − e

L
v = −cdϵn

dϕ
. (1.21)

This result is remarkable: it holds even in presence of a potential V (x), and
generalizes straightforwardly to N noninteracting electrons. It will be used in the
discussion of the quantum Hall effect: see Eq. (2.20) below.
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Chapter 2

Early discoveries

2.1 The Aharonov-Bohm effect: A paradox?
The Aharonov-Bohm effect is the paradigm for a measurable effect induced by an
inaccessible flux. We anticipate that in many other phenomena such flux may
be purely “geometrical” or “topological”, without any relationship to a genuine
magnetic field: this is e.g., the case considered in the next Section. It is only in the
Aharonov-Bohm effect that one addresses indeed the inaccessible flux of a magnetic
field, as present e.g. inside a solenoid. An interference experiment detects the
presence of the flux even when the electronic motion is confined in the region outside
the solenoid, where the magnetic field is zero. This seems paradoxical: something
which “happens” in a region not visited by the quantum particle may affect some
observable properties. Indeed, the founding fathers of quantum mechanics (in the
1920s) failed to notice such peculiar feature. It only surfaced more than 30 years
afterwards in the milestone paper by Aharonov and Bohm [26], appeared in 1959,
whose abstract states verbatim “...contrary to the conclusions of classical mechanics,
there exist effects of potential on charged particles, even in the regions where all the
fields (and therefore the forces on the particles) vanish”.

The paper was shocking, and its conclusions were challenged by several authors;
nonetheless experimental validations appeared as early as 1960 [28, 29]. The
main message of Ref. [26] is at the basis of many subsequent developments in
electronic structure theory, many of them illustrated below in the present Notes.
The Aharonov-Bohm effect is also at the root of the commercial SQUID technology
[30].

It is remarkable that R. P. Feynman included the Aharonov-Bohm effect in his
legendary lectures, delivered to the sophomore class at Caltech during the 1962-63
academic year [27]. In the final sentence about this topic, Feynman says: “...E and
B are slowly disappearing from the modern expression of physical laws; they are
being replaced by A and Φ”.
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It is also remarkable and shameful that a paper bearing the title “Nonexistence
of the Aharonov-Bohm effect” [31] was published as late as 1978. All challenges
disappeared with the publication in 1984 of the celebrated paper by Michael Berry
(now Sir Michael Berry [32]), where the eponymous phase made its first appearance
[33].

2.2 Conical intersections in molecules

At the time Berry wrote his famous paper, only two occurrences of a geometrical
phase (called Berry phase soon afterwards) in quantum mechanics were known to
him: the Aharonov-Bohm effect and a somewhat exotic phenomenon occurring in
molecular physics. Even the latter was known since the late 1950s [34, 35], and
appropriately rebaptized in the late 1970s as “molecular Aharonov-Bohm effect”
[36, 37]. In the subsequent years Berry phases were discovered in many branches of
physics.

The smallest molecular system where the molecular Aharonov-Bohm effect is
possible is a trimer, having three internal coordinates (e.g. the three internuclear
distances), and the simplest trimers are of course the homonuclear ones, where
symmetry plays a major role. I give a simple outline for this particular system: a
dynamical Jahn-Teller effect, bearing the conventional symmetry label E ⊗ ε.

We focus on a trimer of monovalent atoms, e.g. H3 or Na3, and we assume an
independent-electron picture in the Born-Oppenheimer approximation. We start
with the molecule in the equilateral configurations, Fig. 2.2. Two of the valence
electrons occupy a totalsymmetric orbital, while the unpaired electron occupies
the next available one, which has E symmetry and is doubly degenerate. In a
simple tight-binding (alias minimal-basis LCAO) scheme, a possible basis in the

Figure 2.1: The Aharonov-Bohm interference experiment (From Ref. [27])
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two-dimensional manifold is:

|1⟩ = 1√
2
( |B⟩−|C⟩ ) ; |2⟩ = 1√

6
( 2|A⟩−|B⟩−|C⟩ ) , (2.1)

where A,B,C are atomic labels (as in the figure). This choice deserves an important
comment. We are adopting OBCs, as appropriate for an isolated molecule, and
the Hamiltonian is invariant under time reversal (no magnetic field, no spin-orbit
interaction). These two conditions guarantee that the orbitals may always be chosen
as real. They may, but they don’t need: it may instead be convenient to choose a
complex basis in the same two-dimensional degenerate manifold.

When we distort the molecule from its equilateral configuration, the doublet is
linearly split: one of the two components is energetically favored, the molecule
undergoes Jahn-Teller distortion, and the electronic ground state in the Born-
Oppenheimer approximation becomes nondegenerate.

Next we analyze the motion of the nuclei. There are three linearly independent
normal modes for the small oscillations of the internal coordinates. Of course, in
absence of a Jahn-Teller effect, the equilateral configuration is the equilibrium one.
One mode is totalsymmetric, and cannot split the electronic levels. The remaining
modes are degenerate, having in fact E symmetry, and couple to the electronic
doublet, originating in fact the dynamical Jahn-Teller effect. The notation E ⊗ ε
means indeed that an E vibrational mode is coupled to an E electronic state:
conventionally, one uses upper case letters as symmetry labels for the vibrational
states, and lower case ones for the electronic states.

The adiabatic electronic ground state follows the nuclear motion. For a cyclic
pseudorotation, shown in Fig. 2.3, the Hamiltonian is periodical, but the electronic
wavefunction is antiperiodical. The total wavefunction in the Born-Oppenheimer
approximation factors into the electronic one times the nuclear one. Given
that the total wavefunction must be single-valued, even the nuclear wavefunction
must be quantized using antiperiodical boundary conditions, and this affects the
pseudorotation spectrum in a measurable way.

This feature has to do with the peculiar shape of the Born-Oppenheimer surface,
shown in Fig. 2.4. If we adopt a two-dimensional Cartesian normal coordinate
ξ = (ξ1, ξ2), the ionic displacements are parametrized as:

xA = ξ1 yA = ξ2
xB = −1

2
ξ1 +

√
3
2
ξ2 yB = −

√
3
2
ξ1 − 1

2
ξ2

xC = −1
2
ξ1 −

√
3
2
ξ2 yC =

√
3
2
ξ1 − 1

2
ξ2

Figure 2.2: A homonuclear trimer in its equilateral configura-
tion.
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Figure 2.3: A schematic representation of a (counterclockwise) pseudorotation,
where subsequent snapshots differ by 2π/3. The corresponding electronic ground
states in the tight-binding approximation, are also shown.

The meaning of this coordinate choice is transparent with reference to Fig 2.3: when
the atom A is displaced by ξ, the displacements of B and C are of equal magnitude
|ξ|, but pointing in directions rotated by −2π/3 and −4π/3, respectively. If we
neglect Jahn-Teller coupling beyond linear order, no potential energy is associated
to a motion at constant |ξ|, which is indeed a free pseudorotation (or a “rotation
wave”), also schematized in the succession of snapshots in Fig. 2.3.

In absence of Jahn-Teller coupling, the surface would simply be a parabola,
everywhere doubly degenerate. The linear Jahn-Teller splitting is function of |ξ|,
hence to linear order the electronic eigenvalues are:

E±(ξ) ∝ |ξ|2 ± const |ξ|. (2.2)

This double-valued function is displayed in Fig. 2.4 and has a conical intersection
at the origin. The double cone is also called a diabolo (after a spinning toy of
the same shape), so the degeneracy points are also called “diabolical”. The lowest
sheet E−(ξ) has a circular valley of radius ξmin, where a classical particle travels
freely (if nonlinear Jahn-Teller coupling is neglected). Nothing exotic happens if
the nuclear motion can be considered as classic; but when we quantize the nuclear
degrees of freedom, antiperiodical boundary conditions have to be imposed for the
cyclic motion, as said above.

A simple approximation for the rotovibrational levels is thus:

E(u, j) = (u+
1

2
)ω0 + Aj2, (2.3)

Figure 2.4: The Born-Oppenheimer sur-
face of the Jahn-Teller split doublet: a
double-valued function with a conical in-
tersection (a.k.a. diabolical point). The
potential minimum is a circle of radius
ξmin centered at the degeneracy point.
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corresponding to an oscillation of frequency ω0 and quantum number u, and a two-
dimensional internal rotation with rotor constant A. The antiperiodical boundary
conditions imply half-odd-integer values for the quantum number j; notice that the
ground state (j = ±1/2) is twofold degenerate.

The pseudorotation term in the spectrum can be compared to Eq. (1.20); the
moment of inertia in the prefactor becomes obviously a nuclear rotor, but the
spectrum is the same if we identify the inaccessible flux ϕ with half a flux quantum
ϕ0 (a.k.a. π flux).

There is no magnetic field in this problem; the flux is purely topological and
can be regarded as an obstruction: the nuclear path cannot be contracted without
crossing a degeneracy point. It is remarkable that the topological nature of this
problem was clearly stated as early as 1963—much earlier than topology became
fashionable in electronic structure—by Herzberg and Longuet-Higgins [35], who say
verbatim: “...a conically self-intersecting potential surface has a different topological
character from a pair of distinct surfaces which happen to meet at a point. Indeed,
if an electronic wave function changes sign when we move round a closed loop in
configuration space, we can conclude that somewhere inside the loop there must be a
singular point at which the wave function is degenerate”.

In modern jargon, we would say that the cases ϕ = 0 and ϕ = ϕ0/2 are
topologically distinct; owing T-invariance, other flux values are ruled out. We
anticipate that the present problem is revisited in order to introduce the Z2

topological invariant in Sect. 4.2.3.
The present paradigm also illustrates the robustness of topological properties

against smooth deformations. For instance, here we have addressed the ultrasimple
tight-binding model, but the ground wavefunction can be “continuously deformed”
to the exact correlated wavefunction: topology-wise, the two wavefunctions are
essentially the same object, insofar as the conical intersection is present. Notice
also that at the conical intersection the Born-Oppenheimer approximation breaks
down.

One could also address more general closed paths, according to their winding
number round the obstruction. Only paths having the same winding number can
be continuously deformed into each other: they are “homotopic”.

2.3 Quantization of the surface charge
The pioneering selfconsistent calculations of the electronic structure of surfaces,
performed at IBM (Yorktown Heights) and at Bell Labs in the mid 1970s, pointed
out the occurrence of quantization of charge at insulating surfaces. After an early
paper by V. Heine in 1966 [38], the theorem made its appearance in a 1974 paper by
Appelbaum and Hamann [39]. Other papers addressed the issue in the 1970s [40, 41],
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but the topological explanation came much later; it will be discussed below, Sect.
5.6.1.

The quantization of surface charge may appear counterintuitive, if one sticks
at the idea that a solid is an array of classical charges (ions), as many people
still do. Possibly because of its counterintuitive content, this important theorem is
surprisingly ignored even by well known specialists in surface physics. The extreme
of such ignorance occurs in an invited review paper—which I abstain from quoting—
about polar surfaces. The theorem is even more ignored in quantum chemistry,
where it addresses end charges in linear polymers.

Electrons are quantum particles, and classical ideas may prove wrong. Solids
are not assemblies of ions; they are assemblies of atoms, having ionic character only
because neighboring atoms have a different electronegativity [42]. At the surface,
one has to look at what happens to the bonds.

A simple statement of the theorem is the following. If the bulk of the crystal
is centrosymmetric, and if the surface is insulating, then the charge per surface cell
may only be an integer or half integer; the surface charge can be nonquantized only
if the bulk is noncentrosymmetric, or if the surface is metallic. The theorem is dealt
with in detail in Secs. 5.6.1 and 5.7.

Quite often, the actual quantized value is zero because of energy considerations;
therefore even polar surfaces are (counterintuitively) neutral under the above two
essential hypotheses, which I stress again: the bulk is centrosymmetric, and
the surface is insulating. The microscopic mechanism can be understood as an
intrinsic surface-state neutralization [42]; however, topology guarantees quantization
independently of microscopic details.

We nowadays regard bulk-surface correspondence in many phenomena as one of
the hallmarks of geometry and topology in condensed matter physics. In modern
jargon, I would say that the surface charge of insulators is “topologically protected”.
More about the bulk-boundary correspondence will be said in Sec. 8.3.4.

2.4 Topological soliton charge in polyacetylene
We consider here trans-poliacetylene (Fig. 2.5): a planar stereoregular polymer,
and we focus on its π electrons only. There are two π electrons per monomer;
we neutralize them with one positive charge per carbon atom, this making each

Figure 2.5: Alternant trans-polyacetilene:
n monomers are shown. We consider here
only π electrons, whose orbitals have a
nodal plane in the plane of the molecule.

16



Nanomaterials 2019, 9, 885 7 of 16

is missing from the valence band and the corresponding charge is assumed to be in the vicinity of the
soliton [11]).

When the electron spin is considered, each spin-up and -down soliton gap state takes half the
spectral weight from the valence band. Thus, if the spin-up and -down soliton states are both empty,
the localized soliton has Q = e/2 + e/2 = e and S = 0 [10,11] (here, a charge is defined as a depletion
or surplus in the many-body ground state density including the positive background charge). When the
spin-up soliton state is occupied while the spin-down state is empty, Q = �e + (e/2 + e/2) = 0 and
S = 1/2. Therefore, these solitonic states have unusual charge and spin relations [24].

Next, consider a periodic polyacetylene specimen having two domain walls, see Figure 3. It is
instructive to consider tight-binding solutions. They are a soliton and an antisoliton solutions,
as shown in Figure 3. For infinitely long polyacetylene, the energy difference between a soliton
and antisoliton vanishes. When both a soliton and antisoliton are present, they must be located at
different positions along a periodic ring: a soliton connects two dimerized phases, �m ! m, whereas an
antisoliton connects m ! �m, as shown in Figure 3. A soliton and an antisoliton are chiral modes with
different chirality: a soliton has only the A-component wavefunction and an antisoliton has only the
B-component wavefunction, as apparent from Figures 1a and 3. An antisoliton is also an eigenstate of
the chiral operator. The energy spectrum varies strongly in the vicinity of the kink/antikink. The total
number of electrons or states in the filled valence band in the vicinity of the kink/antikink decreases
by precisely 1/2 per spin (see the derivation below).

. . . . . .

! ""

soliton antisoliton

Figure 3. In a periodic system with two domain walls, a soliton-antisoliton pair must exist. Their site
probability densities are shown. For a soliton (antisoliton), the probability density is finite on A (B)
carbon atoms only.

3.2. End Solitons of Polyacetylene

A soliton can also exist as a boundary charge. Consider finite-length polyacetylene in one of the
dimerized phases (no domain wall exists as only one type of dimerized phase is present). The electron
density is uniform with occupation number ni = 1 at all sites i. There are two types of finite length
polyacetylene, which have long or short end bonds, as shown in Figures 4 and 5, respectively.

Tight-binding calculations show that, for the long-bond unit cell shown in Figure 4a, two nearly
degenerate bonding fB and antibonding fA gap states exist with almost zero-energy (the energy
splitting vanishes when the system length becomes infinitely large). One half of the spectral weight
of each of these solitonic states is derived from the conduction band, while the other half is from
the valence band. As is EF = 0 , one state is occupied while the other is empty (see Figure 4b).
The probability density of such a state splits into two parts, located near the left and right end points
(see Figure 4c). If an electron is added to a solitonic state, the resulting electron density r(x) has �e/2
fractional charges near the two ends of the polyacetylene. When an electron is removed, e/2 fractional
charges appear near the ends (there is as yet no conclusive experimental evidence of their existence).
Note that these solitons have mixed chirality with different chirality at the opposite ends (here referred
to as here refered to as mixed chiral states). However, their linear combinations fB ± fA are chiral and
are located near either the left or right end points. In the case of the short-bond unit cell, no end state
exists, i.e., no gap state exists, as shown in Figure 5. In periodic polyacetylene, a topological phase
transition occurs at t = t

0 with a discontinuous change in the value of the Zak phase (see the discussion
of the Zak phase and end charge in subsection II C).

Figure 2.6: Alternation defects in polyacetylene: either two contiguous single bonds
(soliton), or two contiguous double bonds (antisoliton).

monomer (a.k.a. one-dimensional crystal cell) neutral.
In the infinite-chain limit the pristine system is insulating (insofar as it is

alternant). Let us consider alternation defects, such as those sketched in Fig. 2.6,
and called solitons/antisolitons. Such defects are charged; in the limit of an isolated
soliton in an infinite chain this charge is topological and equals ±e if we consider
singlet ground states only (with doubly occupied orbitals and zero spin density).
This outstanding and very early discovery was made by Su, Schrieffer, and Heeger
in 1979 [135].

It became clear much later (1990s) that the reasons behind the topological
quantization of the soliton charge are basically the same as for the quantization
of the boundary charge in 1d, or equivalently of the 1d polarization, discussed below
in Secs. 5.6.1 and 5.7.

The theory of polarization has an equivalent formulation in terms of Wannier
functions (Sec. 5.3.3). The quantization of both the end charge in a linear polymer
and of the soliton charge in polyacetylene have a simple explanation in terms of
Wannier-function counting [126].

2.5 Integer quantum Hall effect
2.5.1 Classical theory (Drude-Zener)
We consider any 2d system, in the setup shown in Fig. 2.7. If dissipation is accounted
for by a single relaxation time τ , the Newton equation of motion for a single carrier
of mass m and charge −e, is

m

(
dv

dt
+

1

τ
v

)
= −e

(
E+

1

c
v ×B

)
. (2.4)

Setting dv/dt = 0 we get the steady-state solution:

v = −eτ
m

(
E+

1

c
v ×B

)
. (2.5)

17



Figure 2.7: Hall effect in a 2d system.
The E field is applied along x, while
the B field is along z. The system is
shorted in the y direction; the current j
has both longitudinal (x) and transverse,
a.k.a. Hall (y) components.

In terms of the cyclotron frequency ωc =
eB
mc

the solution with Ey = 0 is

vx = −eτ
m
Ex − ωcτvy

vy = ωcτvx. (2.6)

If n is the carrier density, the current is j = −nev:

jx =
ne2τ

m
Ex − ωcτjy

jy = ωcτjx. (2.7)

in zero B field we retrieve the standard Drude (diagonal) conductivity:

jx = σ0Ex, σ0 =
ne2τ

m
, (2.8)

while for B ̸= 0 the conductivity tensor is:

jx =
σ0

1 + (ωcτ)2
Ex = σxxEx

jy =
ωcτσ0

1 + (ωcτ)2
Ex = σyxEx. (2.9)

Inversion of the conductivity tensor

ρxx =
σxx

σ2
xx + σ2

yx

ρxy =
σyx

σ2
xx + σ2

yx

(2.10)

provides a remarkably simple expression for the longitudinal and transverse
resistivity

ρxx = 1/σ0 =
m

ne2τ
, ρxy =

mωc

ne2
=

1

nec
B. (2.11)

The Hall resistivity is therefore linear in B and independent of both mass and
relaxation time; more accurately, since we may consider even carriers of positive
charge e (“holes”), its sign does depend on the carrier charge. Notice also that in
the nondissipative regime (τ ≫ 1/ωc) both ρxx and σxx vanish.
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If we write n as N/A (number of carriers per unit area), then

ρxy =
1

nec
B =

ϕ

Nec
, (2.12)

where ϕ = AB is the magnetic flux through area A. Although we are still at a
purely classical level, it is instructive to multiply and divide ρxy by h. We may thus
identically write

ρxy =
1

ν

h

e2
, ν =

Nϕ0

ϕ
. (2.13)

Here ϕ0 = hc/e is the flux quantum, as defined above. The dimensionless quantity ν,
called the filling factor, equals the ratio between the number of electrons N and the
number of flux quanta ϕ/ϕ0. Eq. (2.13) expresses the transverse resistivity in terms
of the natural resistance unit h/e2. Since 1990 this is a new metrology standard,
accurate to more than nine figures: 1 klitzing = h/e2 = 25812.807557(18) ohm.

In 2d resistance and resistivity have the same dimensions, and coincide in the
transverse case. We write therefore the Hall resistance as

Vy/Ix = RH ≡ Rxy =
1

ν

h

e2
. (2.14)

Upon obvious dimensionality arguments, even in the quantum case the Hall
resistance can be written in this way; but then the concentration- and B-dependence
of ν are expected to be very different from the simple monothonical form of
Eq. (2.13).

One further important relationship is worth deriving. We start casting the
transverse conductivity tensor as σ(−)

αβ = σH ϵαβ, where ϵαβ is the antisymmetric
tensor. The Hall cutrrent reads

jα = σH ϵαβEβ, (2.15)

where sum on the repeated indices is understood. Then continuity equation yields

−e∂n
∂t

= −∂jα
∂rα

= −σH ϵαβ
∂Eβ

∂rα
=

1

c

∂B

∂t
, (2.16)

where the last equality owes to Maxwell’s equations. Hence
∂n

∂B
= −σH

ec
. (2.17)

This is clearly consistent with Eq. (2.11), obtained within the classical Drude-Zener
theory: in fact σH = −1/ρxy = −nec/B. But here we have derived Eq. (2.17) in
a very general way, and it therefore holds even in the quantum Hall regime, where
σH is B-independent: see Fig. 2.9. In the quantum Hall context Eq. (2.17) goes
under the name of Streda formula [43]; it is derived in an alternative way below,
Eq. (4.66).
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Figure 2.8: The original figure from von
Klitzing et al. Ref. [44]. The gate voltage
Vg was supposed to control the carrier
density. Instead, the Hall resistance is
quantized and insensitive to Vg over a
large interval; over the same interval, the
longitudinal resistance vanishes.

2.5.2 Landau levels
In quantum mechanics, the Schrödinger equation for an electron in 2d subject to a
perpendicular B field (and in a flat potential) can be exactly dealt with, both in the
Landau gauge and in the central gauge. The spectrum is discrete εn = (n+ 1

2
)ℏωc.

We define the magnetic length as ℓ = (ℏc/eB)1/2; it diverges in the zero-field limit,
and is of the order of 100 angstrom in a typical quantum Hall experiment. In the
Landau gauge (Ax = By,Ay = 0) the eigenfunctions with energy n are

ψnk(x, y) ∝ eikxχn(y − ℓ2k), (2.18)

where χn(y) are harmonic oscillator eigenfunctions with frequency ωc. Each LL is
infinitely degenerate (one eigenfunction for each k). For a system of area A, the
number of states in each level is N = A/(2πℓ2); this has a simple form in terms of
the magnetic flux ϕ through area A: N = ϕ/ϕ0.

If we now consider N noninteracting electrons, the lowest LL is completely
filled when N = N ; more generally, one expects a periodicity in the filling factor
ν = N/N = Nϕ/ϕ0, whenever ν crosses an integer value, in most physical
properties.

2.5.3 The experiment
The Hall resistance of a noninteracting 2d electron gas has been computed quantum-
mechanically by Ando in 1974 [45]. The result, when expressed as in Eq. (2.14)
showed indeed oscillations in ν with integer period. The experiment, performed
by von Klitzing and collaborators in 1980 [44], provided qualitatively different and
very surprising results, shown in Fig. 2.8. The discovery of the quantum Hall effect
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triggered a revolution with far reaching consequences in electronic structure theory
at large; Klaus von Klitzing was awarded the Nobel prize in 1985.

In the original experiment, the 2d electrons were confined by a MOSFET (metal-
oxide-semi-conductor field-effect transistor); later, higher mobilities were obtained
at semiconductor heterojunctions. Fig. 2.8 shows a very robust plateau, where
Rxx = 0 and Rxy = 6453.3 ± 0.1, corresponding to the filling factor ν = 4. The
accuracy in the quantized Rxy value is clearly far beyond the experimental control
of the carrier concentration and of the B field uniformity over the sample. A
novel, qualitatively different, state of matter was discovered. In modern jargon,
the plateaus are “topologically protected”.

A modern realization of the integer quantum Hall effect is shown in Fig. 2.9,
where ρxx and ρxy are plotted as a function of the magnetic field. The plateau
quantization is accurate to nine figures. The 2d electron gas is typically confined
at a GaAs/GaAlAs heterojunction. The ν = 1 value is achieved above ≃ 10 tesla;
at low field (high ν) the system becomes dissipative (ρxx > 0), while the classical
linear behavior of ρxy is recovered; the slope depends on electron concentration n.

2.5.4 Early theoretical interpretation
The breakthrough paper, by Laughlin, appeared as early as 1981 [46]. This is a
remarkably concise paper (two pages) which, in retrospect, is based on topological
arguments. One key ingredient of the theory is disorder: in fact, the quantum Hall
effect becomes less spectacular for very “clean” samples, while some “dirtyness”

Figure 2.9: A modern realization of the integer quantum Hall effect
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enhances the effect.
Laughlin devised a Gedankenexperiment based on the setup shown in Fig. 2.10.

The corresponding 2d Schrödinger Hamiltonian in the Landau gauge is

H(φ) =
1

2m

[(
px +

e

c
Ax

)2
+ p2y

]
+ eEy + V (x, y), (2.19)

where E is the field across the ribbon, and V is an arbitrary substrate potential.
The addition of a constant vector potential along x, Ax → Ax +∆A, in Eq. (2.19)
corresponds to threading a flux φ = L∆A through the cylinder; we use the symbol
φ, not to be confused with the real magnetic flux ϕ normal to the surface.

Similarly to what discussed in Sect. 1.6, the eigenvalues acquire a φ dependence.
According to Eq. (1.21), if εn(φ) is the n-th eigenvalue the current transported by
the corresponding eigenstate is Ix = −c ∂εn(φ)/∂φ. For an independent-particle
system with N carriers the current is thus

Ix = −c∂U(φ)
∂φ

, (2.20)

where U(φ) is the total energy of the system. Implicitly, we are assuming a
dissipationless system.

The expression in Eq. (2.20) for the current is remarkably simple, general, and
robust: it does not depend on the substrate potential V (x, y), nor the number N of
carriers, and not even on their mass m. But for a disordered potential the eigenstates
come in two kinds: localized and extended. The latter ones are phase-coherent round
the loop, while the former are exponentially localized for L → ∞. The localized
states are insensitive to the flux insertion (like the OBCs eigenstates in Sect. 1.6),
and the whole current is carried by the delocalized ones. Therefore Eq. (2.20)
provides a nonzero result insofar at least one of the occupied eigenstates in the
disordered sample is extended, i.e. phase-coherent round the loop; besides this, the
number and nature of the current-carrying states is irrelevant. It is therefore crucial
to address the nature of the single-particle eigenstates in a quantum Hall sample.

Figure 2.10: Geometry for Laughlin’s
Gedankenexperiment. A 2d channel is
bent into a loop of circumference L, and
a magnetic B field of constant magnitude
pierces the cylinder normal to the surface.
A current I ≡ Ix circles the loop; VH ≡ Vy
is the Hall voltage. The loop may be
threaded by the inaccessible flux φ.
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Figure 2.11: The density of states for a 2d system of noninteracting carriers. (a)
Clean system, with zero substrate potential. (b) Actual sample, in presence of
substrate disorder and impurities.

For a clean sample (flat substrate) the LLs are sharp, all eigenstates are extended
(in the Landau gauge), and the density of states is a series of delta functions, shown
in Fig. 2.11 (a); the weight of each delta is ϕ/ϕ0. In presence of disorder, the deltas
broaden into alternating bands of localized and extended states, as sketched in Fig.
2.11 (b).

The electron fluid is in the quantum Hall regime whenever the Fermi level falls
in a region of localized states. Therefore σxx = 0 (the fluid is a “quantum Hall
insulator”), and ρxx = 0 (transport is dissipationless).

We now imagine to adiabatically increase the vector potential by an amount
∆A = ϕ0/L, where ϕ0 is a flux quantum: all of the current-carrying states are
mapped back into themselves, while the localized ones are unaffected. Hence the
ground state has the same energy; nonetheless Eq. (2.20) implies U(φ+ϕ0)−U(φ) ≃
−ϕ0Ix/c ̸= 0. This is only possible if an integer number of electrons is transferred
from one cylinder edge to the other, each of them contributing the energy eVy. If
we call −ν such integer number, the relationship is then

ϕ0Ix/c = νeVy; RH = Vy/Ix =
ϕ0

νce
=

1

ν

h

e2
. (2.21)

The flux φ acts therefore as a charge pump; the pump cycle is one flux quantum ϕ0.
Ideally, the sample ground state can be continuously “deformed” from dirty to

clean. Insofar as the Fermi level stays is in a region of nonconducting states, the
(topological) integer ν cannot change, even if the number of current carrying states
does obviously change. The identification of ν with the number of filled LLs comes
from the clean-sample limit, which is exactly soluble. Setting V (x, y) = 0 the
eigenfunctions of Eq. (2.19) are

ψnk(x, y) = eikxχn(y − y0), y0 = ℓ2k − cE

ωcB
. (2.22)
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For a finite L, the allowed k’s are integer multiples of 2π/L and the corresponding
centers y0 are spaced by 2πℓ2/L = Lϕ0/ϕ. Threading a flux φ shifts y0 linearly in φ;
when φ equals one flux quantum each eigenfunction goes over to the next. Therefore
one carrier is shifted for each n; the integer index ν measures therefore the number
of occupied LLs. Similar arguments can be reformulated in different gauges and in
different geometries [47, 48].
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Chapter 3

Berryology

3.1 Distance and connection
Berryology is used here as synonymous for geometry in nonrelativistic quantum
mechanics. Topological (i.e. quantized) quantities are defined via geometrical
quantities, analogously to what we did above in Sect. 1.2. But many important
quantities (notably the Berry phase) are merely geometrical [25].

The founding concept of geometry is distance. Let |Ψ1⟩ and |Ψ2⟩ be two quantum
states in the same Hilbert space: we adopt for their distance an appropriately
modified form of the Bures distance [49]:

D2
12 = − ln |⟨Ψ1|Ψ2⟩|2. (3.1)

This distance vanishes when the states |Ψ1⟩ and |Ψ2⟩ coincide, while it diverges when
the states |Ψ1⟩ and |Ψ2⟩ are orthogonal. Actually, Eq. (3.1) defines a pseudodistance,
since it violates one of the axioms in calculus textbooks. Such violation does not
make any harm in the present context.

The states |Ψ1⟩ and |Ψ2⟩ are defined up to an arbitrary phase factor: fixing
this factor amounts to a gauge choice. Eq. (3.1) is clearly gauge-invariant. The
pseudodistance in Eq. (3.1) can equivalently be rewritten as

D2
12 = − ln⟨Ψ1|Ψ2⟩ − ln⟨Ψ2|Ψ1⟩, (3.2)

where the two terms are not separately gauge-invariant. While the distance is
obviously real, each of the two terms in Eq. (3.2) is in general a complex number.
If we write

⟨Ψ1|Ψ2⟩ = |⟨Ψ1|Ψ2⟩|eiφ21 , (3.3)
then the imaginary part of each of the two terms in Eq. (3.2) assumes a transparent
meaning:

−Im ln ⟨Ψ1|Ψ2⟩ = φ12, φ21 = −φ12. (3.4)
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Besides distance, an additional geometrical concept is therefore needed: the
connection, which fixes the relative phases between two states in the Hilbert space.

The connection is arbitrary and cannot have any physical meaning by itself.
Nonetheless, after the 1984 groundbreaking paper by Michael Berry [33], several
physical observables are expressed in terms of the connection and related quantities.

3.2 Geometry in a parameter space
Let us assume that a generic time-independent quantum Hamiltonian has a
parametric dependence. The Schrödinger equation is

H(ξ)|Ψ(ξ)⟩ = E(ξ)|Ψ(ξ)⟩, (3.5)

where the d-dimensional real parameter ξ is defined in a suitable domain of Rd: a
2d ξ has been chosen for display in Fig. 3.1. In most of this Chapter we discuss
the most general case, and therefore we do not specify which quantum system is
described by this Hamiltonian, nor what the physical meaning of the parameter ξ
is.

In the subsequent Chapters |Ψ(ξ)⟩ will be identified with either a single-particle
wavefunction (a.k.a. orbital) or a many-electron wavefunction. As for the parameter
ξ, it may be a nuclear coordinate, a phase angle, a magnetic flux, a Bloch vector,
a momentum, and more: it could therefore have various dimensions. Sometimes,
the parameter ξ is called the “slow variable”, while the electronic coordinates are
the “fast variable”. In the final part of this Chapter, from Sect. 3.9.1 onwards, we
address the special case where the parameter ξ is identified with a Bloch vector k.

The state vectors |Ψ(ξ)⟩ are all supposed to be normalized and to reside in the
same Hilbert space: this amounts to saying that the wavefunctions are supposed to
obey ξ-independent boundary conditions. We focus on the ground state |Ψ0(ξ)⟩,
and we assume it to be nondegenerate for ξ in some domain of Rd.

We have referred to choosing the phase of |Ψ0(ξ)⟩ as to the choice of the gauge:
the semantic is a bit ambiguous. In presence of magnetic fields, we may change the
magnetic gauge: this changes the Hamiltonian and the eigenfunctions. Once the
magnetic gauge—hence the Hamiltonian—is fixed, we still remain with the phase
arbitrariness referred to above. All measurable quantities (e.g. expectation values)
are obviously gauge-invariant (in both senses), but the reverse is also true: all gauge-
invariant properties are—at least in principle—measurable. This is the outstanding
message of the famous Berry’s paper [33].

We have defined above the distance and the phase difference between the ground
eigenstates at two different ξ points:

D2

ξ1ξ2

= − ln |⟨Ψ0(ξ1)|Ψ0(ξ2)⟩|2. (3.6)
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∆φ12 = − Im ln ⟨Ψ0(ξ1)|Ψ0(ξ2)⟩ . (3.7)
For any given choice of the two states, Eq. (3.7) provides a ∆φ12 which is unique
modulo 2π, except in the very special case that the states are orthogonal.

3.3 Berry phase
We have already observed that the phase difference ∆φ12 between any two states is
gauge-dependent and cannot have any physical meaning by itself. Matters are quite
different when we consider the total phase difference along a closed path which joins
several points in a given order, as shown in Fig. 3.2:

γ = ∆φ12 +∆φ23 +∆φ34 +∆φ41

= − Im ln ⟨Ψ0(ξ1)|Ψ0(ξ2)⟩⟨Ψ0(ξ2)|Ψ0(ξ3)⟩ ×
× ⟨Ψ0(ξ3)|Ψ0(ξ4)⟩⟨Ψ0(ξ4)|Ψ0(ξ1)⟩. (3.8)

It is now clear that all the gauge-arbitrary phases cancel in pairs, such as to make
the overall phase γ a gauge–invariant quantity. The above simple–minded algebra
leads to a result of overwhelming physical importance: in fact, a gauge–invariant
quantity is potentially a physical observable. We stress once more this fact, which
is indeed the revolutionary message of Berry’s celebrated paper, appeared in 1984
[33, 50].

Next we consider a smooth closed curve C in the parameter domain, such as in
Fig. 3.3, and we discretize it with a set of points on it. Using Eq. (3.7), we write
the phase difference between any two contiguous points as

e−i∆φ =
⟨Ψ0(ξ)|Ψ0(ξ+∆ξ)⟩
|⟨Ψ0(ξ)|Ψ0(ξ+∆ξ)⟩|

. (3.9)

If we further assume that the gauge is so chosen that the phase varies in a
differentiable way along the path, then from Eq. (3.9) we get to leading order in
∆ξ:

−i∆φ ≃ ⟨Ψ0(ξ)|∇ξΨ0(ξ)⟩ ·∆ξ. (3.10)

Figure 3.1: State vectors in the two-
dimensional ξ-space. The phase dif-
ference between two of them is de-
fined as ∆φ12 = − Im ln ⟨Ψ0(ξ1)|Ψ0(ξ2)⟩,
and their pseudodistance as D2

12 =
− ln |⟨Ψ0(ξ1)|Ψ0(ξ2)⟩|2.
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Figure 3.2: A closed path joining four
states in ξ-space.

In the limiting case of a set of points which becomes dense on the continuous path,
the total phase difference γ converges to a circuit integral:

γ =
M∑
s=1

∆φs,s+1 −→
∮
C

A(ξ) · dξ, (3.11)

where A(ξ) is called the Berry connection:

A(ξ) = i ⟨Ψ0(ξ)|∇ξΨ0(ξ)⟩. (3.12)

Since the state vectors are assumed to be normalized at any ξ, the connection is
real; we can therefore equivalently write

A(ξ) = −Im ⟨Ψ0(ξ)|∇ξΨ0(ξ)⟩. (3.13)

A number of manifestations of the Berry phase occurring in molecular and
condensed matter phenomena will be discussed in the present Notes. They are
obviously discussed in many reviews papers; here we quote Refs. [50, 51, 52, 3, 13].
Let me also quote the very recent book by David Vanderbilt [24].

At this point it is also worth emphasizing that in computational physics there
are no derivatives. The ground state |Ψ0(ξ)⟩ is generally found by diagonalizing a
matrix on a finite set of ξ points, and the phase (i.e. the gauge) is chosen by the

Figure 3.3: A smooth closed curve C in
ξ-space, and its discretization.
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diagonalization routine; the phase is therefore nonsmooth and possibly even random.
The discrete form in Eqs. (3.7) and (3.11) at finite M is the one universally used
in numerical work; it is unaffected by any erratic phase factor. More will be said
about discretizing the Berry phase in Sect. 3.9.4.

3.4 Connection and curvature
The loop integral of the Berry connection (i.e. the Berry phase γ) is non trivial in
two cases: either the curl of A(ξ) is nonzero, or the curl is zero but the curve C is not
in a simply connected domain. In the former case, we can invoke Stokes theorem;
the formulation is very simple when ξ is a 3d parameter. If C is the boundary of a
surface Σ (i.e. C ≡ ∂Σ), and the curl of A(ξ) is regular on Σ, then Stokes’ theorem
in 3d (Green’s theorem in 2d) reads

γ =

∮
∂Σ

A(ξ) · dξ =

∫
Σ

Ω(ξ) · n dσ, (3.14)

where Ω is the Berry curvature, defined as

Ω(ξ) = ∇ξ ×A(ξ) = −Im ⟨∇ξΨ0(ξ)| × |∇ξΨ0(ξ)⟩
= i⟨∇ξΨ0(ξ)| × |∇ξΨ0(ξ)⟩, (3.15)

with the usual meaning of the cross product between three-component bra and ket
states. Equation (3.14) may be spelled out by saying that the curvature is the Berry
phase per unit area of Σ.

For d ̸= 3 the Berry curvature is conveniently written as the d×d antisymmetric
matrix

Ωαβ(ξ) = −2 Im ⟨∂αΨ0(ξ)|∂βΨ0(ξ)⟩; (3.16)
Greek subscripts are Cartesian coordinates throughout, and ∂α = ∂/∂ξα. The Stokes
theorem can still be applied, generalizing Eq. (3.14) to

γ =
1

2

∫
Σ

dξα ∧ dξβ Ωαβ(ξ). (3.17)

More will be said below about this kind of notation and its convenience.
The Berry connection is also known as “gauge potential”, and the Berry

curvature as “gauge field” [52]. It is worth pointing out that the former is gauge-
dependent, while the latter is gauge-invariant and therefore corresponds in general
to a measurable quantity, even before any integration. The two quantities play (in
ξ-space) a similar role as the vector potential and the magnetic field in elementary
magnetostatics: A(r) is gauge-dependent, nonmeasurable; B(r) = ∇r × A(r) is
gauge-invariant, measurable.
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The Berry phase γ, defined as the integral over a closed curve C of the connection,
is gauge invariant only modulo 2π. This indeterminacy is resolved by Eqs. (3.14)
and (3.17) whenever the curve C is the boundary ∂Σ of a surface Σ where the
curvature is regular. In fact, the curvature is gauge-invariant and has no modulo 2π
indeterminacy.

3.5 Chern number
The rhs of Eqs. (3.14) and (3.17) is the flux of the Berry curvature on the surface Σ;
such flux remains meaningful even on a closed surface (e.g. a sphere or a torus), in
which case ∂Σ is the empty set. The key result is that such an integral is quantized.
Here we limit ourselves to 3d, where we identify Σ with the sphere S2 (Fig. 3.4):

1

2π

∫
S2

Ω(ξ) · n dσ = C1; (3.18)

C1 is an integer ∈ Z, called Chern number of the first class.
The proof is based on a similar algebra as for Dirac’s theory of the magnetic

monopole [51, 53]. The theorem goes sometimes under the name of Gauss-Bonnet-
Chern theorem; the analogy with Eq. (1.4) is perspicuous. A specific example is
dealt with in detail in Sec. 4.1.

The curvature is regular (and divergence-free) on the closed surface S2; the lhs
of Eq. (3.18) is the flux of Ω(ξ) across S2. The integrand Ω(ξ) is the curl of the
connection A(ξ); the latter in general cannot be defined as a single-valued function
globally on S2, but only on patches of it [51, 53]. To fix the ideas, suppose that Ω(ξ)
is singular at ξ = 0, and that S2 is the spherical surface centered at the origin (Fig.
3.4). We cut this surface at the equator ξz = 0 and we consider the flux across the
two open surfaces:∫

S2

Ω(ξ) · n dσ =

∫
S+

Ω(ξ) · n dσ +

∫
S−

Ω(ξ) · n dσ. (3.19)

We notice that ∂S+ = ∂S− = C, but the surface normals n have opposite
orientations. From Stokes theorem, Eq. (3.14), we get:∫

S±

Ω(ξ) · n dσ = ±
∮
C

A±(ξ) · dξ (3.20)

Figure 3.4: A sphere cut at the equator in
two hemispheres.
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∫
S2

Ω(ξ) · n dσ =

∮
C

A+(ξ) · dξ −
∮
C

A−(ξ) · dξ . (3.21)

The two upper and lower Berry connections A±(ξ) may only differ by a gauge
transformation; the rhs of Eq. (3.21) is the difference of two Berry phases on
the same path and is necessarily a multiple of 2π. This concludes the proof of
Eq. (3.18). We emphasize that the Chern number is a robust topological invariant
of the wavefunction, and is at the origin of observable effects.

3.6 Metric
It is expedient to define the ground-state projector (a.k.a. density matrix) and its
complement, i.e.

P̂ (ξ) = |Ψ0(ξ)⟩⟨Ψ0(ξ)|; Q̂(ξ) = 1̂− P̂ (ξ). (3.22)

Both P̂ (ξ) and Q̂(ξ) are gauge-invariant (for a fixed Hamiltonian).
Starting from Eq. (3.6), the infinitesimal distance is

D2

ξ,ξ+dξ =
d∑

α,β=1

gαβ(ξ)dξαdξβ, (3.23)

where the metric tensor is easily shown to be

gαβ(ξ) = Re ⟨∂αΨ0(ξ)|∂βΨ0(ξ)⟩
− ⟨∂αΨ0(ξ)|Ψ0(ξ)⟩⟨Ψ0(ξ)|∂βΨ0(ξ)⟩
= Re ⟨∂αΨ0(ξ)|Q̂(ξ)|∂βΨ0(ξ)⟩; (3.24)

the projector Q̂(ξ) is the same as defined in Eq. (3.22). This quantum metric tensor
was first proposed by Provost and Vallee in 1980 [54].

At this point we may compare Eq. (3.24) to Eq. (3.16), noticing that the insertion
of Q̂(ξ) is irrelevant in the latter, i.e.

Ωαβ(ξ) = −2 Im ⟨∂αΨ0(ξ)|Q̂(ξ)|∂βΨ0(ξ)⟩. (3.25)

It is therefore clear that gαβ and Ωαβ are, apart for a trivial −2 factor, the real
(symmetric) and the imaginary (antisymmetric) parts of the same tensor, which we
are going to call Fαβ in the following:

Fαβ(ξ) = ⟨∂αΨ0(ξ)|Q̂(ξ)|∂βΨ0(ξ)⟩. (3.26)

The metric-curvature tensor Fαβ is gauge-invariant. A compact equivalent
expression is

Fαβ(ξ) = Tr {∂αP̂ (ξ)Q̂(ξ)∂βP̂ (ξ)}, (3.27)
manifestly gauge-invariant and Hermitian.
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3.7 Parallel-transport gauge and sum over states
As said above, the main ingredients in Berryology are ξ-derivatives |∂ξΨ0(ξ)⟩ of the
ground state. To lowest order we have

|Ψ0(ξ +∆ξ)⟩ ≃ e−iφ(ξ)
(
|Ψ0(ξ)⟩ (3.28)

+
∑
n>0

|Ψn(ξ)⟩
⟨Ψn(ξ)|∆Ĥ |Ψ0(ξ)⟩
E0(ξ)− En(ξ)

)
,

where ∆Ĥ = Ĥ(ξ + ∆ξ) − Ĥ(ξ). The overall phase factor is generally omitted in
most textbooks: this corresponds to a specific gauge, called the parallel-transport
gauge [3]. The name indicates that the first-order change in |Ψ0(ξ)⟩ is chosen
as orthogonal to |Ψ0(ξ)⟩. Within this gauge the Berry connection, Eq. (3.12), is
everywhere vanishing. The parallel-transport gauge can be enforced locally at any
ξ point, but it cannot be enforced globally along a closed path C if the Berry phase
γ for that path is nonzero.

Given that the phase relationship at different ξ’s is arbitrary, the phase function
φ(ξ) in Eq. (3.28) allows for gauge freedom. Assuming that φ(ξ) is a differentiable
function, the most general Berry connection, Eq. (3.12), is

Aα(ξ) = i⟨Ψ0(ξ)|∂αΨ0(ξ)⟩ = ∂αφ(ξ). (3.29)

Indeed, this shows once more that the (arbitrary) connection fixes the phase
relationship between infinitesimally close state vectors.

Since our metric-curvature tensor Fαβ(ξ) is a gauge-invariant quantity, we may
safely evaluate it in any gauge, including the parallel-transport gauge. The result is

Fαβ(ξ) (3.30)

=
∑
n̸=0

′ ⟨Ψ0(ξ)|∂αH(ξ)|Ψn(ξ)⟩⟨Ψn(ξ)|∂βH(ξ)|Ψ0(ξ)⟩
[E0(ξ)− En(ξ)]2

.

This expression shows explicitly that both the curvature and the metric are ill defined
and singular wherever the ground state is degenerate with the first excited state.
Indeed, this is the main reason why the domain may happen not to be simply
connected.

3.8 Time-reversal and inversion symmetries
According to Eq. (3.27) the ground-state projector uniquely determines the
curvature

Ωαβ(ξ) = −2 Im Tr {∂αP̂ (ξ)Q̂(ξ)∂βP̂ (ξ)}. (3.31)
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It is therefore expedient to analyze the symmetries of the ground-state projector
P̂ (ξ), which coincide with the symmetries of the Hamiltonian; these in turn depend
on the nature of the parameter ξ. We only address spinless electrons (no spin-orbit
coupling).

When ξ is even under time reversal (like e.g. a nuclear coordinate), then T-
invariance implies that both H(ξ) and P̂ (ξ) are real for any ξ, and Eq. (3.31)
warrants that the curvature is everywhere vanishing. The Berry phase γ can be
nonzero (modulo 2π) only if the curve C loops around a singularity or, more
generally, it does not lie in a simply connected domain; the only allowed values
are γ = 0 mod 2π or γ = π mod 2π. Some consequences of this feature are outlined
in Sect. 3.10.5.

When instead ξ is odd under time-reversal (like e.g. a momentum) then T-
symmetry requires P̂ (−ξ) = P̂ ∗(ξ), therefore

Ωαβ(−ξ) = −Ωαβ(ξ). (3.32)

The Berry phase along an inversion-symmetric path vanishes; the Chern number
vanishes as well.

Next we switch to inversion symmetry. When evaluating any ξ-dependent
matrix-element (or trace), inversion of the coordinates at fixed ξ is equivalent to
keeping the coordinates fixed and inverting ξ. This statement holds whether ξ
is a coordinate or a momentum; both are in fact odd under inversion. Therefore
inversion symmetry implies P̂ (−ξ) = P̂ (ξ), and

Ωαβ(−ξ) = Ωαβ(ξ). (3.33)

If both time-reversal and inversion symmetry are present, then the Berry curvature
is everywhere vanishing. The Berry phase can be only zero or π; the latter case
requires a domain which is not simply connected, as above.

Crucial to the above arguments is the fact that the double derivative appearing
in Eq. (3.31) are even under either time-reversal or inversion. Summarizing the
symmetry results, for the case where ξ is a momentum: a non vanishing Chern
number can only occur in absence of T-symmetry, but may occur even in inversion-
symmetric cases.

3.9 Bloch geometry
3.9.1 Bloch orbitals
We have remained very general so far. The case where the parameter ξ coincides
with the Bloch vector k bears a particular relevance in the context of the present
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Notes. In the framework of first-principle calculations for crystalline systems, the
Bloch states |ψjk⟩ are the KS orbitals. The domain where the k parameter varies
(the reciprocal cell or, equivalently, the Brillouin zone, BZ) has the geometry of a
torus in 1d, 2d, 3d.

The Bloch orbital of the j-th band is |ψjk⟩ = eik·r|ujk⟩, where |ujk⟩ are cell-
periodical, and are eigenfunctions of the Hamiltonian Hk = e−ik·rHeik·r. The
normalization of the |ψjk⟩ is not uniform across the literature; we adopt here what
has become the current standard, i.e. they are normalized in the crystal cell. In other
papers, including the classical review of Ref. [1], they are instead normalized like
plane waves. The relative phases at different k’s are arbitrary. Whenever possible,
it is customary to enforce the so-called periodic gauge |ψjk+G⟩ = |ψjk⟩, which implies

|ujk+G⟩ = e−iG·r|ujk⟩, (3.34)

where (here and throughout) G is a reciprocal vector. We stress, however, that in
topologically nontrivial crystals it is generally impossible to adopt a periodic gauge.

If we set the Born-von-Kàrmàn periodicity over a “supercell” (multiple of the
elementary cell), then the Bloch vectors are discrete. At the independent-particle
level the ground state is a Slater determinant of doubly occupied Bloch orbitals
|ψjk⟩, from the whole BZ in insulators, or from a portion of it (the so-called Fermi
volume) in metals. When spin-orbit interaction is neglected we may deal with
“spinless electrons”. For a singlet ground state trivial factors of two have to be
restored afterwards; even when the ground state is not a singlet (e.g. in magnetic
or antiferromagnetic materials), the relevant spinful quantities are easily built out
of the spinless ones.

The Slater determinant is invariant by unitary mixing of the orbitals between
themselves: they can be mixed for different k’s (only in insulators), thus yielding
e.g. the Wannier functions, discussed in Sect. 5.3.3. The |ψjk⟩—and equivalently
the—|ujk⟩ can also be unitarily mixed for different j’s at fixed k, i.e. for an insulator
with n occupied bands:

|ujk⟩ → |ũjk⟩ =
n∑

j′=1

Ujj′(k) |uj′k⟩. (3.35)

All physical properties must be invariant under such generalized gauge
transformation; this is particularly relevant in case of band crossing, where the
band index j becomes ambiguous. The mixed orbitals are no longer Hamiltonian
eigenstates; any gauge where instead the |ujk⟩ are eigenstates will be called
“Hamiltonian gauge”.
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3.9.2 Connection, curvature, and metric
While the |ψjk⟩ at different k’s are mutually orthogonal, the |ujk⟩ live instead
in the same Hilbert space (they are all cell-periodical): we consider therefore the
geometrical properties of the |ujk⟩ states. We assume that, when taking the limit
from a discrete Born-von-Kàrmàn k-set to a continuous variable, the |ujk⟩ states
become differentiable functions of k. The physical meaning of all the mathematical
quantities introduced next will be discussed in the following Chapters, and not
anticipated in the present one.

The Berry connection, in an insulator with n occupied states, is defined as

A(k) = i
n∑

j=1

⟨ujk|∇kujk⟩; (3.36)

the interesting closed paths C on the torus are lines across the reciprocal cell,
from one face to the opposite one, whose end points are indeed equivalent. When
addressing the Berry phase, there is a minor difference with respect to what has been
defined so far, because of Eq. (3.34). This modified geometric phase is sometimes
called a “Zak phase” [3, 55]; here we will call it simply Berry phase.

The Berry geometric phase is, according to the previous section,

γ =

∫
C

A(k) · dk, (3.37)

and depends on the choice of the origin in the crystal cell. For centrosymmetric
crystals, if the origin is at a center of inversion symmetry, the only allowed values
are γ = 0 and γ = π (modulo 2π). The Berry curvature is easily found as

Ωαβ(k) = i
n∑

j=1

( ⟨∂αujk|∂βujk⟩ − ⟨∂βujk|∂αujk⟩ ), (3.38)

or, in vector notation

Ω(k) = i
n∑

j=1

⟨∇ujk| × |∇ujk⟩. (3.39)

In order to get the metric we need to define the gauge-invariant distance between
two sets of n occupied orbitals at k and k + κ. This is done by by means of the
overlap matrix (also called connection matrix)

Sjj′(k,k+ κ) = ⟨ujk|uj′k+κ⟩, (3.40)

which generalizes Eq. (3.6) as

D2
k,k+κ = −ln det S†(k,k+ κ)S(k,k+ κ). (3.41)
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The matrix S†S is Hermitian and its determinant is positive and gauge-invariant
(in the above sense); the infinitesimal distance and the Bloch metric are

D2
k,k+dk =

d∑
α,β=1

gαβ(k) dkαdkβ (3.42)

gαβ(k) = Re
n∑

j=1

⟨∂αujk|∂βujk⟩ −
n∑

jj′=1

⟨∂αuj′k|ujk⟩⟨ujk|∂βuj′k⟩. (3.43)

The Bloch metric made its first appearance in electronic structure in 1997, in the
famous Marzari-Vanderbilt paper about the maximally localized Wannier functions
[56, 19]. We notice that the second term in Eq. (3.43) is real, ergo the metric and
the curvature can be cast as the real and imaginary (times −2) parts, respectively,
of a gauge-invariant metric-curvature tensor

Fαβ(k) =
n∑

j=1

⟨∂αujk|∂βujk⟩ −
n∑

jj′=1

⟨∂αujk|ujk⟩⟨ujk|∂βujk⟩.. (3.44)

3.9.3 Bloch projector
We define the ground-state Bloch projector, for an insulator with n occupied states,
as

Pk =
n∑

j=1

|ujk⟩⟨ujk|. (3.45)

This projector is gauge invariant and furthermore it determines the |ujk⟩ apart from
an irrelevant gauge transformation. Therefore all gauge invariant properties, like
e.g. the metric-curvature tensor, can in principle be expressed in terms of Pk.

We consider the derivative

∂kPk =

nb∑
j=1

|ujk⟩⟨∂kujk|+
nb∑
j=1

|∂kujk⟩⟨ujk|. (3.46)

While ∂kPk is Hermitian and gauge-invariant, each of the two terms in the r.h.s. is
neither Hermitian nor gauge-invariant. In fact, the trace of each of them (times ±i)
is nothing else than the Berry connection A(k). A somewhat lengthy calculation
proves that the metric and the curvature can be expressed in trace form as

gαβ(k) = Re Tr {Pk ∂αPk∂βPk}. (3.47)

Ωαβ(k) = iTr {Pk [∂αPk, ∂βPk]}. (3.48)
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Both the metric and the curvature have the dimension of a squared length, ergo
their BZ integral is dimensionless in 2d. Since the BZ is a torus (a closed surface,
a.k.a. compact orientable 2d manifold in mathematical jargon), the Gauss-Bonnet-
Chern theorem guarantees that

1

2π

∫
BZ

dk Ωxy(k) = C1, d = 2, (3.49)

where C1 ∈ Z is the Chern number in the context of electronic structure. It can be
nonzero only in absence of T-symmetry.

The Chern number made its first appearance in electronic structure in 1982, in
the famous TKNN (Thouless, Kohmoto, Nightingale, and den Nijs) paper about
the quantum Hall effect [57] (Sec. 4.2.4); shortly afterwards a Chern number in the
(k, t) variables was used by Thouless to demonstrate the quantization of particle
transport [58] (Sect. 4.5). These (and other) discoveries were awarded with the
2016 Nobel prize [59].

3.9.4 Discretization in computer implementations
We have already said that there are no derivatives in computational physics. The
Bloch vectors are obtained by matrix diagonalization on a discrete mesh of k-points
and the gauge is therefore erratic. The discretization of a Chern number exploits
Stokes’ theorem and is discussed below in Secs. 4.1.4 and 8.3.4. The discretization
of the metric has been performed in various ways; my favorite option would be
to exploit Eq. (3.41), where κ is the difference between any pair of mesh points.
D2

k,k+κ is a scalar function, manifestly gauge invariant, defined on the κ mesh. It
is immediate to evaluate, for any given k, its discretized second order term in κ.

The Berry phase requires an ad-hoc procedure, which generalizes the single-state
discretization of Eqs. (3.7) and (3.11). The Berry connection can be clearly written
as

A(k) = i
∂

∂κ
ln det S(k,k+ κ)

∣∣∣∣
κ=0

= − ∂

∂κ
Im ln det S(k,k+ κ)

∣∣∣∣
κ=0

. (3.50)

Since the Berry phase in any dimension d is a line integral, we provide the formula in
1d only; the d-dimensional case needs more complex notations, but is conceptually
trivial. The BZ integral can be equivalently performed on the reciprocal cell; if a is
the 1d lattice constant we have

γ =

∫ 2π
a

0

dφ, dφ = A(k)dk. (3.51)

If we discretize with M equally spaced points, exploiting Eq. (3.50) we get:

ks =
2π

Ma
s, s = 0, 1, . . .M − 1, (3.52)
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γ =

∫ 2π
a

0

dφ ≃
M∑
s=1

∆φs,s+1, ∆φs,s+1 = −Im ln det S(ks, ks+1). (3.53)

The S matrix elements have to be evaluated enforcing the periodic gauge and
diagonalizing the Hamiltonian on M points (not M + 1), ergo

Sjj′(ks, ks+1) = ⟨ujks |ukj′s+1
⟩, Sjj′(kM−1, kM) = ⟨ujkM−1

|e−i 2π
a
x|uk0⟩; (3.54)

the discretized Berry phase then becomes

γ ≃ −Im
M∑
s=1

ln det S(ks, ks+1) = −Im ln
M∏
s=1

detS(ks, ks+1). (3.55)

The last expression on the r.h.s. is the one universally implemented in the computer
codes; it is clearly unaffected by any erratic phase factor and/or band ordering
resulting. The eigenvectors provided by the diagonalization routine can be used as
they are.

For the sake of completeness, we also mention that at the time of writing (2018)
the discretization of the 3d BZ integral of the Chern-Simons 3-form, Eq. (3.71)
below, still poses a formidable challenge [60, 61].

3.10 NonAbelian geometry
3.10.1 Generalities
What we have called “Bloch geometry” in insulators is the geometry of many states
considered altogether, which determine in a gauge-invariant way the ground-state
properties. These could be e.g. the Berry phase along a line between two points
(separated by G), or the BZ integral of the metric-curvature tensor.

We have somewhat hidden so far the nonAbelian features, summing explicitly
over the indices. We are going to recast some of these results (and to present
some additional ones) using the powerful notation of modern differential geometry
in a nonAbelian framework: exterior differentiation and exterior algebra (also called
Grassmann algebra).

So far, we have written the connection and the curvature as vector fields; in
order to proceed, it proves better to switch to the language of differential forms. To
this aim, we define the nonAbelian connection as the 1-form

A = i⟨ujk|∂kuj′k⟩ · dk ≡ i⟨ujk|∂αuj′k⟩dkα, (3.56)

where we sum over repeated indices. Notice that the differential is on the right,
i.e. the symbol A includes the dk, a 2-form includes two differentials, and so on;
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the coefficients of the forms are matrices over the band indices. In mathematics the
form A is by definition a nonAbelian Chern-Simons 1-form; in particle physics it is
also known as a nonAbelian gauge potential. In 1d the Berry phase is written as

γ =

∫
BZ

Tr{A}, d = 1. (3.57)

In order to go to higher dimensions we need two tools: the wedge product (a.k.a.
exterior product), and the exterior differentiation.

3.10.2 Exterior product and differentiation
The wedge product generalizes the vector product, and is associative. If both ω and
η are 1-forms, then ω ∧ η is a 2-form whose coefficients are antisymmetric. In our
case the coefficients of both ω and η are matrices, and the coefficients of ω ∧ η are
their commutator; clearly Tr{ω ∧ η} = 0. If one of the two forms is a function (i.e.
a 0-form), then the wedge product is equivalent to scalar multiplication. In general,
if ω is a p-form and η is a q-form, their wedge product is a (p+ q)-form and

ω ∧ η = (−1)pqη ∧ ω. (3.58)

The second tool needed is the exterior differentiation, indicated simply with d.
When ω is a 0-form (i.e. a scalar), then dω is just the ordinary differential of ω; for
any form d(dω) = 0, i.e. d2 = 0. If ω is a 1-form, then

ω = fαdk
α, dω =

∂fα
∂kβ

dkα ∧ dkβ, (3.59)

i.e. instead of antisymmetrizing the derivatives (as one does in vector notation)
here we antisymmetrize the differentials. In general, if ω is a p-form then dω is a
(p+ 1)-form which generalizes the curl:

ω = fJdk
J , dω =

∂fJ
∂αj

dkαj ∧ dkJ , (3.60)

where J = (α1, α2, . . . αp) is a multi-index and fJ are functions (the coefficients of
the p-form).

These compact notations were introduced about 1920-30, mostly by Élie Cartan,
who proved a generalized Stokes’theorem: if Σ is a p + 1-dimensional domain and
∂Σ its p-dimensional boundary, then∫

∂Σ

ω =

∫
Σ

dω. (3.61)

Special cases are: Green’s theorem (ω is a 1-form in 2-space), divergence theorem
(ω is a 2-form in 3-space), and Stokes’ theorem (ω is a 1-form in 3-space).
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3.10.3 NonAbelian connection and curvature
Because of norm conservation, the coefficients of our A are Hermitian. A caveat is
in order here: in the mathematical and particle-physics literature (and in Wikipedia
as well) the 1-form A does not include the i factor, and is therefore antiHermitian.
Here I present the formulæ as they appear in the electronic-structure literature (the
choice of ±i is non uniform, though).

Equipped with the above rules, we come back to our nonAbelian connection A.
The unitary transformation U acts on A as

A → AU = U−1AU + i U−1dU = U †AU + i U †dU ; (3.62)
the scalar (0-form) U is the nonAbelian gauge transformation (an element of the
gauge group). The connection is not gauge-covariant, and therefore does not
correspond to a measurable quantity. The 2-form

F = dA− iA ∧ A (3.63)
is the nonAbelian curvature (gauge-field strength in particle physics), and is
Hermitian. F is gauge-covariant and corresponds therefore to a measurable quantity
:

F → FU = dAU − i AU ∧ AU

= d(U †AU + iU †dU)− i (U †AU + iU †dU) ∧ (U †AU + iU †dU)

= U−1(dA− iA ∧ A)U = U †FU. (3.64)
The trace of F is gauge-invariant, and in fact it is one half of the Berry curvature,
Eq. (3.55), in differential form:

Tr{F} = Tr{dA− iA ∧ A} = Ωαβ dk
αdkβ =

1

2
Ωαβ dk

α ∧ dkβ, (3.65)

where A ∧ A does not contribute to the trace. The first Chern number obtains
integrating the 2-form on the 2d BZ (a compact orientable manifold, in mathematical
jargon):

C1 =
1

2π

∫
BZ

Tr {F} =
1

2π

∫
BZ

Tr {dA− iA ∧ A}, d = 2. (3.66)

The metric D2 = gαβdk
αdkβ is a symmetric tensor, therefore is incompatible

with the exterior algebra; furthermore it cannot be expressed in terms of A solely.
However we may define the metric-curvature nonAbelian 2-form as

F̃ = η − A⊗ A (3.67)
where the matrix coefficients of η are ⟨∂αuj|∂βuj′⟩. Then the Hermitian part of F̃
is the nonAbelian metric, and its antiHermitian part, times 2i, coincides with the
nonAbelian curvature. F . The trace of F̃ over the band indices yields the ordinary
metric-curvature tensor, Eq. (3.44).
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3.10.4 Chern-Simons 3-form
The gauge-invariant 2-form Tr{F} is called the first Chern form; its BZ integral
yields the first Chern number C1, Eq. (3.66). The key reason (not explained here)
why C1 is an integer is that dTr{F} = 0; furthermore any 2-form which obeys such
condition can be expressed locally as the exterior derivative of a 1-form, function
of A, the Chern-Simons (CS in the following) 1-form. In this case the function is
particularly simple: Tr{F} = dTr{A}. In plain language, the curvature is the curl
of the connection. Notice also that, when C1 ̸= 0, the 1-form cannot be defined
globally: there is an “obstruction”. The 2-form, instead, is defined globally: see
Sect. 3.5 and the toy-model example in Sect. 4.1.

What has been discussed so far is the simplest example of the relationship
between CS forms in odd dimension and Chern forms in even dimension. In fact,
a similar relationship exists between CS 3-forms and Chern 4-forms. The next
interesting form is therefore the gauge-covariant 4-form F ∧ F , and its gauge-
invariant trace: the latter is the second Chern form. Even dTr{F ∧ F} = 0, and
therefore—because of the first theorem invoked above—the integral of Tr{F ∧ F}
over a 4-dimensional “Brillouin zone” is an integer: the second Chern number
C2 ∈ Z, whose expression is

C2 = − 1

8π2

∫
BZ

Tr {F ∧ F}, d = 4. (3.68)

According to the second theorem invoked above (called the Poincaré lemma) the
condition dTr {F ∧F} = 0 also implies that Tr {F ∧F} can be expressed locally as
the exterior derivative of a 3-form: this is in fact the CS 3-form, by now somewhat
famous in electronic structure theory. The relationship between the Chern 4-form
and the CS 3-form is

Tr {F ∧ F} = dTr
{
A ∧ dA− 2i

3
A ∧ A ∧ A

}
, (3.69)

and can be verified by a somewhat lengthy calculation. In order to emphasize the
analogies with the first Chern number and with the Berry connection (i.e. the CS
1-form), we rewrite the previous equations as

C2 =
1

2π

(
− 1

4π

∫
BZ

Tr {F ∧ F}
)
, (3.70)

ωCS = − 1

4π
Tr
{
A ∧ dA− 2i

3
A ∧ A ∧ A

}
= − 1

4π
εαβγ

(
Aα∂βAγ −

2i

3
AαAβAγ

)
dkαdkβdkγ (3.71)
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The 1-form Tr{A} and the 3-form ωCS share several common features: in particular,
they are gauge-dependent but their integrals over the BZ (1- or 3-dimensional,
respectively) are dimensionless and gauge-invariant modulo 2π. Both are therefore
angles:

γ =

∫
BZ

Tr{A}, d = 1; θ =

∫
BZ

ωCS, d = 3. (3.72)

The experimental relevance of θ in electronic structure has been pointed out by Qi,
Hughes, and Zhang in 2008 [62, 63, 15], and will be discussed below in Chapter 6.

3.10.5 Z2 topological invariants
We have already observed that in presence of inversion symmetry the allowed values
for the 1d Berry phase are either γ = 0 mod 2π or γ = π mod 2π. Analogously,
in presence of either inversion symmetry or T-symmetry the allowed values for the
CS angle are either θCS = 0 mod 2π or θCS = π mod 2π. Each of the two value-
invariants clearly has a one-to-one mapping to the additive group of the integers
modulo two: the Z2 group. Furthermore, this Z2 classification is topological: we
may therefore classify the materials as either Z2-even or Z2-odd. In modern jargon,
the Z2 index is “protected” by some kind of symmetry. Notice that, instead, the
Z invariants (i.e. the Chern numbers) do not need any symmetry; quite on the
contrary, C1 can be nontrivial only when T-symmetry is absent.

The macroscopic polarization of a centrosymmetric polymer (a 1d “crystal”) is a
very simple case of Z2 topological classification occurring in nature; it is protected by
inversion symmetry and T-symmetry together [64]. A different Z2 invariant occurs
in molecular physics, where the role of the k parameter is assumed by a nuclear
coordinate (Sect. 4.2.3). The effect is due to a conical intersection [65], which Berry
calls “diabolical point” [25]; in this case only T-symmetry is required.

The CS angle θCS can be used in principle to classify 3-dimensional insulators
according to their Z2 topological index in presence of the above (and even other)
symmetries: this is discussed below in Sec. 6.1.1. Since spin-orbit interaction is
essential in this context, the connection A is defined in terms of spinorbitals (not
spinless orbitals).
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Chapter 4

Manifestations of the Berry phase

4.1 A toy-model Hamiltonian
Our toy model here is a two-level spinless Hamiltonian, of the form

H(ξ) = ξ · σ⃗
= ξ (sinϑ cosφ σx + sinϑ sinφ σy + cosϑ σz), (4.1)

where σα are the three Pauli matrices. The spectrum is non degenerate for ξ ̸= 0,
and the lowest eigenvalue is −ξ. Upon symmetry arguments, we can already guess
the curvature to be isotropic.

4.1.1 Connection and curvature
The lowest eigenvector is

|ψ(ϑ, φ)⟩ =
(

sin ϑ
2
e−iφ

− cos ϑ
2

)
.

This corresponds to a specific gauge choice; the eigenvector can be multiplied by an
overall (ϑ, φ)-dependent phase factor. The Berry connection and curvature are

Aϑ = i⟨ψ|∂ϑψ⟩ = 0

Aφ = i⟨ψ|∂φψ⟩ = sin2 ϑ

2

Ω = ∂ϑAφ − ∂φAϑ =
1

2
sinϑ. (4.2)

The curvature is gauge-invariant, while the connection is gauge-dependent. Within
our gauge choice the connection displays a vortex at the south pole (ϑ = π); other
gauges yield the singularity at a different point, but a singularity is unavoidable. It
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is impossible to find a gauge which is smooth on the whole closed surface, and a
nonsingular connection; the singularity—often called “obstruction”—can be moved
but not removed. The algebra is the same as for Dirac’s theory of the magnetic
monopole [51, 53]: the degeneracy at the origin is the monopole, and the singularity
is the “Dirac string”.

4.1.2 Chern number
The domain of the parameters (ϑ, φ) is a rectangle, which indeed has the topology
of a torus: a closed surface. Integrating the Berry curvature therein we get

1

2π

∫
S2

dϑdφ
1

2
sinϑ = 1, (4.3)

i.e. the Chern number of the lowest eigenstate in this problem. This integer
measures the strength of the singularity (magnetic monopole), which resides in a
site inaccessible to the quantum system. The highest eigenstate has C1 = −1, since
the total Chern number is zero.

This simple example illustrates well the meaning of a topological invariant of the
quantum mechanical ground state. The Chern number is in fact very robust under
continuous deformations of the surface and of the Hamiltonian: its value is always
one insofar as one (and only one) degeneracy point is included in the closed surface.

4.1.3 Berry phase
Suppose now we evaluate the Berry phase over any closed curve C on the sphere
(Fig. 4.1)

γ =

∮
C

A(ξ) · dξ. (4.4)

Owing to Stokes theorem, the Berry phase for this toy model problem clearly equals
the solid angle spanned by the curve, divided by 2. The inherent 4π arbitrariness
in the solid angle leads to the well known 2π arbitrariness in the Berry phase: for
instance at the equator γ = π modulo 2π. If we cut the sphere in two hemispheres,
as in Sec. 4.1.2 (see Fig. 3.4), the difference of the boundary Berry phases equals 0
modulo 2π, i.e. 2π times an integer, as it must be. But in order to tell which integer
(the actual Chern number) the two connections are useless: one has to integrate the
curvature, as in Eq. (4.3). Despite this feature, in numerical work Chern numbers
are typically computed via Berry phases, as described in the next Section.
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Figure 4.1: A closed curve C on the surface of the
sphere, and the solid angle spanned by it.

Figure 4.2: Discretization of the domain [0, π]× [0, 2π];
the Hamiltonian is not diagonalized at the empty
circles, only at the black ones, thus enforcing toroidal
topology.

4.1.4 Computing a Chern number
This exactly soluble example also provides the occasion for illustrating the standard
computational approach to Chern numbers. Suppose we discretize the (ϑ, φ) domain
with a rectangular mesh, and that we diagonalize the Hamiltonian at the points of
the mesh. The gauge at any point is chosen by the diagonalization routine and is
thus erratic; we only enforce the toroidal topology by requiring that the phases at
the opposite edges of the rectangle are the same: Fig. 4.2.

Then for each small rectangle we compute the discrete Berry phase as in Eq. (3.8),
i.e.

γ = − Im ln ⟨ψ(ϑ, φ)|ψ(ϑ+∆ϑ, φ)⟩⟨ψ(ϑ+∆ϑ, φ)|ψ(ϑ+∆ϑ, φ+∆φ)⟩
× ⟨ψ(ϑ+∆ϑ, φ+∆φ)|ψ(ϑ, φ+∆φ)⟩⟨ψ(ϑ, φ+∆φ)|ψ(ϑ, φ)⟩. (4.5)

In this simple, analytically soluble, case we know the exact value: the Berry phase
on the contour of each rectangle is γ = 1

2
[cos(ϑ)− cos(ϑ+∆ϑ)]∆φ modulo 2π. The

four-point Berry phase, Eq. (4.5), provides an approximated value for this. The
Chern number is the integral over the domain, and is therefore equal to the sum of
all the phases computed as in Eq. (4.5) and covering the whole domain.

How do we then get rid of the modulo 2π indeterminacy in Eq. (4.5)? The size
of ∆ϑ∆φ is small, and each contribution γ to the sum is also small (proportional to
∆ϑ∆φ), although Eq. (4.5) is in principle arbitrary modulo 2π. It should be now
pretty clear that the right solution is in choosing the “Im log” branch with values
in [−π, π].

As said above, each four-point Berry phase provides only an approximation to
the corresponding analytical integration; it is thus natural to guess that a discrete
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computation of the Chern number yields approximately an integer, coinciding with
the exact value only in the limit of a dense mesh. Instead, this is not the case;
even a coarse mesh provides exactly an integer. Indeed, the role of the mesh is to
select which integer: for our toy model either C1 = 0 (if the singularity is outside
the surface), or C1 ± 1 (for the lower and higher state, if the singularity is inside
the surface). This selection is a virtue of the branch prescription discussed above
for the multivalued function Im log.

In order to show that the discretized Chern number is exactly integer we notice
that when we sum over the small rectangles the contributions from their inner sides
cancel in pairs. Therefore the total phase must be equal (mod 2π) to the discrete
phase computed on the outer contour of the whole domain. We already observed
that the states at the opposite edges must be the same, with the same phases (see
Fig. 4.2), hence the sum on the edges yields an overlap product real and positive.
This proves that the total (discrete) phase is exactly zero mod 2π.

Last but not least: where is the obstruction? In the continuous formulation,
any gauge choice yields a singularity at a single (ϑ, φ) point. In the discrete
formulation, there is no way to locate the singularity: in some sense, the singularity
is everywhere since the gauge is in principle erratic at all mesh points. While in
mathematicians’ topology the invariant is robust for continuous deformations of the
Hamiltonian and/or of the surface, our computational topology is robust even for
discontinuous deformations and, furthermore, even for a very coarse mesh. Four
points on the sphere, which define a tetrahedron, would be enough. I regard all this
as a manifestation of the “unreasonable effectiveness’ of topology.

quantum
system

Figure 4.3: A particle in a box, trans-
ported round a solenoid
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4.2 Early discoveries reinterpreted
4.2.1 Aharonov-Bohm effect
Here we reformulate the Aharonov-Bohm effect as a special case of a Berry phase.
Suppose we have an electron in a box (infinite potential well) centered at the origin.
We take the ground wavefunction as real, and we write it as χ(r). The time-
independent Schrödinger equation is:[

p2

2m
+ V (r)

]
χ(r) = Eχ(r). (4.6)

Displacing the center of the box at position R changes the Hamiltonian to

H(R) =
p2

2m
+ V (r−R) : (4.7)

we will identify the ξ parameter with the box position R. Because of translational
invariance, the R-dependence of the state vectors is

⟨r|ψ(R)⟩ = χ(r−R), (4.8)

while the eigenvalue is R-independent.
Suppose now that a magnetic field is switched on somewhere in space. Then the

Hamiltonian becomes

H(R) =
1

2m

[
p+

e

c
A(r)

]2
+ V (r−R) , (4.9)

where A is the vector potential and e is the electron charge. It can be easily verified
that a solution of the Schrödinger equation can be formally written in the form:

⟨r|ψ(R)⟩ = exp

(
− ie

ℏc

∫ r

R

A(r′) · dr′
)
χ(r−R). (4.10)

But such a solution in general is not a single-valued function of r, since the phase
factor depends on the path. Therefore we restrict ourselves to a less general case,
where the magnetic field is generated by a solenoid: the B field is nonzero only
within a given cylinder, and we don’t allow our box to overlap this cylinder by
suitably restricting the domain of R. This situation is sketched in Fig. 4.3. With
such a choice the wavefunction, Eq. (4.10), is a single valued function of r for any
fixed R, and is therefore an honest ground wavefunction. As for the dependence on
R, Eq. (4.10) only guarantees local single-valuedness, since the domain is not simply
connected: when the system is transported on a closed path winding once round the
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solenoid, the electron wavefunction picks up a Berry’s phase. This phase difference
can be actually detected in interference experiments.

The Berry connection of the problem is

A(R) = i⟨ψ(R)|∇Rψ(R)⟩ = i⟨χ(R)|∇Rχ(R)⟩ − e

ℏc
A(R), (4.11)

where the first term vanishes: χ(r) is real. Therefore in the present case the Berry
connection is proportional to the ordinary vector potential. A gauge transformation
in the quantum-mechanical sense also coincides with an electromagnetic gauge
transformation, which changes A while leaving B invariant. In fact, in this example
B is essentially the Berry curvature. The Berry phase is

γ = − e

ℏc

∮
C

A(R) · dR = −2π

ϕ0

∮
C

A(R) · dR, (4.12)

where ϕ0 is the flux quantum. Therefore γ measures the flux of the magnetic field
across the interior of the solenoid, a space region not accessed by the quantum
system: above, we have called it “inaccessible flux”. Only the fractional part of the
flux has physical meaning.

4.2.2 Molecular Aharonov-Bohm effect
Here we identify the “slow coordinate” ξ with a d-dimensional nuclear coordinate,
and the state vector |Ψ(ξ)⟩ with the electronic ground-state wavefunction in the
Born-Oppenheimer approximation.

We start from the complete Hamiltonian H of an isolated molecular system, and
we explicitly separate the nuclear kinetic energy:

H(ξ, [x]) =
1

2

d∑
α,β=1

M−1
αβ pαpβ +H(ξ, [x]), (4.13)

where [x] indicates the electronic degrees of freedom collectively, pα = −iℏ ∂/∂ξα
is the canonical momentum conjugated to ξα, and the inverse mass matrix M−1 in
general may be a function of ξ, but not of the momenta.

The Born-Oppenheimer approximation starts by writing the eigenfunctions of
Eq. (4.13) in the Schrödinger representation as the product ⟨ [x] |Ψ(ξ)⟩Φ(ξ). Our
aim is obtaining an effective Schrödinger equation for the nuclear wavefunction
Φ(ξ), where the electronic degrees of freedom have been integrated out. We start
considering the effect of the canonical nuclear momentum p on the product ansatz:

p |Ψ(ξ)⟩Φ(ξ) = −iℏ |Ψ(ξ)⟩∇ξΦ(ξ)− iℏ |∇ξΨ(ξ)⟩Φ(ξ). (4.14)
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We then multiply by the electronic eigenbra ⟨Ψ(ξ)| on the left, thus integrating over
the electronic degrees of freedom. We get the effective nuclear momentum π acting
on Φ as:

π Φ(ξ) = [ p− iℏ⟨Ψ(ξ)|∇ξΨ(ξ)⟩ ] Φ(ξ) = [ p− ℏA(ξ) ] Φ(ξ), (4.15)

where we easily recognize the Berry connection. The momentum π is the kinematical
(also called covariant, or mechanical) momentum, to be distinguished from p =
−iℏ∇ξ, which is the canonical momentum.

Whenever the time scales of nuclear and electronic motions are well separated
the coupling between different electronic states can be neglected, and the adiabatic
approximations allows to treat the slow variable ξ in H(ξ, [x]) as a classical
parameter. The electronic eigenvalue E(ξ) of a given state (e.g. the ground state)
plays therefore the role of a (scalar) potential for nuclear motion, whose effective
Hamiltonian acting on Φ(ξ) is then:

Heff =
1

2

d∑
α,β=1

M−1
αβ παπβ + E(ξ). (4.16)

In the molecular physics literature the extra term in Eq. (4.15) is seldom
mentioned, and π is identified with p. The reason is that for a T-invariant
Hamiltonian, and in absence of spin-orbit interaction, the wave function can always
be taken as real. This corresponds to the parallel transport gauge, and the Berry
connection vanishes at all ξ; the tradeoff is that—in some cases—the electronic
wave function is not single valued along a closed path: see Fig. 2.3. The alternative
approach, due to Mead and Truhlar [36, 65], is to choose a different gauge, where
the electronic wave function is single valued and complex. The Berry phase is gauge
invariant (modulo 2π); the values allowed by T-symmetry are 0 and π; the two cases
are experimentally distinguishable, as previously shown in Sec. 2.2.

We stress that, whenever the ionic motion is purely classical and governed by
Newton’s equation, the vector-potential-like term in Eq. (4.15) is irrelevant: the
corresponding curvature (magnetic-field-like) is in fact identically vanishing along
the nuclear trajectory on the Born-Oppenheimer surface. We anticipate that the
case where a genuine magnetic field is present—and the Hamiltonian is no longer
T-invariant—is qualitatively different in this respect, see Sec. 4.3 below.

4.2.3 The Z2 invariant in molecular physics
The topological nature of the molecular Aharonov-Bohm effect has already been
pointed out in Sec. 2.2, and briefly outlined in modern topological language in
Sect. 3.10.5; here we give more details. The ground state is degenerate with the
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first excited state at the conical intersection (“diabolical point” according to Berry
[25]); therefore according to Eq. (3.30) one would expect the curvature to have a
singularity. This does not happen here: thanks to T-symmetry the curvature is
everywhere zero, including at the conical intersection.

We focus on the simplest possible case, dealt with in Sec. 2.2: a two-level system
with (or without) a conical intersection. In absence of spin-orbit interaction, a gauge
which respects T-symmetry requires the electronic wave function to be everywhere
real; this gauge coincides with the parallel-transport gauge. In the nontrivial case
(Z2odd, i.e. γ = π mod 2π) this connection cannot be smooth and single-valued on
a closed path which winds around the intersection; however, it is a simple exercise to
devise a smooth gauge throughout the path: it is enough to adopt complex electronic
wavefunctions.

At variance with the curvature, the connection cannot be smooth everywhere
and has a singularity at the intersection, in any gauge: in modern jargon this is
generally called an “obstruction”. In this case, the singularity is traced back to the
breakdown of Born-Oppenheimer approximation at the intersection.

The topological invariant is easily retrieved from the discrete approach: only
three Hamiltonian diagonalizations on the path are needed. With reference to Fig.
2.3 we define

|ψ1⟩ =
1√
2
(|B⟩ − |C⟩), |ψ2⟩ =

1√
2
(|B⟩ − |A⟩), |ψ3⟩ =

1√
2
(|C⟩ − |A⟩). (4.17)

Independently of the chosen gauge, whether if it respects T-symmetry or otherwise,
we always have

⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩⟨ψ3|ψ1⟩ = −1

8
, (4.18)

i.e. γ = π mod 2π: the ground state is Z2 odd.
The Z2 topological invariant is extremely robust against smooth deformations of

the Hamiltonian. For instance, here we have addressed the ultrasimple tight-binding
model, but the ground wavefunction can be “continuously deformed” to the exact
correlated wavefunction: topology-wise, the two wavefunctions are essentially the
same object: they can be regarded as analogous to the proverbial doughnut and
coffee cup, Figs. 1.1 and 1.3. The Z2 invariant is “protected” by T-symmetry: in
fact, breaking this symmetry opens a gap at the intersection.

4.2.4 Integer quantum Hall effect (TKNN invariant)
The famous TKNN (Thouless, Kohmoto, Nightingale, and den Nijs) paper appeared
in 1982 [57] and marks the very first occurrence of a topological invariant (the first
Chern number) in electronic structure. David Thouless was awarded 1/2 of the 2016
Nobel prize; among his outstanding contributions to condensed matter physics, the
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4(5) THE NOBEL PRIZE IN PHYSICS 2016 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � HTTP://KVA.SE

In the quantum Hall e#ect, electrons move relatively freely in the layer between the semi-conduc-
tors and form something called a topological quantum $uid. In the same way as new properties 
often appear when many particles come together, electrons in the topological quantum $uid also 
display surprising characteristics. Just as it can’t be ascertained whether there is a hole in a co#ee cup 
by only looking at a small part of it, it is impossible to determine whether electrons have formed a 
topological quantum $uid if you only observe what is happening to some of them. However, con-
ductance describes the electrons’ collective motion and, because of topology, it varies in steps; it is 
quantised. Another characteristic of the topological quantum $uid is that its borders have unusual 
properties. These were predicted by the theory and were later con%rmed experimentally. 

Another milestone occurred in 1988, when Duncan Haldane discovered that topological quantum 
$uids, like the one in the quantum Hall e#ect, can form in thin semiconductor layers even when 
there is no magnetic %eld. He said he’d never dreamed of his theoretical model being realised experi-
mentally but, as recently as 2014, this model was validated in an experiment using atoms that were 
cooled to almost absolute zero. 

New topological materials in the pipeline
In much earlier work, from 1982, Duncan Haldane made a prediction that amazed even the experts in 
the %eld. In theoretical studies of chains of magnetic atoms that occur in some materials, he discove-
red that the chains had fundamentally di#erent properties depending on the character of the atomic 
magnets. In quantum physics there are two types of atomic magnets, odd and even. Haldane demon-
strated that a chain formed of even magnets is topological, while a chain of odd magnets is not. Like 
the topological quantum $uid, it is not possible to determine whether an atomic chain is topological 
or not by simply investigating a small part of it. And, just as in the case of the quantum $uid, the 
topological properties reveal themselves at the edges. Here, this is at the ends of the chain, because 
the quantum property known as spin halves at the ends of a topological chain. 

Initially, no one believed Haldane’s reasoning about atomic chains; researchers were convinced that 
they already completely understood them. But it turned out that Haldane had discovered the %rst 
example of a new type of topological material, which is now a lively %eld of research in condensed 
matter physics.

POW

POW

0 holes

1 hole

2 holes

3 holes
electrical
conductance

Fig 3. Topology. This branch of mathematics is interested in properties that change step-wise, like the number of holes in the above 
objects. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electrical conductivity inside thin layers chan-
ges in integer steps. 

Figure 4.4: Cartoon posted in 2016 at www.nobelprize.org in the Section “Popular
information”.

TKNN paper plays a predominant role. The Nobel Prize foundations published in
2016 the cartoon reproduced here in Fig. 4.4.

The outline provided here is inspired by Kohmoto [66]; in the quantum Hall
context, first Chern number is synonymous of TKNN invariant. We consider a
two-dimensional independent-electron system in a lattice-periodical potential, and
subject to a perpendicular B field. The Hamiltonian is not translationally invariant,
but one can address the magnetic translation group. We choose a large enough
“supercell”, such that the magnetic flux is commensurate (i.e. an integer number
of flux quanta ϕ0 thread the supercell): in this case a continuous k vector can be
defined in the magnetic Brillouin zone. It must be stressed that k here plays the
same role as a Bloch vector, although it is not a Bloch vector in the conventional
sense.

As in Sect. 3.9.1,we define |ψjk⟩ = eik·r|ujk⟩ and Hk = e−ik·rHeik·r; the latter
takes here the form

Hk =
1

2m

[
p+ ℏk+

e

c
A(r)

]2
+ V (r), (4.19)

where V is the substrate potential. The velocity can be expressed as

v =
1

ℏ
∇kHk, (4.20)

a formula often recurring in the present Notes in various forms, see e.g. Eqs. (1.18)
and (2.20).

The Kubo formula for transverse conductivity is [67]

σxy = 2ℏe2 Im
∑
jj′

1

(2π)2

∫
ϵjk<ϵF<ϵj′k

dk
⟨ujk|vx|uj′k⟩⟨uj′k|vy|ujk⟩

(ϵjk − ϵj′k)2
(4.21)
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= 2
e2

ℏ
Im

∑
jj′

1

(2π)2

∫
ϵjk<ϵF<ϵj′k

dk
⟨ujk|∂xHk|uj′k⟩⟨uj′k|∂yHk|ujk⟩

(ϵjk − ϵj′k)2
.

If we now consider the case where the Fermi level lies in a gap, with n filled bands
(Landau levels in a flat potential), Eq. (4.21) becomes the BZ integral

σxy = 2
e2

ℏ
Im 1

(2π)2

∫
BZ

dk
n∑

j=1

∞∑
j′=n+1

⟨ujk|∂xHk|uj′k⟩⟨uj′k|∂yHk|ujk⟩
(ϵjk − ϵj′k)2

. (4.22)

The integrand is just a simple generalization of the sum-over-states formula of
Eq. (3.30). Using the same arguments as in Ch. 3 it is rather straightforward
to arrive at the identity

Im
n∑

j=1

∞∑
j′=n+1

⟨ujk|∂xHk|uj′k⟩⟨uj′k|∂yHk|ujk⟩
(ϵjk − ϵj′k)2

= Im
n∑

j=1

⟨∂xujk|∂yujk⟩ = −1

2
Ωxy(k), (4.23)

where the many-band Berry curvature, Eq. (3.38), appears. Since the BZ is a torus,
the BZ integral of the curvature equals 2π times an integer, the (first) Chern number
C1. The milestone TKNN discovery is that Hall conductivity is a Chern number
when expressed in klitzing−1:

σxy = −e
2

h
C1. (4.24)

Notice that the sign choices are not uniform across the literature.
Conductivity is a property of the excitations of the system, as it is perspicuous

in the Kubo formula above. The Chern number, instead, is a ground state property.
The identity relating them belongs to the general class of fluctuation-dissipation
theorems, although this looks like an oxymoron, the Hall conductivity being here
dissipationless. The interpretation of the Chern number as a ground-state quantum
fluctuation will be elaborated somewhere else in the present Notes.

The topological nature of the observable explains its extreme robustness under
variations of magnetic field, carrier density, substrate disorder, and more. The
topological invariant C is identified with the filling ν using the same arguments as
in Sect. 2.5.4; the integer can only be varied by crosssing a conducting state. It is
expedient to change the sign, thus identifying ν = −C. Since in the quantum-Hall
regime the conductivity tensor is off-diagonal, the Hall resistance (or resistivity) is

ρxy =
1

ν

h

e2
. (4.25)
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One final observation is in order: we have not counted a factor of two for double spin
occupation, for a good reason: at the high B fields needed to observe quantization
the Zeeman separation between the two spin states is much larger than the Landau
level separation. Therefore the electrons entering the quantum Hall effect are spin
polarized (or “spinless”). We quote here the fact that in graphene instead the
experimental conditions for the quantum Hall effect are different, and the factor of
two has to be restored.

4.2.5 Classical limit of TKNN
By virtue of topology, in the quantized (high field) regime the Hall resistivity ρxy
is insensitive to carrier density n: this was indeed the revolutionary finding of von
Klitzing and collaborators (see Fig. 2.8 and its caption). In the classical (low field)
regime, instead, ρxy is linear in 1/n. We reproduce here the Drude-Zener formula of
Eq. (2.11):

ρxx =
m

ne2τ
, ρxy =

B

nec
=
mωc

ne2
, (4.26)

where ωc =
eB
mc

.
As discussed in Sec. 2.5.2 the degeneracy of each Landau level in a flat potential

is ϕ/ϕ0, where ϕ is the magnetic flux through the sample. The density of states is

D(ϵ) =
ϕ

ϕ0

∑
n

δ[ ϵ− (n+ 1/2)ℏωc ], (4.27)

shown in Fig. 2.11(a). When a disordered substrate is present D(ϵ) becomes instead
of the kind shown in Fig. 2.11(b). The density of states is conserved in average:
whenever the chemical potential µ is much larger than ℏωc the number of occupied
states will be the same in the clean and in the disordered case. The density in the
µ≫ ℏωc limit is therefore

n =
2

A

∫ µ

0

dϵ D(ϵ) ≃ B

ϕ0

2µ

ℏωc

=
B

ϕ0

ν. (4.28)

Notice that ν includes now the spin factor, since the Zeeman splitting vanishes in
the B → 0 limit. Expressing now Eq. (4.25) in terms of n we have

ρxy =
B

nϕ0

h

e2
=

B

nec
, (4.29)

which is indeed the classical formula of Eq. (4.26).
At this point we are ready to address the classical limit in the experimental

data of Fig. 2.9, reproduced here as Fig. 4.5. In this sample at the conditions of
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Figure 4.5: A modern realization of the integer quantum Hall effect. The dashed
line is the corresponding Drude-Zener transverse conductivity.

the actual experiment the classical-quantum transition occurs somewhere between
1 and 2 tesla: below this B value the system becomes dissipative (ρxx ≠ 0), and the
plateaus in ρxy disappear. At B ≃ 1T we have ρxy ≃ ρxx; the Drude-Zener formulæ
of Eq. (4.26) suggest therefore that the effective relaxation time for this sample is
τ ≃ 1/ωc, evaluated at B ≃ 1− 2 tesla.

In Fig. 4.5 I have indicated (dashed line) the classical Drude-Zener transverse
conductivity for this sample: it is linear in B and coincides with the exact
conductivity for integer values of the filling. It is also realized that the slope of
the dashed line is larger than the experimental one in the low-B regime. The reason
is that the effective carrier density in the high-B regime is one-half the one in the
low-B regime: electrons are spin-polarized in the former case, and unpolarized in
the latter.

4.3 Adiabatic approximation in a magnetic field
The general problem of the nuclear motion—both classical and quantum—in
presence of an external magnetic field has been first solved in 1988 by Schmelcher,
Cederbaum, and Meyer [68]. It is remarkable that such a fundamental problem was
solved so late, and that even today the relevant literature is ignored by textbooks
and little cited. The solution is a manifestation of geometrical effects in electronic
wavefunctions [69], which appears in a spectacular way even when the nuclear motion
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is addressed at the classical level.
When a genuine magnetic field, generated by some external source, acts on the

molecular system, the Hamiltonian of Eq. (4.13) is modified by the addition of a
vector potential term in the kinetic energies of both the nuclei and the electrons.
Proceeding as in the zero field case, one writes an ansatz wavefunction and arrives at
the effective Hamiltonian for the ionic motion, Eq. (4.16), where an extra term must
be added to the kinematical momentum π of Eq. (4.15). There are thus two vector
potentials in the effective nuclear Hamiltonian: a geometric one, and a genuinely
magnetic one.

However, with respect to the zero-field case, there is a qualitative difference
whose importance is overwhelming. Since the electronic Hamiltonian is no longer
invariant under T-symmetry, the electronic wavefunction is necessarily complex, and
the curvature is in general nonzero. No singularity is needed to produce geometrical
effects on the nuclear motion; the Berry phase will be in general nonzero on any
path in the space of nuclear coordinates.

Suppose we are interested into the nuclear motion at the purely classical level.
The Hamiltonian of Eq. (4.16)—whose kinematical momentum π includes now the
two different vector potentials—yields the Hamilton equations of motion, which can
be transformed into the Newton equations of motion: within the latter, the effects
of the vector potentials appear in terms of fields, in the form of Lorentz forces. The
curl of the magnetic vector potential obviously yields the magnetic field due to the
external source; the curl of the geometric vector potential (Berry curvature) yields
an additional “magnetic-like” field which is nonzero even on the classical trajectory
of the nuclei. We stress that this is at variance with the zero-field case, where the
Berry phase had no effect on the ionic motion at the classical level, and could only
be detected when quantizing the ionic degrees of freedom.

Within a naïve Born–Oppenheimer approximation—where Berry phases are
neglected—the magnetic field acts on the nuclei as it they were “naked” charges: a
proper treatment must instead account for electronic screening: this is provided by
the geometric vector potential. Surprisingly, there are very few calculations of the
effect: it is pretty clear, however, that the geometric term is no small correction.

4.3.1 Hydrogen atom in a constant B field
We consider the very pedagogical example of a hydrogen atom, hence we identify
the electronic degrees of freedom [x], used in Sect. 4.2.2, with a single coordinate
r, and the parameter ξ with the nuclear coordinate R. If the atom is subject only
to a magnetic field—and neglecting irrelevant spin-dependent terms—the complete
(nonrelativistic) Hamiltonian H and the electronic Hamiltonian H are

H(R, r) =
1

2M

[
p− e

c
A(R)

]2
+H(R, r); (4.30)
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H(R, r) =
1

2m

[
−iℏ∇r +

e

c
A(r)

]2
− e2

|r−R|
. (4.31)

As explained above, the nuclear kinematical momentum of Eq. (4.15) becomes

π = p− ℏA(R)− e

c
A(R) (4.32)

The case of a constant B field can be dealt with analytically. We choose the
central gauge A(r) = 1

2
B × r. If ϕ(r) is the exact ground eigenfunction when the

proton sits at R = 0, the eigenfunction at a generic R is:

⟨r|ψ(R)⟩ = e−
ie
2ℏcr·B×Rϕ(r−R), (4.33)

with an R-independent eigenvalue. The Berry connection is clearly

A(R) = i⟨ψ(R)|∇Rψ(R)⟩ = − e

2ℏc
⟨ψ(R)|B× r|ψ(R)⟩ = − e

2ℏc
B×R

= − e

ℏc
A(R), (4.34)

since the R-derivative of ϕ(r−R) does not contribute. Replacing Eq. (4.34) into
Eq. (4.32) we find π = p, as it must be: the nucleus travels at constant speed, and
is not deflected by a Lorentz force.

Remarkably, the “magnetic-like” field due to the Berry phase is—in this simple
example—exactly opposite to the external magnetic field, thus providing the
complete screening which is physically expected.

4.3.2 A molecule in a constant B field
Quite similarly to the atomic case considered above, even when a neutral molecule
travels at constant speed the cancellation is complete [69]; rotational and vibrational
motions are less trivial. A paradigmatic example of rotovibrations is considered by
Ceresoli et al. in Ref. [70]: a H2 molecule with a simple analytical wavefunction.

We consider here in more detail the simpler case of pure rotations of a rigid
molecule along the B axis, following Ref. [69, 71]. We will define below a screening
factor σ to measure the amount of cancellation; σ = −1 (complete screening) is
what indeed occurs for rigid translational motions; the other limit σ = 0 would
correspond to bare nuclei (or ion cores, if we deal with valence electrons only).

Consider first the motion of a (nuclear) charge eZ on a circular path. In one cycle
the bare magnetic phase is γB = 2πZϕ/ϕ0, where ϕ is the magnetic flux through
the path and ϕ0 = hc/e is the flux quantum. For the rotation of a rigid molecule
the bare magnetic phase is then

γB = B
e

cℏ
π
∑
ℓ

ZℓR
2
ℓ , (4.35)
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where Rℓ is the radius of the nuclear orbit. Now we consider the many-body ground
state as a function of B and the rotational angle θ: the Berry phase is

γ = i

∫ 2π

0

dθ ⟨Ψ0|∂θΨ0⟩, (4.36)

and is linear in B (we assume that |Ψ0⟩ is the singlet ground state of a T-
invariant Hamiltonian). Both phases in Eqs. (4.35) and (4.36) do not depend on
the electromagnetic gauge, but they depend on where the rotation axis is set; we
assume that the molecule is rotated around its center of mass. Eqs. (4.35) and (4.36)
have been computed for several molecules by Ceresoli and Tosatti [71] in order to
evaluate their rotational g factor, which is the dimensionless ratio between the total
molecular magnetic moment and the mechanical momentum (expressed with respect
of the center of mass); in terms of the screening factor σ = γ/γB one has

g = (σ + 1)

∑
ℓ ZℓR

2
ℓ∑

ℓMℓR2
ℓ

, (4.37)

where the mass is expressed in proton units. The rotational g factor is experimentally
accessible via molecular beam resonance or microwave spectroscopy techniques.

We introduce the Berry curvature at B = 0 in the B, θ variables:

ΩBθ = i( ⟨∂BΨ0|∂θΨ0⟩ − ⟨∂θΨ0|∂BΨ0⟩ ). (4.38)

It is further expedient to adopt the central gauge, and to set the center of the
gauge at the rotation axis: in this case the curvature is θ-independent, and to linear
order in B the Berry phase is γ = 2πBΩBθ. This Berry phase has an interesting
relationship to the linear magnetizability of the molecule χzz = ∂mz/∂B (we set
B along the z-axis). If we adopt the central gauge A(r) = 1

2
B × r the electronic

Hamiltonian is
Ĥ = Ĥ0 +

eB

2mc
L̂z +

e2B2

8mc2

∑
i

(x2i + y2i ), (4.39)

where L̂z is the many-body angular-momentum operator. The magnetizability χzz is
by definition (minus) the second derivative of the ground-state energy with respect
to B: it is comprised of two terms, deriving from the first (paramagnetic) and second
(diamagnetic) B-dependent terms in Eq. (4.39). We consider in the following the
paramagnetic response only χ(p)

zz :

χ(p)
zz =

e2

2m2c2

∑
n̸=0

⟨Ψ0|L̂z|Ψn⟩⟨Ψ0|L̂z|Ψn⟩
En − E0

(4.40)

The Hamiltonian of Eq. (4.39) clearly depends on the gauge origin. Magnetic
properties of molecules are notoriously plagued by gauge-invariance problems, when
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evaluated with variational wavefunctions and incomplete basis sets. We do not
discuss the issue here, assuming we are working on a complete basis; however, in
order to compare to the Berry curvature ΩBθ, we set the gauge origin at the center
of mass. The curvature, according to Eq. (3.31), can be rewritten as:

ΩBθ = −2 Im
∑
n ̸=0

⟨Ψ0|∂BĤ|Ψn⟩⟨Ψ0|∂θĤ|Ψn⟩
(En − E0)2

= − e

mc
Im

∑
n̸=0

⟨Ψ0|L̂z|Ψn⟩⟨Ψ0|∂θĤ|Ψn⟩
(En − E0)2

. (4.41)

Next we wish to evaluate ∂θĤ = ∂θĤ0, which is (minus) the torque operator [72].
The Hamiltonian transforms under rotation by an angle θ as:

Ĥ0 → ei
θ
ℏ L̂zĤ0e

−i θℏ L̂z , (4.42)

∂θĤ0 =
i

ℏ
[L̂z, Ĥ0], ⟨Ψ0| ∂θĤ0 |Ψn⟩ =

i

ℏ
(En − E0)⟨Ψ0| L̂z |Ψn⟩ (4.43)

ΩBθ =
e

ℏmc
∑
n̸=0

⟨Ψ0|L̂z|Ψn⟩⟨Ψ0|L̂z|Ψn⟩
En − E0

. (4.44)

We thus arrive at the important relationship

χ(p)
zz =

ℏe
2mc

ΩBθ =
ℏe
2mc

1

2π

∂γ

∂B
. (4.45)

4.4 Semiclassical transport
The semiclassical theory of Bloch electron dynamics plays a fundamental role in the
physics of metals and semiconductors, and is a typical textbook topic [73].

At the classical level, particle transport is considered to take place in phase space,
whose points are labeled by r and p, and is described by the distribution function
f(r,p) which satisfy the Boltzmann equations. Electrons in crystalline materials
may fit into this framework if we identify the particles a wave packets constructed
from the Bloch orbitals. The semiclassical theory addresses therefore the motion of
a wave packet built as a superposition of Bloch states from the n-th band

|W ⟩ =
∫
BZ

dk a(k, t)|ψnk⟩, (4.46)

where the envelope function is well localized in k-space. Because of this, it is
delocalized in r space; we assume, however, that its center of mass is well defined.
Owing to this, we may define the wave vector k and the center r of the wave packet
as

k =

∫
BZ

dk′ k′ |a(k′, t)|2; r = ⟨W |r|W ⟩. (4.47)
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4.4.1 Textbook equations of motion
In absence of collisions, the equations of motion (EoM) reported in textbooks and
routinely used in device engineering are

ṙ =
1

ℏ
∂ϵk
∂k

ℏk̇ = −e (E+
1

c
ṙ×B), (4.48)

where ϵk is the band structure of the relevant band, and E and B are the perturbing
fields, assumed weak and slowly varying in space and time.

As emphasized in Ref. [73], the derivation of Eq. (4.48), despite the formal
simplicity of the result, is “a formidable task”. The early derivations date from the
1930s; the problem was reconsidered several times in the literature, by Slater [74],
Luttinger [75], and Zak [76] among others.

4.4.2 Modern equations of motion
The modern analysis of semiclassical transport owes to a couple of papers by Q.
Niu and coworkers [77, 78] (see also Ref. [13]). They start observing that a wave
packet generally possesses two kinds of motion: the center-of-mass motion and the
self-rotation around its center. Owing to the latter, the wave packet is endowed
with an orbital magnetic moment, whose expression is

m(k) = − ie

2ℏc
⟨∇kuk| × (Hk − ϵk) |∇kuk⟩. (4.49)

Because of this, the band structure acquires a B-dependent term

ϵk → ϵ̃k = ϵk −m(k) ·B; (4.50)

Furthermore, the canonical momentum ℏk has to be replaced with the kinetic
momentum, which includes the (geometrical) vector potential. In the Newton-like
EoM, its contribution is reminiscent of a Lorentz force in reciprocal space. Eq. (4.48)
must then be replaced with

ṙ =
1

ℏ
∂ϵ̃k
∂k

− k̇×Ω(k)

ℏk̇ = −e (E+
1

c
ṙ×B), (4.51)

where Ω(k) is the Berry curvature of the relevant band, having the dimensions
of a squared length. Notice that the curvature is nonzero even in presence of T-
symmetry, provided that the crystal is noncentrosymmetric. The term k̇ × Ω(k)
goes under the name of “anomalous velocity”.
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4.4.3 Equations of motion in symplectic form
A more accurate analysis performed in 2003 by Panati, Spohn, and Teufel [79]
proves that Eq. (4.51) is not yet the ultimate form for the semiclassical EoM; it is
only correct if B is constant in space. Furthermore, the equations which supersede
Eq. (4.51) are more symmetrical and elegant.

One starts defining

H (r,k) = ϵk − eϕ(r)−m(k) ·B(r), (4.52)

where ϕ(r) is the potential of the electric field E(r), and m(k) is the wave packet’s
moment, Eq. (4.49). Then the EoM are

ṙ =
1

ℏ
∂H (r,k)

∂k
− k̇×Ω(k)

k̇ = −1

ℏ
∂H (r,k)

∂r
− e

ℏc
ṙ×B(r), . (4.53)

In order to realize the relationship of Eq. (4.53) to the standard symplectic form
of Hamilton’s equations, it is expedient to adopt atomic units, and furthermore to
redefine B by including the 1/c factor: we get

ṙ = ∇pH (r,p)− ṗ×Ω(p)

ṗ = −∇rH (r,p)− ṙ×B(r). (4.54)

Notice that the translational momentum is coupled to B via the explicit Lorentz
force ṙ×B(r), unlike in the standard Hamiltonian formulation where such coupling
would appear via a vector-potential-dependent H . It is easy to prove that Eq. (4.54)
conserves the energy:

dH

dt
= ∇rH · ṙ+∇pH · ṗ = 0 (4.55)

In the simple case where Ω and B are identically vanishing, H becomes the
standard classical Hamiltonian and Eq. (4.54) are the corresponding Hamilton’s
equations. If I is the 3× 3 identity, the standard 6× 6 symplectic matrix is

Θ =

(
0 −I
I 0

)
, (4.56)

Figure 4.6: A wave packet
carries quasi momentum ℏk, but
also an orbital moment and a
corresponding magnetic moment
m(k)

60



and the symplectic form of Eq. (4.54) is

Θ

(
ṙ
ṗ

)
=

(
∇rH
∇pH

)
. (4.57)

When either B or Ω (or both) are nonzero, one recasts identically Eq. (4.54) in the
similar form

Θ̃

(
ṙ
ṗ

)
=

(
∇rH
∇pH

)
, (4.58)

where Θ̃ is a deformed symplectic matrix defined as

Θ̃ =

(
B⃗(r) −I
I Ω⃗(p)

)
, (4.59)

and the 3× 3 antisymmetric matrices B⃗(r) and Ω⃗(p) are

B⃗ =

 0 −Bz By

Bz 0 −Bx

−By Bx 0

 , Ω⃗ =

 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 . (4.60)

Finally, we notice that if we set to zero both the Berry curvature Ω⃗ and the moment
m(k) in Eq. (4.52), then Eq. (4.58) provides an alternative form for Hamilton’s
equations, where the B field appears in the symplectic matrix and no vector potential
appears in the Hamiltonian H . This form is well known in classical mechanics, and
goes under the name of gauge-invariant Hamiltonian formulation.

4.4.4 Geometrical correction to the density of states
In a remarkable 2005 paper by Xiao, Shi, and Niu [80] it was pointed out that
Eq. (4.51), in presence of a nonzero B field, violates Liouville’s theorem. This
means that the volume element ∆V = ∆r∆p changes in time during the evolution
of the system; it is possible, however to remedy this shortcoming in an elegant way.

We are not following the original paper; instead, we start from the more elegant
symplectic formulation above. The time evolution of the volume element is

1

∆V

∂V

∂t
= ∇r · ṙ+∇p · ṗ

= ∇r · [∇pH − ṗ×Ω(p) ] +∇p · [−∇rH − ṙ×B(r) ]

= −∇r · [ ṗ×Ω(p) ]−∇p · [ ṙ×B(r) ]. (4.61)

After a somewhat lengthy calculation, one arrives at a very simple result, which—
most notably—is a total derivative

1

∆V

∂V

∂t
= − d

dt
ln [ 1 +B(r) ·Ω(p) ], (4.62)
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and is clearly nonzero whenever B and Ω are non constant in phase space. It is worth
mentioning that Eq. (4.62) bears a simple relationship to the deformed symplectic
matrix, Eq. (4.59): in fact

1 +B(r) ·Ω(p) =

√
det Θ̃(r,p). (4.63)

In order to arrive at Eqs. (4.62) and (4.63) two special features of the matrix Θ̃(r,p)
seem to be essential: its elements are either functions of r or p, but not of both; the
divergences of B(r) and Ω(p) are both zero.

Within ordinary statistical mechanics, the density of states in phase space is 1/hd
(in dimension d). The number of states in volume ∆V = ∆r∆p is ∆V/h3, and—
owing to Liouville’s theorem—this number remains constant during time evolution.
Here instead, such number remains constant only if we appropriately modify the
density of states. For the sake of clarity we restore Gauss units; the modification
needed is

1

hd
−→ 1

hd
[ 1 +

2π

ϕ0

B(r) ·Ω(p/ℏ) ], (4.64)

where ϕ0 is the flux quantum.
While Xiao, Shi, and Niu [80] made a fundamental discovery in physics, the

mathematical formalism was apparently well known within advanced analytical
mechanics. It was in fact later pointed out that—within a generalized formulation
of Hamiltonian dynamics—Eq. (4.51) are indeed “Hamiltonian”, and a generalized
form of Liouville’s theorem holds [81]. I would regard this as a matter of semantics;
nonetheless the proof provided by such mathematical-physics tools is more general
and more elegant than the one arrived at in Ref. [80].

4.4.5 Outstanding consequences of the modified density of
states

After Ref. [80] appeared, it become immediately clear that the geometrical
correction to the density of states, Eq. (4.64), goes well beyond the scope of
semiclassical approximation. Statistical mechanics paraphernalia, such as partition
functions and the like, must adopt Eq. (4.64).

As a consequence of the modified density of states, the Fermi volume of a metal
changes when a macroscopic B field is switched on at constant electron density.
If instead we keep the chemical potential µ constant, then the electron density n
depends on B. At zero temperature (for each spin channel)

n =
1

(2π)d

∫
BZ

dk

(
1 +

2π

ϕ0

B ·Ω(k)

)
ϑ(µ− ϵk)(

∂n

∂B

)
µ

=
1

(2π)d−1ϕ0

∫
BZ

dk Ω(k)ϑ(µ− ϵk) (4.65)
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The latter assumes a perspicuous meaning in 2d, when µ is in a gap:(
∂n

∂B

)
µ

=
1

2πϕ0

∫
BZ

dk Ω(k) =
C1

ϕ0

= − 1

ec
σxy. (4.66)

For a quantum Hall system, this goes under the name of Streda formula [43], and had
been first derived in 1982 in a very different way. We have given a very elementary
proof above, Eq. (2.17).

4.5 Quantum transport
4.5.1 Transport by a single state
We are going to study here the current induced by an adiabatic change of the
potential, or more generally of the Hamiltonian, in the single-particle case. We
indicate as ψn(t) the adiabatic instantaneous eigenstates, and with ψ(t) the time
evolution of the ground state. In order to get rid of the dynamical phase, it is better
to deal with density matrices

ρ(t) = |ψ(t)⟩⟨ψ(t)| = |ψ0(t)⟩⟨ψ0(t)|+∆ρ(t). (4.67)

The velocity of this state is

v(t) = Tr {ρ(t)v} (4.68)
= ⟨ψ0(t)|v |ψ0(t)⟩+

∑
n

⟨ψ0(t)|∆ρ(t) |ψn(t)⟩⟨ψn(t)|v |ψ0(t)⟩.

The first term on the rhs is zero in the special case where—at all times—the
Hamiltonian H(t) is T-invariant and the state is nondegenerate.

We write the exact density matrix of the time-evolved ground state as

ρ̂(t) = |Ψ0(t)⟩⟨Ψ0(t)|+∆ρ̂(t). (4.69)

Since the adiabatic term commutes with Ĥ(t), the equation of motion is

[ Ĥ(t),∆ρ̂(t) ] = iℏ
d

dt
ρ̂(t) ≃ iℏ

d

dt
|Ψ0(t)⟩⟨Ψ0(t)|, (4.70)

where we have neglected terms of higher order in the adiabaticity parameter. Taking
then the matrix elements between ⟨Ψ0(t)| and |Ψn(t)⟩ one gets

(E0 − En)⟨Ψ0(t)|∆ρ̂(t)|Ψn(t)⟩ = iℏ⟨Ψ̇0(t)|Ψn(t)⟩; (4.71)
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the n = 0 term vanishes because of norm conservation. Notice also that, to this
order, ⟨Ψm(t)|∆ρ̂(t)|Ψn(t)⟩ = 0 when both m ̸= 0 and n ̸= 0; therefore

∆ρ̂(t) = iℏ
∑
n ̸=0

|Ψ0(t)⟩
⟨Ψ̇0(t)|Ψn(t)⟩
E0 − En

⟨Ψn(t)|+ H.c., (4.72)

where H.c. stays for Hermitian conjugate. Replacement into Eq. (4.68) yields

v(t) = ⟨ψ0(t)|v |ψ0(t)⟩

+iℏ
∑
n̸=0

[
⟨ψ̇0(t)|ψn(t)⟩⟨ψn(t)|v |ψ0(t)⟩

E0 − En

− c.c.
]
. (4.73)

4.5.2 Current carried by filled bands
We now exploit the previous result for a system of noninteracting electrons in
the case where the Hamiltonian H(t) is lattice periodical and the ground state
is insulating; this means that the gap remains finite at all t. It will be enough to
consider the simple case of just one filled band, with band index zero; the current
carried by each Bloch orbital |ψ0k⟩ = eik·r|u0k⟩ is

vk(t) = ⟨ψ0k|v |ψ0k⟩+ iℏ
∑
j ̸=0

[
⟨ψ̇0k|ψjk⟩⟨ψjk|v |ψ0k⟩

ϵ0k − ϵjk
− c.c.

]

= ⟨u0k|v |u0k⟩+ iℏ
∑
j ̸=0

[
⟨u̇0k|ujk⟩⟨ujk|v |u0k⟩

ϵ0k − ϵjk
− c.c.

]
, (4.74)

where the t dependence of the rhs is now implicit. We then adopt the usual formula
for the velocity, Eqs. (1.18) and (5.16), and the analogue of Eq. (3.28):

v =
1

ℏ
∇kHk, |∇ku0k⟩ =

1

ℏ
∑
j ̸=0

|ujk⟩
⟨ujk|v |u0k⟩
ϵ0k − ϵjk

(4.75)

vk(t) =
1

ℏ
∇kϵ0k + i ( ⟨u̇0k|∇ku0k⟩ − ⟨∇ku0k|u̇0k⟩ ). (4.76)

The first term on the rhs integrates to zero over the BZ, while the second is clearly a
Berry curvature component in the four-dimensional k, t domain. The current density
carried by a filled band in dimension d is

j(t) = − ie

(2π)d

∫
BZ

dk ( ⟨u̇0k|∇ku0k⟩ − ⟨∇ku0k|u̇0k⟩ ); (4.77)

the Bloch states are normalized to one in the crystal cell (as everywhere in the
present Notes).
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4.5.3 Quantization of charge transport
Let us consider the special case of a simple cubic crystal with lattice constant a.
The transported charge in time T in the z direction across one cell is

Q =

∫ T

0

dt Iz(t) = a2
∫ T

0

dt jz(t) = − ea2

(2π)2

∫ π/a

−π/a

dkx

∫ π/a

−π/a

dky

× i

2π

∫ T

0

dt

∫ π/a

−π/a

dkz ( ⟨u̇0k|∂zu0k⟩ − ⟨∂zu0k|u̇0k⟩ ). (4.78)

If the time evolution of the Hamiltonian is cyclic H(T ) = H(0), then the second
line in Eq. (4.78) is clearly a Chern number C (in the kz, t variables) and is integer.
Notice also that C is dimensionless, and therefore does not depend on how fast the
Hamiltonian varies with time; ideally, the adiabatic regime means T → ∞.

We arrive therefore at the outstanding result

Q =

∫ T

0

dt Iz(t) = e× integer (4.79)

first proved by Thouless in 1983 [58]; it holds of course for any dimension d. Let me
restate the theorem: if the Hamiltonian is changed adiabatically in such a way that it
returns to its starting value in time T , the transported charge in an infinite periodic
system is quantized provided that the system remains insulating at all times. A
cycle pumps an integer number of elementary charges across the system.

Thouless quantization of charge transport [58], discussed above, also has
profound relationships to several other topics: to Faraday laws of electrolysis (Sect.
4.6.1); to the topological explanation of the quantization of surface charge (discussed
in Sect. 5.6.1); and to the modern theory of polarization (discussed in Sect. 5.3).

4.6 Charge transport in ionic liquids
Among the examples which realize a “Thouless pump”, the original paper suggests a
sliding charge-density wave. A more outstanding manifestation of quantized charge
transport was pointed out shortly afterwards by Pendry and Hodges [82]: Faradays’
laws of of electrolysis. The mass/charge transfer ratio shows that charge is always
transported in units of e per ion, to the extent that electrolytic cells are used as
standards of current. If a given ion sits at one electrode at t = 0, and if it drifts to
the other one at t = T , the Hamiltonian can be considered as cyclic, whence charge
quantization follows. However, at intermediate t values the charge “belonging” to
a given ion is definitely non quantized, and arbitrarily defined: for a review of the
possible definitions, see Refs. [83, 84].
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4.6.1 Faraday law and oxidation numbers
Faraday’s first law of electrolysis addresses insulating liquids in electrolytic cells,
and can be recast in modern terms as follows. When a macroscopic number N
of nuclei of a given chemical species passes from one electrode to the other, the
transported electrical charge is an integer multiple of N times e. The law is additive:
it concerns each different chemical species in the cell independently. It addresses
ionic conduction in electrolytes, including molten salts; it does not apply to metallic
conduction, which is unrelated to the motion of nuclei.

Faraday’s discovery dates from 1832, decades before the existence of atoms
became accepted, and even before Mendeleev’s birthdate. Remarkably, Faraday
wrote: “Although we know nothing of what an atom is, yet we cannot resist forming
some idea of a small particle...”. What he actually measured were charge-to-mass
ratios; when scaled to the actual atomic masses, Faraday’s “equivalent numbers” can
be regarded as the archetypical definition of oxidation numbers in insulating liquids.
We also stress that such definition is not static: Faraday’s numbers are—within a
modern quantum-mechanical view—dynamical properties in the adiabatic limit.

In modern chemistry, the oxidation number (also known as oxidation state) of an
atom in a molecule or in a solid is an integer determined by an agreed set of rules,[85]
and is often related in a postdictive [86]—not predictive—way to some measurable
properties, thus facilitating the interpretation of several experimental observations
[85, 86, 87, 88, 89]. In simple cases—when no d shells are involved—the oxidation
numbers are simply determined by the octet rule: atoms are assigned an octet in
order of decreasing electronegativity until all valence electrons are distributed [85],
except for hydrogen which is obviously assigned a pair. The rule is unambiguous,
given that the ordering of the (simple) elements as provided by different ionicity
scales is the same. Oxidation numbers are formal quantitites not related to the
wavefunction or to any quantum-mechanical operator.

Nowadays we know “what an atom is”, but we also know that solids and liquids
are not assemblies if ions; they are assemblies of atoms, having ionic character only
because neighboring atoms have different electronegativity [42]. Literally dozens of
electronegativity scales and/or definitions of atomic charges have been proposed in
the literature [83], none of them yielding integer values.

The reason why integer oxidation numbers in electrolytes are measurable
quantities is deeply rooted in topology and in Thouless’ 1983 paper [58]. While this
paper only addresses solid-state issues, the relevance of his result for understanding
quantized charge transport in ionic liquids was emphasized shortly after in a very
little quoted—and presumably also little known—paper by Pendry and Hodges [82].
Since then, a few authors have built upon their result and endorsed the topological
nature of oxidation numbers in solids and liquids [87, 86, 89, 90]. The main message
from topology is that the ionic charges behave as integer only when adiabatically
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transported in a macroscopic system; no trace of quantization may appear in a
“snapshot” of either a solid or a liquid at a given time. The quantized charge
transport may occur either in a real experiment (as in Faraday’s) or in a “gedanken”
experiment, nowadays called a “Thouless pump” [13].

Charge transport in condensed matter has a close relationship to the theory of
polarization (discussed in Sect. 5.3). In fact the current density (due to electrons
and nuclei) which flows in a macroscopic insulator while the nuclei are adiabatically
displaced equals by definition the time-derivative of macroscopic polarization. The
formal definition of oxidation numbers proposed in Ref. [89] for insulating crystals
and in Ref. [82, 87, 90] for insulating liquids is indeed closely related to polarization
theory.

Faraday laws apply to ionic liquids where the oxidation numbers—upon chemical
intuition—are quite robust in the given compound and do not depend on the
fluctuating environment: this happens, for instance, when the octet rule is enough to
determine the conventional oxidation numbers. There are challenging cases, though,
well known in the solid state, like e.g. charge-ordering phenomena in transition
metal oxides. In such cases a given element may assume different oxidation numbers
depending on the ligands and on coordination. As an example, Mn can be labeled
with up to seven oxidation numbers, from Mn(I) to Mn(VII), distinguished from
their distinct spectroscopic and magnetic signatures [85]. It is easy to guess that
when the (conventionally defined) oxidation numbers do depend on the environment
the liquid is not insulating and topology cannot be invoked.

4.6.2 Ionic conductivity
An outstanding 2019 paper by Grasselli and Baroni [90] has extended the scope of
topology in the context of charge transport in insulating liquids. Besides the amount
of transported charge, another basic observable is the value of ionic conductivity at
a given temperature, which is provided within classical statistical mechanics from
the fluctuation-dissipation theorem, as discussed in Sec. C.5.1. The formula (called
Green-Kubo formula) is based on the autocorrelation function of the equilibrium
fluctuating charge current in absence of the electric field [91, 92]: see Eq. C.32.

Owing to the adiabatic approximation, the nuclear motion is classical even within
ab-initio molecular dynamics, where the quantum nature of the electrons is fully
accounted for. The contribution to the current from the motion of each nucleus at a
given time is quite different from the one of a scalar integer charge—the topological
oxidation number times e–moving on the same trajectory. According to Ref. [90],
topology warrants that, when the real current is replaced with the fictitious current
carried by the said integer charges (along the ab-initio trajectories), the Green-Kubo
formula yields the correct ionic conductivity.

The topological nature of ionic conduction has an interesting implication. Let us
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consider for instance liquid (undissociated) water under normal conditions: it is an
insulator with an high value of the static dielectric constant (ϵ0 ≃ 80). Therefore the
Faraday experiment would give a negative result, in agreement with the fact that the
oxidation number of a neutral molecule as a whole is zero (both topologically and
according to the rules): it is then kind of obvious that ionic conductivity must vanish.
This fact is apparently less obvious when analyzed from the fluctuation-dissipation-
theorem viewpoint. Water is strongly infrared-active [93], the Born charge tensor
of the molecule as a whole is quite sizable [94], and the fluctuating equilibrium
current is therefore conspicuously nonzero. Yet, given that the topological charge
of a neutral undissociated molecule is zero, topology also guarantees that the time-
integrated equilibrium autocorrelation function of the current vanishes, as indeed
needed on physics considerations.
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Chapter 5

Macroscopic polarization

The macroscopic polarization P is a fundamental concept that all undergraduates
learn about in elementary courses [95, 96]. In view of this, it is truly extraordinary
that until the early 1990s there was no generally accepted formula for P in condensed
matter, even as a matter of principles. P is an intensive vector quantities that
intuitively carries the meaning of dipole per unit volume. Most textbooks [73, 97]
provide a flawed definition of P, not implementable in practical computations [98].

A genuine change of paradigm was initiated by a couple of important
papers [99, 100], after which the major development was introduced by King-
Smith and Vanderbilt in 1992 (paper published in 1993 [101]). Other important
advances occurred during the 1990s [102, 103] and the so-called “modern theory of
polarization”it is by now at a very mature stage; several reviews have appeared in
the literature over the years [1, 2, 3, 5, 6, 7, 8, 20, 24].

Aiming at a computational physics readership, it is worth emphasizing that
most ab-initio electronic-structure codes on the market, for dealing with either
crystalline or noncrystalline materials, implement the modern theory of polarization
as a standard option. A nonexaustive list includes abinit [104], crystal [105],
quantum-espresso [106], siesta [107], vasp [108], and cpmd [109]; the code
tutorials often include an outline of polarization theory. Its implementations have
been instrumental since almost three decades in the study of ferroelectric and
piezoelectric materials [110, 111, 112].

The basic concepts of the modern theory of polarization also start reaching a
few textbooks [113, 114], though very slowly; most of them are still plagued with
erroneous concepts and statements.

5.1 Polarization and electric field
The modern theory of polarization, at least in its original form, only addresses the
polarization P in a null macroscopic E field; it must be realized that, insofar as we
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address an infinite system with no boundaries, the E field is quite arbitrary. The
microscopic charge density is neutral in average and lattice periodical; the value of
E is just an arbitrary boundary condition for the integration of Poisson’s equation.
The usual choice (performed within all electronic-structure codes) is to impose a
lattice-periodical Coulomb potential, i.e. E = 0. Imposing a given nonzero value of
E is equally legitimate (in insulators), although technically more difficult [115, 116]).

When addressing a finite sample with boundaries, the E field is in principle
measurable inside the material, without reference to what happens at the sample
boundary; this is not the case of D. In fact, E obtains by averaging over a
macroscopic length scale the microscopic electric field E(micro)(r), which fluctuates
at the atomic scale [96]. In a macroscopically homogeneous system the macroscopic
field E is constant, and in crystalline materials it coincides with the cell average of
E(micro)(r). A lattice-periodical potential enforces E = 0; for a supercell calculation,
this applies to the field average over the supercell, while in different regions there
can be a nonzero macroscopic field.

As explained so far, there is no need of addressing finite samples and external
vs. internal fields from a theoretician’s viewpoint. Nonetheless a brief digression is
in order, given that experiments are performed over finite samples, often in external
fields. Suppose a finite macroscopic sample is inserted in a constant external field
E(ext): the microscopic field E(micro)(r) coincides with E(ext) far away from the
sample, while it is different inside because of screening effects. If we choose an
homogeneous sample of ellipsoidal shape, then the macroscopic average of E(micro)(r),
i.e. the macroscopic screened field E, is constant in the bulk of the sample. The
shape effects are embedded in the depolarization coefficients [95]: the simplest case
is the extremely oblate ellipsoid, i.e. a slab of a macroscopically homogeneous
dielectric; more details are given in Ref. [8]. For the slab geometry in a vanishing
external field E(ext) the internal field E vanishes when P is parallel to the slab
(transverse polarization), while E = −4πP is the depolarization field when P is
normal to the slab (longitudinal polarization): see Fig. 5.1.

5.2 Polarization differences
Novel ideas about macroscopic polarization emerged in the early 1990s [99, 100];
these led to the modern theory, based on a Berry phase, which was founded by
King-Smith and Vanderbilt soon afterwards [101]. At its foundation, the modern
theory was limited to a crystalline system in an independent-electron framework
(either KS or Hartree-Fock). Later, the theory was extended to correlated and/or
disordered systems [102, 103].

The historical development of the theory passed through abandoning the concept
of polarization “itself”, addressing instead a polarization difference, which could be
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Figure 5.1: Macroscopic polarization P in a slab normal to z, for a vanishing external
field E(ext). Left: When P is normal to the slab, a depolarizing field E = −4πP is
present inside the slab, and charges at its surface, with areal density σsurface = P ·n
Right: When P is parallel to the slab, no depolarizing field and no surface charge
is present.

expressed as a time-integrated adiabatic current.[100, 101] Only afterwards it was
realized [117] that even polarization itself can be defined, although by means of
a change of paradigm: bulk polarization is not a vector (as theretofore assumed),
it is a lattice. In these Notes I will follow the historical developments, presenting
polarization differences first, and polarization itself later, in Sect. 5.4.

The first calculation ever of spontaneous polarization was published in 1990 [99].
The case study was BeO: it has the simplest structure where inversion symmetry is
absent (i.e. wurtzite), and furthermore its constituents are first-row atoms. The
idea was to address the macroscopic polarization of a slab of finite thickness,
with faces normal to the c axis, embedding it in an ad hoc medium which (i)
has no bulk polarization for symmetry reasons, and (2) does not produce any
geometrical or chemical perturbation at the interface. The optimal choice is
a fictitious BeO in the zincblende structure. Because of obvious reasons, the
system is periodically replicated in a supercell geometry (Fig. 5.2, top panel). The
selfconsistent calculation shows well localized interface charges, of opposite sign and
equal magnitudes at the two nonequivalent interfaces (Fig. 5.2, bottom panel). The
interface charge is related to the difference in polarization between the two materials:
σinterface = ∆P·n. The computer experiment provides the value of σinterface, and since
P vanishes by symmetry in the zincblende slab, one thus obtains the bulk value of
P in the wurtzite material. Notice that here P is a longitudinal polarization, in a
depolarizing field.

It must be emphasized that the quantity really “measured” in this computer
experiment is ∆P, not the polarization P itself. After Ref [99] was published, a study
of the experimental literature showed that—contrary to an incorrect widespread
belief—no experimental value of P in any wurtzite material exists: only estimates
are available. Ref. [99] marks, as said above, a change of paradigm: polarization
must be defined by means of differences, and the concept of polarization “itself”
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Figure 5.2: Top panel: The 14-
atom BeO supercell in a verti-
cal plane through the BeO bonds;
the wurtzite (W) and zincblende
(ZB) stackings are perspicuous.
Bottom panel: Macroscopic aver-
ages of the valence electron den-
sity (solid) and of the electro-
static potential (dotted).

Figure 5.3: A 1d solid with infinite length.
Different choices of the unit cell give
different P values: (a), (b). On the other
hand, the change of polarization ∆P does
not depend on the choice of the unit cell
(c).

must be abandoned. With hindsight, it is nowadays pretty clear that the problem,
as well as its solution, exists already at the classical level: this is sketched in Fig.
5.3. Most textbooks are missing this very basic fact.

The modern theory avoids addressing the “absolute” polarization of a given
equilibrium state, quite in agreement with the experiments, which invariably
measure polarization differences. Instead, the theory addresses differences in
polarization between two states of the material that can be connected by an adiabatic
switching process. The time-dependent Hamiltonian is assumed to remain insulating
at all times, and the polarization difference is then defined [100] as the time-
integrated transient macroscopic current that flows through the insulating sample
during the switching process:

∆P = P(∆t)−P(0) =

∫ ∆t

0

dt j(t). (5.1)

In the adiabatic limit ∆t → ∞ and j(t) → 0, while ∆P stays finite. Addressing
currents (instead of charges) explains the occurrence of phases of the wavefunctions
(instead of square moduli) in the modern theory. Eventually the time integration
in Eq. (5.1) will be eliminated, leading to a two-point formula involving only the
initial and final states.
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5.3 Independent electrons
5.3.1 The King-Smith and Vanderbilt formula
For a crystalline system of independent electrons the expression for the transient
current occurring in Eq. (5.1) is precisely the same as previously derived for quantum
transport, Eq. (4.77). Therefore for one band (index 0) and single occupancy in
dimension d the electronic contribution to the polarization difference is

∆P = − ie

(2π)d

∫ ∆t

0

dt

∫
BZ

dk ( ⟨u̇0k|∇ku0k⟩ − ⟨∇ku0k|u̇0k⟩ ); (5.2)

the (classical) nuclear contribution must be added separately. We remind that
crystal-cell neutrality is essential. Notice also that, given the occurrence of Bloch
states, the Hamiltonian is lattice periodical at all t: this implicitly means that in
Eq. (5.2) ∆P is evaluated at E = 0.

It is now expedient to introduce a dimensionless adiabatic time λ, with |ujk(t)⟩ =
|ujk(λ(t))⟩, λ(0) = 0, λ(1) = ∆t. Eq. (5.2) becomes then, for n doubly occupied
bands (index j = 1, n) in 3d:

∆P = P(1)−P(0) =

∫ 1

0

dλ ∂λP(λ)

∂λP = − 2ie

(2π)3

n∑
j=1

∫
BZ

dk ( ⟨∂λujk|∇kujk⟩ − ⟨∇kujk|∂λujk⟩ ). (5.3)

It is essential that the gap does not close, i.e. the system remain insulating, for all
λ values.

The expression in Eq. (5.3) can be integrated with respect to λ to obtain

P(λ) = − 2ie

(2π)3

n∑
j=1

∫
BZ

dk ⟨ujk|∇kujk⟩ : (5.4)

this is the (by now famous) King-Smith and Vanderbilt formula [101], yielding the
polarization of the final state minus the polarization of the initial state, Eq. (5.3).
To understand the meaning of the k integral in 3d we take the simple example of a
simple cubic lattice of constant a, similarly to Eq. (4.78):

Pz(λ) = − 2e

(2π)3

n∑
j=1

∫ π/a

−π/a

dkx

∫ π/a

−π/a

dky

[
i

∫ π/a

−π/a

dkz⟨ujk|∂kzujk⟩

]
, (5.5)

where the square parenthesis highlights the Berry-phase, to be compared to
Eq. (3.37).
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In first-principle implementations, the Berry phase is discretized as in Eq. (3.55),
and the remaining 2d k-integral is discretized in the trivial way. The first calculation
ever of the “spontaneous” polarization of a ferroelectric material (KNbO3) appeared
in 1993 [118], and agreed within 10% with the measured values. As said above, the
Berry-phase formula is nowadays implemented in most first-principle codes.

5.3.2 The quantum of polarization
Given that every phase is defined modulo 2π, all of the two-point formulæ for ∆P
in terms of Berry phases are arbitrary modulo a polarization “quantum”. This is the
tradeoff one has to pay when switching from the curvature formula, Eq. (5.3)—where
no such arbitrariness exists—to the two-point King-Smith and Vanderbilt formula,
where only the connection occurs. The actual arbitrariness of ∆P in 3d is 2eR/Vcell,
where R is a lattice vector and Vcell is the cell volume (the 2 factor owes to double
band occupancy). A similar arbitrariness of an integer times eR/Vcell occurs for the
classical nuclear contribution to polarization.

The quantum arbitrariness is rarely a problem in practice. In most cases, the
change in P that can be induced by a perturbation, such as a small sublattice
displacement, is insufficient to cause P to change by a large fraction of the quantum.
Where exceptions exist the ambiguity can be resolved by subdividing the adiabatic
path into several shorter intervals, for each of which the change in P is unambiguous
for practical purposes. Additional problems may occur in the discretized version of
the Berry-phase formula; this is discussed e.g. in Ref. [8] and, in more detail, in
Ref. [7].

Here we stress that the quantum ambiguity is an essential aspect of the theory.
For example, for the case of a closed cyclic adiabatic evolution of the system, in
which the parameter values λ = 0 and λ = 1 label the same physical state of the
system, we retrieve the quantization of charge transport, discussed in Sect. 4.5, and
governed by a Chern number.

5.3.3 Wannier functions
The KS (or Hartee-Fock) ground state is a Slater determinant of doubly occupied
orbitals; any unitary transformation of the occupied states among themselves leaves
the determinantal wavefunction invariant (apart for an irrelevant phase factor), and
hence it leaves invariant any KS ground-state property.

For an insulating crystal the Bloch KS orbitals of completely occupied bands
can be transformed to localized Wannier orbitals (or functions) WFs. This is known
since 1937 [119], but for many years the WFs have been mostly used as a formal
tool; they became a popular topic in computational electronic structure only after
the 1997 seminal work of Marzari and Vanderbilt [56]. A comprehensive review
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appeared as Ref. [19], and a public-domain implementation is in wannier90 [120].
If the crystal is metallic, the WFs can still be technically useful [121], but it must
be emphasized that the ground state cannot be written as a Slater determinant of
localized orbitals of any kind, as a matter of principle.

The transformation of the Berry phase formula in terms of WFs provides an
alternative, and perhaps more intuitive, viewpoint. The formal transformation was
known since the 1950s [122], although the physical meaning of the formalism was
not understood until the advent of the modern theory of polarization.

The unitary transformation which defines the WF wjR(r), labeled by band j and
unit cell R, within our normalization is

|wjR⟩ =
Vcell
(2π)3

∫
BZ

dk eik·R |ψjk⟩ . (5.6)

Any WF centered in R is just the translate of a central-cell WF, i.e.:

⟨r|wjR⟩ = ⟨r−R|wj0⟩, |wj0⟩ =
Vcell
(2π)3

∫
BZ

dk |ψjk⟩. (5.7)

The ground-state projector P is clearly invariant by any unitary transformation of
the occupied orbitals among themselves; in terms of WFs it is written as:

P =
Vcell
(2π)3

n∑
j=1

∫
BZ

dk |ψjk⟩⟨ψjk| =
∑
jR

|wjR⟩⟨wjR|. (5.8)

In several circumstances, Eq. (5.8) is the most straightforward “bridge” between
PBCs and OBCs; localized orbitals have a long history within quantum chemistry.

If one then defines the “Wannier centers” as rjR = ⟨wjR|r|wjR⟩, it is rather
straightforward to prove that Eq. (5.4) is equivalent to

P(el)(λ) = − 2e

Vcell

n∑
j=1

rj0. (5.9)

This means that the electronic term in the macroscopic polarization P is (twice)
the dipole of the Wannier charge distributions in the central cell, divided by the cell
volume. The nuclear term is obviously similar in form to Eq. (5.9); the sum of both
terms is charge neutral.

WFs are severely gauge-dependent, since the phases of the |ψjk⟩ appearing in
Eq. (5.6) can be chosen arbitrarily. However, their centers are gauge-invariant
modulo a lattice vector. Therefore P(el) in Eq. (5.9) is affected by the same
“quantum” indeterminacy discussed above.

The modern theory, when formulated in terms of WFs, becomes much more
intuitive, and in a sense vindicates the venerable Clausius-Mossotti viewpoint [123]:
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in fact, the charge distribution is partitioned into localized contributions, each
providing an electric dipole, and these dipoles yield the electronic term in P.
However, it is clear from Eq. (5.6) that the phase of the Bloch orbitals is essential to
arrive at the right partitioning. Any decomposition based on charge only is severely
nonunique and does not provide in general the right P, with the notable exception
of the extreme case of molecular crystals.

In the latter case, in fact, we may consider the set of WFs centered on a given
molecule; their total charge distribution coincides—in the weakly interacting limit—
with the electron density of the isolated molecule (possibly in a local field). This
justifies the elementary Clausius-Mossotti viewpoint. It is worth mentioning that
the dipole of a polar molecule is routinely computed in a supercell geometry via the
single-point Berry phase discussed below [94]. The dipole value coincides with the
one computed in the trivial way in the large supercell limit. Finite-size corrections,
due to the local field (different in the two cases), can also be applied [124].

The case of alkali halides—where the model is often phenomenologically used—
deserves a different comment [8]. The electron densities of isolated ions (with or
without fields) are quite different from the corresponding WFs charge distributions,
for instance because of orthogonality constraints: hence the Clausius-Mossotti model
is not justified in its elementary form, despite contrary statements in the literature.
For a detailed analysis, see Ref. [125].

5.4 Polarization itself
As said above, it was realized in 1993 by Vanderbilt and King-Smith [117] that even
polarization itself can be defined, although by means of a change of paradigm:
bulk polarization is not a vector (as theretofore assumed), it is a lattice. A
counterintuitive corollary is that the polarization P of an inversion-symmetric crystal
is not necessarily zero. Since inversion symmetry requires P = −P, the lattice must
be symmetric: this may happen even if P = 0 does not belong to the lattice. For a
macroscopic bounded crystallite, the lattice ambiguity is fixed only after the sample
termination is chosen [24, 126]. I am going to present a novel derivation, which
only appeared in 2021 [127]; it is very general, beyond the independent-electron
framework.

We start observing that the dipole of a bounded and charge-neutral sample is a
very trivial quantity; the macroscopic polarization of a crystalline solid, instead, has
been a challenging problem for many years. In quantum mechanics the dipole of a
bounded sample is the expectation value of the position operator r. The drawback
is that solid state physics requires Born-von-Kàrmàn periodic boundary conditions
(PBCs) [97], which define the Hilbert space where Schrödinger equation is solved.
Unfortunately the multiplicative operator r is not a legitimate operator in the PBC
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Hilbert space: it maps a state vector within the space into an entity which does not
belong to the same space. Here we solve the problem by alternatively expressing
the dipole of a bounded sample in an unconventional way, with no reference to the
r operator; in this way the crystalline expression follows somewhat naturally.

5.4.1 Polarization of a bounded crystallite
We assume that N electrons are confined in a macroscopic sample of volume V ,
together with a neutralizing background of point-like classical nuclei. Let |Ψ̃0⟩ be
the singlet insulating ground eigenstate; the many-body wavefunction is square-
integrable over R3N and vanishes far away from the sample. If the system is
macroscopically homogeneous, the electronic term in polarization has the pretty
trivial expression

P(el) = − e

V
⟨Ψ̃0| r̂ |Ψ̃0⟩, r̂ =

N∑
i=1

ri; (5.10)

the nuclear classical contribution has to be added in order to obtain a meaningful
observable.

It is expedient to address the family of many-body Hamiltonians parametrized
by the parameter κ:

Ĥκ =
1

2m

N∑
i=1

(pi + ℏκ)2 + V̂ , (5.11)

where V̂ includes one-body and two-body potentials, and whose ground eigenstate
is |Ψ̃0κ⟩. In order to simplify notations we will set Ĥ0 ≡ Ĥ and |Ψ̃n0⟩ ≡ |Ψ̃n⟩. The
vector κ, having the dimensions of an inverse length, generalizes the Hamiltonian
by including a constant vector potential: it is therefore a pure gauge. The gauge-
transformed eigenstates are

|Ψ̃nκ⟩ = e−iκ·r̂|Ψ̃n⟩. (5.12)

We pause at this point to stress an important semantical issue. The choice of
the (arbitrary) κ value in Eq. (5.11) fixes the gauge in the Hamiltonian. Once this
fixed, there is an additional freedom in choosing the arbitrary phase factor in front
of each eigenstate: even this second choice goes under the name of gauge choice.
The expression of any physical observable must be gauge-invariant in both senses.
I therefore alert the reader that, in the following, it is essential to realize in which
context the term “gauge” is used.

By taking the κ derivative of Eq. (5.12) one transforms Eq. (5.10) into

P(el) = −ie
V
⟨Ψ̃0κ|∂κΨ̃0κ⟩, (5.13)
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at any κ-value; in view of the subsequent developments, we set κ = 0 in the
following:

P(el) = −ie
V
⟨Ψ̃0|∂κΨ̃0⟩. (5.14)

From the arguments in Ch. 3 it should be clear that i⟨Ψ̃0κ|∂κΨ̃0κ⟩ is a Berry
connection evaluated at κ = 0. Since Eq. (5.11) at two different κ’s yields two
different Hamiltonians, an equally acceptable gauge-transformed eigenstate would
be

|Ψ̃nκ⟩ = eiϕ(κ)e−iκ·r̂|Ψ̃n⟩, (5.15)
with an arbitrary ϕ(κ). The physical observable obtains from Eq. (5.14) when the
gauge of Eq. (5.12) is enforced; it is not allowed to adopt therein the most general
gauge of Eq. (5.15). In fact, a Berry connection by itself cannot define a physical
observable. In the present case Eq. (5.14) acquires its physical meaning only after
the above specific gauge fixing. I stress that here is the conceptual novelty of the
present work: a definition of the dipole of a bounded sample where no use is made of
the position operator r. The same definition and the same gauge fixing—Eq. (5.18)
below—can be exported to the PBC crystalline case.

5.4.2 Unbounded crystal
We adopt the same Hamiltonian as in Eq. (5.11), but now within the PBC Hilbert
space: the many-body wavefunction is periodic in the cubic “supercell” of side L
in each electronic variable independently, and normalized to one therein. Each
Cartesian coordinate is then equivalent to the angle φi = 2πxi/L, and analogously
for yi and zi. The potential V̂ enjoys the same periodicity: this means that the
macroscopic field E inside the sample vanishes. We will indicate the eigenstates
as |Ψnκ⟩ without a tilde, in order to distinguish them from those of the bounded
crystallite; as stressed above, the multiplicative r̂ operator is “forbidden” in the PBC
Hilbert space [103].

In order to address polarization, we need to ensure beforehand that the ground
state is insulating. The many-body velocity operator is

v̂κ =
1

m

N∑
i=1

(pi + ℏκ) =
1

ℏ
∂κĤκ, (5.16)

hence by Hellmann-Feynman theorem the macroscopic current density is

jκ = − e

ℏL3
⟨Ψ0κ| ∂κĤκ |Ψ0κ⟩ = − e

ℏL3
∂κE0κ , (5.17)

where E0κ is the ground-state energy. Given that an insulator does not sustain a dc
current, the ground-state energy is κ-independent (the opposite is true in metals).
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The Hamiltonian of Eq. (5.11) was first introduced in 1964 in a milestone paper
by W. Kohn, who noticed that PBCs violate gauge-invariance in the conventional
sense [128]. If we try the same transformation as in Eq. (5.12), the quantity
e−iκ·r̂|Ψ0⟩ is a solution of Schrödinger equation with energy E0, but it does not obey
PBCs and therefore does not belong to the Hilbert space. At an arbitrary κ, the
genuine PBC eigenstates |Ψnκ⟩ have a nontrivial κ-dependence. There is, however,
a discrete set of special κ vectors for which

|Ψ0κ⟩ = e−iκ·r̂|Ψ0⟩ (5.18)

obeys PBCs and yields therefore the ground eigenstate of Ĥκ: κ = 2π
L
(ℓ,m, n), with

integer (ℓ,m, n).
In order to define polarization, we proceed by adopting the analogue of Eq. (5.14),

and in the analogous gauge. We start from the identity

∂κln ⟨Ψ0|Ψ0κ⟩ =
⟨Ψ0|∂κΨ0κ⟩
⟨Ψ0|Ψ0κ⟩

, (5.19)

where |Ψ0κ⟩ is the PBC ground eigenstate of Ĥκ; since ⟨Ψ0|∂κΨ0⟩ is purely
imaginary, a leading-order expansion in κ yields

i⟨Ψ0|∂κΨ0⟩ · κ ≃ −Im ln ⟨Ψ0|Ψ0κ⟩. (5.20)

We pause to observe that multivaluedness debuts here. In fact Eq. (5.20) relates
two phase angles: a differential angle on the left, and a finite angle difference on
the right. While a differential angle is single valued, a finite angle is defined modulo
2π; upon replacing the former with the latter we are going to define a multivalued
observable. We stress once more that multivaluedness is not a mathematical artifact;
it is a necessary feature of polarization within PBCs [24].

Next we pick a vector κ1 in the special set: κ1 =
2π
L
(1, 0, 0), and we replace the

derivative in Eq. (5.14) with a finite difference, in the large-sample limit:

P (el)
x =

e

2πL2
Im ln ⟨Ψ0|Ψ0κ1⟩. (5.21)

As it stands, Eq. (9.5) is gauge-dependent and cannot express an observable: it is in
fact a discretized Berry connection. Eq. (9.5) only acquires physical meaning when
we fix the gauge by adopting the one of Eqs. (5.12) and (5.18) (with no extra phase
factor):

P (el)
x =

e

2πL2
Im ln ⟨Ψ0| e−iκ1·r̂ |Ψ0⟩

=
e

2πL2
Im ln ⟨Ψ0| e−i 2π

L

∑
xi |Ψ0⟩. (5.22)
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We have thus arrived at the main message of the present work: the bounded-
crystallite formula, Eq. (5.14), and the crystalline formula, Eq. (5.22), are essentially
the same formula, within the same gauge, in two different frameworks.

The replacement of |Ψ0κ1⟩ in Eq. (9.5) with e−iκ1·r̂|Ψ0⟩ in Eq. (5.22) is allowed
in insulators only. We remind that |Ψ0κ⟩ obtains by following the ground state
|Ψ0⟩ when the κ vector in Ĥκ is adiabatically turned on; in the metallic case—as
shown by Kohn [128]—the energy E0κ of such state does depend on κ, and therefore
|Ψ0κ1⟩ is orthogonal to e−iκ1·r̂|Ψ0⟩. We have shown above that in the insulating
case the state |Ψ0κ1⟩ has instead the same energy as e−iκ1·r̂|Ψ0⟩, and therefore the
two states may be identified.

The well known Eq. (5.22), sometimes dubbed “single-point Berry phase”, was
originally obtained in Ref [103] by considering a many-body Hamiltonian which is
adiabatically varied in time, and showing that the time derivative of Eq. (5.22)
coincides with the macroscopic current density j

(el)
x (t) which flows through the

insulating sample. Here I have derived the same result via a different logic:
polarization itself obtains without addressing currents at all, starting instead from
an unconventional definition of the dipole of a bounded sample.

Finally, the nuclear term in polarization can be added to Eq. (5.22) in a very
compact form. If the nuclei of charge Zℓ sit at sites Rℓ in the supercell, the expression
is

Px =
e

2πL2
Im ln ⟨Ψ0| ei

2π
L
(
∑

ℓ ZℓXℓ−
∑

i xi) |Ψ0⟩, (5.23)

where Xℓ = Rℓ,x. Owing to charge neutrality, polarization is invariant by translation
of the coordinate origin (as it must be). It is argued that Eq. (5.23) also holds when
the quantum nature of the nuclei is considered.

5.5 Polarization as a multivalued observable
Bulk polarization is a lattice, not a vector, and in fact the main entry of Eqs. (5.22)
and (5.23) is the multivalued function “Im ln”. But it is also clear that for a three-
dimensional system these equations cannot be accepted as they stand in the large-
sample limit: the prefactor goes in fact to zero. We have not exploited crystalline
symmetry yet.

By definition, whenever a material is crystalline, a uniquely defined lattice can
be associated with the real sample. The lattice is a “mathematical construction”
[97], uniquely defined—by means of an appropriate average—even in cases with
correlation, finite temperature, quantum nuclei, chemical disorder (i.e. crystalline
alloys, a.k.a. solid solutions), where the actual wavefunction may require a supercell
(multiple of the primitive lattice cell).

We consider—without loss of generality—a simple cubic lattice of constant a,
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where the supercell side L is an integer multiple of a: L = Ma. Suppose the
potential V̂ in the Hamiltonian is adiabatically varied in time; we define the phase
angle

γx(t) = Im ln ⟨Ψ0(t)| ei
2π
L
(
∑

ℓ ZℓXℓ−
∑

i xi) |Ψ0(t)⟩, (5.24)

where |Ψ0(t)⟩ is the adiabatic ground eigenstate. The current flowing across a section
of area L2 normal to x is

Ix(t) = L2Ṗx(t) =
e

2π
γ̇x(t). (5.25)

Owing to cristalline periodicity, The current Ix(t) is the sum ofM2 identical currents,
each flowing through a microscopic section of area a2; one can therefore define
a reduced crystalline phase angle γ

(crystal)
x such that γ̇x(t) = M2γ̇

(crystal)
x (t). The

crystalline polarization is thus expressed in terms of γ(crystal)x as

Px =
e

2πa2
γ(crystal)x ; (5.26)

the case of independent electrons is presented in detail in the next Section.
A generic lattice is dealt with by means of a coordinate transformation [1]; the

bulk value of P is then ambiguous modulo eR/Vcell, where R is a lattice vector and
Vcell is the volume of a primitive cell. The quantity eR/Vcell goes under the name of
polarization “quantum”. By definition a primitive cell is a minimum-volume one [97]:
this choice is mandatory in order to make P an unambiguously defined multivalued
observable. Finally we observe that the modulo ambiguity is only removed when
the termination of the bounded sample is specified; it is also required that even the
surfaces, as well as the bulk, are insulating [24]. Insofar as the crystalline system is
unbounded the modulo ambiguity cannot be removed.

5.6 Polarization of a band insulator revisited
Within mean field (either Hartree-Fock or Kohn-Sham) the ground eigenstate |Ψ0⟩
in the Schrödinger representation is a Slater determinant of N/2 doubly occupied
orbitals; in the crystalline case translational symmetry allows choosing the orbitals
in the Bloch form. For the sake of simplicity we get rid of trivial factors of two,
by considering a Slater determinant of singly occupied orbitals (so-called “spinless
electrons”); furthermore we consider the contribution to P

(el)
x of a single occupied

band.
In the simple cubic case, as dealt with above, the Bloch vectors are:

km =
2π

Ma
(m1,m2,m3), ms = 0, 1, . . . ,M − 1, (5.27)
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where m ≡ (m1,m2,m3). The Bloch orbitals |ψkm⟩ = eikm·r|ukm⟩ are normalized
over the crystal cell of volume a3. It is expedient to define the auxiliary Bloch
orbitals |ϕkm⟩ = ei

2π
L

x|ψkm⟩, and |Φ0⟩ as their Slater determinant; we also define
q = ( 2π

Ma
, 0, 0). Then

⟨Ψ0| ei
∑

i q·ri |Ψ0⟩ = ⟨Ψ0|Φ0⟩ =
1

M3N
det S, (5.28)

where S is the N ×N overlap matrix of the orbitals, in a different normalization:

Smm′ = M3⟨ψkm|ϕkm′ ⟩ =M3⟨ukm| ei(q+km′−km)·r |ukm′ ⟩ (5.29)
= M3⟨ukm|ukm′ ⟩ δq+km′−km =M3⟨ukm|ukm−q⟩δmm′ .

The normalization factors cancel: we have in fact

⟨Ψ0| ei
2π
L

∑
i xi |Ψ0⟩ =

1

M3N
det S =

M−1∏
m1,m2,m3=0

⟨ukm|ukm−q⟩, (5.30)

γ(crystal)x =
1

M2
Im ln ⟨Ψ0| e−i 2π

L

∑
i xi |Ψ0⟩

= − 1

M2

M−1∑
m2,m3=0

Im ln
M−1∏
m1=0

⟨ukm|ukm−q⟩. (5.31)

This is indeed the single-band version of the discretized Berry-phase formula
routinely implemented in ab-initio electronic-stucture codes for computing
macroscopic polarization [24]; the classical nuclear term has to be added. Indeed,
the same equation has been originally obtained by King-Smith and Vanderbilt [101]
upon discretization of Eq. (5.5).

5.6.1 The surface charge theorem
The early occurrences of the theorem of quantization of the surface charge
[38, 39, 40, 41] are discussed above, Sect. 2.3. The topological nature of this theorem
was first realized by Niu [129] in 1986; here we follow the treatment of Vanderbilt
and King-Smith [117] (see also Ref. [5]).

According to elementary electrostatics the macroscopic bound surface charge
density σsurface residing on the surface of a sample is related to the polarization in
the interior by σsurface = n̂ ·P, where n̂ is the surface normal. One defines the bound
charge σsurface by saying that no free charge is present, but what, precisely, does this
mean? The surface must be insulating, with the electron chemical potential lying in
a gap that is common to both bulk and surface. But this is not a unique prescription,
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since there can be a surface band which is entirely occupied or entirely empty. The
two cases differ by a polarization quantum in the corresponding P value. In fact,
given that the bulk polarization P is arbitrary modulo eR/Vcell, it follows that the
charge per surface area is defined modulo a quantum

σsurface = n̂ ·P modulo e

Asurface

. (5.32)

An equivalent formulation of the surface charge theorem can be arrived at by means
of WFs. The WF approach is most perspicuous for quasi-1d systems (e.g. insulating
polymers); a pedagogical presentation is in Ref. [126]. Notice that all terminations
are “insulating” in a polymer, there are no “surface” conducting states to speak of.

The bulk-surface correspondence encoded in Eq. (5.32) is an outstanding
manifestation of topology in condensed matter physics: the surface charge of an
insulating surface is “topologically protected”. The actual value of σsurface among
the discrete allowed values is then determined by energy considerations.

For a centrosymmetric crystal it is tempting to guess that P(λ) in the Berry-
phase formula, Eq. (5.4), vanishes for any λ. Instead, this is not the case:
centrosymmetry only dictates that P = −P modulo a quantum, and therefore
Eq. (5.4) yields P equal to an integer or half integer multiple of the quantum eR/Vcell
(for single band occupancy). Then from Eq. (5.32) it follows that the charge per
surface cell may only be an integer or half integer, as first discovered many years ago,
and previously discussed in Sect. 2.3. Therein, it was observed that this important
theorem is often ignored even by specialists in surface physics. A thorough analysis
of polar surfaces, in the light of the present theorem, has appeared in a couple of
2011 papers: by Stengel [130] and by Bristowe, Littlewood and Artacho [131].

Among the values dictated by topology, Nature chooses the minimum-energy
one. If the electric field vanishes outside the solid, a charged surface implies a
nonvanishing field inside. This has an extensive energy cost (proportional to the
square of the field times the volume). If the bulk of the solid is centrosymmetric,
the surface charge is zero; or otherwise the surface is metallic.

Quasi-1d “crystalline” systems (i.e. stereoregular polymers) are more interesting.
Therein: (1) the energy cost of the field is nonextensive and (2) the “surface” (i.e. the
termination) is zero-dimensional and cannot be “metallic”. Therefore different values
of the surface quantum can be actually realized for the same bulk: we illustrate this
with Figs. 5.4 and 5.5, taken from Ref. [126].

Alternant trans-polyacetylene is a centrosymmetric quasi-1d insulating crystal:
its end charges are quantized in units of half an election charge. We consider two
different terminations, shown in Fig. 5.4: notice that in both cases the molecule as
a whole is not centrosymmetric, although the bulk is. The end charges are trivially
related to the dipole per unit length (or per monomer). Fig. 5.5 shows that, in
the long system limit, the end charges are either zero or one, depending on the

83



Quantization of the dipole moment and of the end charges
in push-pull polymers

Konstantin N. Kudina! and Roberto Car
Department of Chemistry and Princeton Institute for Science, and Technology of Materials (PRISM),
Princeton University, Princeton, New Jersey 08544, USA

Raffaele Resta
CNR-INFM DEMOCRITOS National Simulation Center, Via Beirut 2, I-34014 Trieste, Italy
and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

!Received 18 June 2007; accepted 24 September 2007; published online 15 November 2007"

A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.
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Figure 5.4: A cen-
trosymmetric insulating
quasi-1d “crystal” with
two different termina-
tions: alternant trans-
polyacetylene. Here the
“bulk” is five-monomer
long.
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Figure 5.5: Quantization of the
end charges in polyacetylene,
after Ref. [126]. Dipole per
monomer as a function of the
number of monomers in the chain,
for the two different terminations.

termination. The structure is either “neutral” or “charge-transfer”; the end groups
are “donor” (NH2) and “acceptor” (COOH). The figure also shows that at finite
sizes both molecules are polar; the quantization is exact in principle in the infinite
system limit; in the present case it is attained at about 10-20 monomers. This length
is essentially the exponential decay length of the one-body density matrix of bulk
polyacetylene.

In the polyacetylene case considered so far topology mandates the end charges
to be zero modulo 1 (in units of e). Other cases where instead the end charge is
1/2 modulo 1 are also considered in Ref. [126]. The actual value of the end charges
depends on the relative ionicity of the end groups vs. the bulk. Counterintuitively,
while the ionicity varies on a continuous scale, the end charges may only vary by an
integer. More about this is said below, Sect. 5.7.

5.6.2 The single-point Berry phase in the noncrystalline
case

The key ingredient for computing the infrared spectrum of amorphous or liquid
systems is the power spectrum of the autocorrelation function of the macroscopic
polarization ⟨P(t) · P(0)⟩. Since Car-Parrinello simulations are customarily
performed using only k = 0 in the (supercell) BZ, we need to analyze the single-point
version of the Berry-phase formula for polarization, Eq. (5.5).
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We consider a simple cubic supercell of side L; in the large L limit the BZ integral
of any function f(k) is approximated as∫

BZ

dk f(k) → (2π)3

L3
f(0). (5.33)

We start with the Berry phase, i.e. with the 1d integral in square parenthesis in
Eq. (5.5):

γz = i

∫ π
L

− π
L

dkz⟨ujk|∂kzujk⟩ = i

∫ 2π
L

0

dkz⟨ujk|∂kzujk⟩ → −Im ln det S(k1,k2), (5.34)

where k1 = (0, 0, 0) and k2 = (0, 0, 2π/L). In Eq. (5.34) we have used the discretized
Berry phase, Eq. (3.55), with only one factor in the matrix product. Then, as in
Sect. 3.9.1, we notice that |ujk2⟩ = e−i 2πz

L |ujk1⟩: therefore the overlap matrix in
Eq. (5.34) becomes

Sjj′(k1,k2) = ⟨uj|e−i 2πz
L |uj′⟩, (5.35)

where all the orbitals |uj⟩ = |ψj⟩ are evaluated at k = 0. We then approximate
even the remaining integrals in Eq. (5.5) with a single point. At any time during
the simulation the electronic term in the polarization is thus

P (el)
z (t) = − e

πL2
γz =

e

πL2
Im ln det S. (5.36)

The nuclear (or core) contribution has a very simple form. If zm is the instantaneous
z coordinate of the m-th nucleus, and eZm the corresponding charge, the total
polarization is

Pz(t) =
e

πL2
Im ln det S +

e

L3

∑
m

Zmzm. (5.37)

This the expression currently used in computing power spectra and infrared spectra
[93], and, more generally, whenever a single k point is used in the first-principle
simulations [132, 94]. As already observed, even the nuclear term is affected by the
quantum indeterminacy: we can therefore express it equivalently into an “Im log”
form. It is easy to show that Eq. (5.37) can be equivalently written as

Pz(t) =
e

2πL2
Im ln [ (det S)2ei 2πL

∑
m Zmzm ], (5.38)

where the square of the determinant owes to the double spin occupancy.
Eq. (5.38) is nothing else than the independent-electron formulation of Eq. (5.22).

We have already observed that the polarization quantum in Eq. (5.37) is e/L2,
which vanishes in the L→ ∞ limit: therefore polarization itself is ill-defined in the
noncrystalline case. Nonetheless thre is no problem in the present context, and in
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fact Eq. (5.36) is routinely used for evaluating infrared spectra of amorphous and
liquid materials at finite temperature; some more details are given in Sect. D.11.

The key point is that the L → ∞ limit is not actually needed; for an accurate
description of a given material, it is enough to assume a finite L, actually larger than
the relevant correlation lengths and diffusion lengths in the material. For any given
L, the quantum e/L2 sets an upper limit to the magnitude of a polarization difference
accessible via the Berry phase. The larger are the correlation lengths, the smaller
is the accessible ∆P. This is no problem at all in practice, either when evaluating
static derivatives by numerical differentiation, such as e.g. in Ref. [132, 94], or when
performing Car-Parrinello simulations [93]. In the latter case ∆t is a Car-Parrinello
time step (a few a.u.), during which the polarization varies by a tiny amount, much
smaller than the quantum (the typical size of a large simulation cell nowadays is
L ≃ 50 bohr). Whenever needed, the drawback may be overcome by splitting ∆t
into several smaller intervals. More about computing infrared spectra via molecular
dynamics simulations will be said in Sect. D.11.

5.6.3 Kohn-Sham polarization vs. real polarization
All of the independent-electron formulæ discussed in Sect. 5.3 are exact for
noninteracting electrons, but the obvious aim is to implement them with KS
orbitals, in a given density-functional theory (DFT) framework. Since macroscopic
polarization applies to insulators only, we stress that we mean “KS insulator”
throughout: that is, we assume that the KS spectrum is gapped. In the class
of “simple” (i.e. computationally friendly) materials a genuine insulator is also a
KS insulator, although pathological cases (computationally unfriendly) do exist.

Having specified this, the key issue is then: Does the KS polarization coincide
with the physical many-body one? The answer is subtle, and is different whether
one chooses either “open” boundary conditions, as appropriate for molecules and
clusters, or periodic boundary conditions (Born-von Kármán), as invariably done in
the present Notes.

Within open boundary conditions the KS orbitals vanish at infinity, as well as
the charge density of the sample. P is then the first moment of the charge density,
divided by the sample volume. The basic tenet of DFT is that the microscopic
density of the fictitious noninteracting KS system coincides with the density of the
interacting system. Therefore the exact P coincides by definition with the one
obtained from the KS orbitals.

Matters are quite different within periodic boundary conditions: we have seen
above that P is not a function of the charge density, hence the value of P obtained
from the KS orbitals, in general, is not the correct many-body P. This was first
shown in 1995 by Gonze, Ghosez, and Godby [133], and later discussed by several
authors. A complete account of the issue can be found in Refs. [6, 64]. Here we
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just mention that the exact P is provided by Eq. (5.22), while the KS P is provided
by Eq. (5.36), where the KS orbitals enter Eq. (5.35); both expressions are to be
evaluated in the large-L limit. The two expressions are clearly different whenever
the ground wave function is not a Slater determinant.

Therefore P cannot be exactly expressed within DFT, but the exact functional
is obviously inaccessible, and even sometimes pathological. The practical issue is
whether the current popular functionals provide an accurate approximation to the
experimental values of P in a large class of materials.

A vast first-principle literature has accumulated over the years by either linear-
response theory [134]—not reviewed here—or by the modern theory. The errors
are typically of the order of 10-20% on permittivity, and much less on most other
properties (infrared spectra, piezoelectricity, ferroelectricity) for many different
materials. It is unclear which part of the error is to be attributed to DFT per
se, and which part is to be attributed to the approximations to DFT. For a very
recent (2018) pedagogical presentation of the issue see Ref. [64].

5.7 Polarization as a Z2 topological invariant
We consider in this Section only crystalline systems in 1d or quasi-1d (i.e.
stereoregular polymers): polarization P has the dimensions of a charge, and
therefore P/e is dimensionless. We further limit ourselves to the centrosymmetric
case.

We start rewriting the most compact single-point formula, in the 1d case,
Eq. (5.23):

P/e =
1

2π
Im ln ⟨Ψ0|ei

2π
L
(
∑

ℓ ZℓXℓ−
∑

i xi)|Ψ0⟩; (5.39)

we remind that P is well defined only for a charge-neutral system, and indeed
Eq. (5.39) includes both electronic and nuclear contributions to P .

For a centrosymmetric system the matrix element in Eq. (5.39) is real, hence
its phase is either 0 or π (mod 2π). We also remind that, in general, Eq. (5.39)
is meaningful in the large-system limit: N electrons in a periodic box of length L,
with N/L constant. In a centrosymmetric system the matrix element is real at any
N : the limit is no longer necessary.

It is expedient to consider 2P/e, which therefore assumes the values of either
0 mod 2, or 1 mod 2. This establishes a Z2 classification of 1d centrosymmetric
materials: they are either Z2-even (P = 0 mod e) or Z2-odd (P = e/2 mod e).

We have not yet proved that such classification is indeed topological. Let us
consider the two simplest nonprimitive (binary) centrosymmetric lattices in 1d.
The top sketch refers to an idealized molecular crystal, or to an alternant polymer,
like polyacetilene (compare to Fig. 5.4); the bottom sketch refers to an idealized
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Figure 5.6: Two paradigmatic
centrosymmetric lattices in 1d

ionic crystal. The former is Z2-even (see Fig. 5.5), while the latter is Z2-odd.
Both system can be described at the simplest level by an extreme tight-binding
model Hamiltonian (Hückel-like), whose only parameters are the first-neighbor
hoppings t and the onsite energies ϵ. The Z2-even model has alternating t’s and
constant ϵ; the Z2-odd has constant t and alternating ϵ’s. It is a straightforward
exercise to show that one cannot “continuously deformate” the Hamiltonian (and
its ground state) from one case into the other without closing the gap, while
conserving centrosymmetry. In modern jargon, the Z2 invariant is “protected” by
centrosymmetry. Provided we don’t close the gap, we may also deformate the tight-
binding ground state into a first-principle one: the classification is independent of
the theory level.

Since PBCs are at the root of Eq. (5.39), we have addressed so far an unbounded
sample: the Z2 invariant is a bulk property, but is determined only modulo a
“quantum”. Real systems are instead bounded: polarization remains ambiguous
until the termination of the sample has been specified. In that case Nature chooses
the minimum-energy eigenstate, while respecting the topology constraint (see Sect.
5.6.1). We also observe that for a bounded sample topology only appears in the
large-N limit (Fig. 5.5), while the PBC expression of Eq. (5.39) is quantized even
at finite N .

One further comment about the ionic case: bottom sketch in Fig. 5.6. If we
identify the structure with a lattice of classical point charges ±e, it is obvious
that the dipole per unit length of a bounded sample is ±e/2, depending on the
termination. When replacing the classical point charges with real anions and cations,
one expects the dipole per unit length to be about ±e/2, but only in the limit of
a strongly ionic system. Conterintuitively, topology mandates that—in the large
system limit—the dipole per unit length is ±e/2 even in the case of very weak
ionicity, i.e. a binary chain made of Ga and As atoms.

The proof that the end charge in centrosymmetric linear polymers is topological
can be equivalently arrived at by Wannier-function counting: see Ref. [126]. Similar
arguments also prove the topological nature of the soliton charge in polyacetilene,
first discovered by Su, Schrieffer, and Heeger in 1979 [135]. If we insist that we want
a singlet wavefunction—as everywhere in this Section—then the soliton charge can
only be ±e. But we may relax this condition, adopting single occupancy (instead
of double) for one of the Wannier functions in the soliton region: the soliton is then
neutral, but carries spin ±1/2.
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The Z2 is addressed again below, Sect. 7.5.5, for a model interacting many-
electron 1d system. It will be shown that by increasing the strength of the interaction
the system undergoes a topological quantum transition, from Z2-odd to Z2-even,
crossing a metallic state.
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Chapter 6

Chern-Simons geometric phase

6.1 Axion term in magnetoelectric response
We have stressed in Sect. 3.10.4 that differential geometry and algebraic topology
share several common features in 2n + 1 dimensions. Macroscopic polarization is
essentially a 1d phenomenon whose electronic contribution is a geometrical property
of the electronic ground state: the BZ integral of the trace of a Chern-Simons 1-
form, Eq. (3.57). A question then naturally arises: does it exist (in insulators)
a 3d phenomenon whose geometrical expression is the BZ integral of the trace
of a Chern-Simons 3-form, Eq. (3.72)? The positive answer was provided by Qi,
Hughes, and Zhang in 2008 [62]; see also Refs. [63, 136] for a more understandable
presentation. The geometrical observable enters the theory of the magnetoelectric
response, outlined in in Appendix A, and particularly in A.6.

The magnetoelectric response tensor is—as any response—expressed via linear-
response theory and Kubo formulæ, but it includes a term which is a pure ground-
state term, and does not require perturbation theory: the so-called “axion” term, a
pseudoscalar. Its expression is

αCS =
1

4π2

e2

ℏc
θ =

1

2π

e2

hc
θ, (6.1)

where θ is an angle [137, 136, 60], and “CS” stays for Chern-Simons. The
literature often adopts SI units, where the magnetoelectric susceptibility is no longer
dimensionless; in this case

αCS =
e2

2πh
θ (SI units). (6.2)

The θ angle is a bulk property defined modulo 2π; therefore αCS is a bulk property
with a “quantum” of arbitrariness, which (in Gaussian units, adopted here) is
proportional to the fine-structure constant. When we address a bounded crystallite,
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the value of αCS is no longer ambiguous once the surface termination of the 3d
sample has been specified. The analogy of αCS with macroscopic polarization—and
of θ with the corresponding Berry phase—is evident.

The main ingredient is the nonAbelian Berry connection, Eq. (3.56), which is a
1-form with matrix coefficients

Aα,jj′(k) = i⟨ujk|∂αuj′k⟩, (6.3)

which for any Cartesian coordinate α are Hermitian matrices in the band indices
jj′. Since spin-orbit coupling is essential in magnetoelectric materials, the Bloch
states |ujk⟩ are actually two-component spinors (a.k.a. spinorbitals), and the matrix
dimensions are even. In the following we will omit the band-and-spin indices: the
symbol Aα(k) will indicate the Hermitian matrix. The symbol “tr” indicates the
matrix trace over the band indices, while instead the symbol “Tr” indicates the trace
over the Hilbert space. The nonAbelian connection is therefore the differential form

A = i⟨ujk|∂kuj′k⟩ · dk = Aα(k)dk
α. (6.4)

The k space expression for θ in terms of the nonAbelian Berry connection looks
formidable, but is in fact a known formula in differential geometry; the compact
expressions used by mathematicians have been presented in Sect. 3.10.4. As said
above, θ is the BZ integral of the trace of the nonAbelian Chern-Simons 3-form
[137, 136]:

θ = − 1

4π
ϵαγβ

∫
BZ

dk tr
[
Aα(k)∂βAγ(k)−

2i

3
Aα(k)Aβ(k)Aγ(k)

]
.. (6.5)

In the Abelian case the connection matrices are diagonal and real: hence the
second term in the trace vanishes. In the simplest Abelian case (i.e. two-band) the
Chern-Simons geometric phase, Eq. (6.5), has a very simple expression in terms of
the connection A(k) (having two spin components) written in vector form:

θ = − 1

4π

∫
BZ

dk A(k) · ∇k ×A(k) = − 1

4π

∫
BZ

dk A(k) ·Ω(k), (6.6)

where Ω(k) is the 3d Berry curvature written in vector form as well.

6.1.1 Z2 topological insulators in 3d
The Chern-Simons term in the free energy is proportional to E ·B, ergo odd under
time-reversal and under inversion. This implies θ = −θ if the crystal has any of
the above symmetries. Notice also that in order to have a genuine magnetoelectric
response both symmetries must be broken (Appendix A).
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Since θ in an unbounded insulating sample is only defined modulo 2π, this means
that both θ = 0 and θ = π are possible in T-invariant (TI) crystals (regardless of
inversion symmetry) and in centrosymmetric crystals (regardless of T-symmetry).
Nontrivial (θ = π) insulators of the former class are called “strong topological
insulators”; those of the latter class are called “axion insulators” [138].

In both cases all linear-response (Kubo) terms accounting for magnetoelectric
coupling vanish, and the angle θ becomes topological: a Z2 invariant. This is in
analogy with γ in 1d centrosymmetric insulators, mentioned above and thoroughly
discussed in Sec. 5.7.

The invariant θ equals π for crystals in the class of strong Z2 topological
insulators, and therefore Eq. (6.5) provides an alternative way of detecting
topological order. Despite the difficulties in discretizing Eq. (6.5)—illustrated in
Sec. 6.1.2 below—the value of θ = π has been numerically verified for Bi2Se3 [60],
which is a paradigmatic material: its Z2-odd character has been assessed via other
theoretical tools, and experimentally as well.

Notice that θ = π, according to Eq. (6.1), would yield a magnetoelectric
susceptibility equal (in Gaussian units) to 1/4π times the fine structure constant,
i.e. ≃ 6× 10−4, a rather large value compared to common magnetoelectrics.

The θ value addressed so far is evaluated as a BZ integral, Eq. (6.5), for an
unbounded sample. Next we ideally address a bounded crystallite cut from a Z2-
odd crystal, where the bulk T symmetry is preserved at the surface as well. If
the whole surface were insulating, the arguments given above would guarantee a
nonvanishing (and large) magnetoelectric susceptibility. This is clearly absurd: any
T -invariant finite system has a null magnetoelectric susceptibility (all terms of it,
not only the Chern-Simons term). The solution is obvious: the surface must be
metallic. It is known by independent arguments, in fact, that Z2-odd T -invariant
insulators have topologically protected metallic states at their surfaces.

The case of axion insulators, where the topological invariant is protected by
inversion symmetry (and not by time reversal) deserves a separate discussion, in
what concerns their surface properties. In fact it is impossible to preserve inversion
symmetry at a surface; the nontrivial consequences of this fact are discussed in Ref.
[138]. Last but not least, axion insulators remain hypothetical at the time of writing
(2019): no material of this class has been synthesized so far.

6.1.2 Numerical considerations
The analytical BZ integrals for the geometrical properties all require twice
differentiable Bloch orbitals |ujk⟩ throughout the Brillouin zone. In numerical work
the BZ integrals are discretized over a k-point mesh; the orbitals |ujk⟩ are then not
a differentiable function of k. The phase factors are erratic, and further unitary
mixing of the occupied states at a given k is usual. One therefore needs replacing
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the analytical formulas with their discretized counterpart, which must converge to
the respective analytical expression in the dense-k limit.

In the present Notes we have described in detail the discretization of the Berry
phase γ in Sect. 3.9.4 and of the Chern number C1 in 4.1.4; more will be said below in
Sec. 8.3.4. In all these cases the expressions are numerically gauge invariant. By this
we mean that the expressions can be directly implemented with the raw Bloch states
(as provided by Hamiltonian diagonalizations) where the gauge is erratic. A naive
discretization—based on replacing the k-derivatives in the integrands in Eqs. (6.8)
and (6.10) with finite differences—fails because the raw |ujk⟩ are not differentiable.
The discretizations discussed in Secs. 3.9.1 and 8.3.4 follow a different path and are
unaffected by the erratic gauge.

In the case of the Chern-Simons phase θ a numerically gauge-invariant
discretization has not be found so far (except in the Abelian case). Therefore the
gauge must be regularized before the BZ integral, Eq. (6.5), is discretized [60, 61].

6.2 Polarization and Chern number revisited
In order to emphasize analogies and differences with some of the previous results,
here we recast them in terms of the nonAbelian Berry connection.

We have shown in Ch. 5 that the electronic contribution to the polarization of
a 1d system can be written in the form

Px = −e γ
2π
, (6.7)

where γ is the Berry phase. Notice that here we define γ for double occupancy,
i.e. inluding the factor of two. Polarization is a well defined observable only for
charge-neutral systems. The Berry phase can be generalized to include the nuclear
contribution as well: Eq. (6.7) defines the total polarization if we set

γ = 2

∫
BZ

dk tr [Ax(k)] + Im ln e−i 2π
a

∑
m Zmx

(n)
m . (6.8)

In Eq. (6.8) Zm are the dimensionless nuclear charges, and x
(n)
m the nuclear

coordinates in the 1d unit cell of size a. Thanks to charge neutrality, Eq. (6.8)
in invariant by translation of the origin (each of the two terms is not such). As we
have already stressed, the electronic term in Eq. (6.8) he BZ integral of the trace of
a Chern-Simons 1-form.

Next we switch to the Berry curvature, which is a 2-form. We have previously
outlined the fact that features of differential geometry and algebraic topology are
quite different in even vs. odd dimensions. The Berry curvature is called a Chern
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1-form (in general Chern n-forms are indeed 2n-forms). Chern-forms are gauge-
covariant, and their trace is gauge-invariant, differently from Chern-Simons forms.
The BZ-integral of the trace of a Chern form is quantized, i.e. (when properly
normalized) is a Z invariant.

The Chern invariant in 2d has been defined in Eq. (3.49); we recast it here in
terms of the nonAbelian Berry connection as

2πC1 = i

∫
BZ

dk tr [∂xAy(k)− ∂yAx(k)] = iεαβ

∫
BZ

dk tr [∂αAβ(k)]. (6.9)

This is written for spin channel, or for “spinless electrons”, as everywhere in these
Notes. In terms of the nonAbelian Berry curvature matrix Ωαβ(k) the expression is

2πC1 = i

∫
BZ

dk tr [Ωxy(k)]. (6.10)

Notice that in the nonAbelian case

Ωαβ(k) = ∂αAβ(k)− ∂βAα(k)− i[Aα(k),Aβ(k)], (6.11)

but the commutator does not contribute to the trace in Eq. (6.9), which therefore
looks the same in either the Abelian or nonAbelian case.

The right-hand member integral in Eq. (6.9) can be interpreted as an angle,
equal to an integer number of 2π. The form of Eq. (6.9) emphasizes the analogies,
but also the differences, with both the polarization phase angle γ, Eq. (6.8) and the
Chern-Simons phase, Eq. (6.5). The invariant has no “modulo” arbitrariness, hence
it provides a Z (not Z2) topological classification; it can be nonzero only in crystals
which lack T-symmetry

6.2.1 Open boundary conditions
Insofar as we adopt PBCs the system is unbounded and Px is well defined only
modulo e. If we consider instead a finite realization of the same 1d Hamiltonian
with length L, its OBCs dipole dx divided by L assumes—in the large-L limit—one
of the quantized values dictated by the bulk: see e.g. Fig. 5.4. If we adopt Eq. (6.7)
even in the OBC case, the dimensionless polarization can be written as

γ̃ = −2πdx
eL

= 2π

[
− 2

L
Tr {xP}+ 1

L

∑
m

Zmx
(n)
m

]
, (6.12)

where P is the ground-state projector and “Tr” is the trace over the Hilbert space.
In the special case where the bulk of the 1d system is centrosymmetric, the phase

γ becomes topological, as thoroughly discussed in Sec. 5.7; the same happens to
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γ̃ in the large-L limit. Centrosymmetric systems in 1d admit a Z2 classification:
Z2-even means γ = 0 mod 2π, Z2-odd means γ = π mod 2π,

Next we switch to the axion term, for spinful electrons. The full density matrix
is therefore a projector in the space of two-component spinors, at variance with the
one entering Eq. (6.8), which projects on a single spin channel (doubly occupied).
The Chern-Simons phase has a rather simple expression in r space for a bounded 3d
crystallite within OBCs. According to the literature [136] its expression in terms of
the ground-state projector is

θ̃ = −4π2

3V
εαγβIm Tr {rαPrβPrγP}, (6.13)

where V is the crystallite volume, in the large-V limit; a crucial requirement is
that the crystallite has an insulating boundary. As for the case of polarization, the
modulo 2π ambiguity in Eq. (6.13) is fixed only after the actual sample termination
is specified.

We notice that the ground state projector P enters the expression for γ̃ once,
and it appears three times in the expression for θ̃: this is reminiscent of their k-space
counterparts γ and θ, which were obtained from a Chern-Simons 1-form and 3-form,
respectively. The Chern number can be written in a form which superficially looks
similar to Eqs. (6.12) and (6.13). In fact it will be shown below in these Notes that

2πC1 = 4π2 εαβ Im TrV {rαPrβP}, (6.14)

where TrV is the trace per unit volume, taken in the inner region of the system only,
and not on the whole bounded sample (the reasons for this caveat will be discussed
below); instead, the traces in Eqs. (6.12) and (6.13) are over the whole sample. A
basic feature of Eq. (6.14) is that it has no modulo indetermination and is therefore
a Z invariant, independent of the actual sample termination.

6.2.2 Why even and odd dimensions are different
At variance with Eqs. (6.12) and (6.13), the ground state projector P enters
Eq. (6.14) twice, i.e. an even number of times: this makes a huge difference,
which is reminiscent of the huge difference between odd-n-forms and even-n-forms
in reciprocal space. All of the OBCs expressions in Sect. 6.2.1 are for a bounded
crystallite, with square-integrable orbitals (or spinorbitals); they cannot be adopted
as such within PBCs, because the position operator r becomes ill-defined therein
[103]. It turns out that this is not a serious drawback when the number of projectors
is even, i.e. in the case of Eq. (6.14).

We define the complementary projector Q = I−P ; then using P 2 = P we recast
Eq. (6.14) as

2πC1 = 4π2 ϵαβ Im TrV {PrαPrβP} = −4π2 ϵαβ Im TrV {PrαQrβP}; (6.15)
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then we notice that the operator PrαQrβP is bounded and lattice periodical. This is
the major virtue making C1 boundary insensitive, with no modulo arbitrariness. In
fact PrαQrβP is well defined even within PBCs: when evaluated over Bloch states,
it only requires off-diagonal matrix elements of r, which are well defined. This is a
staple of linear-response theory [134], which exploits the commutator [H, r] = −iℏv:

⟨ψjk| r |ψj′k⟩ = iℏ
⟨ψjk|v |ψj′k⟩
ϵj′k − ϵj′k

, j ̸= j′. (6.16)

A similar manipulation does not help when the number of P operators is odd:
in Eq. (6.12) the unbounded operator xP cannot be made bounded anyhow. In
Eq. (6.13), replacement of only one of the P operators gives some clue about the
1d-3d analogy. In fact

θ =
4π2

3V
ϵαγβIm Tr {rα(PrβQrγP ) }, (6.17)

where we have exploited antisymmetry. The inserted parenthesis isolate–by
the associative property—the operator PrβQrγP , which is bounded and lattice
periodical, as said above. But this is multiplied by the unbounded operator rα
before the trace is taken: the drawback is therefore not much different from the case
of 1d polarization.
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Chapter 7

Theory of the insulating state

The electron was discovered by J. J. Thomson in 1896. Soon afterwards it became
clear that the electron is responsible for electrical conduction in metals, and
conversely for the lack of conduction in insulators. The two opposite properties
were explained in the early 1900s by two somewhat opposite models for the electron
behavior: Drude’s (1900) and Lorentz’s (1906), both obviously based on classical
mechanics (Fig. 7.1). According to the Drude model the electrons in a metal roam
over macroscopic distances, hindered by some dissipative mechanism (in order to
guarantee Ohm’s law). According to the Lorentz model instead the electrons in
an insulator are modelled as (charged) harmonic oscillators: they cannot carry a
steady-state current, and they polarize instead.

The advent of quantum mechanics solved many open problems, including this
one. All electrons are of one kind; Bloch theorem, together with the Pauli principle,
provides a simple discrimination between metals and insulators. Bloch theorem
appeared in 1928 [139], and the main explanation of the insulating/metallic behavior

Figure 7.1: Schematic view of metals vs. insulators in classical physics. Left sketch:
Drude model for metals, where electrons roam freely over macroscopic distances,
hindered only by some dissipative mechanism. Right sketch: Lorentz model for
insulators, where each electron is tied (by an harmonic force) to a particular center.
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was apparently first proposed by Wilson in a couple of 1931 papers [140] (Peierls did
also claim priority). The single-particle spectrum of a lattice-periodical Hamiltonian
is in general gapped, and the electron count determines where the Fermi level lies.
If it crosses a band one has a conductor: an applied electric field induces free
acceleration of the electrons (at T = 0 in absence of dissipation). If the Fermi
level lies instead in a gap, one has an insulator: in presence of a field the electronic
system polarizes, but no steady-state current flows for T → 0. This is what all
undergraduates learn nowadays: band structure explains the insulating/conducting
behavior of most common crystalline materials across the periodic table.

At the root of band theory are two basic assumptions: the electrons are
noninteracting (in a mean-field sense), and the solid is crystalline. By the late
1950s, however, it became clear that there are solids to which this description does
not apply: their insulating behavior is due to completely different mechanisms. The
works of Mott in 1949 [141] and of Anderson in 1958 [142] opened new avenues
in condensed matter physics. In the materials which we now call Mott insulators
the insulating behavior is due to electron correlation [143], while in those called
Anderson insulators it is due to lattice disorder [144]. P. W. Anderson and N. Mott
were among the recipients of the 1977 Nobel prize for their previous work on the
insulating state.

Therefore in the early 1960s it became desirable to understand the insulating
state in a somewhat more general way than the textbook approach, based on
band theory. In 1964 Walter Kohn published a milestone paper, bearing the
same title as the present Chapter [128]. Kohn defined the insulating state
making neither reference to electronic excitations nor to Fermi-level properties:
the qualitative difference between insulators and metals manifests itself also in
a different organization of the electrons in their many-body ground state. Even
before the system is excited by any probe, a different organization of the electrons
is present in the ground state and this is the key feature discriminating between
insulators and metals [128, 145]. According to Kohn, the electrons in the insulating
state satisfy a many-electron localization condition; this kind of localization must
be defined in a subtle way given that, for instance, the Hamiltonian eigenstates
in a band insulator are obviously not localized. According to the original Kohn’s
formulation, the insulating behaviour arises whenever the ground-state wavefunction
of an extended system breaks up into a sum of contributions which are localized in
essentially disconnected regions of the many-electron configuration space.

A series of more recent papers [9, 21, 146, 147, 148, 149, 150, 151] has established
Kohn’s pioneering viewpoint on a sound formal and computational basis, rooted in
geometrical concepts. In the modern reformulation of the theory, Kohn’s localization
is measured by an appropriate quantity—having the dimensions of a squared
length—which converges to a finite value in all kinds of insulators, and diverges
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in all kinds of metals. These developments followed (and were inspired by) the
modern theory of polarization.

The ultimate polarization formula, capable of addressing any insulator (including
cases with disorder and electron-electron interaction), was published by the present
author in 1998 [103]. As shown above, the electronic term in polarization can be
cast in terms of a “single-point Berry phase” γ, Eq. (5.22), which is the phase of
a complex number zN , expressed as a ground-state expectation value, and whose
modulus is no larger than one. Whenever the modulus of zN goes to zero in the
large-system limit, then its phase—hence bulk polarization—is ill defined: Resta
and Sorella therefore postulated in 1999 [146] that the novanishing/vanishing of |zN |
characterizes the insulating/metallic nature of a condensed many-electron system.
Such bold postulate marks the starting point of the modern theory of the insulating
state; the postulate is based on the key observation that the static polarization of a
metallic sample is qualitatively different from the polarization of an insulating one.
In the metallic case the macroscopic polarization is trivial, material-independent:
it completely screens any static field (Faraday-cage effect). In the insulating case,
instead, the macroscopic polarization is nontrivial and material-dependent, both
with and without an applied field.

Before Ref. [146] the focus of the theory of the insulating state was invariably
on dc conductivity only, disregarding the alternative polarization characterization.
The most recent papers—and the present Notes as well—also address conductivity
issues in their relationship with polarization and with the behavior of |zN |.

7.1 Quadratic spread of the Wannier functions
As shown in Sect. 5.3.3 the electronic term in macroscopic polarization is
proportional to the first moment of the Wannier distribution, Eq. (5.9); the theory
of the insulating state has instead some important relationship with the second
cumulant moment of this distribution, also called “quadratic spread” by Marzari
and Vanderbilt [56, 19] (hereafter quoted as MV). It is defined as

Ω =

nb∑
j=1

[ ⟨wj0| r2 |wj0⟩ − |⟨wj0| r |wj0⟩|2 ] =
nb∑

m=1

( ⟨r2⟩j0 − |rj0|2). (7.1)

This is not gauge invariant, but has a gauge-invariant lower bound (a minimum only
in 1d), invariably called ΩI in the modern literature, defined as the Cartesian trace
of the BZ-integrated metric tensor:

ΩI = Vcell

d∑
α=1

∫
BZ

dk

(2π)d
gαα(k); (7.2)
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the metric tensor gαβ(k) has been defined above, Eqs. (3.43) and (3.47). Notice
that ΩI—as well as Ω, Eq. (7.1)—is an extensive quantity (when we consider e.g.
supercells of increasing size). Notice also that it refers to single band occupation: it
is therefore a “spinless” quantity.

The gauge-invariant quadratic spread ΩI enters in a fundamental way the modern
theory of the insulating state, when it addresses the special case of a band insulator
(i.e. a crystalline system of independent electrons). In Sect. 7.2.6 we will define
the intensive quantity λ2 as the quadratic spread per electron and per Cartesian
coordinate: the squared Resta-Sorella localization length, Eq. (7.43) below. We
anticipate that, in the special case of an isotropic band insulator, λ2 is related to
the MV gauge-invariant quadratic spread as λ2 = ΩI/(nbd), where nb is the number
of occupied bands and d is the dimension.

The MV gauge-invariant quadratic spread ΩI entered the literature as a formal
auxiliary quantity. But—after the groundbreaking paper by Michael Berry [33, 25]—
a basic tenet of quantum mechanics is that any gauge-invariant quantity is, at least
in principle, an observable. The establishment of ΩI as a physical observable is due
to Souza, Wilkens, and Martin in 2000 [147]: by means of a kind of fluctuation-
dissipation theorem, they related ΩI to the ω-dependent conductivity in insulators
(see Sect. 7.3.3).

7.1.1 Metals
The ground-state projector, Eq. (3.45), can be generalized to deal with the metallic
case as well:

Pk =
∑
j

θ(µ− ϵjk)|ujk⟩⟨ujk|, , (7.3)

where µ is the Fermi level and ϵjk are band energies. Like for insulators, Pk is
invariant for unitary transformations of the |ujk⟩ at a given k, although in the
metallic case the number of occupied bands is k-dependent.

If we try to adopt the expression of Eq. (3.47) for the metric-curvature tensor,
we need to evaluate the k-derivative of Pk:

∂αPk = −
∑
j

δ(µ− ϵjk)∂αϵjk |ujk⟩⟨ujk| (7.4)

+
∑
j

θ(µ− ϵjk)(|ujk⟩⟨∂αujk|+ |∂αujk⟩⟨ujk|).

The δ-like singularity at the Fermi surface vanishes in insulators; as for the remaining
contributions, they are smooth in insulators and piecewise continuous in metals. The
diagonal elements in Eq. (3.47) are thus highly singular, proportional to the square
of a Dirac δ at the k vectors where a band crosses the Fermi level.
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We may thus say that ΩI = ∞ in the metallic case, while it is always finite for an
insulator. This is just an anticipation of what will be the leitmotiv in the following
of the present Chapter: a geometrical quantity, having the dimensions of a squared
length, discriminates between insulators and metals.

7.2 Conductivity and Drude weight

7.2.1 Generalities

Misleading and/or incorrect beliefs about what the Drude weight is sometimes
appear in the literature. The presentation given here is inspired by Refs.
[152, 153, 154, 151].

The phenomenological definition of the insulating state is based on conductivity:
a macroscopically homogeneous material is insulating whenever its dc longitudinal
conductivity vanishes, i.e. when the real symmetric part of the conductivity tensor
σ
(+)
αβ (ω) goes to zero for ω → 0.

Longitudinal conductivity is an intensive material property whose most general
form can be written as

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i

πω

]
+ σ

(regular)
αβ (ω) = σ

(Drude)
αβ (ω) + σ

(regular)
αβ (ω), (7.5)

where the constant Dαβ goes under the name of Drude weight. The Drude weight
can be defined as [128]:

Dαβ = π lim
ω→0

ω Im σ
(+)
αβ (ω). (7.6)

The insulating behavior of a material implies that Dαβ = 0 and that the real
symmetric part of σ(regular)

αβ (ω) goes to zero for ω → 0 at zero temperature. A
compact and meaningful way for discriminating between metals and insulators is
therefore the Souza-Wilkens-Martin integral [147]

ISWM =

∫ ∞

0

dω

ω

d∑
α=1

Re σαα(ω), (7.7)

which diverges for all metals and converges for all insulators; more about ISWM will
be said in Sect. 7.3.3.

The conductivity obeys the the f -sum rule∫ ∞

0

dω Re σαα(ω) =
Dαα

2
+

∫ ∞

0

dω Re σ(regular)
αα (ω) =

ω2
p

8
=
πe2n

2m
, (7.8)
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where n is the electron density and ωp is the plasma frequency. For free electrons (a
gas of noninteracting electrons in a flat potential) σ(regular)

αβ (ω) vanishes, while Dαβ

assumes the same value as in classical physics [155], i.e Dαβ = πe2(n/m)δαβ: this
explains the extraordinary longevity of Drude theory, developed in the year 1900.
Given Eq. (7.8), switching on the potential (one-body and two-body) has the effect
of transferring some spectral weight from the Drude peak into the regular term; in
the case of insulators, the Drude peak vanishes.

Dissipation can be included fenomenologically in the Drude term by adopting a
single-relaxation-time approximation, exactly as in the classical textbook case [155],
i.e.

σ
(Drude)
αβ (ω) =

i

π

Dαβ

ω + i/τ
, (7.9)

whose τ → ∞ limit coincides with first term in the expression in Eq. (7.5).
In the special case of a band metal (i.e. a crystalline system of non interacting

electrons) σ(regular)
αβ (ω) is a linear-response property which accounts for interband

transitions, and is nonvanishing only at frequencies higher than a finite threshold.
In disordered and/or correlated systems instead the selection rule breaks down: the
Drude weight may vanish, and σ

(regular)
αβ (0) may be nonzero.

The Drude weight Dαβ (also called charge stiffness) is not a linear-response
property. It must be regarded as a ground-state property which accounts for the
(inverse) inertia of the many-electron system in the adiabatic limit, and provides
an effective value of n/m, where the free-electron value is modified by the one- and
two-body potentials: this is clearly shown in Eqs. (7.30) and (7.72) below. As said
above, the free-electron Drude weight is an upper limit for the actual value of Dαα.
In the case of a band metal Dαβ can be equivalently expressed as a Fermi-surface
integral, by means of an integration by parts: it acquires then the meaning of an
“intraband” term: see Eq. (7.31) below.

7.2.2 Kohn’s expression for the Drude weight
In his milestone 1964 paper, Kohn proposes a very general expression for the Drude
weight, which applies to disordered and/or correlated systems as well; it reduces to
the standard expressions given e.g. in Ref. [153] in the special case of a band metal:
see Eq. (7.27) below.

We address an interacting (and possibly disordered) N -electron system. We
consider—following the milestone Kohn’s paper [128]—the family of many-body
Hamiltonians parametrized by κ as

Ĥκ =
1

2m

N∑
i=1

|pi + ℏκ|2 + V̂ ; (7.10)
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the potential V̂ includes one-body (possibly disordered) and two-body (electron-
electron) contributions. Equation (7.10) is exact in the nonrelativistic, infinite-
nuclear-mass limit. The vector κ, having the dimensions of an inverse length, is
called “flux” or “twist”. Setting κ ̸= 0 amounts to a gauge transformation. The
electrons are confined in a cubic box of volume Ld and the eigenstates |Ψnκ⟩ are
normalized to one in the hypercube of volume LNd; we will adopt the simplifying
notation |Ψn0⟩ = |Ψn⟩. The same Hamiltonian has been addressed before in Sect.
5.4.2.

Bulk properties of condensed matter obtain from the thermodynamic limit:
N → ∞, L → ∞, N/Ld constant. Since the following formulæ will comprise
κ-derivatives evaluated at κ = 0, it is important to stress that the differentiation is
performed first, and the thermodynamic limit afterwards.

Two kinds of boundary conditions can be adopted for the given Hamiltonian:
either periodic (PBCs) or “open” (OBCs). The latter case is dealt with below in
Sect. 7.4; here we adopt Born-von-Kàrmàn PBCs over each electron coordinate ri
independently, whose Cartesian components ri,α are then equivalent to the angles
2πri,α/L. The potential V̂ enjoys the same periodicity, which implies that the electric
field averages to zero over the sample. As noticed by W. Kohn in 1964 [128], PBCs
violate gauge invariance in the conventional sense: for instance, the ground state
energy E0κ actually depends on κ in metals, and in metals only. It has been show
before, in Sect. 5.4.2, that E0κ = E0 does not depend on κ in insulators.

Kohn’s expression for the Drude weight is:

Dαβ =
πe2

ℏ2Ld

∂2E0κ
∂κα∂κβ

∣∣∣∣
κ=0

. (7.11)

We remind that it is crucial to set κ = 0 in the derivative before the thermodynamic
limit is taken: this ensures that we are following the ground state adiabatically [152].

7.2.3 Kubo formulæ for conductivity
We remind the fundamentals of linear-response theory, presented in more detail in
Appendix C; the general response function χ(ω) is defined as

foutput(ω) = χ(ω) finput(ω). (7.12)

Within quantum mechanics at zero temperature, we define χ(t) by means of a
perturbation in the Hamiltonian ∆Ĥ = −δ(t)Â (the “kick”), acting on the system
in its ground state. The response is measured as the expectation value of another
operator B̂. Without loss of generality we simplify notations by assuming that

⟨Ψ0| Â |Ψ0⟩ = 0, ⟨Ψ0| B̂ |Ψ0⟩ = 0. (7.13)
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Time-dependent perturbation theory leads to the Kubo formula for the
generalized susceptibility, which we write in the ω domain by adopting the compact
notations due to Zubarev [67, 156, 157]:

χ(ω) = −⟨⟨B̂|Â⟩⟩ω; (7.14)

⟨⟨B̂|Â⟩⟩ω =
1

ℏ
lim
η→0+

∑
n̸=0

′
(
⟨Ψ0|B̂|Ψn⟩⟨Ψn|Â|Ψ0⟩

ω − ω0n + iη
− ⟨Ψ0|Â|Ψn⟩⟨Ψn|B̂|Ψ0⟩

ω + ω0n + iη

)
. (7.15)

The positive infinitesimal η ensures causality, and we remind that

lim
η→0+

1

ω ± iη
= P

1

ω
∓ iπδ(ω), (7.16)

where P indicates the principal part. We draw attention to the fact that the sign
conventions adopted in this work agree with Zubarev [67, 156] and Chandler [158],
but are opposite the the ones of McWeeny [157] and other textbooks.

In order to address conductivity it is essential to adopt PBCs: there cannot be
any steady state current in a bounded sample within OBCs. Furthermore, since
the multiplicative position r̂ is not a legitimate operator within PBCs [103], it is
mandatory to adopt the vector-potential gauge for the macroscopic electric field E :
the perturbation in the Hamiltonian is therefore an ω-dependent vector potential
δA, constant in space.

The current carried by a generic state |Ψ⟩ after the perturbation is switched on
is therefore

j = − e

Ld
⟨Ψ| v̂ |Ψ⟩ − e2N

mcLd
δA, (7.17)

where v̂ is the many-body velocity, Eq. (1.18), at κ = 0; the two terms in Eq. (7.17)
are generally called “paramagnetic” and “diamagnetic”, respectively. Expansion of
the Hamiltonian to first order in the perturbing vector potential δA yields

∆Ĥ =
e

c
δA · v̂. (7.18)

If we set E and δA along the β direction, the linearly induced current in the α
direction is

jα = − e2N

mcLd
δA δαβ −

e

Ld
⟨⟨ v̂α |

e

c
δA v̂β⟩⟩ω

= − e2

cLd

(
N

m
δαβ + ⟨⟨v̂α|v̂β⟩⟩ω

)
δA(ω), (7.19)

where we are restoring the ω dependence. The term in δA2, being constant in space,
has zero matrix elements; it is also second order in E .
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In order to arrive at conductivity we need to express δA(ω) in Eq. (7.19) in terms
of E(ω). In the time domain their relationship is E = −1

c
∂δA/∂t; a naive integration

would yield δA(ω) = −icE(ω)/ω, but this violates causality. The correct integration
yields:

δA(ω) = −icE(ω)
ω + iη

= cE(ω)
[
1

iω
− πδ(ω)

]
. (7.20)

Therefore the current, as expressed directly in terms of the field intensity, is

jα(ω) = σαβ(ω) Eβ(ω) = − e2

Ld

(
N

m
δαβ + ⟨⟨v̂α|v̂β⟩⟩ω

)[
1

iω
− πδ(ω)

]
Eβ(ω). (7.21)

We then write the Kubo formula as

⟨⟨vα|vβ⟩⟩ω =
1

ℏ
lim
η→0+

∑
n̸=0

′
(
Rn,αβ + i In,αβ

ω − ω0n + iη
− Rn,αβ − i In,αβ

ω + ω0n + iη

)
, (7.22)

Rn,αβ = Re ⟨Ψ0|v̂α|Ψn⟩⟨Ψn|v̂β|Ψ0⟩, In,αβ = Im ⟨Ψ0|v̂α|Ψn⟩⟨Ψn|v̂β|Ψ0⟩, (7.23)

where Rn,αβ is symmetric and In,αβ antisymmetric. The longitudinal conductivity is
the symmetric part σ(+)

αβ (ω) of the tensor. Upon exploiting Eq. (7.16) we eventually
get

Dαβ =
πe2

Ld

(
N

m
δαβ −

2

ℏ
∑
n̸=0

′Rn,αβ

ω0n

)
, (7.24)

Re σ(regular)
αβ (ω) =

πe2

ℏLd

∑
n̸=0

′Rn,αβ

ω0n

[ δ(ω − ω0n) + δ(ω + ω0n) ], (7.25)

Im σ
(regular)
αβ (ω) =

2e2

ℏLd

∑
n̸=0

′Rn,αβ

ω0n

ω

ω2
0n − ω2

. (7.26)

A straightforward calculations proves that Eq. (7.24) is indeed equivalent to Kohn’s
expression for the Drude weight, Eq. (7.11). The second term in parenthesis is the
correction to the free-electron Drude weight due to the one- and two-body potential
V̂ ; in the case of a band metal Eq. (7.24) reduces to Eq. (7.30).

It is trivial to verify that Eqs. (7.24) and (7.25) obey the f -sum rule, Eq. (7.8);
the two terms σ(Drude)

αβ (ω) and σ
(regular)
αβ (ω) obey the Kramers-Kronig relationships

separately; we also remind that only longitudinal conductivity σ(+)
αβ (ω) is addressed

for the time being; transverse conductivity σ(−)
αβ will be addressed in Ch. 8.

At any finite size L the spectrum is discrete and the system is gapped, while in
a metal the gap closes in the large-L limit. It is therefore necessary to regularize
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the singular sums in Eqs. (7.25) and (7.26); this can be done in the following way
[159]. One starts assuming a finite value of η in the Kubo formula, Eq. (7.15), with
η much larger than the level spacing; then one takes the L→ ∞ limit first, and the
η → 0+ limit afterwards. There is no need of regularizing in order to adddress sum
rules, like the f -sum rule and the SWM sum rule (discussed below), because they
are integrated properties.

The basic expressions of of Eqs. (7.24) and (7.25) apply to both metals and
insulators. In the latter case the Drude weight vanishes, and σ(+)

αβ (ω) = σ
(regular)
αβ (ω);

for a gapped insulator σ(+)
αβ (ω) vanishes for ω < ϵgap/ℏ.

7.2.4 Semiclassical theory of electron transport
In the simple case of a band metal (with double band occupancy) Eq. (7.11) becomes
the Brillouin-zone (BZ) integral [153]:

Dαβ = 2πe2
∑
j

∫
BZ

dk

(2π)d
θ(µ− ϵjk)m

−1
j,αβ(k), (7.27)

where µ is the Fermi level, ϵjk are band energies, and the effective inverse mass
tensor of band j is

m−1
j,αβ(k) =

1

ℏ2
∂2ϵjk
∂kα∂kβ

. (7.28)

There is an alternative and very meaningful expression equivalent to Eq. (7.28),
where the deviation of m−1

j,αβ(k) from its free-electron value appears as a geometrical
term. To the best of the author’s knowledge, this expression is due to Gao, Yang,
and Niu in a 2015 paper [160]. We remind that the orbitals |ujk⟩ are eigenstates of
Hk = e−ik·rHeik·r, hence the identity ⟨ujk| (Hk − ϵjk) |ujk⟩ ≡ 0 holds. Taking two
derivatives, one arrives at

m−1
j,αβ(k) =

1

m
δαβ −

2

ℏ2
Re ⟨∂αujk| (Hk − ϵjk) |∂βujk⟩, (7.29)

Dαβ = πe2
n

m
δαβ −

4πe2

ℏ2
∑
j

∫
BZ

dk

(2π)d
θ(µ− ϵjk) Re ⟨∂αujk| (Hk − ϵjk) |∂βujk⟩ :

(7.30)
the first term on the r.h.s. is the free-electron Drude weight, while the second one
is the geometrical correction due to the crystalline potential. For free electrons the
|ujk⟩ are k-independent, ergo the correction vanishes.

For insulators, the BZ integral in Eq. (7.27) trivially vanishes. As anticipated
above, the Drude weight of a band metal can be equivalently expressed as a Fermi-
surface integral, by means of an integration by parts: it acquires then the meaning
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of an “intraband” term [153]:

Dαβ = −2πe2
∑
j

∫
BZ

dk

(2π)d
f ′(ϵjk) vjα(k)vjβ(k), vjα(k) =

1

ℏ
∂ϵjk
∂kα

(7.31)

where at zero temperature the Fermi occupation function is f(ϵ) = θ(µ − ϵ). The
formula as given is for a simple Fermi surface; in general there may be multiple
bands that cross the Fermi level and Fermi surfaces having complex topology, for
example including disconnected sections. The integration by parts requires then
some care (see e.g. Ref. [161]).

The Fermi-surface expression shows explicit agreement with the spirit of
Landau’s Fermi-liquid theory, which holds that charge transport in metals involves
only quasiparticles with energies within kBT of the Fermi level. Indeed, Eq. (7.31)
can be endowed with a relaxation time τ(ϵ), yielding the same formula for dc
conductivity as given by the popular Ashcroft-Mermin textbook [155]:

Re σ(+)
αβ (0) = −2e2

∑
j

∫
BZ

dk

(2π)d
f ′(ϵjk) τ(ϵjk) vjα(k)vjβ(k). (7.32)

Notice that the textbook formula is derived in a purely semiclassical way; here we
have proved that it coincides with the exact one (obviously, for band metals only).

7.2.5 Adiabatic vs. nonadiabatic inertia of the many-
electron system

It is immediate to retrieve from Eq. (7.28) the inverse of the electron mass m in
the special case of free electrons. In the general case Eqs. (7.11) and (7.27) still
measure the inertia of the many-electron system, albeit in the adiabatic limit only
(Dαβ is an ω → 0 property). It is interesting to compare the adiabatic inertia of
the many-electron system to the nonadiabatic one in response to an instantaneous
“kick”: the two quantities only coincide in the free-electron case.

It is expedient to introduce an “effective” value of n/m, by means of the
relationship

Dαβ = πe2(n/m)∗αβ, (7.33)
where we remind that for free electrons Dαβ = πe2(n/m)δαβ, hence (n/m)∗αα ≤ n/m.

Conductivity is the current response to a macroscopic field:

jα(ω) = σαβ(ω)Eβ(ω), (7.34)

where the sum on the repeated indices is understood. Suppose we apply an
instantaneous pulse E(t) = Ẽ δ(t), where Ẽ has the dimensions of a field times
a time.
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We start replacing the full σαβ(ω) in Eq. (7.34) with σ
(Drude)
αβ (ω); in the simple

case of a band metal this amounts to neglecting the interband transitions. The
response is therefore identical to the one of a free-electron gas of density n∗

αβ, ergo
the current at t = 0+ is

j(Drude)
α (0+) = e2(n/m)∗αβ Ẽβ, (7.35)

and in the single-relaxation-time approximation, the longitudinal steady-state
current is

jα = σ
(Drude)
αβ (0) Eβ = τe2(n/m)∗αβ Eβ. (7.36)

The analogy with the textbook classical case [155] is perspicuous.
Next we are going to study the full nonadiabatic response to the instantaneous

pulse, using the full σαβ(ω). The Fourier transform of the pulse Ẽ δ(t) is Ẽ (ω-
independent), hence the linearly induced current is

jα(ω) = σαβ(ω) Ẽβ,

jα(t) =
1

2π

∫ ∞

−∞
dω σαβ(ω) Ẽβ e−iωt. (7.37)

The evaluation of the integral is a bit tricky. Since σ(ω) is causal, jα(t) = 0 for
t < 0, hence we may replace jα(t) = [jα(t) + jα(−t)] θ(t). It then follows

jα(t) =
1

2π

∫ ∞

−∞
dω σαβ(ω)(e

iωt + e−iωt) Ẽβ, t > 0. (7.38)

Since the imaginary part of σ(ω) is odd, we have

jα(t) =
1

π

∫ ∞

−∞
dω Re σαβ(ω)eiωt Ẽβ, t > 0. (7.39)

Next we exploit the f -sum rule, Eq. (7.8):∫ ∞

−∞
dω Re σαβ(ω) = δαβ ωp/4 = πe2(n/m)δαβ (7.40)

jα(0
+) = e2(n/m) Eα. (7.41)

This is similar in form to Eq. (7.35), but here n = N/V includes all the electrons,
even the core ones (provided the integral includes ultraviolet and x-ray regions of
the spectrum). Notice that, instead, (n/m)∗αβ in Eq. (7.35) only includes valence
electrons: in fact completely filled bands do not contribute to Eq. (7.27).

The full response in Eq. (7.41) is identical to the classical response of a system of
free electrons. And in fact at t = 0+ the electrons have not yet responded to anything
other than the instantaneous pulse [153], which probes the bare inertia of the many-
electron system. As said above, only the ground-state adiabatic contribution is
included in Eq. (7.35), while instead Eq. (7.41) includes coupling to the excited
states, as required by time-dependent perturbation theory.
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7.2.6 The insulating state according to Resta and Sorella
As discussed above, the main observable that discriminates an insulator from
a metal is the vanishing vs. nonvanishing of dc conductivity. Soon after the
development of the modern theory of polarization in the 1990s, Resta and Sorella
[146], hereafter quoted as RS, realized that besides conductivity, another observable
sharply characterizes the insulating state: macroscopic polarization P. In fact in
a metal P is trivial and material-independent: it completely screens any static
field (Faraday-cage effect). In the insulating case, instead, P is nontrivial and
material-dependent, both with and without an applied field. By the late 1990s
all the mysteries and misconceptions about polarization were unveiled and a change
of paradigm occurred; the same change of paradigm could also provide a clue on the
genuine nature of the insulating state.

The ultimate formulation of the theory of polarization appeared in 1998 [103],
where the electronic term in P was cast in term of a single-point Berry phase; the
expression for a quasi-1d system of N electrons in a periodic box (along x) of length
L was given above. We reproduce it here for the sake of clarity:

γ(el) = Im ln zN , zN = ⟨Ψ0| e−i 2π
L

∑
j xj |Ψ0⟩, . (7.42)

The ground state |Ψ0⟩ is very general: it may include disorder and correlation.
The electronic Berry phase, Eq. (7.42), is well defined insofar as the complex
number zN does not vanish in the large-N limit (at constant N/L). In the
original paper RS postulated that the vanishing/nonvanishing of zN characterizes
the metallic/insulating state, on the ground—as said above—that bulk macroscopic
polarization is ill defined in metals and well defined in insulators.

In his 1964 paper W. Kohn stated verbatim that “insulating characteristics
are a strict consequence of electron localization (in an appropriate sense) and
do not require an energy gap”; he did not, however, provide a practical tool to
actually measure such localization in a given many-body wavefunction. Kohn’s
paper remained somewhat neglected and little cited for many years. In 1999 RS
proposed to exploit the complex number zN in Eq. (7.42), whose modulus is no
greater than one, to define a “localization length” λ, in the spirit of Kohn’s vision,
via the relationship

λ2 = − 1

4π2
lim

N→∞

L2

N
ln |zN |2, (7.43)

which was postulated to diverge in any metal and to converge in any insulator.
In agreement with Kohn’s pioneering viewpoint, localization is at the root of the
insulating behavior. Several arguments were provided in support of our original
postulate (some of them detailed below), although none of these arguments was
actually related to conductivity. The original paper also conjectured that the
approach can be extended to 2d and 3d systems, where λ2 becomes a Cartesian
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tensor. Later, Souza, Wilkens, and Martin [147] have shown that the RS localization
tensor has the meaning of second cumulant moment of the electron distribution (see
Sect. 7.3). Because of this, the notation ⟨rαrβ⟩c is adopted for the localization
tensor in most of the subsequent literature.

In the isotropic case Eq. (7.43) holds as it stands, where L is the linear dimension
of the system. As anticipated above in the special case of an isotropic band insulator
in dimension d one has λ2 = ΩI/(nbd), where nb is the number of occupied bands
and ΩI is the MV gauge-invariant quadratic spread, Eq. (7.2).

We are going to provide next the link between the RS formula and conductivity.
It has been proved in Sect. 5.4.2 that in a crystalline system (possibly correlated)
the electronic Berry phase yielding the electronic polarization P(el) has the same
expression as in Eq. (7.42) even for 2d and 3d systems, provided the |Ψ0⟩ therein is
the ground eigenstate of Eq. (7.10) at κ = 0, periodic over a cubic box of side L.
The d-dependent prefactor has been discussed above [102, 127].

We consider again the many body Hamiltonian of Eq. (7.10) within PBCs over a
cubic box of volume Ld. As said above, the ground eigenstate |Ψκ⟩ has a nontrivial
κ-dependence: we consider a special value κ1 =

2π
L
e1, where e1 is the unit vector in

the x-direction. For this special κ1 the effect of the gauge can be gauged away; in
fact the state vector

|Φ0κ1⟩ = e−iκ1·r̂|Ψ0⟩ (7.44)
obeys PBCs, and is and eigenstate of Ĥκ1 with eigenvalue E0, similarly to the OBCs
case. We remind that r̂ =

∑
i ri . Now the issue is whether |Φ0κ1⟩ coincides or not

with the genuine |Ψ0κ1⟩, obtained by following the ground state adiabatically while
κ is switched on continuously. The issue has been discussed already en passant, in
Sect. 5.4.2.

We assume an isotropic system, where Dαβ = D δαβ. Eq. (7.11) shows that
whenever the Drude weight D is nonzero the state |Ψ0κ1⟩ has an energy higher than
E0: it is therefore an excited eigenstate of Ĥκ1 , orthogonal to |Φ0κ1⟩. If instead
D = 0, then the state |Ψ0κ1⟩ coincides—apart for a phase factor—with |Φ0κ1⟩ (we
are assuming a nondegenerate ground state):

⟨Φ0κ1|Ψ0κ1⟩ = ⟨Ψ0| eiκ1·r̂ |Ψ0κ1⟩ = 0, D ̸= 0, (7.45)
⟨Φ0κ1|Ψ0κ1⟩ = ⟨Ψ0| eiκ1·r̂ |Ψ0κ1⟩ = e−iγ, D = 0. (7.46)

We only address the modulus of the matrix elements in the following. To leading
order in 1/L, we may replace |Ψ0κ1⟩ with |Ψ0⟩, hence:

|zN | = | ⟨Ψ0| eiκ1·r̂ |Ψ0⟩ | → 0, D ̸= 0, (7.47)
|zN | = | ⟨Ψ0| eiκ1·r̂ |Ψ0⟩ | → 1, D = 0. (7.48)

Therefore in the large-L limit |zN | vanishes whenever the Drude weight is nonzero,
while it converges to 1 from below in insulators. The RS expression of Eq. (7.43),
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having the dimensions of a squared length, is positive and finite in insulators in
the large-system limit. According to RS the dimensionless quantity N2/d−1 ln |zN |2
converges (in insulators) to a finite limit, ergo λ2, Eq. (7.43), is intensive in any
dimension d. In the present review we prove the intensiveness of λ2 (in any d) in
the special case of a band insulator, Eq. (7.55) below. In the general case, the
intensiveness (again in any dimension d) follows from the equivalence to the many-
body metric, Eq. (7.65) below. By similar considerations, it is easy to see that λ2
instead diverges whenever D > 0.

7.2.7 Independent electrons
A crystalline system of independent electrons is either a band metal or a band
insulator: in both cases |Ψ0⟩ is a Slater determinant of Bloch orbitals. The RS
square length λ2 discriminates very sharply between the two cases [21, 146]. We
proceed in analogy to our previous treatment of quasi-1d insulators, for the a simple
cubic lattice (with no loss of generality). Let a be the lattice constant, L =Ma the
Born-von-Kàrmàn periodicity, and µ the Fermi level; |ψmk⟩ are the Bloch orbitals
with energy ϵmk. Our main ingredient will be is the overlap matrix of Eq. (3.40),
also called “connection matrix”, which we rewrite here for the sake of convenience

Smm′(k,k′) = ⟨umk|um′k′⟩. (7.49)

The d-dimensional analogue of Eq. (3.55) reads

|Ψ0⟩ =
1√
MNd

A
∏

ϵmks<µ

Md∏
s=1

ψ↑
mks

ψ↓
mks

, (7.50)

where now s is a vector index running on a regular grid of integers; in 3d the grid
is:

s ≡ (s1, s2, s3), s1, s2, s3 = 1, 2 . . .M, ks =
2π

L
(s1e1 + s2e2 + s3e3). (7.51)

The
√
1/MNd factor in Eq. (7.50) owes to the different normalizations: |Ψ0⟩ is

normalized over the Born-von-Kàrmàn cell of volume Ld, while the Bloch orbitals
|ψmk⟩ are normalized over the crystal cell of volume a3. Using then spin factorization
and the sparseness of the overlap matrix we arrive, in the insulating case, at

z∗N = ⟨Ψ0| eiκ1·r̂ |Ψ0⟩ =
Md∏
s=1

[ det S(ks,ks + κ1) ]
2, (7.52)

where the 1/MNd factor has disappeared.
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Instead, it is rather simple to prove that zN vanishes in the metallic case, and
therefore λ2 = ∞ in a band metal, even at finite N [21, 146]. Instead in presence
of interaction and/or disorder the selection rule breaks down. The RS localization
length λ2 diverges only asymptotically. This is shown very perspicuously in the
paradigmatic case case of the Mott metal-insulator transition discussed below.

Coming back to the insulating case, Eq. (7.52) implies

ln |zN |2 = 2 ln
Md∏
s=1

det S(ks,ks − κ1)S(ks,ks + κ1), (7.53)

and the RS localization length becomes

λ2 = − L2

4π2N
ln |zN |2 = − 2L2

4π2N
ln

Md∏
s=1

det S(ks,ks − κ1)S(ks,ks + κ1), (7.54)

where the large-M limit is understood.
At this point we make contact with the quantum metric and the gauge-invariant

quadratic spread. Starting from Eq. (7.54), one arrives at:

λ2 =
ad

nb

∫
BZ

dk

(2π)d
gxx(k) =

ΩI

nbd
; (7.55)

the proof is given in Ref. [21]

7.3 Geometry of the many-body ground state
We generalize a little bit Kohn’s Hamiltonian as

Ĥκ =
1

2m

N∑
i−1

[
pi +

e

c
A(ri) + ℏκ

]2
+ V̂ , (7.56)

where the vector potential A(r) summarizes all T-breaking terms, as e.g. those due
to spin-orbit coupling to a background of local moments; furthermore in order to
simplify notations we will set in the following Ĥ0 ≡ Ĥ, |Ψn0⟩ ≡ |Ψn⟩ , En0 ≡ En.

If the state vector is a differentiable function of the twist κ, then the differential
phase and the differential distance define the Berry connection and the quantum
metric, respectively:

φκ,κ+dκ = Aα(κ)dκα, D2
κ,κ+dκ = gαβ(κ)dκαdκβ, (7.57)

Aα(κ) = i⟨Ψκ|∂καΨκ⟩, gαβ(κ) = Re ⟨∂καΨκ|∂κβ
Ψκ⟩ − ⟨∂καΨκ|Ψκ⟩⟨Ψκ|∂κβ

Ψκ⟩;
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summation over repeated Cartesian indices is understood (here and throughout).
The Berry curvature is defined as the curl of the connection:

Ω̃αβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβ
Aα(κ)]dκαdκβ = −2 Im⟨∂αΨκ|∂βΨκ⟩dκαdκβ.

(7.58)
All of the above forms are extensive.

The connection is a 1-form and is gauge-dependent; the metric and the curvature
are 2-forms and are gauge invariant. The above fundamental quantities are defined
in terms of the state vectors solely; we will also address a 2-form which involves
the Hamiltonian as well. Suppose that H is the Hamiltonian and E0 its ground
eigenvalue: we will consider

G = ⟨Ψ| (H − E0) |Ψ⟩, (7.59)

which vanishes for |Ψ⟩ = |Ψ0⟩; an essential feature of G is that it is invariant by
translation of the energy zero. The geometrical quantity of interest is the gauge-
invariant 2-form which obtains by varying |Ψ⟩ in the neighborhood of |Ψ0⟩.

7.3.1 Metric and the Resta-Sorella theory
We start defining the metric per electron as

gαβ(N) =
1

N
( Re ⟨∂καΨ0|∂κβ

Ψ0⟩ − ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ
Ψ0⟩ ); . (7.60)

For the sake of clarity, we make contact with the notations adopted in most of the
previous literature. The RS localization tensor, a.k.a. second cumulant moment of
the electron distribution is

⟨rαrβ⟩c = lim
N→∞

gαβ(N). (7.61)

We are addressing this limit next: Eq. (7.65).
Notice that in Eq. (7.60)—as recommended by Kohn [128]—the number of

electrons N in |Ψ0⟩ is kept constant during the differentiation, and the N → ∞
limit is taken afterwards. Instead in the RS limiting process N varies while |κ1|
tends to zero. Nonetheless we are going to prove that the RS localization length λ2
coincides with gαα in the large-N limit. The metric is by definition the infinitesimal
distance:

D2
0,κ = −ln |⟨Ψ0|Ψκ⟩|2 ≃ Ngαβ(N)κακβ; (7.62)

by setting κ = κ1 =
2π
L
e1 and |Ψ0κ1⟩ = e−iκ1·r̂|Ψ0⟩ we get

D2
0κ1

≃ 4π2N

L2
gαα(N) ≃ − ln |zN |2, (7.63)
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gαα(N) ≃ − L2

4π2N
ln |zN |2 (7.64)

where, at a given N , the difference between the two expressions is of order 1/L or
higher; we finally get:

gαα = lim
N→∞

gαα(N) = − 1

4π2
lim

N→∞

L2

N
ln |zN |2 = λ2. (7.65)

We have already proved that the RS localization length diverges whenever the
Drude weight is nonzero. After Eq. (7.65), an equivalent statement is that the
convergence/divergence of the many-body metric, Eq. (7.60), discriminates between
the insulating/metallic behavior. The relationship between λ2 and the metric per
electron also proves that λ2 is an intensive quantity.

For the special case of a band insulator (with nb doubly occupied bands) the
many-body metric gαβ is related to the k-space metric as

gαβ =
Vcell
nb

∫
BZ

dk

(2π)d
gαβ(k); (7.66)

the proof is in Eqs. (7.55) and (7.65), albeit for the diagonal elements only.
It is also expedient to cast the metric in the form of a sum over states:

gαβ(N) =
1

N

∑
n̸=0

⟨Ψ0|v̂α|Ψn⟩⟨Ψn|v̂β|Ψ0⟩
ω2
0n

. (7.67)

This is proved by inserting a complete set of states into ⟨∂καΨ0|∂κβ
Ψ0⟩, to get

⟨∂καΨ0|∂κβ
Ψ0⟩ =

∑
n̸=0

( ⟨∂καΨ0|Ψn⟩⟨Ψn|∂κβ
Ψ0⟩+ ⟨∂καΨ0|Ψ0⟩⟨Ψ0|∂κβ

Ψ0⟩ ), (7.68)

and then exploiting the κ · p̂ expansion [162, 163]

|Ψ0(κ)⟩ ≃ |Ψ0⟩ − κ ·
∑
n ̸=0

|Ψn⟩
⟨Ψn| v̂ |Ψ0⟩

ω0n

, (7.69)

|∂κΨ0(κ)⟩ = −
∑
n̸=0

|Ψn⟩
⟨Ψn| v̂ |Ψ0⟩

ω0n

. (7.70)

7.3.2 Drude weight revisited
Kohn’s Drude weight can be recast in a geometrical form, having a rather
perspicuous meaning; we arrive at an equivalent geometrical form starting from the
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identity ⟨Ψ0κ| (Ĥκ − E0κ) |Ψ0κ⟩ ≡ 0, taking two derivatives, and setting κ = 0:

∂2E0κ
∂κα∂κβ

=
Nℏ2

m
δαβ − 2Re ⟨∂καΨ0κ| (Ĥκ − E0κ) |∂κβ

Ψ0κ⟩ (7.71)

Dαβ =
πe2N

mLd
δαβ −

2πe2

ℏ2Ld
Re ⟨∂καΨ0| (Ĥ − E0) |∂κβ

Ψ0⟩, (7.72)

Therein, the first term measures the free-electron acceleration; the second
(geometrical) one measures how much such acceleration is hindered by the one-
body and two-body potentials. The geometrical term is zero even for the interacting
electron gas; whenever instead the one-body potential is not flat, then both one-body
and two-body terms in V̂ concur in hindering the free acceleration. Eq. (7.72) is
clearly the many-body analogue of Eq. (7.30).

7.3.3 The sum rule of Souza, Wilkens, and Martin
As anticipated above, SWM have proposed the integral

ISWM =

∫ ∞

0

dω

ω

d∑
α=1

Re σαα(ω) (7.73)

as a discriminant between metals and insulators: in fact it diverges for all metals
and converges for all insulators.

Let us discuss the insulating case first: there is no Drude peak, and σ
(+)
αβ (ω) =

σ
(regular)
αβ (ω). Replacement of Eq. (7.25) into the integral yields

ISWM =
πe2

ℏLd

∑
n̸=0

d∑
α=1

⟨Ψ0|v̂α|Ψn⟩⟨Ψn|v̂α|Ψ0⟩
ω2
0n

; (7.74)

comparison to Eq. (7.67) yields the outstanding expression for the many-body
metric—and equivalently for the RS localization tensor—in terms of conductivity,
found by SWM in 2000:

gαβ =
ℏLd

πe2N

∫ ∞

0

dω

ω
Re σ(+)

αβ (ω), (7.75)

where the large-N limit is understood. This relationship proves that the metric
tensor is indeed an observable. At the independent-particle level, the SWM sum rule
yields the gauge-invariant quadratic spread ΩI, which is—as anticipated above—an
observable as well:

ΩI =
ℏVcell
πe2

∫ ∞

0

dω

ω

d∑
α=1

Re σαα(ω) =
ℏVcell
πe2

ISWM. (7.76)
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For an insulator with a spectral gap the f -sum rule, Eq. (7.8), provides an upper
bound:

gαα =
ℏLd

πe2N

∫ ∞

ϵgap/ℏ

dω

ω
Re σαα(ω) <

ℏ2Ld

πe2Nϵgap

∫ ∞

ϵgap/ℏ
dω Re σαα(ω) =

ℏ2

mϵgap
.

(7.77)
In the metallic case ISWM obviously diverges, owing to the Drude δ(ω) term. In

the special case of a band metal a SWM-like sum rule holds, where �only the regular
part of the conductivity is used:

I
(regular)
αβ =

∫ ∞

0

dω

ω
Re σ(regular)

αβ (ω) =
πe2

ℏ

∫
BZ

dk

(2π)d
gαβ(k), (7.78)

where in the metallic case we define the Bloch metric tensor of the occupied manifold
as

gαβ(k) = Re
∑
j

θ(µ− ϵjk)⟨∂αujk|∂βujk⟩

−
∑
jj′

θ(µ− ϵjk)θ(µ− ϵj′k) ⟨∂αuj′k|ujk⟩⟨ujk|∂βuj′k⟩. (7.79)

In conclusion within PBCs the SWM sum rule is not an useful independent
criterion to discriminate whether the ground state is insulating or metallic: in fact
it is completely equivalent to assess whether the Drude weight is vanishing or not
vanishing. Instead, when PBCs are adopted, the RS value of λ2 is the most useful
discriminant for the insulating state: see Sects. 7.5.5 and 7.5.6.

Matters are different within OBCs: as shown in Sect. 7.4.5 the large-system
limit of the ground state metric—owing to the OBC SWM sum rule—discriminates
very effectively between insulators and metals.

7.4 Bounded samples within open boundary
conditions

We adopt here the same Kohn’s Hamiltonian as above: Eqs. (5.11) and (7.10) in the
time-reversal symmetric case, and Eq. (7.56) to deal even with case where the time-
reversal symmetry is spontaneously broken. In this Section we switch from the PBCs
adopted so far to OBCs: the cubic box confines the electrons in an infinite potential
well; we indicate as |Ψ̃n(κ)⟩ the eigenstates. They are square-integrable over RNd,
and the position operator r̂ =

∑
i ri is the ordinary multiplicative operator. Within

OBCs the effect of the gauge is easily “gauged away”: the ground-state energy is
κ-independent, while the ground state is |Ψ̃0κ⟩ = e−iκ·r̂|Ψ̃0⟩.
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7.4.1 Many-body geometry within OBCs
The OBCs Berry connection has been already discussed above in Sect. 5.4.1; the
OBCs curvature trivially vanishes. Only the metric deserves a thorough discussion.

The κ-derivative of |Ψ̃0(κ)⟩ is

|∂κΨ̃0⟩ = −i r̂|Ψ̃0⟩; (7.80)

hence the many-body metric, defined as in Eq. (7.60), is

gαβ(N) =
1

N
( ⟨Ψ̃0|r̂αr̂β|Ψ̃0⟩ − ⟨Ψ̃0|r̂α|Ψ̃0⟩⟨Ψ̃0|r̂β|Ψ̃0⟩ ). (7.81)

This is clearly a real symmetric tensor, whereas its PBC counterpart, Eq. (7.60),
may be endowed with an imaginary antisymmetric part if time-reversal symmetry
is absent; this is the Berry curvature, discussed in Ch. 8. It is not difficult to prove
that the OBC metric can be cast as a sum over states, formally identical to its PBCs
counterpart, Eq. (7.67):

gαβ(N) =
1

N

∑
n ̸=0

⟨Ψ̃0|v̂α|Ψ̃n⟩⟨Ψ̃n|v̂β|Ψ̃0⟩
ω2
0n

. (7.82)

The OBCs many-body metric per electron, Eq. (7.81), is clearly a second
cumulant moment of the dipole; alternatively, it measures the quadratic quantum
fluctuations of the polarization in the system ground state. An equivalent expression
for gαβ(N) is in terms of the one-body density n(r) and the two-body density
n(2)(r, r′) is [149]:

gαβ(N) =
1

2N

∫
dr dr′ (r− r′)α(r− r′)β[n(r)n(r

′)− n(2)(r, r′) ].

= − 1

2N

∫
dr dr′ (r− r′)α(r− r′)β n(r)nxc(r, r

′), (7.83)

where nxc(r, r
′) is by definition the exchange-correlation hole density. Therefore

gαβ(N) is a second moment of the exchange-correlation hole, averaged over the
sample. The fact that gαβ(N) includes only relative coordinates (and not absolute
ones) is a desirable feature when the limit of a large system is addressed.

For any finite N the integration in Eq. (7.83) obviously converges, owing to
the boundedness of the ground eigenstate |Ψ̃0⟩. The large-N limit of gαβ(N)
discriminates, as in the PBCs case, between insulators and metals; there is, however,
an important subtlety. Adoption of PBCs implies that the electric field E averages
to zero over the sample. Within OBCs, instead, depolarization fields affect the
ground-state fluctuations, Eqs. (7.81) and (7.83). Such fields depend on the shape
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of the sample, and the N → ∞ limit requires extra care: the issue is discussed in
Refs. [149, 164]. Therein it is shown that the problem is relevant only for genuinely
interacting electrons, and does not exist at the independent-electron level (either
Hartree-Fock or Kohn-Sham), where the large-N limit of the OBCs metric is shape-
independent.

For independent electrons the ground state is a Slater determinant of square-
integrable spinorbitals. All ground-state observables (and the wavefunction itself)
are a function of the one-body density matrix; this in turn—for a singlet ground
state—is twice the ground-state projector

P =

N/2∑
j=1

|φj⟩⟨φj| =
∑
ϵj<µ

|φj⟩⟨φj|, (7.84)

where |φj⟩ are the spinless orbitals, and ϵj their energies.
There are several equivalent expressions for gαβ(N) in terms of P . One of them

obtains straightforwardly from Eq. (7.81):

gαβ(N) =
2

N
( ⟨rαrβ⟩ − ⟨rα⟩⟨rβ⟩ ) =

2

N
( Tr {Prαrβ} − Tr {PrαPrβ} ); (7.85)

since it is a second cumulant moment, in the following we are using the same symbol
λ2 of its PBC counterpart, i.e. the RS squared localization length.

A useful equivalent form is

gαβ(N) = − 2

N
Tr {P [P , rα] [P , rβ]} = − 2

N

∫
dr ⟨r| P [P , rα] [P , rβ] |r⟩. (7.86)

Starting instead from Eq. (7.83) we get the alternative expression

λ2 = gαβ(N) =
1

N

∫
dr dr′ (r− r′)α(r− r′)β |⟨r|P|r′⟩|2 (double occup.); (7.87)

for future use, we write the analogous expression for single occupancy

λ2 = gαβ(N) =
1

2N

∫
dr dr′ (r− r′)α(r− r′)β |⟨r|P|r′⟩|2 (single occup.). (7.88)

At finite size both spectra (OBCs and PBCs) are discrete, and different between
them. In the large-system limit both become continuous, and they coincide; the
density of states also coincides. We argue that the two metrics coincide as well; we
are going to show that they provide indeed an identical value in the special case of
a crystal of independent electrons, either band metal or band insulator.
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7.4.2 OBC vs. PBC metrics (independent electrons)
Let us start with the OBCs metric first. In the large-crystallite limit Eq. (7.87)
becomes

lim
N→∞

gαβ(N) =
1

nb

∫
cell

dr

∫
all space

dr′ (r− r′)α(r− r′)β |⟨r|P|r′⟩|2, (7.89)

where 2nb is the number of electrons per crystallite cell. It is clear that the
convergence/divergence of gαβ(N) depends on the convergence/divergence of the
inner integral, which in turn depends on the asymptotic decay of |⟨r|P|r′⟩| for
|r− r′| → ∞. It is well known that such decay is quasi-exponential (i.e. exponential
times a power) for all band insulators [165]: it is therefore obvious that Eq. (7.89)
converges to a finite value. In the metallic case, instead, the density-matrix decay is
power-law; the divergence of Eq. (7.89) can be verified in d = 1, 2, 3 for the simplest
metal of all, i.e. the free-electron gas, for which the density matrix is analytically
known [166]. As for Eq. (7.87)—where the integration is performed over a bounded
sample—simulations and heuristic arguments altogether [167, 168, 150] suggest that
the metallic divergence of gαβ(N) is of order of the linear dimension L of the system
in d = 1, 2 or 3.

Let us switch next to an unbounded sample within PBCs. In the metallic case,
as expected, gαβ = ∞: see Eq. (7.4) and the following text. For insulators instead
we have the finite value

gαβ =
Vcell
nb

∫
BZ

dk

(2π)d
gαβ(k) =

Vcell
nb

∫
BZ

dk

(2π)d
Re Tr {Pk(∂αPk)(∂βPk)}, (7.90)

where Eqs. (7.66) and (3.47) have been used. We are going to prove that the value
of gαβ as provided by Eq. (7.90) coincides with the large-N limit of Eq. (7.86).

The single-particle density matrix (a.k.a. ground-state projector) for the
unbounded crystalline insulator is, in the Schrödinger representation,

⟨r|P|r′⟩ = Vcell

∫
BZ

dk

(2π)d
eik·(r−r′)⟨r|Pk|r′⟩; (7.91)

we start noticing that the integrand is periodical over the reciprocal lattice, and
therefore the BZ integral of its k-gradient vanishes:

i(r− r′)⟨r| P |r′⟩+ Vcell

∫
BZ

dk

(2π)d
eik·(r−r′)⟨r| ∂kPk |r′⟩ = 0, (7.92)

we also remind that Eq. (7.92) is a well behaved expression only in insulators. The
first term therein is i times [r,P ]: a lattice periodical operator (unlike r itself):

[r,P ] =
iVcell
(2π)3

∫
BZ

dk

(2π)d
eik·(r−r′)∂kPk. (7.93)
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The trace of Eq. (7.92) can therefore be cast as∫
BZ

dk

(2π)d
Tr {∂αPk} = − i

Vcell

∫
cell

dr ⟨r| [rα,P ] |r⟩; (7.94)

using similar arguments it is not difficult to prove that, for an unbounded sample
within PBCs,∫

BZ

dk

(2π)d
Tr {Pk(∂αPk)(∂βPk)} =

1

Vcell

∫
cell

dr ⟨r| P [rα,P ] [rβ,P ] |r⟩. (7.95)

Notice that the three BZ integrals entering the product on the l.h.s.—from
Eqs. (7.91) and (7.93)—eventually contract to a single BZ integral: this owes to the
fact that both ⟨r| Pk |r′⟩ and ⟨r| ∂kPk |r′⟩ are lattice-periodical in r and r′ separately.
Details about such transformation can be found in the Appendix of Ref. [169].

Replacing Eq. (7.95) into Eq. (7.90) we get

gαβ =
1

nb

∫
cell

dr Re ⟨r| P [rα,P ] [rβ,P ] |r⟩. (7.96)

We are now ready to compare this with the analogous expression of Eq. (7.86), where
the integrand is the same but the integral is over the whole crystallite. Neglecting
boundary terms in the large-crystallite limit, one clearly has

1

nb

∫
cell

dr Re ⟨r| P [rα,P ] [rβ,P ] |r⟩ = 2

N

∫
crystallite

dr ⟨r| P [rα,P ] [rβ,P ] |r⟩, (7.97)

if the cell is chosen in the bulk region of the crystallite. Notice that we have omitted
to indicate the real part in the r.h.s. of Eq. (7.97): the OBCs expression is always
real symmetric. Instead the PBCs metric-curvature tensor may be endowed with an
imaginary antisymmetric part; this is discussed in Ch. 8. Eq. (7.97) concludes our
proof: the PBCs metric of an insulator, expressed as a BZ integral in Eq. (7.90),
coincides in the large-N limit with the OBCs metric of a bounded crystallite,
expressed as a double integral over the electron coordinates, as in Eq. (7.86).

7.4.3 Conductivity of a bounded sample within OBCs
A bounded sample cannot sustain a steady-state current, and therefore the concept
of Drude weight is apparently meaningless (see below, Sect. 7.4.4). An oscillating
field E induces charge sloshing and an oscillating macroscopic polarization P, which
has a finite dc limit in insulators, and diverges in metals: in fact ∂P/∂E is the static
dielectric susceptibility, formally infinite in metals.
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The OBC electronic term in polarization (Sect. 5.4.1) is

P(el) = − e

V
⟨Ψ̃0| r̂ |Ψ̃0⟩; (7.98)

since r̂ is a legitimate operator within OBCs, one could adopt the scalar potential
gauge; we prefer here instead to continue with the vector potential gauge, thus
exploiting some of the previous formulæ.

The Kubo formula for the induced polarization, analogue of Eq. (7.19), is

Pα(ω) = − e2

cLd
⟨⟨r̂α|v̂β⟩⟩ω δA(ω), (7.99)

and proceeding in the same way as above we get the analogue of Eq. (7.21):

Pα(ω) = − e2

Ld
⟨⟨r̂α|v̂β⟩⟩ω

[
1

iω
− πδ(ω)

]
Eβ(ω). (7.100)

At this point we define the OBC conductivity σ̃αβ(ω) by means of the relationship
j(t) = ∂P(t)/∂t, i.e.

σ̃αβ(ω)Eβ(ω) == −iωPα(ω) =
e2

Ld
⟨⟨r̂α|v̂β⟩⟩ωEβ(ω), (7.101)

where the multiplication by −iω cancels the δ(ω) term in Eq. (7.100): as expected,
there is no Drude peak (at finite size). The spectral decomposition of the Kubo
formula, Eq. (7.15), yields

⟨⟨r̂α|v̂β⟩⟩ω =
1

ℏ
lim
η→0+

∑
n ̸=0

′
(
⟨Ψ̃0|r̂α|Ψ̃n⟩⟨Ψ̃n|v̂β|Ψ̃0⟩

ω − ω0n + iη
− ⟨Ψ̃0|v̂β|Ψ̃n⟩⟨Ψ̃n|r̂α|Ψ̃0⟩

ω + ω0n + iη

)
.

(7.102)
We then exploit the usual commutator,

⟨Ψ0|r̂|Ψn⟩ = i
⟨Ψ0|v̂|Ψn⟩

ω0n

, (7.103)

to obtain

⟨⟨r̂α|v̂β⟩⟩ω =
i

ℏ
lim
η→0+

∑
n̸=0

′
(
⟨Ψ̃0|v̂α|Ψ̃n⟩⟨Ψ̃n|v̂β|Ψ̃0⟩
ω0n(ω − ω0n + iη)

+
⟨Ψ̃0|v̂β|Ψ̃n⟩⟨Ψ̃n|v̂α|Ψ̃0⟩
ω0n(ω + ω0n + iη)

)

=
i

ℏ
lim
η→0+

∑
n̸=0

′
(

Rn,αβ + i In,αβ

ω0n(ω − ω0n + iη)
+

Rn,αβ − i In,αβ

ω0n(ω + ω0n + iη)

)
, (7.104)
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where we are using the same notations as in Eq. (7.23). Notice, however, that the
OBCs matrix elements—and their relative selection rules—are very different from
the PBCs ones.

We finally get

Re σ̃αβ(ω) =
πe2

ℏLd

∑
n̸=0

′Rn,αβ

ω0n

[ δ(ω − ω0n) + δ(ω + ω0n) ], (7.105)

Im σ̃αβ(ω) =
2e2

ℏLd

∑
n̸=0

′Rn,αβ

ω0n

ω

ω2
0n − ω2

.

Despite having a similar form, Eqs. (7.25) and (7.105) do not coincide.: eigenvalues,
eigenvectors, and selection rules are different. Most notably in the metallic case
σ̃αβ(ω) saturates the f -sum rule, Eq. (7.8), while σ(regular)

αβ (ω) does not: a fraction of
the spectral weight goes into the Drude peak.

The major difference between PBCs and OBCs conductivity in a metal can be
understood addressing the simplest metal of all: the free electron gas. Therein, as
said above, σ(regular)

αβ vanishes because of the selection rules: the offdiagonal matrix
elements of the velocity between plane waves are zero. Therefore in PBCs all of
the spectral weight goes into the Drude peak. These selection rules break down in
OBCs, and there is no genuine Drude peak.

7.4.4 Drude weight in bounded samples within OBCs
Within OBCs D apparently does not exist, given that a bounded sample does not
support dc currents; the apparent paradox was addressed in Ref. [170], and more
recently in Ref. [151]. As said above, D measures the free acceleration induced by a
constant field, i.e. the adiabatic inverse inertia of the many-electron system. In the
case of a bounded crystallite a constant field induces no current: it simply polarizes
the sample (Faraday cage effect). But an oscillating low-frequency field induces
forced oscillations, which are dominated by the many-electron inertia. The response
carries therefore the same essential information as the response to a constant field
within PBCs. Technically, D within OBCs originates from the low-frequency sector
of the nonzero-frequency Kubo formula. The root of the PBC vs. OBC difference
is in the different selection rules for the intraband transitions (in the simple case of
noninteracting electrons).

For free electrons (noninteracting electrons in a flat potential) within PBCs the
interband contributions vanish, and the whole response is intraband: there are no
transitions at ω ̸= 0. When the same system is confined in an infinite potential
well, all of the poles of Eq. (7.105) are at finite frequency, and Re σ̃αβ(ω) saturates
the f -sum rule. Simulations performed in Ref. [151] show that the spectral weight
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concentrates in a region whose width goes to zero with 1/L, and that the sum of
the residui yield a very accurate D value: ergo for this paradigmatic system all the
poles of Eq. (7.105) coalesce into a single pole at ω = 0. It is thus reassuring that
in the L → ∞ limit OBCs yield the same result as PBCs; in fact irrelevance of
the boundary conditions in the thermodynamic limit is a basic tenet of statistical
mechanics and condensed matter physics.

As discussed in detail above, the PBC longitudinal conductivity of a general
metallic system, Eq. (7.5), is the sum of two terms: the Drude term σ

(Drude)
αβ (ω) and

the regular term σ
(regular)
αβ (ω). When the same system is addressed within OBCs, at

finite size all poles are at finite frequency; nonetheless these poles can be partitioned
in two classes, which can be separated by means of their L→ ∞ behavior. Some of
the poles coalesce into a zero-frequency pole, thus accounting for the D value; the
other poles provide the same σ(regular)

αβ (ω) as for the PBC case. Actual simulations
for a the test case of a band metal in 1d perspicuously confirm this view [151].

7.4.5 Souza-Wilkens-Martin within OBCs
We evaluate the SWM integral in terms of the OBC conductivity, Eq. (7.73), for a
bounded sample:

ISWM =

∫ ∞

0

dω

ω

d∑
α=1

Re σ̃αα(ω) =
πe2

ℏLd

∑
n ̸=0

d∑
α=1

⟨Ψ̃0|v̂α|Ψ̃n⟩⟨Ψ̃n|v̂α|Ψ̃0⟩
ω2
0n

. (7.106)

Using then Eq. (7.82), ISWM assumes the form of a gauge invariant intensive ground-
state property:

ISWM =
πe2N

ℏLd

d∑
α=1

gαα(N). (7.107)

At any finite sample size ISWM is finite; the convergence/divergence of the OBC
metric in the large-sample limit discriminates in a very effective way between
insulators and metals, as shown below in Sects. 7.5.1, 7.5.3, and 7.5.4. The ultimate
reason while this happens has been understood only recently [151].

The sum over the excitations in Eq. (7.106) is dominated by the low-frequency
contributions. As explained above, it was indeed found that some of the OBC poles
in the metallic case and in the large-system limit accumulate at the ω = 0 frequency,
thus accounting for the Drude weight (or equivalently for the inverse inertia of the
many-electron metallic system), yielding a divergent ISWM. There is not such an
accumulation in the insulating case: ISWM remains finite, proportional to the PBC
value of the RS λ2.
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7.5 Band insulators, Anderson insulators, Mott
insulators, and more

7.5.1 Band insulator: model ionic crystal in 1d
Let us start with a simple tight-binding (a.k.a. Hückel) Hamiltonian in 1d:

H =
∑
jσ

[ (−1)j∆ c†jσcjσ − t(c†jσcj+1σ + H.c.) ] (7.108)

where t > 0 is the first neighbor hopping (β = −t in most chemistry literature)
and H.c. stays for Hermitian conjugate. This is the “parent” Hamiltonian for those
used below to describe model 1d disordered and correlated systems, Eqs. (7.113)
and (7.115), respectively.

This toy model schematizes a binary ionic crystal; the band structure is
ϵ(k) = ±

√
∆2 + 4t2 cos2 ka/2, (7.109)

where a is the lattice constant and k is the Bloch vector; the gap is equal to 2∆.
The corresponding density of states is shown in Fig. 7.3 for t = 1 and ∆ = 0.25;
at the band edges it shows van Hove singularities, which in 1d have the character
of 1/

√
ϵ divergences. The system is insulating at half filling except for ∆ = 0; it is

metallic at any filling different from 1/2.
The OBC metric is the tight-binding version of Eq. (7.88), i.e.

λ2 =
a2

2N

N∑
j,j′=1

P 2
jj′(j − j′)2. (7.110)

This is a monothonical function of t/∆; it is easily verified that it vanishes in the
extreme ionic case (t = 0). λ2 has been evaluated in Ref. [167] from Eq. (7.110)
as a function of N : at filling 1/4 (metallic) it diverges linearly with N , i.e. like the
linear size L of the system, in qualitative agreement with the case of the 1d electron
gas [166]; instead at filling 1/2 (insulating) it converges like 1/N to 0.99 (for the
given t/∆ value and a = 1).

The system is also metallic at half filling for ∆ = 0. In this case the ground-state
projector has a simple analytical form:

Pjj =
1

2
; Pjj′ = 0 for even |j′ − j| = 2s, (7.111)

Pjj′ =
(−1)s

π(2s+ 1)
for odd |j′ − j| = 2s+ 1, (7.112)

which clearly implies divergence of Eq. (7.110) linear with N , again similarly to λ2
for the 1d electron gas. Notice that Eq. (7.111) is a manifestation of the Coulson-
Rushbrooke theorem [171].
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Figure 7.2: Diagonal element of the Kohn-Sham RS squared localization length λ2—
also indicated as ⟨x2⟩c—vs. the inverse direct gap (theoretical and experimental),
for several elemental and binary semiconductors. The points corresponding to Si
and Ge with the theoretical gaps are out of scale. After Ref. [148].

7.5.2 Band insulators: tetrahedrally coordinated semicon-
ductors

The first ab-initio implementation of the modern theory of the insulating state (in
2001) addressed several elemental and binary cubic semiconductors at the Kohn-
Sham level [148]. The tensor is real and isotropic. The computed λ2 (Fig.
7.2) is smaller than 3 bohr2 in all the materials studied: the ground many-body
wavefunction is therefore very localized in this class of materials. The SWM
inequality, Eq. (7.77), was also checked, and found to be well verified using both the
theoretical Kohn-Sham gap and the experimental one (the latter is typically larger).

7.5.3 Anderson insulator: model 1d system
According to the famous “gang of four” paper by Abrahams, Anderson, Licciardello,
and Ramakrishnan [172] there is no metal-insulator transition in 1d: any amount of
disorder induces Anderson localization, yielding an insulating ground state. Matters
are quite different in 3d: see Sect. 7.5.4 below. It is well known both from analytical
arguments and actual simulations that the spectrum of this paradigmatic model is
gapless [144, 173]: as discovered by Anderson, and later emphasized by Kohn, the
insulating state does not require an energy gap.

We rewrite the tight-binding Hamiltonian of Eq. (7.108) in the more general

125



Figure 7.3: Density of states (arbitrary units) for a model binary alloy in 1d. The
crystalline (band) case corresponds to the Hamiltonian of Eq. (7.108) with ∆ = 0.25
and t = 1. The disordered (Anderson) case corresponds to a random choice of the
anion/cation distribution.

form of
H =

∑
jσ

[ ϵj c
†
jσcjσ − t(c†jσcj+1σ + H.c.) ]. (7.113)

The site energies in Eq. (7.113) used in our simulations are therefore ϵj = (−1)j∆
in the crystalline case, while in the disordered case the string (−1)j is replaced
by a random string of ±1, chosen with equal (and uncorrelated) probability. The
simulations of Ref. [167] are for samples of up to 2000 sites, whereas in the disordered
case they are typically averaged over 1000 configurations. The density of states for
both the ordered and disordered systems are shown in Fig. 7.3, and confirm the
expected features. The disordered system is gapless, yet it is known to be insulating
at any filling.

The conventional theory of transport focusses on the nature of the one-particle
orbitals at the Fermi level; in Anderson insulators these are localized, thus forbidding
steady state currents [142]. Sixty years of literature have been devoted to investigate
Anderson insulators under the most diverse aspects [144, 173, 174, 175].

At variance with such wisdom, in Ref. [167] we have addressed this paradigmatic
Anderson insulator from the alternative, and most fundamental, viewpoint of
the modern theory of the insulating state. In the spirit of Kohn’s theory the
individual Hamiltonian eigenstates become apparently irrelevant, while the focus
is on the many-electron ground state as a whole. We also emphasize that numerical
simulations in this field are limited since the very beginning to lattice models,
given that they adopt recursion methods and the like [173]. The modern theory
of the insulating state is instead formulated in general terms: the lattice-model
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implementation presented here is just a special case of it.
The OBC metric has been computed from Eq. (7.110), at both half- and quarter-

filling: in both cases it is found to be finite in the large-N limit, as expected.
Nonetheless its value is about 20 times larger than the one for the band insulator, at
the same value of the parameters (i.e. ∆ = 0.25, t = 1). This reflects the fact that
the scattering mechanisms are profoundly different: incoherent (Anderson) versus
coherent (band). In the latter case, the Hamiltonian eigenstates are individually
conducting but “locked” by the Pauli principle if the Fermi level lies in the gap.

7.5.4 Anderson metal-insulator transition in a model 3d
solid

According to the scaling theory of localization (the famous “gang of four” paper
[172]) a genuine metal-insulator transition—as a function of the disorder strength—
is possible in 3d. The paradigmatic model previously adopted in the literature to
realize the transition is a simple tight-binding Hamiltonian on a cubic lattice, with
random onsite matrix elements, at half filling:

H = −t
∑
<ij>

c†icj + H.c. +W
∑
i

ϵic
†
ici, (7.114)

where i, j denote sites on a simple cubic lattice, < ij > are pairs of nearest neighbor
sites and the onsite energies ϵi are randomly picked from the interval [−1, 1]. W
is the disorder strength and the model has previously been shown to exhibit an
Anderson transition at Wc/t = 8.25 [176, 177, 178, 179].

The current computational methods to address the Anderson transition focus on
the single-particle eigenstates at the Fermi level, and are often peculiar to lattice
models (recursive methods and the like) [173, 180], while instead here we regard this
case as an application of the general theory of the insulating state to the special case
of a 3d tight-binding Hamiltonian.

The OBC metric has been calculated for this model in Ref. [181]; for the sake
of clarity, we stress that the present localization length λ bears no relationship to
the Anderson localization length [173]: the former is a geometrical property of the
many-body ground state, while the latter is a property of the one-body eigenstates
in an independent-electron system.

Simulating the Anderson transition requires notoriously rather large systems; in
Ref. [181] we have calculated λ2, within OBCs, for various values of W using rods
of size L × d × d where L = 100 and d = 3, 5, 7 (we set the cubic lattice constant
a = 1). To obtain the configurational average we used 100 configurations and for
each configuration the component of the tight-binding version of Eq. (7.88) along
the rod was obtained by averaging over the two short dimensions.
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Figure 7.4: RS squared localization length λ2 as a function of rod length L. λ2

diverges for small values of W and saturates to a finite value for large values of W .
After ref. [181].

In a disordered system the tight-binding matrix elements of |⟨r|P|r′⟩|2 in
Eq. (7.88) must be replaced by their configurational average ⟨ |⟨r|P|r′⟩|2 ⟩conf . A very
crucial point is that ⟨ |⟨r|P|r′⟩|2 ⟩conf is in general different from the squared modulus
of the configurational average of ⟨r|P|r′⟩. This is reminiscent of—and related to—
the so-called vertex corrections in the well established transport theories based on
Green’s functions [153, 182]; the point is thoroughly discussed in our original paper,
Ref. [181].

The results for various values of W are shown in Fig. 7.4 for different rod widths
d. We clearly observe a tendency for λ2 to saturate when W becomes large. For
small W , instead, λ2 appears to be increasing monotonically with the rod length
L. Within the modern theory of the insulating state the Anderson transition would
emerge as a transition from a divergent to a finite λ2 in the limit of large L. While
it seems plausible that this may happen around Wc = 8.25, it is very difficult to
extract a quantitative estimate of Wc from λ2 alone. For example, for W = 10, the
localization length appears to be saturated at a finite value for L ∼ 100, but it is
hard to verify if this is really the case or if λ2 is merely increasing too slowly to be
observable at the size of our simulations.
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Given the above difficulty, a different and more complex strategy has been
devised in Ref. [181]; we refer to the original paper for the details. The
convergence/divergence of λ2 has been assessed by means of an ad-hoc indicator
which analyzes the asymptotic behavior of ⟨ |⟨r|P|r′⟩|2 ⟩conf for large |r− r′|. Notice
that λ2 stays obviously finite if the behavior is exponential, but it is also finite if
⟨ |⟨r|P|r′⟩|2 ⟩conf ∼ |r − r′|−β with β > 5. The transition is very sharp using our
indicator, which switches in a narrow W interval; The approach yields a critical
disorder parameter Wc ≈ 8.5, not far from the best value of about 8.25 from the
previous literature.

7.5.5 Two-band model insulator in 1d: topological nature of
the Mott-like transition

Arguably the simplest possible 1d highly correlated insulator obtains from the
noninteracting Hamiltonian of Eq. (7.108) and augmenting it with an on-site
repulsive term. We thus get the two-band Hubbard model (at half filling):

H=
∑
jσ

[(−1)j∆ c†jσcjσ − t(c†jσcj+1σ + H.c.)] + U
∑
j

nj↑nj↓. (7.115)

We assume ∆ > 0, and neutralizing classical charges equal to +1 on all sites; the
system is clearly inversion-symmetric at any U .

Figure 7.5: Squared localization length for the Hamiltonian in Eq. (7.115) at half
filling for t/∆ = 1.75: the plot shows the dimensionless quantity D = (2πN/L)2λ2.
The system undergoes a quantum phase transition from band-like insulator (Z2-odd)
to Mott-like insulator (Z2-even) at U/t = 2.27. After Ref. [146].
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Preliminarly, it is expedient to investigate the trivial t = 0 case. At small U the
anion site (odd j) is doubly occupied, and the energy per cell is −2∆+U ; at U > 2∆
single occupancy of each site is instead energetically favored. As for polarization,
it is easily realized that the system is Z2-odd in the former case and Z2-even in
the latter. At the transition point Uc = 2∆ the ground state is degenerate and the
spectrum is gapless, ergo the system is “metallic”. If the hopping t is then switched
on adiabatically, the Z2 invariant in each of the two topological phases cannot flip
unless a metallic state is crossed.

The explicitly correlated ground-state wavefunction has been found by exact
diagonalization in Ref. [146], and the corresponding λ2 has been computed as
a function of U for fixed t/∆ = 1.75. The results are shown in Fig. 7.5 in
dimensionless units; it turns out that there is only one singular point U = 2.27t,
where λ2 diverges. Indeed, it has been verified that at such value the ground-state
becomes degenerate with the first excited singlet state, i.e. the system is metallic.
The singular point is the fingerprint of a quantum phase transition: on the left
we have a band-like insulator, and on the right a Mott-like insulator. There is no
metal-insulator transition, only an insulator-insulator transition, while the system
is metallic at the transition point.

Other studies of the RS localization within the same Hubbard model can be found
in Ref. [183]. Other studies of the Mott transition with 1d model Hamiltonians,
and based on the localization length λ2, have appeared [184, 185].

The two insulating states are qualitatively different; by adopting the modern
jargon, nowadays we could say that they are topologically distinct. The static ionic
charges (on anion and cation) are continuous across the transition, while it was
shown that dynamical (Born) effective charge on a given site changes sign [186].
The topological nature of the transition was neither clear nor made explicit in the
original Refs. [186] and [146]. Here we reformulate their major findings in a different
language, with some hindsight. We have discussed above, Sect. 5.7, the topological
nature of 1d polarization in centrosymmetric systems. In topological jargon the
system is Z2-odd for U < 2.27t and Z2-even for U > 2.27t.

It is expedient to start from the pure band insulator at U = 0. At half filling there
is a single occupied band and a doubly occupied Wannier function: the Wannier
center, defined as in Eq. (5.9), sits at the anion site (i.e. the site with ∆ < 0).
When the contribution of the classic charges is added, it is easy to verify that
P = e/2 mod e. Suppose now we switch on the Hubbard U continuously: the
Wannier function is no longer defined, while polarization P is well defined at any
U value (the transition U -value excepted). According to the most general tenet
of topology when applied to electronic structure, the topological invariant cannot
change insofar as the system remains insulating. At the transition point U = 2.27t
the system crosses a metallic state, and its polarization switches to 0 mod e at large

130



U values: it becomes Z2-even.

7.5.6 Mott metal-insulator transition in a linear hydrogen
chain

A “crystalline” linear array of equally spaced H atoms has long been considered
as the paradigm for the Mott metal-insulator transition. At the independent-
particle level, the system has an half-filled band at any interatomic distance R,
and is therefore a metal. As first pointed out by Mott in 1949 [141, 143], for
large interatomic distances the system must behave as an assembly of independent
H atoms, and therefore it is expected to be an insulator, with antiferromagnetic
correlation. Roughly speaking, the large-R wavefunction is expected to be a kind of
generalization on the two-electron Heitler-London wavefunction; it is also expected
that the correlated ground state |Ψ0⟩ switches from metallic to insulating at some
critical R value.

A naive model for this many electron system is the Hubbard one-band model
Hamiltonian, which proves to be grossly inadequate. The exact solution is known
since long time [187], and does not show a metal-insulator transition.

Despite the apparent simplicity of this system, the problem is very challenging:
largely inaccurate results were accreditated until recently [189, 190]. At the time of
writing (2021) the state-of-the-art results are those reported in Ref. [188]. It could
be naively guessed that the system can be schematized as a single-band model, where
atomic orbitals different from 1s could be neglected. Instead, close to the transition,
the correlated wavefunction displays a multi-band character, where bands deriving
from 2s and 2p atomic orbitals play a non negligible role. We reproduce here the
|zN | calculations from Ref. [188] in Fig. 7.6, which indicates the state-of-the-art
transition value at R = 1.70.

7.5.7 Quantum Hall insulator
An electron fluid in the quantum Hall regime has zero longitudinal conductivity; we
are going to prove next that the modern theory of the insulating state successfully

(a) (b)
Figure 7.6: Metal-insulator tran-
sition in H-chains: |zN | as a func-
tion of the interatomic distance R
for different correlated wavefunc-
tions at N = 40. The plot indi-
cates a transition R value of 1.70
bohr. After Ref. [188].
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addresses even this exotic kind of insulator.
Soon after the experimental discovery [44], Laughlin [46] gave evidence that the

electrons are kept in the quantum Hall regime by a certain amount of substrate
disorder. Here we consider instead the academic case of 2d noninteracting electrons
in a flat substrate potential, where all formulæ can be evaluated analytically.

The system is insulating whenever the Fermi level µ is is in a gap between Landau
levels, i.e. at integer fillings; we consider here only the lowest Landau level (LLL).
The electrons are spin-polarized because of Zeeman splitting, larger than the spacing
between Landau levels. We define the magnetic length

ℓ =

(
ℏc
eB

) 1
2

; (7.116)

we set z = (x − iy)/ℓ and we adopt the symmetric gauge A(r) = B × r/2. In this
gauge the LLL orbitals and the corresponding projector are [48]:

φm(z) =
1√

2π2mm! ℓ
zme−|z|2/4, ⟨z|P|z′⟩ =

∑
m

φm(z)φ
∗
m(z

′). (7.117)

At complete filling the sum of the series yields

⟨z|P|z′⟩ =
1

2πℓ2
e−|z|2/4e−|z′|2/4

∞∑
m=0

1

m!

(
zz′∗
2

)m

(7.118)

=
1

2πℓ2
e−|z−z′|2/4e(zz

′∗−z∗z′)/4 (7.119)

|⟨r|P|r′⟩| =
1

2πℓ2
e−|r−r′|2/(4ℓ2). (7.120)

The electron density is therefore uniform, with n0 = 1/(2πℓ2), and the decay of
|⟨r|P|r′⟩| in the relative coordinate is Gaussian, much faster than in a band insulator
(where it is quasi-exponential): therefore the metric is convergent for sure.

It is instructive to evaluate the RS localization length: for single occupancy
Eq. (7.88) yields

λ2 = gxx =
1

2N

∫
dr dr′ (x− x′)2 |⟨r|P|r′⟩|2 (7.121)

=
1

4n0

∫
dr r2|⟨0|P|r⟩|2 = 1

2
ℓ2. (7.122)

For B → 0 the system becomes a free-electron gas in 2d, hence metallic. In fact
after Eq. (7.116) the magnetic length ℓ diverges, and the RS localization length λ
diverges as well.
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We may also prove that—according to the modern theory—a partially filled LLL
yields a metallic behavior. For instance, a possible state at half filling obtains by
occupying the odd-m orbitals only:

⟨z|P|z′⟩ =
∞∑

m=0

φ2m+1(z)φ
∗
2m+1(z

′) =
1

2πℓ2
e−|z|2/4e−|z′|2/4 sinh(zz′∗/2), (7.123)

which does not go to zero at large relative coordinates (e.g. for z′ = −z). Hence
Eq. (7.121) diverges.
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Chapter 8

Anomalous Hall conductivity

8.1 Generalities
Edwin Hall discovered the eponymous effect in 1879; two years later he discovered
the anomalous Hall effect in ferromagnetic metals. The latter is, by definition, the
Hall effect in absence of a macroscopic B field. Nonvanishing transverse conductivity
requires breaking of T-symmetry: in the normal Hall effect the symmetry is broken
by the applied B field; in the anomalous one it is spontaneously broken, for
instance by the development of ferromagnetic order. The theory of anomalous Hall
conductivity in metals has been controversial for many years; since the early 2000s
it became clear that, besides extrinsic effects, there is also an intrinsic contribution,
which can be expressed as a geometrical property of the occupied Bloch manifold in
the pristine crystal. The classical review on the topic is Ref. [12].

The other epochal revolution in this field is the discovery—100 years later—of the
quantum Hall effect, due to von Klitzing and collaborators in 1980 [44], Nobel prize
1985. As discussed above in Sect. 4.2.4, the celebrated TKNN (Thouless, Kohmoto,
Nightingale, and den Nijs) paper [57], marks the debut of topology (and geometry
as well) in electronic structure: when expressed in natural units, the quantized Hall
conductivity is a Chern number (a.k.a. Z invariant).

In presence of a macroscopic magnetic field the Hamiltonian cannot be
periodical—neither lattice periodical nor Born-von-Kàrmàn periodical—in any
gauge; other unusual features were well known before 1980, like the occurrence
of Landau levels, and the famous Hofstadter butterfly [191].

For many years it was tacitly assumed that a macroscopic B field were necessary
in order to make the quantum Hall effect possible. The breakthrough came from
Duncan Haldane in 1988 [192]: by means of a model Hamiltonian in 2d he showed
that a topologically non trivial ground state—and quantized Hall conductivity—
may exist even in absence of a field. In this model material (which I baptized
“Haldanium” in some papers of mine) there are no Landau levels: the band structure
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and density of states are “plain vanilla”. Haldanium is the archetypical topological
material i.e. (by definition) a material having a nontrivial topology in absence of an
external field. Thouless and Haldane were among the recipients of the 2016 Nobel
prize.

The synthesis of a 2d material which realizes Haldane’s model was only achieved
since 2013 onwards [193, 194]. Much before that date, topological insulators of a
different class were synthesized: TI (T-invariant) insulators, first in 2d, and later in
3d [10, 11]. The theoretical paradigm for TI insulators in 2d is a famous 2005 paper
by Kane and Mele [195], where a Z2 invariant is introduced. We are not going to
discuss further TI topological insulators (some features have been outlined in Sect.
6.1.1, albeit for the 3d case only).

8.2 Many-body theory
8.2.1 Kubo formula
We adopt once more the Hamiltonian of Eq. (7.56), reproduced here for the sake of
clarity:

Ĥκ =
1

2m

N∑
i=1

|pi +
e

c
A(ri) + ℏκ |2 + V̂ , (8.1)

where both V̂ and A(r) are Born-von-Kàrmàn periodic: this means that both fields
E and B average to zero over the sample. Therefore A(r) may be due to spontaneous
development of ferromagnetic order, or to spin-orbit coupling to a background of
ordered local moments. The Kubo formulae, Eqs. (7.21) and (7.22), are expressed
in terms of the velocity operator at κ = 0:

v̂κ =
1

m

N∑
i=1

[
pi +

e

c
A(ri) + ℏκ

]
; (8.2)

we focus here in the antisymmetric contributions to conductivity:

Re σ(−)
αβ (ω) =

2e2

ℏLd

∑
n ̸=0

In,αβ

ω2
0n − ω2

(8.3)

Im σ
(−)
αβ (ω) =

πe2

ℏLd

∑
n ̸=0

In,αβ

ω0n

[ δ(ω − ω0n)− δ(ω + ω0n) ]. (8.4)

Using again Eq. (7.70) the dc transverse conductivity is easily recast in terms of the
many-body Berry curvature, Eq. (7.58), at κ = 0:

Ω̃αβ(κ) = −2 Im ⟨∂καΨ0κ|∂κβ
Ψ0κ⟩. (8.5)
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Re σ(−)
αβ (0) = − e2

ℏLd
Ω̃αβ(0); (8.6)

the expression holds for metals and insulators, in either 2d or 3d; thy can be nozero
only if T-symmetry is spontaneously broken in the given material (at κ = 0).

8.2.2 Transverse dc conductivity
At finite ω, conductivity requires time-dependent perturbation theory, ergo Kubo
formulæ. Insofar as we address dc conductivity only, Kubo formulæ are not strictly
needed and Eq. (8.6) can be derived in an alternative, very meaniingful way, as
I am going to show next. Suppose that κ is adiabatically varied in time: the
instantaneous current density is then the sum of two terms: the expectation value
of the current operator, and the Niu-Thouless adiabatic current [196, 13]. The latter
is the many-body generalization of Eq. (4.77); the two terms therefore yield

jα = − e

ℏLd
⟨Ψ0κ| ∂καĤκ |Ψ0κ⟩

+
ie

Ld
(⟨∂καΨ0κ|Ψ̇0κ⟩ − ⟨Ψ̇0κ|∂καΨ0κ⟩)

= − e

Ld

(
1

ℏ
∂καE0κ − Ω̃αβ(κ)κ̇β

)
, (8.7)

the extensive quantity Ω̃αβ(κ)κ̇β is the many-electron anomalous velocity. In the
static case (κ̇ = 0) no dc current may flow trough an insulating sample, ergo the
ground-state energy E0κ = E0 is—as already observed above—κ-independent; the
opposite is true in metals [128].

The linear conductivity is by definition

σαβ(ω) =
∂jα(ω)

∂Eβ(ω)
=

∂jα(ω)

∂Aβ(ω)

dA(ω)

dE(ω)
; (8.8)

since E(ω) = iωA(ω)/c, causal inversion yields the last factor as [152]

dA(ω)

dE(ω)
= − ic

ω + iη
= −c

[
πδ(ω) +

i

ω

]
. (8.9)

Here we evaluate ∂jα(ω)/∂Aβ(ω) in the adiabatic limit only, hence we set in
Eq. (5.11)

κ =
e

ℏc
A(ω), κ̇ = −ieω

ℏc
A(ω) = − e

ℏ
E(ω), (8.10)

and we keep the leading terms in ω. It follows that

∂jα(ω)

∂Aβ(ω)
.
= − e2

ℏcLd

(
1

ℏ
∂2E0

∂κα∂κβ
− iωΩ̃αβ(0)

)
, (8.11)
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where the symbol “ .=” means “equal in the dc limit”. The product of Eq. (8.11)
times Eq. (8.9) yields the real parts of symmetric (longitudinal) and antisymmetric
(transverse) dc conductivities as:

Re σ(+)
αβ (ω)

.
=

πe2

ℏ2Ld

∂2E0

∂κα∂κβ
δ(ω) = Dαβδ(ω); (8.12)

Re σ(−)
αβ (ω)

.
= Re σ(−)

αβ (0) = − e2

ℏLd
Ω̃αβ(0). (8.13)

We have thus retrieved Eqs. (7.11) and (8.6); the present unconventional derivation
has the virtue of being easily generalizable to nonlinear dc conductivity, as it will
be shown below, Sect. 8.6.

8.2.3 Chern number and quantum anomalous Hall effect
The case of a two-dimensional insulator deserves a separate discussion. The famous
TKNN result, Eq. (4.24), has been later generalized—beyond the independent-
electron framework—by Niu, Thouless, and Wu (hereafter quoted as NTW) [197]:

σ(−)
xy (0) = −e

2

h
C1, (8.14)

where C1 is the many-body Chern number. In the present formulation we
have assumed PBCs at any κ, and—following Kohn [128]—we have twisted the
Hamiltonian. The reverse is actually done by NTW: the Hamiltonian is kept fixed,
and the boundary conditions are twisted. In order to proceed, preliminarly we need
to prove that

C1 =
1

2π

∫ 2π
L

0

dκx

∫ 2π
L

0

dκx Ω̃xy(κ) (8.15)

is a topological integer. In fact Eq. (8.15) is the alternative definition of the NTW
Chern number within our formalism: Eq. (8.15) is quantized because it is equivalent
to the integral over a torus [13]. In order to show this, we remind that in insulators
the ground-state energy E0κ is κ-independent, and we observe that whenever the
components of κ−κ′ are integer multiples of 2π/L, then the state ei(κ−κ′)·r̂|Ψ0κ⟩ is
eigenstate of Ĥκ′ with the same eigenvalue as |Ψ0κ⟩. The eigenstates which define
Ω̃xy(κ) have therefore the required toroidal periodicity:

|Ψ0κ′⟩ = ei(κ−κ′)·r̂|Ψ0κ⟩. (8.16)

Since Ω̃xy(κ) is gauge-invariant, an arbitrary κ-dependent phase factor may relate
the two members of Eq. (5.12). It is worth stressing that in the topological case
a globally smooth periodic gauge does not exist; in other words we can enforce
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Eq. (5.12) as it stands (with no extra phase factor) only locally, not globally; we
also notice that Eq. (8.16) may be regarded as the many-body analogue of the
periodic gauge in band-structure theory [24].

Eq. (3.18) is independent of the L value, and its integrand is extensive: therefore
in the large-L limit the integration domain contracts to a point:

C1 =
1

2π

(
2π

L

)2

Ω̃xy(0). (8.17)

By comparing this to Eq. (8.13) for d = 2, Eq. (8.14) is immediately retrieved.

8.2.4 Extrinsic effects
First of all I stress the quite different role of the impurities between the AHC in
metals and the quantized AHC in 2d insulators: in the former case there must
necessarily be extrinsic effects, while in the latter case extrinsic effects are ruled
out. In fact—as a basic tenet of topology—any impurity has no effect on linear Hall
conductivity insofar as the system remains insulating.

In a pristine metal the dc longitudinal conductivity is infinite: the Drude term is
proportional to δ(ω). Extrinsic mechanisms are necessary to warrant Ohm’s law, and
are accounted for by relaxation time(s) τ ; in absence of T-symmetry, extrinsic effects
contribute to AHC as well. Two distinct mechanisms have been identified: they go
under the name of “side jump” and “skew scattering” [12]. The side-jump term is
nondissipative (independent of τ). Since a crystal with impurities actually is a (very)
dilute alloy, it was previously argued [198] that the sum of the intrinsic and side-
jump terms can be regarded as the intrinsic (geometrical) term of the dirty sample,
whose AHC is given by Eq. (8.13) as it stands, provided that the potential V̂ includes
the effect of the impurities. At the independent-electron level, the same effect can
in principle be retrieved from the complementary real-space formulation of AHC
[199], discussed below. The other extrinsic term (skew scattering) is dissipative,
proportional to τ in the single-relaxation-time approximation, and presumably
cannot be explained by means of geometrical concepts.

8.3 Independent electrons

8.3.1 Transverse dc conductivity
The above Kubo formula for transverse dc conductivity has been anticipated above,
Sect. 4.2.4, for the insulating case in 2d; but indeed the intrinsic term in metals
is no different. The many-band independent-electron curvature is (for both metals
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and insulators)

Ωαβ(k) = i
∑
j

θ(µ− ϵjk)[ ⟨∂αujk|∂βujk⟩ − ⟨∂βujk|∂αujk⟩ ], (8.18)

and the independent-electron AHC of a pristine crystal is

Re σ(−)
αβ (0) = −e

2

ℏ

∫
BZ

dk

(2π)d
Ωαβ(k). (8.19)

This clearly generalizes the formulæ of Sect. 4.2.4.
At the independent-electron level (either Hartree-Fock or Kohn-Sham) the many-

electron wavefunction is a Slater determinant of Bloch orbitals; the relationship
between the many-body curvature per unit volume and the independent-particle
curvature is therefore

1

Ld
Ω̃αβ(0) =

∫
BZ

dk

(2π)d
Ωαβ(k), . (8.20)

The equality holds in the L→ ∞ limit. The convergence of Eq. (8.20) with 1/L has
been indeed investigated by means of tight-binding simulations in the simple case of
a Chern insulator, where the r.h.s. is quantized: see Fig. 8.3 below. The L→ ∞ is
implicitly understood in the l.h.s.; it is instead explicit in the r.h.s., given that the
Bloch vector therein is a continuous variable.

When κ ̸= 0 is set in Kohn’s Hamiltonian Ĥκ, the corresponding Kohn-Sham
periodic orbitals |ujk⟩ are eigenstates of the single-particle Hamiltonian

e−ik·rHκe
ik·r =

1

2m

[
p+

e

c
A(r) + ℏk+ ℏκ

]2
+ VKS, (8.21)

where VKS is the Kohn-Sham potential, hence

1

Ld
Ω̃αβ(κ) =

∑
j

∫
BZ

dk

(2π)d
Ωαβ(k+ κ). (8.22)

8.3.2 AHC in gauge-invariant form
The Berry curvature of the occupied manifold, defined as in Eq. (8.18), allows to
write the AHC in form of a BZ integral, which applies to both insulators and metals:
Eq. (8.26). The curvature is gauge-invariant in the generalized sense, i.e. is invariant
for unitary transformations of the occupied |ujk⟩ at any given k. The expression in
Eq. (8.18), however, requires the so-called “Hamiltonian gauge”.
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It is possible to write the curvature in a manifestly gauge-invariant trace form,
whose entries are—instead of the orbitals |ujk⟩—the Bloch projector Pk, Eq. (7.3),
and its k-derivatives, Eq. (7.4). The expression is:

Ωαβ(k) = iTr {Pk [ ∂αPk, ∂βPk]}, (8.23)

and holds as it stands for both insulators and metals. The singularity in the first
line of Eq. (7.4) does not affect Eq. (8.23), owing to antisymmetrization; the proof
of Eq. (8.23) is straightforward by direct calculation.

We have shown already this expression in Eq. (3.48); a similar form holds for
the metric as well. Taking them altogether the metric-curvature tensor is cast in
compact forma as

Fαβ(k) = Tr {Pk (∂αPk)(∂βPk)}. (8.24)

8.3.3 Metals
The theory of the AHC in metals has been controversial for many years, and
important developments are quite recent [198, 199, 200]. A key turning point
occurred in the early 2000s [201, 202], when it became clear that, besides the extrinsic
mechanisms, there is an important intrinsic contribution which is geometrical in
nature. We have previously defined the Berry curvature for band insulators,
Eqs. (3.38) and (3.48); it is expedient to generalize it for band metals as

Ωαβ(k) = i
∑
j

θ(µ− ϵjk)[ ⟨∂αujk|∂βujk⟩ − ⟨∂βujk|∂αujk⟩ ], (8.25)

and we observe that Ωαβ(k) is smooth in insulators and piecewise continuous (hence
integrable) in metals.

We address solely the geometrical (a.k.a. intrinsic) contrubution here; its
expression is

Re σ(−)
αβ (0) = −e

2

ℏ

∫
BZ

dk

(2π)d
Ωαβ(k), (8.26)

where Ωαβ(k) is the Berry curvature of the occupied manifold, Eq. (8.18); this is in
fact the nonquantized version of the famous TKNN formula, and it holds as it stands
in either 2d or 3d. It is easily verified that for a 2d insulator Eq. (8.26) coincides
indeed with Eq. (4.24).

Given that the Fermi surface is symmetrical under k → −k, the symmetry
considerations of Sect. 3.8 show that Eq. (8.26) can be nonzero only T-symmetry
is absent, while inversion symmetry is irrelevant. The typical case studies are the
ferromagnetic metals, whose ground state breaks indeed T-symmetry in absence of
a macroscopic B field.
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First-principle calculations were performed for Ni, Cu, and Fe, as well as or for
some oxides. The intrinsic geometric contribution appears to be the dominant one.
These calculations also pointed out the crucial role played by avoided crossings of
the bands near the Fermi surface, which induce a very spiky behavior of the Berry
curvature in the BZ. More than 106 k points where used in Ref. [203] in order to
perform the integration in Eq. (8.26); a more efficient strategy was devised later
[204].

A noninteracting (e.g. KS) many-electron system is a trivial example of a Fermi
liquid. Haldane [205] pointed out that the very basic tenet of Landau’s Fermi-liquid
theory is that charge transport involves only quasiparticles with energies within kBT
of the Fermi level. This is apparently at odds with Eq. (8.26), which is an integration
over the whole occupied Fermi sea. The two viewpoints can be reconciled, essentially
via an integration by parts [205]. Even this alternative form has been implemented
in first-principle calculations [161].

8.3.4 Chern invariant in band insulators
Band insulators where the Chern invariant is nonzero are called “Chern insulators”
(normal insulators otherwise); they go under the equivalent name of QAHE
(quantum anomalous Hall effect) insulators. We emphasize that the nonvanishing
of the Chern number prevents the existence of a smooth periodic gauge, Eq. (3.34),
across the whole reciprocal cell (or BZ): if, for instance, Eq. (3.34) is enforced on
the reciprocal cell boundary, an “obstruction” will show up at some point inside
[24]. Because of this same reason, exponentially localized Wannier functions do not
exist [206, 207]; this is at variance with normal insulators where localized Wannier
functions exist, and can even be chosen as exponentially localized [19, 56, 208].

Digression: Bulk-boundary correspondence

As discussed throughout these Notes, geometrical and topological properties of a
given system manifest themselves in reciprocal space. The concepts of reciprocal
space and of k vector are based on PBCs: the sample has no boundaries by
construction. However, for the same physical system, one could consider a bounded
sample within OBCs. In this case there is no k vector to speak of: the geometrical
properties manifest themselves as surface (in 3d) or edge (in 2d) properties. Bulk-
boundary correspondence is the hallmark of geometry and topology in electronic
structure.

The archetype of bulk-boundary correspondence is the IQHE. When a toroidal
geometry is adopted there is no boundary, and the fingerprint of nontrivial topology
is the Chern number. If instead the 2d electron fluid in the quantum Hall regime
has the shape of a ribbon, then there are edge states which carry a chiral current.
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However, these edge states are a bulk property and are “topologically protected”.
Similar considerations apply to Chern insulators in 2d.

For 2d T-invariant (TI) topological insulators the edge states cannot carry any
net current; instead there are counterpropagating spin currents which, once more,
are topologically protected: one speaks then of “quantum spin Hall effect”. In the
3d case, there are topologically protected surface states, whose nature is nontrivial.

There is a subtle difference between Chern insulators and TI insulators. In the
former case the quantization of the (electrical) edge current is exact; in the latter
case the quantization of the spin edge current is only approximate, because spin is
not conserved in these materials [209].

The bulk-boundary correspondence also occurs in the case of polarization, where
the topologically protected boundary quantity is not current but charge. Here one
has to pay attention to the fact that polarization is the sum of an electronic and a
ionic term: only the former term is expressed as a k integral. However, the bulk
polarization determines the surface charge modulo the “quantum” (Sec. 5.6.1). In
the simple case where the bulk is centrosymmetric, topology requires the charge per
surface cell to be an integer or an half integer (see also Sec. 5.7). We stress that,
quite often, a polar surface is metallic and topology does not apply.

Computing the Chern number

The computation of a Chern number proceeds similarly to what presented in
Sec. 4.1.4 for a toy-model Hamiltonian. Suppose we discretize the reciprocal
cell with a regular mesh, as in Fig. 8.1. We start enforcing the periodic gauge
|ujk+G⟩ = e−iG·r|ujk⟩ on the boundary, i.e. for all the couples of boundary points
which are related by a reciprocal lattice vector. At all the interior points the gauge
is chosen by the diagonalization routine and is therefore erratic. The mesh actually
shown in Fig. 8.1 would actually require 8× 8 = 64 Hamiltonian diagonalizations.

Figure 8.1: Discretization of
the reciprocal cell. The
periodic gauge is enforced
on the boundary; otherwise
the gauge is unspecified and
possibly erratic. The Chern
number is the sum of the
Berry phases computed on
the small squares.

142



We recall that the curvature is the Berry phase per unit reciprocal area, and we
compute it on each of the small squares using the four-point discrete formula

γ = −Im ln ⟨uk1|uk2⟩⟨uk2|uk3⟩⟨uk3|uk4⟩⟨uk4|uk1⟩, (8.27)

which applies to the single-band case. In the many-band case this is replaced by

γ = −Im ln det S(k1,k2)S(k2,k3)S(k3,k4)S(k4,k1), (8.28)

where S is the overlap matrix

Snn′(ks,ks′) = ⟨unks|un′ks′
⟩; (8.29)

see Eq. (3.55). One has to choose the “Im log” branch with γ in [−π, π].
The Chern number C1 is the sum of all the γs, covering the whole reciprocal cell

(64 in Fig. 8.1). In our discontinuous approach, the obstruction is not located at any
particular k point, although its effect becomes apparent after all γs are summed. we
remind that—as discussed in Sec. 4.1.4—the discretised Chern number is always an
exact integer, and not an approximate integer, even for a coarse mesh. This feature
has been apparently first pointed out in 2005 [210].

Chern number as the curvature for unit area

We have seen above that for an insulating 2d system the Chern number is
proportional to the many-body Berry curvature per unit area, Eq. (8.17),

C1 = 2π
Ω̂(0)

A
, (8.30)

where A = L2 is the system area and the thermodynamic limit is implicit. In
the independent-electron case the wavefunction is a Slater determinant, and the
many-body Berry curvature is the BZ integral of the band-structure curvature: see
Eq. (8.20).

Here we investigate what happens when the BZ integral is discretized, which
corresponds to evaluating Ω̂(0)/A at finite size. Eventually, the Chern number can
be obtained from a single Hamiltonian diagonalization for a large supercell—either
crystalline or disordered—and no derivative is actually involved.

This bears some relationship to the so-called single-point Berry phase, discussed
in Sec. 5.6.2. Here we follow the approach of Ref. [211]: to give a flavor of how it
works, we start from Fig. 8.1, where one needs 64 independent diagonalizations, as
said above. One may look at the same system by doubling the elementary cell in
each direction, in which case the number of occupied bands increases fourfold, and
the new reciprocal cell has one quarter of the original area. Now the calculation
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Figure 8.2: Upon dou-
bling the elementary cell, the
reciprocal-cell area is divided
by 4, and the number of oc-
cupied bands is multiplied by
4.

proach yields an error of 7!10−3 for L=6, and smaller than
10−5 for L=32. We are showing here the results for a " value
well inside the C=1 domain. We also find that the conver-
gence worsens near the transition point !sin "!=1/"3.

Numerical evaluation of Chern numbers is a staple tool in
the theory of the quantum Hall effect, where supercells are
routinely used to account for disorder and/or electron-
electron interaction. However, even in a supercell frame-
work, a discrete reciprocal mesh #or equivalently a mesh of
phase boundary conditions$ has been invariably used in the
algorithms implemented so far.19–22 Here we have shown
that, provided the supercell is large enough, no mesh is
needed: the Chern number can be evaluated from a single
Hamiltonian diagonalization #with a single choice of bound-
ary condition$. The rationale behind our finding is simple:
the Chern number is by definition an integral, whose integra-
tion domain shrinks to a single point in the limit of a large
supercell.

The single-point orbital magnetization M of the model
system, computed from Eqs. #3$ and #10$ as a function of the

supercell size, is shown in Fig. 3, again for "=0.4#. In this
case the analytical-derivative approach converges definitely
better, showing, in fact, the same kind of relative error as the
Chern number, while the numerical-derivative approach
proves somewhat less accurate.

In conclusion, we provide here the key formulas for com-
puting the orbital magnetization of a condensed system from
first principles in a supercell framework and using a single k
point, to be used as they stand within Car-Parrinello simula-
tions in an environment which breaks time-reversal symme-
try. We have validated the present formulas on a simple tight-
binding model Hamiltonian in two dimensions, and checked
their #fast$ convergence with the supercell size. Last but not
the least, we have proved that even the Chern number—
which has a paramount relevance in quantum-Hall-effect
simulations—can be computed from a single Hamiltonian
diagonalization, and converges fast with the supercell size.
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APPENDIX: MORE GENERAL BOUNDARY CONDITIONS

The single-point formulas discussed so far are based on
Eq. #7$, with $=1, and eventually require diagonalizing the
Hamiltonian at the % point only, ergo solving the
Schrödinger equation with periodic boundary conditions on
the supercell. This is by far the most common choice among
Car-Parrinello practitioners, although other choices are pos-
sible.

In order to extend our single-point formulas to more gen-
eral boundary conditions it would be enough to switch from
Eq. #7$ #at $=1$ to alternative expressions for the directional

t1

+∆
−∆

t2 ie φ

FIG. 1. Four unit cells of the Haldane model. Filled #open$
circles denote sites with E0=−& #+&$. Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei". Arrows indicate sign of the phase " for second-
neighbor hopping.
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FIG. 2. Convergence of the Chern number as a function of the
supercell size, evaluated using the single-point formulas #see text$,
for the Haldane model Hamiltonian at "=0.4#. The largest L cor-
responds to 2048 sites.
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FIG. 3. Convergence of the orbital magnetization as a function
of the supercell size, evaluated using the single-point formulas #see
text$, for the Haldane model Hamiltonian at "=0.4#, The largest L
corresponds to 2048 sites.

BRIEF REPORTS PHYSICAL REVIEW B 76, 012405 #2007$

012405-3

Figure 8.3: Convergence
of the Chern number for
topological crystalline Halda-
nium, as computed from a
single Hamiltonian diagonal-
ization in a supercell geom-
etry; the k-derivatives are
discretized in two alternative
ways. After Ref. [211].

of C1 requires 64/4 = 16 independent diagonalizations; the algorithm of Eq. (8.28)
yields a C1 value identical to previous one (up to computer accuracy), because
we are folding the same orbitals in a smaller reciprocal cell (or BZ). We can go
on with the folding, diagonalizing in 64, 16, 4, 1 points. If the supercell size L
is large enough, the C1 value computed via a single Hamiltonian diagonalization
and (super)lattice-periodical orbitals is very close to the thermodynamic limit, as
perspicuously shown in simulations on a simple test case: Fig. 8.3. Once the large
supercell is adopted, disorder can be introduced at no extra cost; since C1 is a
topological invariant, disorder cannot change its topological value insofar as the
system remains insulating.

8.3.5 Hermaphrodite orbitals
Hermaphrodite orbitals were first introduced by us in Ref. [148]. They are nowadays
a common tool to address TI topological insulators. Unfortunately, they have been
rebaptized ”hybrid Wannier functions” [212].

It is expedient to start with a finite crystallite within OBCs, with N electrons
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in a singlet ground state:

ρ = 2 P = 2

N/2∑
i=1

|φi⟩⟨φi|. (8.31)

The average quadratic spread in the x direction is by definition

λ2xx =
2

N

N/2∑
i=1

(⟨φi|x2|φi⟩ − ⟨φi|x|φi⟩2). (8.32)

We recast this identically as:

λ2xx =
2

N

∑
i

⟨φi|x ( 1−
∑
j

|φj⟩⟨φj| )x |φi⟩+
2

N

∑
i ̸=j

|⟨φi|x|φj⟩|2.

(8.33)
The first term in Eq. (8.33) is gauge invariant, since we can identically write:

λ2xx =
2

N
Tr xPx(1− P ) +

2

N

∑
i ̸=j

|⟨φi|x|φj⟩|2. (8.34)

The gauge–invariant term in Eq. (8.34) coincides with the Resta-Sorella squared
localization length, for the appropriate geometry.

If we look for the orbitals which minimize the average spread in the x direction,
the solution, after Eq. (8.34), is provided by those orbitals which diagonalize the
position operator x, projected over the occupied manifold, i.e. the operator PxP .
Obviously, a set of orthonormal orbitals which diagonalize it can always be found,
since PxP is a Hermitian operator. The quadratic spread of these orbitals is the
minimum and equals then the gauge-invariant spread.

If we now switch to the thermodynamic limit for a crystalline system,
translational symmetry implies P (r, r′) = P (r+R, r′+R). For the sake of simplicity
we limit ourselves to a rectangular lattice, where R = (X,Y, Z), and each of the
X,Y, Z are one-dimensional lattices. It is then obvious that the eigenstates of PxP
can be labelled with a Bloch vector in the yz directions. If we use the notation
χs kykz(r) for a generic eigenstate of PxP , then it obeys the Bloch theorem in the
form

χs kykz(x, y + Y, z) = eikyY χs kykz(x, y, z), (8.35)

and analogous in the z direction.
We address the simple case of a single occupied band. If χ0 kykz(x, y, z) is

eigenstate of PxP with eigenvalue x0, then its lattice-translate χ0 kykz(x − X, y, z)
is also eigenstate of PxP , with eigenvalue x0 + X: this is reminiscent of WFs, see
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Figure 8.4: Two-masted vessels. Brig: both masts are square rigged. Schooner:
both masts are fore-and-aft rigged (gaff sails and topsails here). Hermaphrodite
brig: the foremast is square rigged, the mainmast is fore-and-aft rigged.

Eq. (5.7). The proof is very simple: P (x − X)P = PxP − XP , and XP on the
occupied manifold is just a constant multiplication by X.

In the many-band case we need—as for WFs—a band index j and a 1d cell index
X. All hermaphrodite orbitals are obtained by lattice translation from the central
cell ones:

⟨x, y, z|χj X kykz⟩ = ⟨x−X, y, z|χj 0 kykz⟩; (8.36)

a glance at Eq. (5.7) explains the notations and the meaning. Notice that the
hermaphrodite-orbital center x0 does depend on the (ky, kz) Bloch vector, as well as
on the band index j.

The name “hermaphrodite orbitals” is therefore pretty clear (see Fig 8.4):
they are Bloch-like in the yz direction, and Wannier-like in the x direction.
The present construction guarantees that they are maximally localized in the x
direction and their quadratic spread is equal to the xx component of the (gauge-
invariant) localization tensor. Similarly to standard Bloch and Wannier orbitals,
our hermaphrodite orbitals are an orthonormal basis for the occupied manifold.

Chern number and hermaphrodite orbitals

Here we address the simple case of a 2d square lattice of constant a and a single
occupied band. We simplify notations by indicating with χky(x, y) the central-
cell (ky-dependent) orbital; the complete set in the occupied manifold is, after
Eq. (8.36), χmky(x, y) = χky(x − ma, y), where m ∈ Z and ky ∈ [0, 2π/a). The
inverse transformation yields the Bloch orbitals as

ψk(r) =
∑
m

eimkxaχky(x−ma, y) (8.37)

uk(r) =
∑
m

e−ikx(x−ma)χ̃ky(x−ma, y), χ̃ky(x, y) = e−ikyyχky(x, y).
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The uk orbitals are clearly lattice-periodical and normalized over the unit cell; their
k derivative yields

∂1uk(r) = −i
∑
m

e−ikx(x−ma)(x−ma) χ̃ky(x−ma, y),

∂2uk(r) =
∑
m′

e−ikx(x−m′a) ∂

∂ky
χ̃ky(x−m′a, y),

⟨∂1uk|∂2uk⟩ = i
∑
m

e−ikxma⟨χ̃mky |(x−ma)| ∂
∂ky

χ̃0 ky⟩, (8.38)

where “⟨ ⟩′′ means r integral in (−∞,∞) × (0, a). The Berry curvature and the
Chern number are therefore

Ω(k) = −2 Im ⟨∂1uk|∂2uk⟩

= −2Re
∑
m

e−ikxma⟨χ̃mky |(x−ma)| ∂
∂ky

χ̃0 ky⟩,

C1 = − 1

π
Re

∫ 2π/a

0

dkx

∫ 2π/a

0

dky
∑
m

e−ikxma⟨χ̃mky |(x−ma)| ∂
∂ky

χ̃0 ky⟩

= −2

a

∫ 2π/a

0

dky Re ⟨χ̃ky |x|
∂

∂ky
χ̃ky⟩, (8.39)

where |χ̃ky⟩ ≡ |χ̃0 ky⟩ is the central-cell orbital. If we define x0 as its (ky dependent)
center, then

x0(ky) = ⟨χ̃ky |x|χ̃ky⟩,
dx0
dky

= 2 Re ⟨χ̃ky |x|
∂

∂ky
χ̃ky⟩ (8.40)

C1 = −1

a

∫ 2π/a

0

dky
dx0
dky

= −1

a
[ x0(2π/a)− x0(0) ]. (8.41)

The hermaphrodite orbitals carry therefore a very clear topological signature. In a
topologically trivial 2d insulator their center is periodical in ky; while instead in the
nontrivial case their center shifts by −C1a when ky → ky + 2π/a. More generally,
not only the center but even the function χ̃mky(x, y) enjoys an analogous property.

As for the k space periodicity of the Bloch functions, Eqs. (8.37) and (8.41) yield

ψkx+2π/a,ky(r) = ψkx,ky(r)

ψkx,ky+2π/a(r) = eiC1kxa ψkx,ky(r). (8.42)

this confirms that in the Chern case the gauge cannot be periodical over the
reciprocal cell. The gauge implicit in Eq. (8.37) can be called “cylindrical”: periodic
in kx but not in ky.
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Lowest Landau level

We consider a system of noninteracting electrons in a flat substrate potential and in
a normal magnetic field. Although the system is translationally invariant in the (xy)
plane, both the Hamiltonian and the density matrix P are not invariant. Despite
this, the orbitals of e.g. the lowest Landau level (LLL) share many of the properties
of the hermaphrodite orbitals.

If the LLL is fully occupied (i.e. at filling ν = 1) the electron density is uniform
and equal to n0 = 1/(2πℓ2), where ℓ = (ℏc/eB)1/2 is the magnetic length; the
modulus of the density matrix has the translationally invariant expression (for single
occupancy)

|P (r, r′)| = n0e
−|r−r′|2/(4ℓ2), (8.43)

and the cumulant second moment is clearly finite. The trace ⟨x2⟩c + ⟨y2⟩c of the
localization tensor is in fact equal to ℓ2, the squared magnetic length, and the
minimum quadratic spread in the x direction is ℓ2/2.

The LLL orbitals in the Landau gauge are labeled by a one-dimensional wave
vector q ∈ (−∞,∞) and have the form

ψq(r) = e−iqyφ(x− qℓ2), (8.44)

where φ(x) is the normalized ground eigenfunction of a 1d harmonic oscillator with
frequency ωc = eB/mec

φ(x) =

(
1

πℓ2

)1/4

e−x2/(2ℓ2). (8.45)

The quadratic spread of this function is indeed ℓ2/2; the ψq(r) are therefore
eigenstates of PxP , and are the magnetic analogue of the maximally localized
hermaphrodite orbitals. Notice that in Eq. (8.44) ψq(r) has a plane-wave-like
normalization over y.

To make contact with our notations for hermaphrodite orbitals it is enough to
define a =

√
2π ℓ and

q = ky + 2πm/a, ky ∈ [0, 2π/a), m ∈ Z

χ̃mky(x, y) =
1

a
e−i2πmy/aφ(x− kyℓ

2 − 2πmℓ2/a)

=
1

a
e−i2πmy/aφ(x− kya

2/(2π)−ma); (8.46)

as in the previous Section, the χ̃ orbitals are normalized over (−∞,∞)× (0, a).
Finally, we verify the behavior of χ̃ vis-a-vis the Chern number. The center of

the central cell orbital is x0 = kya
2/(2π); if ky is increased by 2π/a, then x0 increases

by a, as it must be: we remind that C1 = −1 in the LLL (sign conventions are not
uniform across the literature).
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Figure 8.5: Four unit cells of crystalline Halda-
nium [192]. Filled (open) circles denote sites with
E0 = −∆ (+∆). Solid lines connecting nearest neigh-
bors indicate a real hopping amplitude t1; dashed ar-
rows pointing to a second-neighbor site indicates a
complex hopping amplitude t2eiϕ. Arrows indicate sign
of the phase ϕ for second-neighbor hopping.

8.4 Haldanium
The Haldane model Hamiltonian is comprised of a 2d honeycomb lattice with
two tight-binding sites per primitive cell with site energies ±∆, real first-neighbor
hopping t1, and complex second-neighbor hopping t2e

±iϕ, as shown in Fig. 8.5.
Within this two-band model, one deals with insulators by taking the lowest band
as occupied; many years after its first occurrence, the same Hamiltonian has been
used also to model a 2d metal where T-invariance is absent (it is enough to set the
Fermi level µ across a band).

The appeal of the model is that the vector potential and the Hamiltonian
are lattice periodical and the single-particle orbitals have the usual Bloch form.
Essentially, the microscopic magnetic field can be thought as staggered—i.e. up and
down in different regions of the cell—but its cell average vanishes. The T-breaking
can be pictorially understood as induced by magnetic point-dipoles (normal to the
plane) at the center of each hexagon; according to Fig. 9.1 below, such dipoles do
not generate a microscopic B field.

As a consequence, the band structure and the density of states do not show
any exotic feature (at variance with the case where the T-breaking is due to a
macroscopic B field). The Haldane Hamiltonian has been used as a workhorse
in many simulations, providing invaluable insight into topological features of the
electronic wavefunction [192, 211, 206, 213, 214, 215], as well as into features of
orbital magnetization [216, 217, 211, 218].

Figure 8.6: Chern number C1 of
the Haldane model at half filling as
a function of the parameters ϕ and
∆/t2; the plot is drawn for t1 = 1 and
t2 = 1/3. At ϕ = 0 Haldanium is
a model for graphene and hexagonal
boron nitride.
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As a function of the flux parameter ϕ, the system—at half filling—undergoes
a transition from a normal insulator (C1 = 0) to Chern insulator (C1 = ±1). Its
phase diagram is shown in Fig. 8.6. On the vertical ϕ = 0 axis the Hamiltonian
is T-invariant and Haldanium becomes a model for hexagonal boron nitride; the
center of the plot (∆ = 0, ϕ = 0) corresponds to graphene. Notice also that on
the horizontal ∆ = 0 axis Haldanium is a nonpolar and centrosymmetric insulator
(except at ϕ = 0).

According to the theory of the insulating state, the Resta-Sorella λ2—or
equivalently the gauge-invariant quadratic spread ΩI—is finite at half filling. This is
confirmed by the simulations of Ref. [206], where the actual value of ΩI is computed.
We remind that, despite ΩI being finite, localized Wannier functions (with finite
quadratic spread) do not exist in Chern insulators.

Both insulating Haldanium and quantum Hall insulators display quantized
transverse conductivity; and both are localized in the above sense. It is worth
pointing out, though, that the decay of the density matrix is qualitatively different:
exponential in Haldanium [206] vs. Gaussian in the (noninteracting) quantum Hall
case, Eq. (8.43).

Chern insulators remained a curiosity of academic interest only for many years;
no actual material belonging to this class was actually synthesized until 2013.
The hallmark of a 2d Chern insulator is quantum anomalous Hall effect (QAHE).
The effect was first observed in 2013 in Cr-doped (B,Sb)2Te3 thin films [193]; the
quantization was later observed with much higher precision in V-doped (B,Sb)2Te3-
doped (B,Sb)2Te3 [194].

8.4.1 Exact diagonalization; skyrmion-like invariant
.

The most general 2 × 2 tight-binding Hamiltonian Hk is a k-dependent linear
combination of the identity and the Pauli matrices:

Hk = η(k) + d(k) · σ⃗, (8.47)

and the lowest band is
ϵk = η(k)− |d(k)|. (8.48)

The ground state projector at half filling has a very simple expression in terms of
d̂(k) = d(k)/|d(k)|:

Pk =
1

2
[1− d̂(k) · σ⃗], ∂kαPk = −1

2
∂kα d̂γ(k)σγ. (8.49)

[ ∂kxPk, ∂kyPk ] =
1

4
(∂kx d̂γ)(∂ky d̂η)[σγ, ση ]
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=
i

2
εαγη(∂kx d̂γ)(∂ky d̂η)σα =

i

2
∂kxd̂(k)× ∂ky d̂(k) · σ⃗. (8.50)

The Berry curvature is therefore

Ωxy(k) = iTr {Pk [ ∂kxPk, ∂kyPk ]} = −1

2
∂kxd̂(k)× ∂ky d̂(k) · Tr {Pkσ⃗}. (8.51)

We then insert the Pk expression, Eq. (8.49), and we notice that Tr σ⃗ = 0,
Tr σγση = 2 δγη; ergo

Ωxy(k) =
1

2
∂kxd̂(k)× ∂ky d̂(k) · d̂(k). (8.52)

C1 =
1

4π

∫
BZ

dk d̂(k) · ∂kxd̂(k)× ∂ky d̂(k), (8.53)

which indeed maps exactly into the well known formula for a magnetic skyrmion (in
r-space, Fig. 8.7).

8.5 Geometry and topology in r-space
We abandon here lattice periodicity and we address instead a bounded sample
(possibly noncrystalline), where the single-particle orbitals |φj⟩ are square-
integrable: so-called “open” boundary conditions (OBCs). The mean-field
Hamiltonian is written as

Hκ =
1

2m
(p+ ℏκ)2 + V (r), (8.54)

where setting κ ̸= 0 amounts to a trivial gauge transformation, easily “gauged
away” within OBCs. The κ-dependent orbitals are in fact |φjκ⟩ = e−iκ·r|φj⟩, and
the ground state projector in Schrödinger representation is

⟨r| Pκ |r′⟩ = eiκ·(r′−r)⟨r| P |r′⟩, (8.55)

Figure 8.7: Magnetic skyrmion. The
topological index (a.k.a. skyrmion
number) is the integer n defined as
n = 1

4π

∫
dxdy M ·∂xM×∂yM, where

M is the unit vector along the local
magnetization of a 2d system. After
Wikipedia.
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where P is the zero-κ ground-state projector:

P =
∑
ϵj≤µ

|φj⟩⟨φj|. (8.56)

Gauge-invariant geometric quantities within OBCs obtain from κ-derivatives of
Pκ evaluated at κ = 0. i.e

⟨r| ∂καPκ |r′⟩ = i(r′α − rα)⟨r| P |r′⟩, (8.57)

or in operator notation ∂καPκ = −i[rα,P ]. This operator encodes the linear
response of the ground state to an infinitesimal gauge potential.

The generic operator product is then

(∂καPκ)(∂κβ
Pκ) = −[rα,P ] [rβ,P ], (8.58)

and the analogue of the integrated metric-curvature tensor is

Fαβ = − 1

V
Tr {P [rα,P ] [rβ,P ]}

=
1

V
Tr {PrαrβP} − 1

V
Tr {PαPrβP}, (8.59)

i.e. the second cumulant moment of the electron distribution (or quantum
fluctuation of the dipole). I have divided by the volume (area for d = 2) in order to
define an intensive quantity. This trace is obviously real symmetric even in absence
of T-symmetry; it provides the OBCs analogue of ΩI/Vcell, as discussed e.g. in Ref.
[148]. In the large-V limit this quantity converges to a finite limit in insulators, and
diverges in metals [149].

We may write the trace of Fαβ in the Schrödinger representation, i.e.

Fαβ = − 1

V

∫
dr ⟨r| P [rα,P ] [rβ,P ] |r⟩; (8.60)

it has been shown in Ref. [215] that the function Im ⟨r| P [rα,P ] [rβ,P ] |r⟩ carries the
information needed to extract the value of the AHC even from an OBCs calculation.
It is enough to evaluate the trace per unit volume by integrating over an inner region
of the sample (and not over the whole sample). For instance for a bounded crystallite

σ
(−)
αβ = − 2e2

ℏVcell

∫
cell

dr Im ⟨r| P [rα,P ] [rβ,P ] |r⟩, (8.61)

where the cell is in the center of the crystallite, and the large-crystallite limit is taken.
This is demonstrated in Ref. [215] for insulators and in Ref. [199] for metals via
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simulations for Haldanium samples. We refer to the very perspicuous figures therein
(not reproduced here) for an illustration of the present outstanding message.

We remind that in the 2d insulating case σ(−)
xy , when expressed in natural units,

coincides with (minus) the Chern number C1. Therefore, as shown in Ref. [215],
our local theory amounts to a space-resolved definition of the Chern number. We
have dubbed this “topological marker”, and shown its power including in disordered
and inhomogenous (heterojuction) cases. We have called its metallic analogue
“geometrical marker” and shown that it enjoys similar properties [199].

8.6 Nonlinear Hall conductivity
As seen above, nonzero linear Hall conductivity requires T-symmetry to be absent.
An important development, due to Sodemann and Fu, occurred in 2015 [219]: they
realized that second-order transverse dc conductivity can be nonzero even in T-
symmetric materials, provided that inversion (I) symmetry is absent: the quadratic
dc response is then called nonlinear Hall conductivity (NHC); the theory was
originally developed at the independent-electron level for crystalline systems, and
the relevant expressions are obtained semiclassically [219, 220, 221]. The discovery
prompted a large interest into the phenomenon, both experimentally [222] and
theoretically; the presentation given here follows Ref. [200].

We start again from Eq. (8.7), and we expand the anomalous velocity as

Ω̃αβ(κ)κ̇β ≃ Ω̃αβ(0)κ̇β + ∂κγΩ̃αβ(0) κ̇βκγ. (8.62)

The first term yields the AHC, Eq. (8.13); we focus on the second term in the
following:

σ
(−)
αβγ(−ω, ω) =

2 e

Ld
∂κγΩ̃αβ(0)

∂κ̇β
∂ Eβ(−ω)

∂κγ
∂ Eγ(ω)

, (8.63)

where the factor of 2 owes to the fact that (Re Eβe−iωt)(Re Eγeiωt) = EβEγ/2 when
averaged over the period. We then set

κ̇β = − e

ℏ
Eβ(−ω), κγ =

e

ℏc
Aγ(ω), (8.64)

and we get to lowest order in ω:

1

2
σ
(−)
αβγ(−ω, ω)

.
= − e3

ℏ2cLd
∂κγΩ̃αβ(0)

dA(ω)

dE(ω)
.
=

e3

ℏ2Ld
∂κγΩ̃αβ(0)

i

ω + iη
. (8.65)
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The dc current induced to second order by the constant field is thus:

jα =
i

ω + iη
χαβγEβEγ, χαβγ =

e3

ℏ2Ld
∂κγΩ̃αβ(0). (8.66)

The real part of the ω-dependent factor in Eq. (8.66) equals πδ(ω): the many-
electron system undergoes a transverse free acceleration. A dc current obtains upon
replacement of the infinitesimal η with an inverse relaxation time 1/τ . This is in
stark contrast with AHC, Eq. (8.13), accounting for a τ -independent dc current.

As for the symmetry properties of Eq. (8.66), we remind that in presence of
T-symmetry Ω̃αβ(κ) = −Ω̃αβ(−κ), while in presence of I-symmetry Ω̃αβ(κ) =
Ω̃αβ(−κ) [13]: therefore in a T-symmetric system Ω̃αβ(0) = 0 and the AHC vanishes.
In the case of NHC the parity is swapped: the gradient of Ω̃αβ(κ) is even in T-
symmetric systems, and odd in I-symmetric systems. Therefore the NHC requires
breaking of I-symmetry; in the special case of a T-symmetric and I-breaking system,
nonzero transverse conductivity appears at second order only.

Since the responses to EβEγ and to EγEβ coincide, χαβγ is symmetrical in the β, γ
indices, while instead it is antisymmetrical in the α, β and α, γ indices. Therefore
the current is always orthogonal to the field: if—for an arbitrary E orientation—we
set the x-axis along E , then jx ∝ χxxx = 0, while jy ∝ χyxx and jz ∝ χzxx are not
constrained to be zero by (this) symmetry.

At the independent-electron level we exploit Eq. (8.22) to obtain

1

Ld
∂καΩ̃αβ(0) =

∫
BZ

dk

(2π)d
∂kαΩαβ(k), (8.67)

χαβγ =
e3

ℏ2

∫
BZ

dk

(2π)d
∂kγΩαβ(k). (8.68)

This is equivalent—in the single-band case—to the semiclassical expression which
first appeared in the founding NHC 2015 paper by Sodemann and Fu [219].
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Chapter 9

Magnetization

Like polarization P, even macroscopic magnetization M is a fundamental concept
that all undergraduates learn about in elementary courses [95, 96]. Macroscopic
magnetization M is the sum of two terms, which are unambiguously defined
in nonrelativistic (and semirelativistic) quantum mechanics: spin magnetization
M(spin) and orbital magnetization M(orb). Experimentally, magneto-mechanical
measurements, based on the Einstein-de Haas effect, provide the two terms
separately. For instance, the values of M(spin) and M(orb) for the three ferromagnetic
metals (Fe, Co, and Ni) are accurately known since half a century [223]. From the
viewpoint of the present review, M(spin) is a dull quantity. Electronic-structure codes
routinely compute the spin density, which is a simple lattice-periodical function. Its
cell average (times a trivial factor) coincides with M(spin). In other words, a “dipolar
density” is unambiguously identified, while the same does not happen in the orbital
case. Throughout this Chapter we address orbital magnetization, using the symbol
M to identify M(orb) only.

Polarization P and orbital magnetization M share some analogy, but also
some significant differences. For the time being, we emphasize the main analogy:
textbooks define both P and M as the dipole moment of a sample, divided by the
volume V :

P =
d

V
=

1

V

∫
dr rρ(micro)(r), M =

m

V
=

1

2cV

∫
dr r× j(micro)(r), (9.1)

where ρ(micro)(r) and j(micro)(r) are the microscopic charge and (orbital) current
densities. Contrary to what most textbooks pretend, there is no such thing as
a “dipolar density”: the basic microscopic quantities are ρ(micro)(r) and j(micro)(r)
[224]. If the sample is uniformly polarized/magnetized, then the microscopic
charge/current averages to zero in the bulk of the sample. Owing to the presence
of the unbound operator r, both P and M Eq. (9.1) are dominated by surface
contributions, while instead phenomenologically they are bulk properties.
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The modern theory of magnetization dates from 2005-06 [217, 225], and is still
(2021) partly work on progress [225, 226, 227, 211, 228, 229, 218]. A few reviews
have appeared [8, 18, 22], while only a few first-principle implementations appeared
so far [230, 231, 232]. The theory is strictly at the independent-electron level; a
formula providing M in terms of an explicitly correlated ground state has not yet
(as of 2021) been proposed.

9.1 Magnetization and magnetic field
The modern theory of magnetization only addresses the polarization M in a null
macroscopic B field; in this case M can be nonzero only if T-symmetry is broken in
the spatial wavefunction. For instance, in a ferromagnet the spin-orbit interaction
transmits the symmetry breaking from the spin degrees of freedom to the spatial
(orbital) ones.

It must be realized that, insofar as we address an infinite system with no
boundaries, the B field is quite arbitrary, in full analogy with the case of E discussed
in Sec. 5.1. The usual choice invariably performed within all electronic-structure
codes is to impose a lattice-periodical vector potential, i.e. B = 0. Notice that,
instead, spontaneous magnetization is customarily defined at H = 0 (see Sect. A.2)

When addressing a finite sample with boundaries, the B field is in principle
measurable inside the material, without reference to what happens at the sample
boundary: in fact, B obtains by averaging over a macroscopic length scale the
microscopic magnetic field B(micro)(r), which fluctuates at the atomic scale [96]. In
a macroscopically homogeneous system the macroscopic field B is constant, and in
crystalline materials it coincides with the cell average of B(micro)(r).

As for the electrical case, discussed in Sec. 5.1, there is no need of addressing
finite samples and external vs. internal fields from a theoretician’s viewpoint.
Nonetheless a brief digression is in order, given that experiments are performed
over finite samples, often in external fields. Suppose a finite macroscopic sample
is inserted in a constant external field B(ext): the microscopic field B(micro)(r)
coincides with B(ext) far away from the sample, while it is different inside because of
screening effects. If we choose an homogeneous sample of ellipsoidal shape, then the
macroscopic average of B(micro)(r), i.e. the macroscopic screened field B, is constant
in the bulk of the sample. The shape effects are embedded in the demagnetization
coefficients [95]: the simplest case is the extremely oblate ellipsoid, i.e. a slab of
a macroscopically homogeneous material; more details are given in Ref. [8]. For
the slab geometry in a vanishing external field B(ext) the internal field B vanishes
when M is normal to the slab (longitudinal polarization), while B = −4πM is the
demagnetization field when M is parallel to the slab (transverse polarization): see
Fig. 9.1. Notice that this is the opposite of what happens in the electrical case (Fig.
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z

Figure 9.1: Macroscopic magnetization M in a slab normal to z, for a vanishing
external field B(ext). Left: When M is normal to the slab, no demagnetizing
field and no surface current is present. Right: When M is parallel to the slab, a
demagnetizing field B = 4πM is present inside the slab, and dissipationless currents
Ksurface = cM× n flow at the surfaces.

5.1).

9.2 Orbital magnetization
In Eq. (9.1) we have emphasized the main analogy between P and M; here, instead,
we anticipate the main difference. In the case of P—as stressed in Sec. 5.2—the
modern theory addresses the difference in polarization ∆P between two states of
the material that can be connected by an adiabatic switching process. As for P
“itself”, the modern theory of polarization states that the bulk electron distribution
determines P only modulo a “quantum”, whose value depends on the boundary of
the sample [101, 117] (Sec. 5.3.2, and also Figs. 5.4 and 5.5). The modern theory
of magnetization, instead, addresses M “itself” directly, and is not affected by any
quantum indeterminacy. We may express this outstanding difference by saying that
by tinkering with the boundary one can change the polarization of a sample (by a
“quantum”); while instead tinkering with the boundary one cannot change the value
of M.

There is a profound reason for the striking difference between M and P from
the viewpoint of quantum geometry. While P is basically a 1d phenomenon (it is
defined even for a polymer), M in its simplest manifestation is a 2d phenomenon:
orbital currents in a plane and M normal to such plane. The qualitative difference
can be traced back to the discussion in Sect. 6.2.2, about odd- and even-dimension
differential forms.

Another key difference is that, while P makes sense only for insulators at zero
temperature, M is well defined even for metals and even for finite temperature. In
the present Notes we limit ourselves to discuss the zero-T case, for normal insulators,
Chern insulators, and metals. We refer to the original papers [225, 226], as well as
to the review of Ref. [8] for the finite-T case.
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9.3 Orbital magnetization of a bounded sample
For a bounded sample with square-integrable orbitals we may safely adopt the
definition of Eq. (9.1):

M = − 1

2cV

∫
dr r× j(micro)(r) = − e

2cV

∑
ϵj<µ

⟨φj| r× v |φj⟩, (9.2)

which applies to both the insulating and metallic cases. In Eq. (9.2) |φj⟩ are the
spinless orbitals, ϵj their energies, and v = i[H, r]/ℏ; the formula is given per spin
channel (or for “spinless electrons”). It is easily recast in terms of the ground-state
projector, Eq. (7.84):

P =
∑
ϵj<µ

|φj⟩⟨φj|, ; (9.3)

M =
e

2cV
Tr {Pr× v}. (9.4)

It is expedient to write the velocity operator in the equivalent form v = i[(H −
µ), r]/ℏ, whence

M = − ie

2ℏcV
Tr {Pr× (H− µ)r}, (9.5)

since r×r = 0. Insofar as the system remains finite, the appearance of µ in Eq. (9.5)
looks irrelevant. But our choice has the virtue that M is explicitly a function of H−µ:
this is essential in the thermodynamic limit for metals, where the spectrum becomes
dense around µ.

So far, we have identically transformed the textbook definition of Eq. (9.1) into
the equivalent Eq. (9.5): this is still plagued by the same original drawback: the
r-space integral includes an extensive contribution from the boundary. Next we
are going to tame the position operator by performing a transformation similar in
spirit to an integration by parts, where the same integrated value obtains from two
very different integrands. Eventually, the trace will be boundary-insensitive in the
large-V limit.

Using the cyclic properties of the trace, the Cartesian components of M are

Mγ =
ie

2ℏcV
εγαβTr {(H− µ)rαPrβ}. (9.6)

where εγαβ is the antisymmetric tensor and the sum over repeated indices is implicit
(here and throughout). The following lemma is then very useful. Let O be any
Hermitian operator commuting with P . Then

Tr {O [rα,P ] [rβ,P ]} = −Tr {OP rαrβ} − Tr {O(2P − I)rαPrβ}. (9.7)
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the total trace, Eq. (2), converges to the asymptotic
quantum metric quite slowly, only like the inverse linear
size of the system; the localization marker L̃αβ converges
instead exponentially. In the crystalline metallic case L̃αβ

diverges like the linear size of the flake (Supplemental
Fig. 1 [17]). We have also verified that our marker can
probe the metallic versus insulating character of the differ-
ent regions of an inhomogenous sample, by addressing a
flake cut through the center by a vertical interface [17].
We also address test cases where time-reversal invariance

is absent and the insulator is topological, having a nonzero
Chern invariant: we will show that our marker clearly
highlights the insulating character of the bulk and the
conducting character of the boundary. To this aim we adopt
the Haldane Hamiltonian [18], for both a crystalline and a
disordered flake [17] in the topological insulating regime. It
is well known that the flake is insulating in its bulk, while

there are topologically protected metallic states at the
boundary: it is therefore worth investigating how the
different versions of the marker—Cartesian traces of Lαβ

and L̃αβ—actually behave.
The relevant quantities are plotted in Fig. 4. The bottom

panel shows that the trace of L̃αβ diverges like the linear
dimension L of the flake when the cell in Eq. (4) is chosen
at the flake boundary (the average over the boundary cells
is shown): the boundary is in fact metallic. The top panel
shows that the trace of L̃αβ converges fast when the cell is
instead chosen in the bulk, and confirms that the bulk is
insulating.
The top panel of Fig. 4 also shows that the trace of Lαβ

(labelled “Flake”) converges too, although to a large value.
The rationale for the latter feature is that each boundary cell
contributes to the integral in Eq. (2) a term proportional to
L, while the number of boundary cells is also proportional
to L. The contribution to the total trace is therefore
extensive: the trace per unit area is therefore finite (not
divergent).
In the topological case, the insulating behavior is

extremely robust with respect to perturbations; here we
address the case of strong on-site disorder [17]. By
comparing Fig. 4 to Fig. 5, it is easily realized that the
strong on-site disorder introduces some fluctuations, but
does not change at all the key message.
Finally, we are going to present 3D first principles

simulations, not performed on bounded crystallites;
instead, we address a superlattice made of slabs of A

FIG. 2. A typical flake (2D crystallite). We have considered
flakes with up to 8 190 sites, all with the same aspect ratio; the
one shown here has 1806 sites. The localization marker L̃αβ is
evaluated either on the central cell (two sites) or by means of
analogous integrals on the “bulk” region (14 of the sites).

FIG. 3. Half-filling homogenous crystalline flake. Cartesian
trace of the localization tensor Lαβ, Eq. (2) (labeled “Flake”), of
our localization marker L̃αβ (labeled “Cell”), and an analogous
formula evaluated over the “bulk region” (labeled “Bulk”), as a
function of the flake size.

FIG. 4. Top panel: Cartesian trace of Lαβ and of L̃αβ for a flake
cut from a crystalline topological insulator with nonzero Chern
number, as a function of the flake size. Labels as in the previous
figures. Bottom panel: Cartesian trace of the localization marker
L̃αβ, averaged over the boundary cells.

PHYSICAL REVIEW LETTERS 122, 166602 (2019)

166602-3

Figure 9.2: A bounded flake of
“Haldanium”: the one shown here
has 1806 sites. In the text we
consider three cases: the whole
flake; the “bulk” region (1/4 of
the sites) and the central cell (two
sites). After Ref. [150].

We apply this lemma by identifying O with the operator |H−µ| = (H−µ)(I− 2P)
to get

Mγ = − ie

2ℏcV
εγαβTr {|H − µ| [rα,P ] [rβ,P ]}, (9.8)

where we have used (I − 2P)2 = I.
If we now define the vector field

M(r) = − ie

2ℏc
⟨r| |H − µ| [r,P ]× [r,P ] |r⟩, (9.9)

the previous main result can be cast in the very compact form

M =
1

V

∫
dr M(r), (9.10)

where we remind that the formula as it stands applies to spinless electrons. As
proved here, the integrated value in Eq. (9.10) is identical to Eqs. (9.1) and (9.5)
at any sample size; the key difference is that the integrands are quite different:
Eqs. (9.1) and (9.5) are dominated by boundary contributions, while Eq. (9.10) is
free from such drawback. Indeed, Eq. (9.10) is a local definition of magnetization:
if the bounded sample is a crystallite (cut from a bulk crystal), then a definition of
M equivalent to Eq. (9.10) in the large-sample limit is

M =
1

Vcell

∫
Vcell

dr M(r), (9.11)

where Vcell is a crystal cell in the center region of the crystallite. Obviously, a similar
property does not hold for the original integral, Eq. (9.1). Owing to the locality
property, the definition of Eq. (9.11) can also deal—with obvious modifications—
with noncrystalline or inhomogeneous samples, like e.g. heterojunctions.

Our definition of spontaneous magnetization is M = −∂F/∂B, where F is
the free-energy density; the reason why we adopt B (and not H) as independent
variable is explained in Appendix A.2 (the zero-subscript in M0 is dropped here).
It is therefore clear that the macroscopic average of M(r) coincides with −∂F/∂B.
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We show next the convergence of the textbook definition
in Fig. 3. We switch to an obvious vector notation and we
evaluate

MðNÞ ¼ m
A

¼ 1

A

Z

flake
drMðrÞ ð6Þ

for N-site flakes: this is clearly identical to Eqs. (1) and (3).
The log-log plot shows that ½MðNÞ −M%=M is proportional
to 1=

ffiffiffiffi
N

p
, i.e., to the inverse linear dimension L−1 of the

flake. Notably, this occurs for both insulating and metallic
flakes.
Our main aim is to assess the locality ofM. We therefore

compare MðNÞ, Eq. (6), to our local expressions

Mcell ¼
1

Acell

Z

cell
drMðrÞ;

Mbulk ¼
1

Abulk

Z

bulk
drMðrÞ; ð7Þ

whereMðrÞ is integrated either on a single cell in the center
of the flake or on an inner rectangular region of area 1=4 of
the total (see Fig. 1). Within our tight-binding Hamiltonian,
Eq. (7) amounts to averaging either over two sites or over
N=4 sites. The results for a typical insulating and metallic
case are shown in Figs. 4 and 5: they show once more that
m=A, Eq. (6), converges to the bulkM value as L−1. Instead,
computations of either Mbulk or Mcell by means of our
local formulas converge to the bulk value much faster.
Remarkably, this happens in both the insulating and metallic
cases. This provides evidence for our major claim, i.e., that
even in metals the macroscopic magnetization M can be
expressed in terms of the one-body density matrix in the bulk
of the sample, disregarding what happens at its boundary.
Nonetheless, we also expect the convergence to be

qualitatively different in the two cases: in order to magnify
this, we plot both (the insulator and the metal) on a log scale
in Fig. 6. The plots show that Eq. (7) does indeed converge

exponentially to the bulk M value in the insulating case.
In the metallic case, however, the convergence is definitely
slower than exponential. It is not easy to assess the
kind of convergence in the metallic case. We may only
claim—based on several results, such as those shown in
Figs. 5 and 6—that the convergence is of the order L−α,
with α definitely larger than 1.
Next, we switch to magnetization in a finite macroscopic

B field. Here, our main requirement—namely, that we are
dealing with a 2D metal—is much more delicate. Even if
we choose a system that is a very good metal at B ¼ 0, the
ubiquitous presence of Landau levels (LLs) opens gaps in
the density of states (DOS), and the metallic nature of our
model system must be carefully checked. We therefore rely
on some previous results from the literature, where the
metallic nature of the model Hamiltonian has been checked
by independent means. Following Ref. [18], we adopt a
simple square lattice with a nearest-neighbor interaction,
setting t ¼ 1 in the following: a B flux ϕ equal to ϕ0=8—
where ϕ0 ¼ e=ðhcÞ is the flux quantum—is included via
Peierls substitution.

FIG. 6. Convergence of magnetization as a function of the
flake size (the same Mbulk as in Figs. 4 and 5) in a log scale.
The interpolating line shows an exponential convergence of
Mbulk in the insulating case, while the convergence is slower
in the metallic case.

FIG. 5. Magnetization as a function of the flake size, at a
constant aspect ratio, in the metallic case: μ ¼ −1.7 in the valence
band.

FIG. 4. Magnetization as a function of the flake size, at a
constant aspect ratio, in the insulating case: μ ¼ −0.7 at
midgap.
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Figure 9.3: Green circles: orbital
magnetization, evaluated from
the textbook expression m/A, as
a function of the flake size, in the
insulating case. The plots labeled
as Mcell and Mbulk demonstrate
the locality of orbital magneti-
zation, as explained in the text.
The horizontal dashed line is pro-
vided by the k-space formula. Af-
ter Ref. [233].

In all of the previous equations the large-sample limit is understood; it has been
demonstrated [218, 233, 234] that the convergence of Eq. (9.11) is much faster than
the convergence of Eqs. (9.1), (9.5), and (9.10). Two-dimensional simulations on
bounded Haldanium flakes have proved that the convergence of Eqs. (9.1), (9.5),
and (9.10) is of the order 1/L, where L is the linear dimension of the sample, in
both insulators and metals. Instead the convergence of Eq. (9.11) is exponential in
insulators, and L−α, with α > 1, in metals. The difference between the two owes to
the different “nearsightedness” of P [235, 165].

A typical Haldanium flake is shown in Fig. 9.2; it is insulating at half-filling and
metallic at any other filling. The magnetization as a function of the flake size is
shown in Fig. 9.3 for a typical insulating case in the trivial (nontopological) regime.
Diamonds and squares where obtained from integrating M(r) over the central cell
(two sites) and over the “bulk” region (1/4 of the sites), respectively, as displayed in
Fig. 9.2. The conventional formula, Eqs. (9.1) and (9.5), converges like the inverse
linear dimension of the flake (in both the insulating and the metallic case) to the
asymptotic value in the large-flake limit. Other cases and other figures can be found
in the original literature: Refs. [218, 233, 234] (not reproduced here).

9.3.1 Orbital magnetization of an unbounded crystalline
sample

The definition of the vector field M(r), Eq. (9.9), applies as it stands even to an
unbounded sample within PBCs. In the crystalline case the P projector therein is
expressed in terms of Bloch orbitals:

P =
Vcell
(2π)3

∑
j

∫
BZ

dk θ(µ− ϵjk) |ψjk⟩⟨ψjk|. (9.12)
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It is easy to verify that the operator [r,P ] commutes with the lattice translations,
and therefore M(r) is a lattice-periodical function. In this sense the commutator
with P effectively “tames” the nasty, unbounded, position operator r. The
expression for M as a trace per unit volume is therefore formally identical to
Eq. (9.11), found above for a bounded sample. We show next how to express it
as a BZ integral in terms of Bloch orbitals; in metals the BZ integral is actually a
Fermi volume integral, owing to the θ function entering the P definition, Eq. (9.12).

We start rewriting Eq. (9.12) as

⟨r| P |r′⟩ =
Vcell
(2π)3

∫
BZ

dk eik·(r−r′)⟨r| Pk |r′⟩ (9.13)

Pk =
∑
j

θ(µ− ϵjk)|ujk⟩⟨ujk|. (9.14)

The Pk projector is gauge-invariant in the generalized sense, i.e. it is invariant for
any unitary transformation of the occupied |ujk⟩ at the given k; it is also periodic
in k (even when the Chern invariant is nonzero). Therefore taking the k-gradient
inside the integral we get

0 = i(r− r′)⟨r| P |r′⟩+ Vcell
(2π)3

∫
BZ

dk eik·(r−r′)⟨r|∇kPk |r′⟩; (9.15)

[r,P ] =
iVcell
(2π)3

∫
BZ

dk eik·(r−r′)∇kPk. (9.16)

The Hamiltonian H can also be written as a BZ integral, hence

|H − µ| = Vcell
(2π)3

∫
BZ

dk eik·(r−r′)|Hk − µ|, (9.17)

where Hk = e−ik·rHeik·r.
We thus get the relevant operator identity:

|H − µ| [rα,P ] [rβ,P ] = − Vcell
(2π)3

∫
BZ

dk eik·(r−r′)|Hk − µ|(∂αPk)(∂βPk). (9.18)

Notice that the three BZ integrals entering the product on the l.h.s.—from
Eqs. (9.16) and (9.17)—eventually contract to a single BZ integral. This owes to the
fact that both ⟨r|Hk |r′⟩ and ⟨r|∇Pk |r′⟩ are lattice-periodical in r and r′ separately.

The ultimate formula for the orbital magnetization of a crystalline system is
then, after Eqs. (9.9) and (9.11)

M =
ie

2ℏc

∫
BZ

dk

(2π)3
Tr { |Hk − µ|(∇kPk)× (∇kPk) }. (9.19)
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9.3.2 Insulators and metals
Our main magnetization formula, Eq. (9.19) holds for both insulators and metals:
the latter case requires further clarification. We start from the Pk definition,
Eq. (9.14), and we further adopt a gauge where |ujk⟩ is a differentiable function
of k (this is always possible, even for topologically nontrivial solids): then

∇kPk =
∑
j

θ(µ− ϵjk)( |∇kujk⟩⟨ujk|+ |∇kujk⟩⟨ujk| )

−
∑
j

δ(µ− ϵjk)∇kϵjk |ujk⟩⟨ujk|. (9.20)

The second line vanishes in insulators, but is singular in metals. Nonetheless the
singularity does not affect Eq. (9.19), given that it cancels in the antisymmetrized
product. We may therefore safely neglect the second line of Eq. (9.20) in the
following. The integrand in Eq. (9.19) is a continuous function of k in insulators,
and piecewise continuous in metals; Eq. (9.19) is indeed a well defined Fermi-volume
integral in both cases. As for the first line of Eq. (9.20), we notice that, while ∇kPk

is gauge-invariant and Hermitian, the operators |∇kujk⟩⟨ujk| and |ujk⟩⟨∇kujk| are in
general gauge-dependent and nonHermitian: in fact the trace of |∇kujk⟩⟨ujk|, times
i, is nothing else than the Berry connection of band j, i.e. the essential ingredient
of polarization theory.

At this point we wish to make contact with the original formula of magnetization
theory [80, 216, 217], as reported in the previous reviews [8, 18], and implemented
in a few first-principles calculations:

Mγ = − ie

2ℏc
εγαβ

∑
εjk<µ

∫
BZ

dk

(2π)3
⟨∂αujk| (Hk + ϵjk − 2µ) |∂βujk⟩. (9.21)

It is important to observe that Eq. (9.21) requires the so-called “Hamiltonian gauge”,
i.e. the |ujk⟩ are eigenstates of Hk: unitary mixing of them—à la Marzari-Vanderbilt
[56, 19]—is not permitted. Our more general Eq. (9.19), instead, is fully gauge
invariant.

In order to prove the equivalence, it is expedient to introduce a lemma. Let Ok,
with eigenvalues ojk, be any operator which commutes with Hk, i.e.

Ok =
∑
j

|ujk⟩ojk⟨ujk|. (9.22)

Then the following identity holds:

Tr {Ok(∂αPk)(∂βPk)} =
∑
j

θ(µ− ϵjk)ojk⟨∂αujk|∂βujk⟩ (9.23)

+
∑
j

θ(µ− ϵjk)⟨∂βujk|Ok(I − 2Pk) |∂αujk⟩.
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This identity is somewhat reminiscent of Eq. (9.7) and is proved via a straightforward
although somewhat tedious calculation.

We now identify Ok with |Hk − µ| = (Hk − µ)(I − 2Pk) and we get

Tr {|Hk − µ|(∂αPk)(∂βPk)} =
∑
j

θ(µ− ϵjk)(µ− ϵjk)⟨∂αujk|∂βujk⟩ (9.24)

+
∑
j

θ(µ− ϵjk)⟨∂βujk| (Hk − µ) |∂αujk⟩,

where we have exploited (I − 2Pk)
2 = I. Antisymmetrization yields

εγαβTr {|Hk − µ|(∂αPk)(∂βPk)}
= εγαβ

∑
j

θ(µ− ϵjk)⟨∂αujk| (2µ− ϵjk −Hk) |∂βujk⟩, (9.25)

and substitution into Eq. (9.19) concludes our proof.
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Appendix A

Magnetoelectrics (basic features)

A.1 Generalities

Let us consider first a “normal”, i.e. non magnetoelectric, material; we assume it to
be in general anisotropic, but macroscopically homogeneous. The electromagnetic
free-energy density of the continuous medium is

F (E,H) = − 1

8π
E

↔
ε E− 1

8π
H

↔
µ H, (A.1)

where ↔
ε is the macroscopic dielectric tensor (same as in Appendix B), and

↔
µ is the

magnetic permeability tensor. We draw attention to the minus signs, explained e.g.
in Ref [95]: F is a free energy, not an energy.

Eq. (A.1) is nicely symmetric and—since we are adopting Gaussian units—the
fields have the same dimensions. This however hides an important feature: electric
and magnetic energies in condensed matter are not of the same order of magnitude.
The ratio of the magnetic energy scale to the electric one is of the order of 10−4.
This ratio owes in fact to the actual value of the squared fine-structure constant:
(1/137)2.

As we will see in more detail below, magnetoelectric materials realize a coupling
between electric and magnetic phenomena. The conversion of magnetic signals into
electrical ones (and conversely) is obviously of the utmost technological interest.
Nowadays, most devices exploit the phenomenon of the giant magnetoresistance
(Nobel prize in 2007), which has generated an economy of billion of dollars. To
date, the magnetoelectric effect is not commercially viable, due to the fact that in all
known materials the coupling is very weak, owing again to the (1/137)2 bottleneck.
An active area of research concerns therefore mechanisms and materials where the
effect would be enhanced.
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A.2 B vs. H fields
In this Appendix we focus on the free energy F (E,H), where E and H are chosen as
the independent variables. As for the electric field, this is clearly the natural choice.
We have stressed that E (not D) is the internal field, which is measurable in principle
inside the material. The macroscopic field E is also a control parameter in first-
principle calculations: standard crystalline Hamiltonians adopt a lattice-periodical
selfconsistent potential, hence E = 0. Matters are different in the magnetic case:
the internal field, measurable in principle inside the material is B, not H. Also, if
a selfconsistent Hamiltonian is lattice-periodical, the macroscopic B field, not H,
is zero. And in fact the modern theory of magnetization, discussed here in Ch. 9,
addresses magnetization in zero B field.

So, why instead we are adopting here H, and not B, as the independent variable?
There are several reasons. Phenomenologically, the experimenter directly controls
E (e.g. via capacitors) and H (via e.g. solenoids or generally currents). In the
laboratory, you will hear people speaking of E and H, more often than of D and
B, the reason being that E and H are directly read on the instruments. Several
textbooks even call H the “magnetic field”, which I find strongly misleading. I adopt
the nomenclature of the good textbooks, such as Feynman [236] and Griffiths [237]
popular textbooks, where B is called “magnetic field”, and H is just “H”.

In the framework of magnetoelectric effects there are further reasons for using
H as the independent variable. All formulæ–including Eq. (A.1)—have a pretty
symmetric expression in terms of E and H; Feynman warns however that “although
the equations are analogous, the physics is not analogous” [236]. The equations
would look asymmetrical and ugly using the genuine magnetic field B instead.

Custom dictates that spontaneous magnetization is defined as M0 = −∂F/∂H:
while instead in Ch. 9 we addressed M0 = −∂F/∂B. However B and H are
related by the magnetic permeability tensor as B =

↔
µ H, and in normal materials

the permeability difference from one (in Gaussian units) is of the order of (1/137)2.
Caveat: matters are quite different in a superconducting material [154]. There is
then little difference between M0 as addressed in Ch. 9 and M0 as customarily
addressed. Whenever needed, the conversion of the response tensors from their
(E,H) definition to the (E,B) counterpart requires only straightforward algebra.
The (E,B) must be adopted in first-principle calculations, as indeed in Ch. 9; it is
also adopted in Sec. A.6 below.

A.3 Multiferroics
The first order expansion of Eq. (A.1) reads

F (E,H) = F0 −P0 · E−M0 ·H+ . . . , (A.2)
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where P0 is the spontaneous polarization and M0 is the spontaneous magnetization.
The materials where both are nonzero are called multiferroics: ferroelectric and
ferromagnetic at the same time. In such materials the electric-magnetic coupling is
expected to be strong.

There are very few multiferroic materials: ferroelectricity and ferromagnetism
seem to be almost mutually exclusive in nature. The reasons for this have been
investigated [238].

A.4 Linear magnetoelectrics
Here we address only crystalline materials where both P0 and M0 vanish. The most
general second order expansion of the free energy reads

F (E,H) = F0 −
1

8π
E

↔
ε E− 1

8π
H

↔
µ H− 1

4π
E

↔
α H, (A.3)

where textbooks ignore the last term here, and adopt Eq. (A.1) instead.
In high-energy physics a particle related to a B · E coupling term added to the

electromagnetic Lagrangian has been postulated in the 1970s and dubbed “axion”
(see Sec. A.6). However, it is was known since much earlier that magnetoelectric
coupling does occur in condensed matter. In 1960 Dzyaloshinskii [239] realized that
the magnetoelectric coupling tensor ↔

α is in general nonzero in crystals where both
inversion symmetry and T-symmetry are absent in the ground state. In fact E is
odd under inversion and even under time-reversal, while the opposite happens for
B: therefore their combination in the last term of Eq. (A.3) is odd under each of
the two transformation.

From Eq. (A.3) the conjugate variables are

D = E+ 4πP = −4π
∂F

∂E
=

↔
ε E+

↔
α H ;

B = H+ 4πM = −4π
∂F

∂H
=

↔
α

†
E+

↔
µ H . (A.4)

Therefore in magnetoelectrics an H field induces an electrical polarization at zero
E field, and conversely an E field induces magnetization at zero H.

In its original paper, Dzyaloshinskii [239] proposed to look for the magnetoelec-
tric effect in Cr2O3, which is non centrosymmetric and antiferromagnetic. Shortly
afterwards, Soviet physicists indeed experimentally demonstrated both the direct
and the converse magnetoelectric effect in Cr2O3 [240]. In this material the effect
is by far too weak for being of technological use. There has been a resurgence of
interest in the magnetoelectric effect; the search for materials where the effect could
be stronger has been rather active in the last 15 years.
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A.5 Parsing the magnetoelectric effect
In a non magnetoelectric cystal—where ↔

α= 0—the only field coupled to lattice
coordinates is E: a magnetic field does not exert any force on the nuclei at rest.
The effects of lattice-field coupling on the dielectric tensor ↔

ε and on the zone-center
vibrational modes are analyzed in detail in Appendix D.

Whenever instead ↔
α ̸= 0 both fields E and H are coupled to lattice displacements,

formally on equal footing. As a consequence all three material constants ↔
ε ,

↔
µ, ↔

α
have an electronic contribution and a lattice contribution. The lattice-field coupling
in magnetoelectrics has been investigated in the literature: the results presented in
Appendix D for simple dielectrics have been generalised to linear magnetoelectrics.
We do not present such generalisations here, and we refer to the original literature
[241, 242, 243, 244].

Next, we consider the purely electronic—also called “clamped nuclei” response
functions. Since the macroscopic magnetisation M is the sum of spin magnetization
and orbital magnetization, Eq. (A.4) shows that both the clamped-nuclei

↔
µ and

↔
α have a spin and an orbital contributions. The full susceptibility tensor ↔

α of
the paradigmatic magnetoelectric material Cr2O3 has been computed in 2012 [245]:
the spin and lattice contributions are separately addressed, and in both cases the
response is decomposed into lattice and electronic parts.

A.6 Axion term
Here we adopt the (E,B) choice, according to the discussion at the end of Sec.
A.2. Since second order energies depend on first order wavefunctions, one needs the
linear response induced in the Bloch orbitals by either E or B, and then uses them to
evaluate the induced magnetization or polarization, respectively: both approaches
are feasible [63].

A very interesting geometrical feature contributes to the clamped-nuclei orbital
term. Besides the genuine linear-response (a.k.a. Kubo) quantities, this response
includes a ground-state term, to be evaluated with the Bloch states of the
unperturbed crystal. This contribution to the magnetoelectic susceptibility ↔

α is
scalar (more precisely a pseudoscalar), hence it provides a contribution to the
induced magnetization parallel to E, or equivalently a contribution to polarization
parallel to B.

Within PBCs this contribution is a novel geometrical quantity, discussed above in
Ch. 6, and given by the Brillouin-zone integral of a Chern-Simons 3-form, Eq. (6.5)
[137, 136, 60, 61]. The peculiar feature is that this geometrical term is multivalued
and thus reminiscent of the Berry-phase expression for the spontaneous polarization:
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it remains ambiguous until the surface termination of the 3d sample has been
specified. The multivalued nature of the Chern-Simons term is made explicit by
writing it in terms of an angle θ as:

αCS =
1

4π2

e2

ℏc
θ. (A.5)

The term “axion” comes from high-energy physics and was coined by F. Wilczek
in 1977-78. It is based on writing the Lagrangian for the electromagnetic field as

L = −ρΦ +
1

c
j ·A+

1

8π
E2 − 1

8π
B2 +

ϑ

4π
E ·B, (A.6)

where the postulated axion term is the last one. The equation of motion is unaffected
if ϑ is constant in space-time. Without the axion term the standard L is a relativistic
scalar in 4d space-time; the axion term is pseudoscalar, and would account for the
(very rare) processes which break charge-parity symmetry.
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Appendix B

Fundamentals of piezoelectricity

B.1 Generalities
Piezoelectricity was first demonstrated in 1880 by Pierre and Jacques Curie.
Nowadays it is the most common effect industrially used to convert electrical signals
into mechanical ones, and conversely. Therefore the occurrence of the piezoelectric
effect in everyday’s life is ubiquitous. We make use of literally thousands of
piezoelectric sensors and actuators in our cars, computers....

Piezoelectricity is symmetry forbidden in centrosymmetric crystals. The most
symmetrical crystal structure where piezoelectricity is allowed is zincblende: therein,
uniaxial strain along the (1,1,1) direction is coupled to a macroscopic E field along
the same direction. Therefore not all piezoelectric materials are pyroelectric or
ferroelectric, but the converse is true: all pyroelectric and ferroelectric materials are
also piezoelectric. A clarification about semantics is in order: both pyroelectric and
ferroelectric crystals have a preferred axis, along which the spontaneous polarization
P0 is oriented. In ferroelectrics P0 is switchable (without crossing a metallic state),
while in pyroelectrics switching is impossible: breaking and reforming of covalent
bonds would be needed. The simplest pyroelectric symmetry class—i.e. where
P0 ̸= 0 is allowed—is wurtzite (see Fig. 5.2 and the discussion about it), while the
prototypical ferroelectric is BaTiO3, whose crystal structure is a cubic perovskite
undergoing spontaneous inversion-symmetry breaking.

A wurtzite material much in fashion nowadays is GaN (see Nobel prize 2014).
Although the industrial interest in this material is about light emission and not
about the piezoelectric effect, its piezoelectricity has been thoroughly investigated
[246].

Most piezoelectrics in industrial and commercial use are ferroelectric materials,
but they are generally ceramics, not crystalline. A new class of useful materials has
been discovered in 1997 [247]: they are single-crystal solid-solution ferroelectrics.
Some of these new materials have found their way into industrial applications, e.g.
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in medical echographs.
For reasons explained in Sec. 5.1 (and in the previous Appendix) the most

convenient electrical variable in condensed matter is the field E (not D). We
remind that, when E is chosen as independent variable, the macroscopic free energy
density in isotropic dielectric media is F = −εE2/(8π) in Gaussian units. As for
Eq. (A.1), we draw attention to the minus sign [95]. The conjugate field obtains as
D = −4π∂F/∂E.

Here we are going to introduce macroscopic strain
↔
η as an additional independent

variable besides E, and we address anisotropic media. Given that we are going to
address strain and volume changes, it is better to switch from the free energy density
F to the free energy per cell F = VcellF , where Vcell is the equilibrium volume.

It is expedient to use compact notations, where the Cartesian indices of the
relevant tensors (of various ranks) are left implicit. The macroscopic material
tensors discussed in this Appendix are genuinely static ones, i.e. include the lattice
contribution. We anticipate that, instead, in Appendix C the lattice contribution
to the dielectric constant (or tensor) will be separately investigated.

B.2 First order properties
The first order expansion of the free energy per cell is

F(
↔
η ,E) = VcellF0 +

∂F
∂

↔
η

∣∣∣∣
0

·
↔
η +

∂F
∂E

∣∣∣∣
0

· E + . . .

= F0 − Vcell
↔
σ0 ·

↔
η −VcellP0 · E + . . . , (B.1)

where P0 is the spontaneous polarization in zero field. Since we are by definition
expanding around the equilibrium crystal structure, the macroscopic stress tensor
↔
σ0 in Eq. (B.1) vanishes.

However, the definition of “equilibrium” deserves a clarification. We remind that
E is the internal (screened) field inside the material. According to our discussion
in Sec. 5.1, whenever P0 ̸= 0 the field E is in general nonzero inside a finite
sample of arbitrary shape in zero external field. Therefore a slab, cut parallel to P0,
and in zero external field, is in equilibrium and unstrained. Instead—according to
our expansion in Eq. (B.1)—for a slab normal to P0 and in zero external field we
may consider two cases: (1) If ideally the structure is kept unrelaxed the stress in
nonzero (and proportional to P0); (2) In the relaxed structure the stress is zero, but
the equilibrium strain is nonzero (and proportional to P0). This will appear more
clearly when the second order expansion is considered.
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B.3 Second order properties
Setting ↔

σ0= 0 the expansion up to second order is

F(
↔
η ,E) ≃ F0 − VcellP0 · E (B.2)

+
1

2

∂2F

∂
↔
η ∂

↔
η′

∣∣∣∣∣
0

↔
η

↔
η +

∂2F
∂

↔
η ∂E

∣∣∣∣
0

↔
η E +

1

2

∂2F
∂E ∂E′

∣∣∣∣
0

EE,

where in the second derivatives we identify the elastic constants Ĉ (4th rank tensor),
piezoelectric tensor ê (3rd rank tensor), and dielectric tensor ↔

ε (2nd rank tensor),
respectively. More precisely:

Ĉ =
1

Vcell

∂2F

∂
↔
η ∂

↔
η′

∣∣∣∣∣
0

, ê = − 1

Vcell

∂2F
∂

↔
η ∂E

∣∣∣∣
0

,
↔
ε= − 4π

Vcell

∂2F
∂E ∂E′

∣∣∣∣
0

. (B.3)

We therefore rewrite the second order expansion as

F(
↔
η ,E) ≃ F0 − VcellP0 · E

+
Vcell
2

↔
η Ĉ

↔
η −Vcell E ê

↔
η − Vcell

2
E

↔
ε E, (B.4)

and we remind that—as stressed above—all material constants entering Eq. (B.4)
are defined at

↔
η= 0 and E = 0.

The conjugate variables are
↔
σ = −Ĉ

↔
η +ê† E (B.5)

D = ê
↔
η +

↔
ε E + 4πP0; (B.6)

here the dagger indicates the transpose, and ê† is called the “converse” piezoelectric
tensor. Eq. (B.6) can be recast as

P−P0 = ê
↔
η +

1

4π
(
↔
ε −

↔
1) E. (B.7)

Therefore the piezoelectric tensor can be defined as either the stress linearly induced
by a unit field at zero strain (“converse”), or the polarization linearly induced by
unit strain at zero field (“direct”).

B.4 Open circuit vs. closed circuit
In Fig. B.1 we show two different ideal measurements of a piezoelectric coefficient.
The crystal is uniaxially strained along one of its piezoelectric axes.

171



In the left (short-circuit) figure one measures the time-integrated current flowing
through the sample, and we remind that the integrated current is the polarization
difference. The field E is zero at all times, hence according to Eq. (B.7) the
measurement directly provides the vertical component of ê. We pause at this point
to remind that, as stressed in Sec. 5.2, the modern theory of polarization directly
evaluates the integrated current at zero field. Since currents are easer to measure
than charges, the ideal experiment in the left figure is indeed close to the real
experiments.

In the right (closed-circuit) figure one aims at measuring the dipole of the slab,
or equivalently the strain-induced surface charge. In this setting we have D = 0, not
E = 0, therefore for P normal to the slab E = −4πP. Replacing this into Eq. (B.7)
one gets

P = (
↔
ε )−1(ê

↔
η +P0). (B.8)

In the simple case where P0 = 0 (e.g. in zincblende crystals) Eq. (B.8) shows
that the open-circuit and closed-circuits measurements are simply related via the
dielectric tensor: this is no small difference, since dielectric constants in common
dielectrics are of the order 5−10.

The case with P0 ̸= 0, i.e. pyroelectric and ferroelectric materials, deserves
further discussion. Let us assume throughout that even P0 is normal to the slab.
At zero strain we set

↔
η= 0 and we find that P is related to P0 by the inverse

dielectric tensor. This is in full agreement with our discussion in Sec. 5.1 about
longitudinal vs. transverse polarization; see also Fig. 5.1. For a more complete
treatment see Ref. [8]. The open-circuit piezoelectric tensor is given therefore by

∆P = (
↔
ε )−1(ê

↔
η +P0)− (

↔
ε )−1P0 = (

↔
ε )−1ê

↔
η . (B.9)

The formula looks therefore the same as for the P0 = 0 case, but a final subtlety is

+ + + + + +

− − − − − −

Figure B.1: Ideal measurements of the piezoelectric effect. Left: closed circuit.
Right: open circuit.
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worth pointing out.
The free energy expansion in Eq. (B.4) is around the equilibrium geometry in

zero field, and in fact according to Eq. (B.5) both strain and stress are zero when
E = 0. But in a slab where P0 is normal to the slab E is nonzero, as thoroughly
discussed in Sec. 5.1. Hence in a free standing slab in zero external field, and zero
stress, the equilibrium strain is nonzero. In fact, from Eqs. (B.5) and (B.6), the
equilibrium obtains by solving the linear system

0 = −Ĉ
↔
η +ê† E (B.10)

0 = ê
↔
η +

↔
ε E + 4πP0 , (B.11)

which provides the values of E (depolarisation field) and η (equilibrium strain in a
longitudinal geometry). Therefore the open-circuit response in Eq. (B.9) is indeed
the response to the additional strain besides the equilibrium strain.

B.5 Piezoelectricity from first principles
So far we have given a macroscopic phenomenological treatment of the linear
piezoelectric effect; the underlying microscopic concepts are nowadays rooted in
the modern theory of polarization. It is interesting, nonetheless, to address the
theory of piezoelectricity within an historical perspective.

Piezoelectricity has been for years an intriguing problem. The formal proof
that piezoelectricity is a well defined bulk property—independent of surface
termination—is due to R. M. Martin [248], in a paper appeared in 1972 under the
lapidary title of “Piezoelectricity” (no subtitle!). This proof has been challenged,
and the debate lasted for about 20 years [249]. The very first quantum-mechanical
calculation ever of a piezoelectric tensor was published in 1989 [250]. Therein, the
“converse” definition of Eq. (B.5) was adopted, i.e. the computed quantity was the
stress linearly induced by a unit field in III-V semiconductors. Since the calculation
was in terms of Bloch orbitals within PBCs, Ref. [250] provided further evidence (if
any was needed) that piezoelectricity is indeed a bulk effect.

After the advent of the modern theory of polarization in the early 1990s it became
possible to implement even the “direct” definition of Eq. (B.7), i.e. to compute the
strain-induced linear polarization as a numerical derivative, via the modern Berry-
phase approach.
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Appendix C

Linear-response theory

C.1 Definitions
To start with, we fix our conventions about Fourier transforms:

f(ω) =

∫ ∞

−∞
dt eiωtf(t) f(t) =

1

2π

∫ ∞

−∞
dω e−iωtf(ω). (C.1)

Suppose we have a general input signal finput(t) and the corresponding output
foutput(t), which is due to the response of a time-independent physical system. The
most general linear response is given by a convolution

foutput(t) =

∫ ∞

−∞
dt′ χ(t− t′)finput(t

′). (C.2)

The response χ, also known as generalised susceptibility, can be equivalently written
as the functional derivative

χ(t− t′) =
δfoutput(t)

δfinput(t′)
, (C.3)

evaluated at equilibrium. The response is therefore an equilibrium property of the
system in absence of perturbation. The convolution theorem yields

foutput(ω) = χ(ω) finput(ω). (C.4)

C.2 Causality
If the input signal is chosen as finput(t) = δ(t), then we have foutput(t) = χ(t): in a
causal system therefore χ(t) = 0 for t < 0.

We pause to notice that not all linear systems must be causal: an obvious
example of a noncausal system is an amplifier. An amplifier can start self oscillations
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(Larsen effect), which quickly become anharmonic; however it needs to get energy
from some power source.

We also stress that causality and dissipation are not synonymous. While a
dissipative system is causal, one can address causal systems where no mechanism
allows for dissipation: the paradigmatic example is the (undamped) harmonic
oscillator in classical mechanics. A formal trick to account for causality is to consider
a dissipative system in the nondissipative limit.

The Fourier transform of a causal χ(t) is

χ(ω) = χ′(ω) + iχ′′(ω) =

∫ ∞

0

dt eiωtχ(t). (C.5)

We only address a response χ(t) which is real in the time domain: therefore χ′(ω)
is even and χ′′(ω) is odd. Exploiting this fact, the antitransform is

χ(t) =
1

2π

∫ ∞

−∞
dω [χ′(ω) cosωt+ χ′′(ω) sinωt ]. (C.6)

The two terms in the integrand cancel for t < 0, and provide an identical contribution
for t > 0:

χ(t) =
1

π

∫ ∞

−∞
dω χ′(ω) e−iωt, t > 0. (C.7)

In order to prove this, we exploit the identity χ(t) = [χ(t) + χ(−t)] θ(t), hence

χ(t) =
1

2π

∫ ∞

−∞
dω χ(ω)[ e−iωt + eiωt ], t > 0. (C.8)

Since χ′′(ω) is odd, we immediately arrive at Eq. (C.7).

C.3 Kramers-Kronig relationships
The Kramers-Kronig relationships are most frequently proved by addressing the
Fourier transform of the response function in the complex ω plane. Here we provide
a less common—and to my taste more elegant—proof, found in the literature.

It is expedient to write

χ(t) =
χ(t)− χ(−t)

2
+ sgn(t)χ(t)− χ(−t)

2
, (C.9)

where “sgn” is the signum function, and to extend the integral to (−∞,∞):

iχ′′(ω) =
1

2

∫ ∞

−∞
dt eiωt[χ(t)− χ(−t)] (C.10)

χ′(ω) =
1

2

∫ ∞

−∞
dt eiωtsgn(t) [χ(t)− χ(−t)]. (C.11)
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We notice then that the Fourier transform of sgn(t) is the distribution 2i/ω,
understood as a principal part. Using then the convolution theorem in Eq. (C.11),
and exploiting Eq. (C.10) we have

χ′(ω) =
2i

2π

∫ ∞

−∞
dω′ iχ

′′(ω′)

ω − ω′ =
1

π

∫ ∞

−∞
dω′ χ

′′(ω′)

ω′ − ω
. (C.12)

The real and imaginary parts of χ(ω) are related via an Hilbert transform. The
inverse relationship reads

χ′′(ω) = − 1

π

∫ ∞

−∞
dω′ χ

′(ω′)

ω′ − ω
. (C.13)

Finally, we may take advantage once more of the fact that χ′(ω) is even and χ′′(ω)
is odd, arriving at the Kramers-Kronig relationships in the equivalent form

χ′(ω) =
2

π

∫ ∞

0

dω′ ω
′χ′′(ω′)

ω′2 − ω2

χ′′(ω) = −2ω

π

∫ ∞

0

dω′ χ′(ω′)

ω′2 − ω2
. (C.14)

Finally, we notice a subtle feature occurring when considering response functions
which are related by a time derivative, i.e.

X ′(t) = χ(t). (C.15)

If X(t) is causal, then χ(t) is obviously causal. The example most relevant to
the present notes concerns electrical polarizability χ and conductivity σ. In fact
P = χE, j = σE, and j = dP/dt.

If X(ω) obeys Kramers-Kronig, then even χ(ω) = −iωX(ω) also obeys. Instead,
if χ(ω) is causal, one would say that X(ω) = iχ(ω)/ω is causal, but this is in general
incorrect: one has to fix the integration constant in the time domain. The correct
causal response function is

X(ω) =

[
i

ω
+ πδ(ω)

]
χ(ω), (C.16)

where the two terms in parenthesis are easily recognised as the Fourier transform
of the causal function θ(t) = [sgn(t) + 1]/2; the second term can be neglected only
when χ(ω) vanishes at ω = 0.
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C.4 Energy dissipation
So far, we have been very general as for the nature of finput(t) and foutput(t). In
order to introduce energy considerations, we identify finput(t) with a generalized
force f(t), and foutput(t) with a generalized coordinate u(t):

u(t) =

∫ ∞

−∞
dt′ χ(t− t′)f(t′), u(ω) = χ(ω)f(ω). (C.17)

The power applied is P (t) = f(t)u̇(t); for a monochromatic pertubation at frequency
ω one has

P (t) = −[Re f(ω)e−iωt] [Re iωu(ω)e−iωt] (C.18)
= ω[Re f(ω)e−iωt] [Im χ(ω)f(ω)e−iωt]

=
1

4i
[f(ω)e−iωt + f ∗(ω)eiωt] [χ(ω)f(ω)e−iωt − χ∗(ω)f ∗(ω)eiωt],

and average over the period yields:

P (t) =
1

4i
ω|f(ω)|2[χ(ω)− χ∗(ω)] =

1

2
ω|f(ω)|2χ′′(ω). (C.19)

The imaginary part χ′′(ω) of the susceptibility—i.e. the out-of-phase response—
is therefore the dissipative part; the in-phase term χ′(ω) is called the reactive part.
According to the second principle of thermodynamics χ′′(ω) is non negative whenever
the responding system is not connected to an energy reservoir (e.g. as in the case of
an amplifier). Furthermore, in order for dissipation to occur, a finite system must
interact with a thermostat. It is remarkable that, instead, the thermostat is not
needed in condensed matter theory, since an infinite system can be regarded as its
own thermostat.

It is customary to extend the definition of χ(ω) in the complex ω plane.
A statement equivalent to the Kramers-Kronig relationships holds that the
susceptibility χ(ω) of a causal system is a regular function in the upper complex
half plane, whereas in general it has poles in the lower half plane. To be more
precise, for a nondissipative causal system (as e.g. for ideal undamped oscillators)
the poles are infinitesimally close from below the the real ω-axis; for a dissipative
system (e.g. damped oscillator) the poles are at a finite distance from the real axis.
See also Sect. D.3.

A final caveat is in order. The location of the poles on the upper/lower half
plane depends on our convention on Fourier transforms; the opposite choice may be
found in the literature.
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C.5 Fluctuation-dissipation theorem (classical)
We address the response of a classical system and the fluctuations of a classical
variable at finite T ; the quantum theorem is discussed below. The simplified
presentation given in the following is inspired by Ch. 8 in Chandler’s textbook
[158]. We work in the canonical ensemble, hence we are addressing the isothermal
response throughout the present Notes.

Let us assume that the extensive quantity of interest obtains as the trace (integral
over the 3N -dimensional phase space) of a classical dynamical variable B(rN ,pN).
In order to simplify notations, and without loss of generality, we assume that the
equilibrium value of B in the unperturbed system vanishes:

⟨B⟩ =
∫
drNdpN B e−βH∫
drNdpN e−βH

= 0, (C.20)

where H is the classical many-body Hamiltonian.
Suppose next that the system is perturbed at t = −∞ with a time-independent

perturbation ∆H. After relaxation, the new equilibrium value at t = 0 is

B̄(0) =

∫
drNdpN B e−β(H+∆H)∫
drNdpN e−β(H+∆H)

̸= 0. (C.21)

Since we are addressing linear response, we neglect terms quadratic in ∆H and we
get

B̄(0) = −β
∫
drNdpN ∆H B e−βH∫

drNdpN e−βH
. (C.22)

At time t = 0 we suddenly switch off the perturbation ∆H. The system is now out
of equilibrium, and will evolve towards it, from B̄(0) ̸= 0 to B̄(∞) = 0.

We then define B(t) = B(t; rN ,pN), where each phase-space point in B(t)
evolves from the initial value (rN ,pN); the evolution is governed by the unperturbed
Hamiltonian H. We assume that B̄(t) is a well behaved function of the t = 0
distribution in phase space. We thus have

B̄(t) = −β
∫
drNdpN ∆H B(t) e−βH∫

drNdpN e−βH
t ≥ 0. (C.23)

Now we identify ∆H with minus the dynamical variable A(rN ,pN) and we assume
for the sake of simplicity that even ⟨A⟩ = 0. We then rewrite Eq. (C.23) as

B̄(t) = β

∫
drNdpN A(0)B(t) e−βH∫

drNdpN e−βH
= β ⟨B(t)A(0)⟩ t ≥ 0, (C.24)
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where we have introduced the simplified notation for the time-correlation function
⟨B(t)A(0)⟩. Notice that it is a measure of the equilibrium fluctuations of the
dynamical variables A and B in the unperturbed system. Notice that B(t) and
A(0) commute in the classical case.

We have previously seen that the generalized susceptibility χ(t) is the response
to an instantaneous perturbation ∝ δ(t), while instead the perturbation considered
so far can be written as −finput(t)A, where finput(t) = θ(−t) is the externally applied
disturbance coupled to the dynamical variable A. Given that δ(t) = dθ(t)/dt, clearly
Eq. (C.24) determines the response. It is enough to identify B̄(t) = foutput(t); then
from the basic Eq. (C.2) we have

foutput(t) = β ⟨B(t)A(0)⟩ =
∫ 0

−∞
dt′ χ(t− t′) =

∫ ∞

t

dt′ χ(t′). (C.25)

We thus arrive at the final statement of the (classical) fluctuation-dissipation
theorem

χ(t) = 0, t < 0

χ(t) = −β d

dt
⟨B(t)A(0)⟩, t > 0. (C.26)

In general, owing to dissipation, the correlation functions—and χ(t)—are
expected to vanish exponentially for t → ∞; there are exceptions, though. Even
in a simple system, like the hard-sphere fluid, the velocity-velocity autocorrelation
function has a power-law tail, called “hydrodynamic tail”. This important discovery
came from computer simulations performed in in 1970 by Alder and Wainwright
[251]. The analytical explanation came only after the computer experiment [252],
as it happens in the most creative episodes of computational physics.

C.5.1 Green-Kubo formula for ionic conductivity
.

We consider here the ionic conductivity in insulating liquids (see Sec. 4.6.2),
i.e. electrolytes, including molten salts, where—differently from the metallic case—
charge transport is associated to mass transport:

j(t) =

∫
dt′ σ(t− t′)E(t′). (C.27)

As shown in the following, σ(ω) obtains from the autocorrelation function of the
equilibrium fluctuating charge current in the absence of an electric field [91, 92].

179



Steady-state currents require PBCs, hence the vector-potential gauge. If the ℓ-th
ion has mass Mℓ and charge Qℓ the perturbed Hamiltonian is

H +∆H =
∑
ℓ

1

2Mℓ

(
pℓ −

Qℓ

c
A

)2

+ U ;

∆H = −A ·
∑
ℓ

Qℓ

Mℓ

pℓ = −V
c
A · j, (C.28)

where V is the sample volume end j is the macroscopic current density. Following
the above prescription, at negative times we set a constant vector potential A, and
we switch it off suddenly at t = 0. If B(t) is identified with the electrical current
density, then Eq. (C.24) yields

j(t) =
VA

3ckBT
⟨ j(t) · j(0) ⟩, (C.29)

where we have exploited isotropy.
From the response to A, Eq. (C.29), we easily find the response to E . In fact,

since we have set A(t) = Aθ(−t), then

E(t) = −1

c

dA(t)

dt
=

1

c
Aδ(t), (C.30)

hence the above prescription yields directly the response to a δ-like field:

σ(t) =
V

3kBT
⟨ j(t) · j(0) ⟩ θ(t), . (C.31)

Finally, we arrive at the famous Green-Kubo formula for dc ionic conductivity:

σ =
V

3kBT

∫ ∞

0

dt ⟨ j(t) · j(0) ⟩. (C.32)

C.5.2 Susceptibilities
In the simple case where A depends on the coordinates only (and not on the
momenta), the instantaneous kick corresponds to apply a δ-like force at t = 0
on the system at equilibrium. It is then clear that at t = 0 the coordinates are
continuous, while the momenta undergo a discontinuous jump. The system relaxes
toward equilibrium, and χ(t) is the ensemble average of the dynamical variable B
as a function of time.

Integrating by parts, the Fourier-transformed response is

χ(ω) = β⟨A(0)B(0)⟩+ iβω

∫ ∞

0

dt eiωt⟨B(t)A(0)⟩. (C.33)
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The generalised susceptibility has a real and an imaginary part, which obey by
construction the Kramers-Kronig relationships:

χ′(ω) = β⟨A(0)B(0)⟩ − βω

∫ ∞

0

dt ⟨B(t)A(0)⟩ sinωt

χ′′(ω) = βω

∫ ∞

0

dt ⟨B(t)A(0)⟩ cosωt. (C.34)

The fluctuation-dissipation theorem applies unchanged to the case A = B, and
the response is then given by the time autocorrelation function of the variable A.
In the static limit the generalized susceptibility is

χ0 = χ′(0) = β⟨A2⟩, (C.35)

a result which can be directly proved in a simpler way.
The imaginary part is related to absorption, as shown above and also as it will

become clear in the following: Secs. D.2 and D.11. For a system at equilibrium the
zero of time is arbitrary, therefore ⟨A(t)A(0)⟩ = ⟨A(0)A(−t)⟩. Since the (classical)
dynamical variables are real and commute, the imaginary part of the response can
be written as

χ′′(ω) =
βω

2

∫ ∞

−∞
dt eiωt⟨A(t)A(0)⟩, (C.36)

where the integral is often called “power spectrum”.
In the present Notes we are going to consider in some detail the case where the

extensive variable A is identified with the macroscopic dipole d of the system: see
Sec. C.6; see also Eq. (D.96) below and the following text.

C.6 Finite-temperature polarizability
For pedagogical reasons we start addressing a classical model of a fluid (either
liquid or gas) whose components are identical polar molecules. At the simplest
level, all of the polarization is due to molecular orientation: the molecules are rigid
and nonpolarizable. The paradigmatic system of this kind, used as a workhorse in
many molecular dynamics simulation, is the Stockmayer fluid: therein the two-body
interactions are Lennard-Jones supplemented with point dipoles.

There is no ambiguity about what the polarization P and the total dipole d are
in a dipolar fluid: within either OBCs or PBCs the dipole is the sum of the point
dipoles:

d = VP =
∑
j

dj. (C.37)
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Instead, we have often stressed in the present Notes that in a general system (such
e.g. a polar crystal) dealing with macroscopic polarization within PBCs is not so
straightforward. The dipole d = VP of the simulation cell cannot be decomposed
in individual dipoles dj.

In presence of long range interactions the interpretation of the fluctuation-
dissipation theorem requires some care. In order to see the problem, we start with
a bounded and macroscopically homogeneous system within OBCs, and we apply
an external field E0, uniform in space. We address the static case first. The field
couples to the Hamiltonian via the term −d ·E0. The dipole-dipole autocorrelation
function provides, from Eq. (C.35), the response

∂P

∂E0

=
1

V

∂d

∂E0

=
β

3V
⟨d · d⟩. (C.38)

We aim to relate this to the static dielectric constant of the fluid, whose definition
is

ε0 = 1 + 4π
∂P

∂E
, (C.39)

where now E is the screened macroscopic field inside the polarized fluid.
The static dielectric constant ε0 is a well defined bulk material property, while

instead the relationship between E0 and E depend on the sample shape (see Sec.
5.1). A glance at Eq. (C.38) shows that ⟨d2⟩ must depend on shape as well:
the physical origin of this is the depolarization field, which indeed affects the
equilibrium quadratic fluctuation. Equivalently, the fluctuations depend on the
boundary condition chosen for integrating Poisson equation in the selfconsistent
Newton equations of motion.

C.6.1 Zero-field boundary conditions
The simplest choice is to evaluate the fluctuations at zero macroscopic field: this
corresponds ideally to a finite sample coated with a metallic layer. In practice, one
adopts instead PBCs and integrates Poisson equation by choosing the solution which
is periodic over the simulation cell. In the molecular-dynamics jargon this choice
goes under the name of Ewald-Kornfeld [253]. Within this choice—as thoroughly
discussed in Sec. 5.1— there is no depolarization field, hence E = E0.

Provided the equilibrium fluctuations are evaluated at zero macroscopic field,
the dielectric constant has the simple expression

ε0 = 1 +
4πβ

3V
⟨d2⟩. (C.40)

We also display the expression for the imaginary part of the ω-dependent
dielectric constant, which is the basic quantity to address infrared absorption.
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When the dipole-dipole correlation functions are evaluated using periodic boundary
conditions, the previous results and Eq. (C.36) yield

ε′′(ω) =
2πβω

3V

∫ ∞

−∞
dt eiωt⟨d(t) · d(0)⟩. (C.41)

The example of a fluid whose components are rigid molecules was used here for
pedagogical purposes, but the classical fluctuation-dissipation theorem has a much
wider scope. Since the pioneering work of Silvestrelli et al. in 1997 [93] first-principle
infrared spectra are routinely evaluated from the dipole-dipole correlation function,
where the polarization P = d/V is provided by the modern theory of polarization,
and its fluctuations are computed via a Car-Parrinello simulation. More about this
will be said below, Sec. D.11. For the time being, we notice that P is due to both
nuclei and electrons; in the adiabatic approximation the nuclear coordinates are
purely classical, but their coupling to the field includes the electronic contribution
in the form −P · E. The case of a polar crystal in the harmonic regime, dealt with
in detail in Appendix D, will make this point pretty clear.

C.6.2 Reaction field
In any quantum description of a condensed system within PBCs the adoption of the
zero-field condition is almost mandatory. Only in this way, in fact, the electrostatic
potential—and hence the Schrödinger Hamiltonian—is periodic over the simulation
cell. In classical mechanics, instead, the potential plays a lesser role: the Newton
equation of motions are directly formulated in terms of the electric field, not its
potential. Other choices of boundary conditions may therefore be appealing.

Following Ch. 2 of the Landau-Lifshitz textbook [95], we consider an homogenous
sphere of dielectric constant ε0 embedded in a medium of dielectric constant εRF

(“reaction field”). When an external constant field E0 is present in the surrounding
dielectric the screened field E inside the sphere is [95]

E =
3εRF

2εRF + ε0
E0; (C.42)

hence
∂P

∂E0

=
3εRF

2εRF + ε0

∂P

∂E
. (C.43)

Next we need the bare field coupled to the molecular Hamiltonian, i.e. the field
present in the empty spherical cavity. This easily obtains from the same Eq. (C.42)
by replacing ε0 with 1. The perturbation to the Hamiltonian is therefore

∆H = − 3εRF

2εRF + 1
d · E0. (C.44)
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The fluctuation-dissipation formula, Eq. (C.38), must be replaced with

β

3V
⟨d2⟩ = 2εRF + 1

3εRF

∂P

∂E0

=
2εRF + 1

2εRF + ε0

∂P

∂E
. (C.45)

Using then Eq. (C.39) we arrive at the final result

4πβ

3V
⟨d2⟩ = (2εRF + 1)(ε0 − 1)

2εRF + ε0
. (C.46)

Setting εRF = ∞ we retrieve Eq. (C.40). Another special case is εRF = ε0, leading
to the (1939) Kirkwood-Fröhlich formula [254, 255]:

4πβ

3V
⟨d2⟩ = (2ε0 + 1)(ε0 − 1)

3ε0
. (C.47)

The other interesting special case is εRF = 1, yielding the time-honored (1912) Debye
formula

4πβ

3V
⟨d2⟩ = 3(ε0 − 1)

2 + ε0
.. (C.48)

This ideally corresponds to a spherical sample free-standing in vacuo: in practice,
the formula apples to simulations performed within PBCs, but when the Coulomb
interaction is truncated with a spherical cutoff. By contrast the zero-field formula,
Eq. (C.40), requires the evaluation of conditionally convergent Ewald-like sums.

The dielectric constant is a well defined property of the bulk material: one
gets the same ε0 value by adopting different boundary conditions, and using the
appropriate fluctuation formula for each of them. This has been first demonstrated
by Neumann in 1983 by numerical simulations on the Stockmayer fluid [256].

It is pedagogically useful to provide the explicit expression for the depolarization
field acting on the fluctuating unperturbed system. Starting from Eq. (C.42), we
replace ε0 with its definition, Eq. (C.39); the result can be recast as

E =
3εRF

2εRF + 1
E0 −

4π

2εRF + 1
P. (C.49)

The first term in the rhs is the bare field acting on the molecular system, as in
Eq. (C.44), and the second term is the depolarization field. For the unperturbed
system at thermal equilibrium E0 = 0 and the depolarization field is

E = − 4π

2εRF + 1
P. (C.50)

The meaning of this is pretty clear: the fluctuating dipole of the molecular system
induces a depolarization field E within the sphere. Two special cases are worth
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mentioning: E = 0 for εRF = ∞ (metallic coating, no depolarization field), and
E = −4πP/3 for εRF = 1 (our sphere is free-standing in vacuo).

Some final words about the literature. The correct fluctuation formulæ–for
dipolar systems as well as for ionic systems—first appeared in the 1980s [257, 256].
The original literature—as well as the more recent one—is plagued by clumsy and
inelegant algebra. The simple proof provided here is, to the best of my knowledge,
unpublished.

C.7 Quantum vs. classical
Before switching to linear-response theory and to fluctuation-dissipation in the
quantum domain, it is expedient to emphasize analogies and differences.

The first difference concerns dissipation. The great majority of the systems
dealt with in classical molecular dynamics is ergodic: there are exceptions, the most
famous of them being the Fermi-Pasta-Ulam Hamiltonian [258, 259]. This was a
great discovery made possible by computational physics; before Fermi-Pasta-Ulam
(1953) it was postulated by everybody (Fermi included!) that all non separable
Hamiltonians were ergodic in the thermodynamic limit. The discovery opened a
new branch of physics: nonlinear systems and the physics of chaos [259].

Apart from such peculiar exceptions, “normal” systems are ergodic, evolve
towards thermal equilibrium, fulfill the equipartition theorem, & the like. This
is demonstrated since the birth of computational physics in the 1950s, where the
first simulations on hard-sphere and Lennard-Jones fluids appeared. Dissipation is
therefore present by itself in a canonical simulation, and the fluctuation-dissipation
theorem directly provides the causal response functions. The same applies to Car-
Parrinello simulations, where the nuclei are indeed classical particles. Matters are
different within quantum mechanics, where the introduction of temperature and
dissipation at the first-principle level is much more problematic.

In the present Notes we keep, as far as possible, the same notations adopted in
the classical case. Now the dynamical variables A and B, and the Hamiltonian H,
are Hermitian operators. They do not commute, while their classical counterparts
do commute. The fluctuations addressed by the theorem are therefore fluctuations
of the quantum variables A and B in the many-electron ground state of the
unperturbed system.

C.8 Fluctuation-dissipation theorem (quantum)
In this section we give the zero-T formulation in detail. The finite-T quantum
formula is presented at the end, Eq. (C.64), without proof.
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We have seen above that χ(t) can be defined as the response in the observable
B to an instantaneous δ-like “kick” at t = 0, where the perturbing probe is
∆H(t) = −δ(t)A. For t < 0 the system is in its (non degenerate) ground state;
in order to simplify notations we assume—as we have done in the classical case—
that the ground-state expectation value of both A and B vanish, i.e.

⟨A⟩ = ⟨Ψ0|A|Ψ0⟩ = 0, ⟨B⟩ = ⟨Ψ0|B|Ψ0⟩ = 0, t < 0. (C.51)

The time-dependent Schrödinger equation is

H|Ψ(t)⟩ − δ(t)A|Ψ(t)⟩ = iℏ
d

dt
|Ψ(t)⟩, (C.52)

and the initial condition is |Ψ(0−)⟩ = |Ψ0⟩. The temporal evolution of this state is

|Ψ(t)⟩ = T e−
i
ℏ
∫ t
0− dt′[H−δ(t′)A] |Ψ0⟩, (C.53)

where T is the time-ordering operator; |Ψ(t)⟩ has a discontinuous jump at t = 0,
which to linear order in A is

|Ψ(0+)⟩ =
(
1 +

i

ℏ
A

)
|Ψ0⟩ = |Ψ0⟩+

i

ℏ
∑
n̸=0

′
|Ψn⟩⟨Ψn|A |Ψ0⟩. (C.54)

This state evolves for t > 0 with the unperturbed Hamiltonian H:

|Ψ(t)⟩ = e−iE0t/ℏ|Ψ0⟩+
i

ℏ
∑
n̸=0

′
e−iEnt/ℏ|Ψn⟩⟨Ψn|A |Ψ0⟩, t > 0. (C.55)

Since we are at T=0, the response is causal but non dissipative: our χ(t) will have
undamped oscillations.

Finally, the linear response is

χ(t) = ⟨B(t)⟩ = θ(t) ⟨Ψ(t)|B |Ψ(t)⟩ (C.56)

=
i

ℏ
θ(t)

∑
n ̸=0

′
(e−iω0nt⟨Ψ0|B |Ψn⟩⟨Ψn|A |Ψ0⟩ − eiω0nt⟨Ψ0|A |Ψn⟩⟨Ψn|B |Ψ0⟩),

where ω0n = (En − E0)/ℏ. Its Fourier transform obtains from

−i
∫ ∞

−∞
dt eiωtθ(t) = P 1

ω
− iπδ(ω) = lim

η→0+

1

ω + iη
, (C.57)

and adopting the compact notation due to Zubarev [67, 156, 157]:

⟨⟨B̂|Â⟩⟩ω =
1

ℏ
lim
η→0+

∑
n ̸=0

′
(
⟨Ψ0|B̂|Ψn⟩⟨Ψn|Â|Ψ0⟩

ω − ω0n + iη

− ⟨Ψ0|Â|Ψn⟩⟨Ψn|B̂|Ψ0⟩
ω + ω0n + iη

)
. (C.58)
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The Kubo formula for the generalized susceptibility takes then the form

χ(ω) = −⟨⟨B̂|Â⟩⟩ω. (C.59)

We draw attention to the fact that the sign conventions adopted in these Notes
agree with Zubarev [67, 156] and Chandler [158], but are opposite the the ones of
McWeeny [157] and other textbooks. We have given here the many-body Kubo
formula; for independent electrons Eq. (C.58) is easily transformed into a double
sum over occupied and unoccupied orbitals.

The positive infinitesimal η in Eq. (C.58) enforces causality; dissipation and
lifetime can be introduced phenomenologically by hand, e.g. by replacing η with a
finite inverse relaxation time 1/τ . Insofar as η is infinitesimal, a closed system may
only absorb at the discrete frequencies ω0n, where χ′′(ω) is nonzero; it is actually
δ-like, as from Eq. (C.57). No mechanism allows for energy dissipation into a
thermostat (a.k.a. heath bath) at an arbitrary frequency insofar as the spectrum is
discrete. In condensed matter one takes the thermodynamic limit, and the spectrum
becomes continuous: in this case χ′′(ω) can be nonzero over a continuous range of
frequencies even at infinitesimal η. In fact dissipation is an intrinsic feature of an
extended system, which in a sense is its own heath bath (Sect. 3.2.5 in Ref. [166]).

The previous formulation is useful in order to explicitly provide the spectral
representation of χ(ω), Eq. (C.58) . Nonetheless a more compact and elegant
formula obtains by adopting the Heisenberg representation. In fact Eq. (C.56) can
be equivalently rewritten as

χ(t) = θ(t) ⟨Ψ(0+)| e
i
ℏHtBe−

i
ℏHt |Ψ(0+)⟩ = ⟨Ψ(0+)|BH(t) |Ψ(0+)⟩

=
i

ℏ
θ(t) ⟨Ψ0| [BH(t), AH(0)] |Ψ0⟩. (C.60)

It is easy to prove that ⟨Ψ0| [BH(t − t′), AH(0)] |Ψ0⟩ = ⟨Ψ0| [BH(t), AH(t
′)] |Ψ0⟩,

hence we may also write

χ(t− t′) =
i

ℏ
θ(t− t′) ⟨Ψ0| [BH(t), AH(t

′)] |Ψ0⟩

=
i

ℏ
θ(t− t′) Tr {P̂ [BH(t), AH(t

′)] }, (C.61)

where P̂ = |Ψ0⟩⟨Ψ0| is the ground state projector. Zubarev defines his correlation
function for complex “frequencies” z, i.e.

⟨⟨B̂|Â⟩⟩z = − i

ℏ

∫ ∞

−∞
dt eizt θ(t) Tr {P̂ [BH(t), AH(t

′)] }, (C.62)

where the integral converges for z in upper half of the complex z plane. In fact
the spectral representation in Eq. (C.58) immediately shows that the response
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is analytical in the upper half, and has poles in the lower half, “infinitesimally
close” to the real axis. This enforces causality, and suggests a simple picture. For
z = ω + iη, and finite positive η, the oscillations are (phenomenologically) damped
with a relaxation time τ = 1/η. The response is therefore dissipative, and the
η → 0+ limit can be interpreted as the limit were the response is undamped (as it
must be at T = 0), yet causal.

The finite-T Zubarev correlation formula appears as a simple modification of
Eq. (C.62): it is enough to replace the ground-state projector therein with the
finite-T equilibrium density matrix in the canonical ensemble, i.e.

P → ρ̂eq =
e−βH

Tr e−βH
; (C.63)

⟨⟨B̂|Â⟩⟩z = − i

ℏ

∫ ∞

−∞
dt eizt θ(t) Tr {ρ̂eq [BH(t), AH(t

′)] }. (C.64)

Despite the formal elegance and simplicity of this formula, its implementation at
the first-principle level is a formidable task.
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Appendix D

Advanced lattice dynamics

D.1 Huang’s phenomenological theory
Huang’s theory, published in 1950 [260, 261], is the simplest paradigm for lattice
dynamics in presence of long-range forces. It addresses the zone-center optical modes
of a cubic binary crystal. Zone-center modes are lattice-periodical, therefore there
is only one microscopic dynamical variable: the relative sublattice displacement u.
The system is therefore a single oscillator, isotropic at the harmonic level, and where
the electric field contributes to the restoring force.

We start from a free energy expression where the independent variable is the
field E, as in Appendices A and B, augmented here with the dynamical variable u.
The most general expansion to second order around equilibrium of the free energy
per cell F = VcellF is

F(E,u) = F0 +
1

2
Mω2

TO u
2 − Vcell

8π
ε∞E

2 − Z∗eu · E. (D.1)

The reasons for the symbols adopted will be clear in a moment. But we pause to
stress that Eq. (D.1) is the most general second order expansion: we are making no
hypotheses about the physical origin of the three expansion coefficients. Therefore all
subsequent results are exact within the harmonic approximation, and must hold for
lattice-dynamical models, for first-principle calculations, and for the experimental
measurements as well.

If we identify M with the reduced mass of the two atoms, the three
phenomenological parameters are ωTO, ε∞, and Z∗ (the dimensionless Born charge).
Notice that for Z∗ = 0 the field and the lattice displacements are uncoupled. The
conjugate variables are the force f and the field D, i.e.

f = −∂F
∂u

= −Mω2
TOu+ Z∗eE (D.2)

D = − 4π

Vcell

∂F
∂E

= ε∞E+
4π

Vcell
Z∗eu. (D.3)
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From the second line it is clear that ε∞ is the dielectric constant when the nuclei are
kept “clamped” at their equilibrium position. This is the dielectric constant actually
measured at frequencies much higher than the phonon frequencies, but lower than
the electronic transition; it is sometimes named with the oxymoron “static high
frequency” [97]. The physical origin of ε∞ is clearly the dielectric response of the
many-electron system: it is therefore also called electronic dielectric constant.

At equilibrium we set f = 0, and we have

u =
Z∗e

Mω2
TO

E

D =

[
ε∞ +

4πe2(Z∗)2

VcellMω2
TO

]
E. (D.4)

The first line yields the sublattice displacement, while the expression in parentheses
in the second line is the genuinely static dielectric constant ε0, including the lattice
relaxation, with ε0 ≥ ε∞.

We now study forced oscillations: from Eqs. (D.2) and (D.3)

−Mω2u = −Mω2
TOu+ Z∗eE (D.5)

u =
Z∗e

M(ω2
TO − ω2)

E (D.6)

D =

[
ε∞ +

4πe2(Z∗)2

VcellM(ω2
TO − ω2)

]
E = ε(ω)E. (D.7)

The quantity in parentheses in the last expression is therefore the infrared dielectric
constant ε(ω), with ε(0) = ε0 and ε(∞) = ε∞.

We have not identified the meaning of the other parameters yet. To this
aim we notice that for a long-wavelength phonon of wave vector q the solid
is macroscopically homogenous normal to q, while its physical properties are
modulated in the q direction. It follows that E vanishes normal to q, while D
vanishes parallel to q. Setting E = 0 in Eq. (D.6) confirms that the ωTO parameter
in the free-energy expansion is indeed the zone-center transverse optical frequency,
while instead D = 0 when ε(ω) = 0. The (squared) longitudinal optical frequency
ωLO is therefore, from Eq. (D.7)

ω2
LO = ω2

TO +
4πe2(Z∗)2

ε∞VcellM
, (D.8)

with ωLO ≥ ωTO. We have already observed that the Born charge Z∗ measures the
coupling of the macroscopic field to the ionic motion. This coupling vanishes in
nonpolar binary crystals, such as those having the diamond structure, where in fact
no longitudinal-transverse (LT) splitting of zone-center optical phonons is observed.
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The zone-center longitudinal oscillations in a polar material are driven by an
extra restoring force, of electrical origin. This is the same mechanism which drives
longitudinal plasma oscillations, and in fact if we ideally set ωTO = 0 in Eq. (D.8)
we retrieve a squared plasma frequency, i.e. 4π times a squared charge density over
a mass density; the interaction is screened with ε∞. The relevant charge is the Born
effective charge, and the relevant mass is the reduced mass.

From the previous equations it is straightforward to obtain the identity
ω2
LO

ω2
TO

=
ε0
ε∞

, (D.9)

i.e. the famous Lyddane-Sachs-Teller (1941) relationship [262]. It is remarkable
that all microscopic parameters (force constants, masses, Born effective charges,
cell volume) disappear from Eq. (D.9), which is exact in the harmonic regime.
The identity relates quantities measured in quite different ways: inelastic neutron
scattering—left hand side of Eq. (D.9)—vs. infrared spectroscopy—right hand side.
A final comment about first-principle calculations: therein, the quantities directly
provided by the code are ωTO, ε∞, and Z∗ (and their generalization, see below)
[104, 105, 106], while ωLO and ε0 are obtained from the phenomenological approach.
Therefore Eq. (D.9) is fulfilled by construction.

D.2 Infrared absorption
The simple case of a cubic binary material is pedagogically useful to address
dispersion and absorption in infrared spectroscopy. The ω-dependent dielectric
constant found in Sec. D.1 is the real (dispersive) part of the complex response
function ε′(ω) + iε′′(ω), while absorption is provided by the imaginary part. The
absorption coefficient per unit path length is related to ε′′(ω) as [263]:

α(ω) =
ω

c n(ω)
ε′′(ω), (D.10)

where n(ω) is the index of refraction.
We rewrite Eq. (D.7) as

ε′(ω) = ε∞ +
4πe2(Z∗)2

VcellM(ω2
TO − ω2)

. (D.11)

Causality requires that ε′(ω) and ε′′(ω) are related by the Kramers-Kronig relations,
Eq. (C.14), which in our case read

ε′(ω)− ε∞ =
2

π

∫ ∞

0

dω′ ω
′ε′′(ω)

ω′2 − ω2

ε′′(ω) = −2ω

π

∫ ∞

0

dω′ ε′(ω)

ω′2 − ω2
. (D.12)
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It immediately follows that (for ω > 0)

ε′′(ω) =
4π2e2(Z∗)2

VcellM
δ(ω2

TO − ω2) =
2π2e2(Z∗)2

VcellMωTO

δ(ωTO − ω). (D.13)

The meaning of this is pretty clear: we have an undamped oscillator at the frequency
ωTO, which only absorbs when the exciting field E is at resonance, and furthermore
at resonance the response diverges. The coefficient of δ(ωTO−ω) in Eq. (D.13) is the
“oscillator strength” of the spectral line; this also explains why the Born effective
charges are also called “infrared charges”.

The simple example of a cubic binary crystal, having only a single dynamical
variable u, is pedagogically useful to address the response in time domain:

D(t) =

∫ ∞

−∞
dt′ ε(t− t′)E(t′). (D.14)

The response ε(t) can be obviously found using Eqs. (D.11) and (D.13), and
antitransforming ε(ω) = ε′(ω)+ iε′′(ω). But we also remind that ε(t) can be seen as
the response to a δ-like input signal at t = 0, i.e. E(t) = E0 δ(t). Using Eq. (D.2)
we have:

ε(t)E0 = D(t) = ε∞E0 δ(t) +
4πZ∗e

Vcell
u(t), t ≥ 0, (D.15)

where we consider the electronic response as instantaneous. The Newton equation
for u(t), from Eq. (D.2), is

ü(t) = −ω2
TOu(t) +

Z∗e

M
E0 δ(t). (D.16)

Since we are looking for a causal response, u(t) = 0 for t < 0, and the response to
the instantaneous “kick” at t = 0 is the t > 0 solution of the homogenous equation
with initial conditions:

u(0) = 0; u̇(0) =
Z∗e

M
E0. (D.17)

We thus get
u(t) =

Z∗e

MωTO

E0 sinωTO t. (D.18)

Finally, the response function is, from Eq. (D.15):

ε(t) = 0, t < 0; ε(t) = ε∞ δ(t) +
(Z∗)2e2

VcellMωTO

sinωTO t, t ≥ 0, (D.19)

where we retrieve the undamped oscillations of the responding system. More about
infrared spectroscopy will be said below, Sec. D.10.
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While ε(ω) is the response to an E field, its inverse ε−1(ω) is the response to a
D field. Even ε−1(ω) must obey Kramers-Kronig relationships. We are not giving
the details here, but the derivation is straightforward by exploiting the identity

ε′(ω)

ε∞
=
ω2
LO − ω2

ω2
TO − ω2

, (D.20)

which clearly displays the symmetry. The real part of ε(ω) has a pole at ωTO, and
the corresponding imaginary part a delta peak at the same frequency; the real part
of ε−1(ω) has a pole at ωLO, and the corresponding imaginary part a δ(ω) peak at
the same frequency.

D.3 Dissipation and lifetime
So far, our response function was causal but nondissipative. The single-mode
prototypical example dealt with so far gives also the opportunity for introducing
phenomenological dissipation (or equivalently lifetime) into our response function.
We start addressing the issue in the time domain, and we include damping into
Eq. (D.16):

ü(t) = −2γu̇(t)− ω2
TOu(t) +

Z∗e

M
E0 δ(t). (D.21)

The damping γ has the dimensions of an inverse time, and we have included a factor
of 2 for convenience. We are interested in the case γ ≪ ωTO; the solution with the
initial conditions of Eq. (D.17) is

u(t) =
Z∗e

Mω1

E0 e
−γt sinω1 t, ω1 =

√
ω2
TO − γ2. (D.22)

ε(t) = 0, t < 0; ε(t) = ε∞ δ(t) +
(Z∗)2e2

VcellMω1

e−γt sinω1 t, t ≥ 0, (D.23)

The dielectric function in the ω-domain obtains by antitransforming this; γ is clearly
the inverse lifetime.

It is simpler instead to address the forced oscillations at frequency ω. A
dissipative term into Eq. (D.5) yields

−Mω2u = 2iMγωu−Mω2
TOu+ Z∗eE (D.24)

u =
Z∗e

M(ω2
TO − 2iγω − ω2)

E (D.25)

ε(ω) = ε∞ +
4πe2(Z∗)2

VcellM(ω2
TO − 2iγω − ω2)

. (D.26)
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We notice that ε(ω) is now endowed with a real and an imaginary part, which obey
Kramers-Kronig relationships by construction. In the complex ω plane ε(ω) is an
analytic function, with poles at ±ω1−iγ. The previous expressions can be compared
with the zero-T quantum response, and the location of its poles: see Eqs. (C.58)
and (C.59) and the following discussion. In both cases the fact that the poles are in
the lower half of the complex ω plane is a manifestation of causality, as previously
emphasized in Sect. C.4 . Note that the location of the poles on the upper/lower
half plane depends on our convention on Fourier transforms, Eq. (C.1); the opposite
choice may be found in the literature.

Th most perspicuous difference between Eq. (D.26) and its quantum (T = 0)
counterpart, Eqs. (C.58) and (C.59), is in the denominator: second order in ω vs.
first order. This owes to the fact that the Newton equations of motion are second
order in t, while Schrödinger equation is first order. If we are interested in the region
around resonance we may replace

ω2
TO − ω2 − 2iγω ≃ 2ωTO (ωTO − ω − iγ), (D.27)

ε(ω) ≃ ε∞ +
2πe2(Z∗)2

VcellMωTO

1

ωTO − ω − iγ
. (D.28)

The non dissipative (although causal) response obtains by taking the γ → 0+ limit.
Exploiting the well known identity

lim
γ→0+

1

x− iγ
= P 1

x
+ iπδ(x) (D.29)

we get ε′′(ω) identical to Eq. (D.13). At finite positive γ the distribution δ(ωTO−ω)
is broadened into a normalized Lorentzian, and the oscillator strength of the spectral
line is conserved. In general we have

ε′(ω) ≃ ε∞ +
2πe2(Z∗)2

VcellMωTO

ωTO − ω

(ωTO − ω)2 + γ2
, (D.30)

ε′′(ω) ≃ 2πe2(Z∗)2

VcellMωTO

γ

(ωTO − ω)2 + γ2
. (D.31)

While ε′′(ω) yields the absorptive part of the response, ε′(ω) yields the dispersive
one. While crossing the resonance, D(ω) switches from in-phase to out-of-phase
with E(ω).

D.4 Dynamical matrix
Let us consider a solid at zero temperature in the adiabatic approximation: the
ionic positions at equilibrium are Rls = Rl + Rs, where l is a cell index and s is
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(in nonprimitive lattices) a basis index in the unit cell of n atoms. A distorted
configuration of the solid is described by the set of the ionic displacements {uls}; as
throughout the present Notes, Greek subscript are used for Cartesian components.

The total energy is expanded in the displacements around equilibrium as

Etot({uls}) = E
(0)
tot + E

(2)
tot ({uls}) + .... (D.32)

and the harmonic force constant are second derivatives, defined through

E
(2)
tot ({uls}) =

1

2

∑
ll′ss′,αβ

css′,αβ(l, l
′)uls,αul′s′,β. (D.33)

Because of lattice periodicity, the force constants depend only on Rl′ − Rl and
hence css′,αβ(0, l

′) contain all of the information. Besides this, there are further
important constraints imposed by translational and rotational invariance [264]: we
consider explicitly only the former. If the solid is translated as a whole, the energy
is unchanged, and hence the energy expansion vanishes to all orders; this is easily
shown to imply

css,αβ(0, 0) = −
∑
l′s′

′
css′,αβ(0, l

′), (D.34)

with the usual meaning of the primed sum.
Owing to the adiabatic approximation [265, 266] the ionic motion is classical in

the potential energy provided by Etot. The harmonic oscillations around equilibrium
are then governed by the equation of motion:

Msüls,α = −
∑
l′s′,β

css′,αβ(l, l
′)ul′s′,β, (D.35)

for which normal-mode solutions (within periodic boundary conditions) are phonons
of q wavevector:

uls,α = us,α(q)e
iq·(Rl+Rs)e−iω(q)t. (D.36)

Owing to the transformation, the secular problem factorizes for different q’s (chosen
by convenience within the first Brillouin zone). Using then the reciprocal form of
the force constants:

css′,αβ(q) = eiq·(Rs′−Rs)
∑
l′

css′,αβ(0, l
′)eiq·Rl′ , (D.37)

and introducing the auxiliary quantities:

us,α(q) =
1√
Ms

es,α(q); (D.38)
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Dss′,αβ(q) = (MsMs′)
− 1

2 css′,αβ(q), (D.39)
where Ms are the ionic masses, the secular problem becomes:

ω2(q)es,α(q) =
∑
s′,β

Dss′,αβ(q)es′,β(q). (D.40)

The dynamical matrix is Hermitian, and has (in stable systems) nonnegative
eigenvalues: at every q there are 3n normal modes, whose frequencies are the square
roots of the eigenvalues; the eigendisplacements are related to the eigenvectors by a
trivial mass-dependent factor.

At this point I stress the importance—both in model and first-principle lattice
dynamics—of a standard technical trick. It is convenient not to bother explicitly
with the actual value of the on-site force constant css,αβ(0, 0). To this effect one
uses an auxiliary set of force constants, indicated with an overbar, which in general
violate translational invariance and are therefore nonphysical. The physical force
constants are recovered from

css′,αβ(q) = css′,αβ(q)− δss′
∑
s′′

css′′,αβ(0), (D.41)

which ensures translational invariance in form. It is easy to verify that css,αβ(0)
cancels in this expression, and hence the value of the on-site force constant css,αβ(0, 0)
is irrelevant, whenever Eq. (D.41) is explicitly used.

D.5 Coulomb forces
We discuss in this section the contribution to lattice dynamics Coulomb interactions.
This is an actual ingredient within the framework of the rigid-ion model, but is also
used here for pedagogical purposes, in order to introduce nonanalytic features of the
first-principle dynamical matrix in presence of Coulomb forces.

Suppose that the central two-body potential between ions of species s and s′ is
Φss′(r); then its contribution to the lattice-dynamical force constants is

css′,αβ(l, l
′) = − ∂2Φss′(|r|)

∂rα∂rβ

∣∣∣∣
r=Rl′+Rs′−Rl−Rs

. (D.42)

Explicit evaluation of the second derivatives of a radial function yields

∂2Φss′(|r|)
∂rα∂rβ

=
1

r
Φ′

ss′(r)(δα,β −
rαrβ
r2

) + Φ′′
ss′(r)

rαrβ
r2

, (D.43)

and we only need to calculate Φ′(r)/r and Φ′′(r) for each shell of neighbors. These
quantities are often called “tangential” and “radial” force constants.
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The above expressions only apply to l ̸= l′ and s ̸= s′; using an arbitrary value
for the on-site force constant css,αβ(0, 0), we get the analogous of Eq. (D.37) as

css′,αβ(q) = eiq·(Rs′−Rs)
∑
l′

css′,αβ(0, l
′)eiq·Rl′ , (D.44)

and the physical force constants are obtained from Eq. (D.41). The expression in
Eq. (D.44) is usable as such only for short-range interactions, where the sum over l′
is rapidly convergent; the resulting force constants are then analytic functions of q.

It is now convenient to transform the force constants into an equivalent
expression involving the Fourier transform Φss′(k) of the pairwise interaction.
Standard manipulations, starting from Eq. (D.44), give

css′,αβ(q) =
1

Vcell

∑
G

(q+G)α(q+G)βΦss′(|q+G|)eiG·(Rs′−Rs). (D.45)

Specializing to a pure Coulomb interaction between point charges, its reciprocal
space expression is Φss′(k) = 4πQsQs′/k

2. The force constants are nonanalytic, as
a fingerprint of long-range Coulomb interactions: we cast them as

c
(Coul)
ss′,αβ (q) =

4πQsQs′

Vcell

[
qαqβ
q2

+
∑
G̸=0

(q+G)α(q+G)β
|q+G|2

eiG·(Rs′−Rs)

]
, (D.46)

where the nonanalytic term has been expressly separated. This expression is valid at
q ̸= 0: a major problem is the fact that css′,αβ(q = 0) does not cancel (for s ̸= s′) in
Eq. (D.41). What is the correct value to be used? There are several ways to reach a
rigorous answer: the final result can however be summarized into a working recipe,
first proposed by Pines in the 1950s. Under the hypothesis that the extended system
is overall charge-neutral, one gets always correct results upon assumption that the
Fourier transform of Coulomb interaction is 4π/k2 at k ̸= 0 and vanishes at k = 0.
Therefore the first term in square brackets must be taken as zero when q is exactly
zero. When q → 0, i.e. in the long-wavelength limit, this term gives in general a
finite contribution. In fact qαqβ/q2 acts as a projector on the q-direction. Owing to
the presence of terms of this kind, the dynamical matrix of a polar dielectric is non
analytic at the zone center.

In the simple case of a cubic binary crystal qαqβ/q2 discriminates between
longitudinal and transverse modes, and is therefore responsible for the LT splitting,
already introduced within Huang’s phenomenological theory.

Still, a minor problem remains: the reciprocal space sum over G in Eq. (D.46)
does not converge. The solution is straightforward: one evaluates the Coulomb term
giving a small Gaussian spread to the ionic charges, in order to ensure convergence.
When the spread is much smaller than the typical interionic distances, the force
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constants assume their physical (spread-independent) value. Alternatively, more
efficient Ewald techniques can be used [264]. There is one simple case where the
sum can be evaluated in closed form: let us consider c(Coul)

12,αβ (0) in a cubic binary
crystal. Because of symmetry, this must be diagonal in αβ and equal to one third
of the trace:

c
(Coul)
12,αβ (0) = δαβ

4πQ1Q2

3Vcell

∑
G ̸=0

eiG·(R2−R1) . (D.47)

Since we know that such a sum over all G’s (including G = 0) vanishes, we get the
result

c
(Coul)
12,αβ (0) = −δαβ

4πQ1Q2

3Vcell
. (D.48)

D.6 A simple approach to alkali metals
Rather accurate phonon spectra in simple metals have been obtained during the
1960s from pseudopotential perturbation theory to second order. In a sense,
this was the archetypical “total energy” approach to the electronic properties of
solids. Although all this is a rather obsolete approach—superseded by first-principle
calculations [134]—we include this Section for pedagogical purposes.

Within pseudopotential perturbation theory the total energy is the sum of two
terms: the former depends only upon the average density, while the second is in fact
a pairwise central interaction.

Phonon modes do not affect the average density, and therefore the full dynamical
matrix is straightforwardly obtained from the formalism of the previous section,
where the two body interaction is the screened interaction between the pseudoions.
For a primitive lattice we omit the s subscripts; using Eqs. (D.41) and (D.45) we
get the dynamical matrix in the form:

Dαβ(q) =
1

MVcell

∑
G

[(q+G)α(q+G)βΦ(|q+G|)−GαGβΦ(G)]. (D.49)

The crudest approximation for the two-body interaction obtains from the
electron-gas dielectric function as

Φ(k) ≃ 4πZ2e2

ε(k)k2
, (D.50)

with Z = 1 for monovalent methods. This form for the dynamical matrix of a
simple metal was first proposed in 1958 by Toya [267], and clearly approximates
the pseudopotential with the bare Coulomb potential of the ion core, screened
by the electron gas. It neglects the short-range repulsion which basically mimicks
orthonormalisation of the valence orbitals to the core ones.
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Over the years, many forms have been proposed for the electron-gas dielectric
function ε(k). All of them are divergent for k → 0, thus making the two-body
interaction and the dynamical matrix analytic. The simplest of them is the Thomas-
Fermi dielectric function yielding the screened interaction

Φ(k) ≃ 4πe2

k2 + k2TF

, (D.51)

where kTF is given in many textbooks [73]. If we single out the G = 0 term in
Eq. (D.49) we have

Dαβ(q) =
4πe2qαqβ

MVcell(q2 + k2TF)
(D.52)

+
1

MVcell

∑
G ̸=0

′
[(q+G)α(q+G)βΦ(|q+G|)−GαGβΦ(G)].

If one further neglects the second line, i.e. neglects the discrete nature of the
lattice, one gets the speed of sound as ωp/kTF , where ωp is the electron-gas plasma
frequency. We thus recover an important result found in 1950 upon macroscopic
arguments by Bohm and Staver and derived in several textbooks [73]. The result
is in semiquantitative agreement with the experiment; this proved for the first time
that sound propagation in metals is dominated by electronic screening therein.

A much more accurate expression for the two-body interaction is provided by
pseudopotential perturbation theory [268]. Without giving a derivation, we only
show here the main result. One starts defining defining the dimensionless function:

G(k) =
(
4πZe2

k2

)−2

v2(k)

[
1− 1

ε(k)

]
, (D.53)

known as the “energy-wave-number characteristic”, where v(k) is the (local)
pseudopotential. This accounts for the interaction between the ion cores, mediated
by the electrons. When we add the bare repulsion between the ionic charges we get
the two-body interaction as

Φ(k) =
4πZ2e2

k2
[1− G(k)] , (D.54)

to be used in Eq. (D.49). As said above, this approach has provided in the 1960s
remarkably accurate phonon spectra for the simple metals. The crude approximation
of Eq. (D.50) is retrieved replacing v(k) in Eq. (D.53) with the Coulomb interaction.

A more accurate expression for the electron-gas dielectric function ε(k) has a
logarithmic singularity for k=2kF . The simplest ε(k) displaying this feature is the
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Lindhard dielectric function, discussed in many textbooks [73]. The singularity
is due to the sharpness of the Fermi surface in metals: notice that even at room
temperature the Fermi surface can be considered as sharp to the present purposes.

Therefore the dynamical matrix of Eq. (D.49) is singular at the q vectors (in the
first Brillouin zone) which fullfill |q+G| = 2kF for some G. The surfaces defined
by this relationship can be found from a simple geometrical construction: when
q crosses one of these surfaces, one expects a “kink” in the experimental phonon
dispersion curves, as first proposed by W. Kohn [269]. Shortly after the theory, the
effect was observed in the spectra of lead [270], and goes under the name of “Kohn
anomaly” since then.

D.7 Ionic crystals: rigid-ion model
The lattice dynamics of ionic cristals has important qualitative features which
are better illustrated—for pedagogical purposes—starting from the simple rigid-ion
model, which was first applied to the lattice dynamics of alkali halides in 1940 [271].
The force model adopted here is exactly the same as used in the Kittel textbook [97]
to discuss the structural stability of alkali halides: short-range Born-Mayer forces
(which only act between first neighbours), and point-charge Coulomb forces. The
parameters in the model are the ionic charges ±Q (where usually |Q| = e, i.e. full
ionicity), plus other two parameters in the Born-Mayer forces. The latter are fitted
to a pair of empirical data (typically the equilibrium lattice constant and the bulk
modulus) [97]. One would naively guess that the Born-Mayer forces are entirely
responsible for ωTO, and the Coulomb forces are responsible for the longitudinal-
transverse splitting: this is incorrect, as we will see below.

The dynamical matrix is therefore the sum of two contributions, which are
separately evaluated. The Coulomb term is given by Eq. (D.46), using for the ionic
charges the values Qs = (−1)sQ, where s=1 (2) labels the anion (cation); the short
range term is evaluated directly in the form of Eq. (D.44), where the sum includes
only nearest neighbors (six terms for the rocksalt structure). Therefore the short-
range c(s.r.)ss′,αβ(q) vanishes when s=s′, while c(s.r.)12,αβ(q) depends on two parameters only,
given in Eq. (D.43). A typical result, taken from the original literature, is shown in
Fig. D.1.

It proves useful to study in detail the diagonalization at the zone center. Keeping
only terms of order zero in q, and using Eq. (D.41), we get:

c
(s.r.)
11,αβ(q) ≃ c

(s.r.)
22,αβ(q) ≃ −c(s.r.)12,αβ(0) ; c

(s.r.)
12,αβ(q) ≃ c

(s.r.)
12,αβ(0); (D.55)

furthermore bulk Cartesian tensors are diagonal in a cubic material, hence
c
(s.r.)
12,αβ(0) = −R0δαβ, where the constant R0 completely accounts for the short range
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Figure D.1: The phonon spectrum of
NaCl for q along the (1,1,1) direction,
as computed in 1940 in Ref. [271].

forces at the zone center. Using the same path for the Coulomb term, Eq. (D.46),
we find a nonanalytic term (homogeneous of degree zero in q), plus an analytic term
which behaves in all respects like an effectively short-range additional interaction.
From Eqs. (D.46) and (D.48) we cast the complete dynamical matrix at the zone
center as

Dss′,αβ(q) ≃
[
4πQ2

Vcell

qαqβ
q2

+ (R0 −
4πQ2

3Vcell
)δαβ

]
Mss′ , (D.56)

where we define the 2×2 matrix M as :

M =

(
1

M1
− 1√

M1M2

− 1√
M1M2

1
M2

)
. (D.57)

One of the eigenvalues of M is zero, and the other is 1/M = 1/M1 + 1/M2, i.e. the
inverse reduced mass; the corresponding eigenvectors are easily recognized to be the
acoustic and optic modes, respectively. Going back to the zone-center dynamical
matrix, the acoustic mode is threefold degenerate with frequency zero, while the
optic modes require further diagonalization over the Cartesian coordinates. There
are two transverse modes—where the polarization is perpendicular to q—with

ω2
TO =

1

M
(R0 −

4πQ2

3Vcell
), (D.58)

and one longitudinal mode—where the polarization is parallel to q—whose frequency
is

ω2
LO = ω2

TO +
4πQ2

MVcell
. (D.59)

The LT splitting is substantially overestimated with respect to the experiment,
and this drawback is simply due to the fact that no mechanism within the rigid-ion
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model allows for electronic screening of the Coulomb interaction. In fact comparing
Eq. (D.59) to the exact expression in Eq. (D.8), we easily realise that the rigid-ion
model sets Z∗ = 1 and ε∞ = 1. While the former is a reasonable approximation to
the real Z∗ in ionic crystals, the latter is not: ε∞ ≃ 2− 3 in alkali halides.

Models correcting this problem are well known in the literature: they agree better
with the experimental spectra, at the price of using more empirical parameters.
A comprehensive atlas of phonon spectra, as computed by means of empirical
models for many materials, was published in 1979 [272]. Nowadays such models
have historical interest only, since phonon spectra are routinely computed by first
principles, even for very complex crystal structures [104, 105, 106].

One final lesson can be drawn from the rigid-ion model, looking at Eq. (D.58),
where it is perspicuous that ωTO is not due to the Born-Mayer forces (summarized
in R0) only: it also has a sizeable contribution from the Coulomb forces. This was
to be expected, since the Coulomb forces are essential to crystal stability as well.
We notice that ω2

TO is the eigenvalue of the analytical part of the dynamical matrix:
Born-Mayer forces provide obviously an analytic term, but there is another analytic
term of Coulomb origin, coming from the G ̸= 0 terms in Eq. (D.46).

In a first-principle approach there is no way of disentangling the “short-range”
from the “Coulomb” forces: the interatomic forces are due to quantum mechanics
and electrostatics intertwined. We are only allowed to partition into analytic and
nonanalytic contributions. The key ingredient to the latter is qαqβ/q

2, i.e. an
homogeneous function of degree zero, whose value for q → 0 depends on the q
direction.

D.8 Zone-center modes: general case
Exploiting the results in Secs. D.1 and D.7, the exact zone-center dynamical matrix
of a cubic binary crystal is

Dss′,αβ(q) =

[
Mω2

TOδαβ +
4πe2(Z∗)2

ε∞Vcell

qαqβ
q2

]
Mss′ , (D.60)

where the 2×2 matrix M is given in Eq. (D.57), and M is the reduced mass. The
nonanalytic expression in Eq. (D.60) is correct to order zero in q. In order to
proceed further, it is expedient to define the Born charges of each sublattice Z∗

s ,
with Z∗

1 = −Z∗
2 , and rewrite Eq. (D.60) as

Dss′,αβ(q) =
1√

MsMs′

[
C

(analytic)
ss′,αβ +

4πe2Z∗
sZ

∗
s′

ε∞Vcell

qαqβ
q2

]
, (D.61)

where—owing to cubic symmetry—C
(analytic)
ss′,αβ is diagonal in its Cartesian indices.
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Figure D.2: A typical phonon spec-
trum of a low-symmetry dielectric
(crystalline BiFeO3). Owing to
Coulomb interactions, the dynamical
matrix is nonanalytic at the zone cen-
ter. The q → 0 limit along different q
directions may take different values.

Several first-principle electronic structure codes [104, 105, 106] routinely compute
C

(analytic)
ss′,αβ , Z∗

s , and ε∞, as well as their generalisations, discussed below. We notice
that Z∗

s and ε∞ require ad-hoc linear-response algorithms, while C
(analytic)
ss′,αβ could

even be computed in principle via “frozen phonons”, i.e. evaluating the ground-
state energy of the crystal for non equilibrium geometries, and expanding it to
second order. We remind that standard ground-state calculations implicitly assume
a lattice-periodical Hamiltonian, hence E = 0. Any lattice-periodical calculation is
unable to provide the longitudinal phonon frequency.

In a generic crystal with a basis of n atoms Eq. (D.61) generalises to

Dss′,αβ =
1√

MsMs′

(
C

(analytic)
ss′,αβ + C

(nonanalytic)
ss′,αβ (q)

)
, (D.62)

where C(nonanalytic)
ss′,αβ (q) is a nonanalytic function of degree zero in q.

In a low-symmetry crystal the phonon spectrum is more complex: a typical
example is shown in Fig. D.2, illustrating a novel qualitative feature. We have
seen that for a cubic binary crystal the nonanalytic term in Eqs. (D.60) and (D.61)
is responsible for the LT splitting, but the q → 0 limit is independent of the q
directions, even for the longitudinal mode. In a low-symmetry crystal the zone-
center modes are neither longitudinal nor transverse, and the q → 0 limit along
different q directions may take different values.

D.8.1 Free energy and equations of motion
In order to obtain the explicit expression for C(nonanalytic)

ss′,αβ (q) in a generic insulating
crystal we need to generalize our starting Eq. (D.1) to an arbitrary lattice. We
remind that a zone-center mode is lattice-periodical, hence independent variables in
the free energy per cell F are now the field E and the sublattice displacements us,
with s = 1, n. In a ferroelectric crystal the free energy includes a term linear in E,
and us-independent.
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We limit the present treatment to crystals which are neither pyroelectric nor
ferroelectric. The most general second order expansion of F(E, {us}) reads then

F(E, {us}) = F0 +
1

2

∑
ss′

C
(analytic)
ss′,αβ us,αus′,β −

Vcell
8π

ε∞αβEαEβ

− e
∑
s

Z∗
s,βαus,αEβ., (D.63)

where the sum over Cartesian (Greek) indices is left implicit. Therein C
(analytic)
ss′,αβ

are the standard force constants, computed at zero E field, ε∞αβ is the electronic
dielectric tensor, and Z∗

s,αβ is the dimensionless Born (a.k.a. infrared, a.k.a.
dynamical) effective charge tensor of sublattice s. It is defined as the mixed second
derivative

eZ∗
s,βα = − ∂2F

∂us,α∂Eβ

, eZ∗
s,αβ = − ∂2F

∂Eα∂us,β
. (D.64)

Notice that, while C
(analytic)
ss′,αβ and ε∞αβ are symmetric tensors in their Cartesian

indices, the Born charge Z∗
s,αβ in general is not a symmetric Cartesian tensor. The

Born effective charge tensors must fulfill the acoustic sum rule [273]:∑
s

Z∗
s,αβ = 0. (D.65)

If the sum of the tensors does not vanish identically, some acoustic phonons do not
have a vanishing frequency at q = 0.

The equations of motion are:

fs,α = − ∂F
∂us,α

= −
∑
s′

C
(analytic)
ss′,αβ us′,β + eZ∗

s,βαEβ

Dα = − 4π

Vcell

∂F
∂Eα

=
4πe

Vcell

∑
s

Z∗
s,αβus,β + ε∞αβEβ. (D.66)

We remind once more that all the coefficients occurring in Eqs. (D.63) and (D.66)
are routinely computed in some electronic-structure codes [104, 105, 106].

D.8.2 Microscopic meaning of the Born charges
We have said above that the s-th Born effective charge tensor measures the
macroscopic polarization linearly induced by a unit displacement of the s-th
sublattice in zero E field, or equivalently the force on the s-th atom induced by
a unit macroscopic E field at zero displacement. We adopt the latter viewpoint in
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the following, and we notice that the force on the s-th atom is also equal to the
microscopic field E(micro)(r) at the nuclear site. Therefore

fs,α = eZ∗
s,βαEβ = eZsE

(micro)
α (Rs), (D.67)

where eZs is the bare nuclear charge. This applies in an all-electron picture; the
force has a different expression in a pseudopotential framework.

The dimensionless s-th Born charge tensor measures therefore the ratio of the
microscopic field at site s to the macroscopic field. More precisely

Z∗
s,βα = Zs

∂E
(micro)
α (Rs)

∂Eβ

. (D.68)

Since the acoustic sum rule [273] requires
∑

s Z
∗
s,βα = 0, the microscopic field must

be—in simple cases where the tensors are diagonal—parallel and antiparallel to the
macroscopic field on different sites.

All experiments (either anelastic neutron scattering or infrared spectroscopy)
measure quantities which are quadratic in the Born tensors: therefore the sign of
Z∗

s cannot be experimentally determined. Quantum-mechanical calculations of the
response functions, instead, do determine the sign. The first pioneering calculations
appeared in the early 1980s [274, 275]; nowadays computation of the Born charge
tensors is a standard feature of many electronic structure codes [104, 105, 108, 106].
Data are available for many complex materials, even noncrystalline.

Based on a simple rigid-ion viewpoint, one would expect the diagonal elements
of Z∗

s to be negative on anions and positive on cations, or equivalently that the
force on the nuclei is parallel to the macroscopic field on cations, and antiparallel on
anions. This is indeed what actual computations confirm, for normal materials at
least; some materials with counterintuitive Z∗

s tensors are discussed in the following.
The counterintuitive features, where present, are typically due to covalency and/or
correlation.

The reasons why the Born charges are trivial or non trivial may be examined
in terms of Wannier functions: in fact the modern theory of polarization, in one
of its formulations, states that the polarization difference induced by a zone-center
phonon can be simply expressed in terms of the displacements of the bare nuclear
charges and of the Wannier-function centers (see Sec. 5.3.3). Let us start with the
simple case of alkali halides, where the computed Born charges are close to their
intuitive value of ±1. In the paradigmatic example of NaCl the nuclear charges
are 11 and 17, respectively, and in the unperturbed solid at equilibrium there are 5
and 9 doubly occupied maximally localized Wannier functions centered at the two
sites, respectively. When the two sublattices are displaced, the Wannier centers
are displaced as well. The modern theory of polarization tells that Z∗

s would be
exactly ±1 if the Wannier centers follow rigidly the nuclear motion. What actually
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Figure D.3: The crystal structure of
selenium. There are three equivalent
atoms per cell, arranged on a spiral.
The bonding is covalent within the
spiral (coordination two), but there
are weaker, “almost covalent”, inter-
spiral bonds.

happens is that, in alkali halides, the Wannier-center displacements are almost rigid.
Notice that we are not assuming that the static charge, belonging to each atom, is
±1: the static charge is an approximate concept, ill defined as a matter of principle
[83, 84]. The Born (a.k.a. dynamical) charge, instead, is well defined both from first
principles and experimentally. So much for alkali halides; at variance with them, in
materials where covalency plays an important role the Wannier-center displacements
are remarkably nonrigid.

In elemental crystals with a binary lattice, such as those having the diamond
structure, the Born tensors vanish and there are no infrared active modes. This
is due to symmetry and to the acoustic sum rule. However, elemental crystals of
lower symmetry in general do have infrared active modes. One known case is solid
hydrogen (a molecular crystal with several molecules in the elementary cell).

Another interesting case is Se: its crystal structure, with three equivalent atoms
in the elementary cell, is shown in Fig. D.3. Owing to the acoustic sum rule∑

s Z
∗
s,βα = 0, the Z∗

s,βα are purely off-diagonal, and they are equivalent by rotations
of 2π/3. This means that a macroscopic field exerts on an atom a force which
is orthogonal to the field direction. The infrared activity can be qualitatively
understood as an effect of the bond charges belonging to the weak interchain bonds

The next case that we wish to outline is the paradigmatic example of the
perovskite BaTiO3 in its undistorted cubic structure (nonferroelectric, a.k.a.

Figure D.4: The undistorted cubic perovskite
structure (aristotype) of BaTiO3. Solid,
shaded, and empty circles represent Ba, Ti,
and O atoms, respectively. The O atoms
sit at orthorhombic, and not cubic, sites.
The oxygen Born tensors are diagonal but
anisotropic.
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Figure D.5: The phonon
spectrum of BaTiO3 in its
cubic structure (aristotype).
Notice the giant LO-TO
splitting, and also the oc-
currence of imaginary modes.
After Ref. [276].

aristotype), where the oxygen ions sit at a noncubic sites. The Cartesian effective
mass tensor Z∗

O is diagonal, but strongly anysotropic. Based on a rigid-ion picture,
one would expect the elements of Z∗

O to be about −2; instead, one of them is of
the order of −6. The tensor Z∗

Ba is isotropic, but is about +6, much larger than
the nominal Ba ionicity +4. The effect is due to the mixed ionic-covalent character
of this material, and of many perovskites as well. As a consequence, the LO-TO
splitting at the zone center is giant [277, 276].

The phonon spectrum of BaTiO3 in its cubic (aristotype) structure, computed
from first principles by Ghosez et al. [276], is shown in Fig. D.5. Besides the giant
LO-TO splitting, another prominent feature is worth a comment. Some phonon
frequencies are imaginary, i.e. the dynamical matrix has negative eigenvalues.
We have already observed that this material undergoes a spontaneous symmetry
breaking, and therefore the cubic structure is not the relaxed equilibrium geometry.
In other words the occurrence of imaginary modes is a manifestation of the fact
that our harmonic expansion, Eqs. (D.33) and (D.63), is in this case performed at
a saddle point and not at a minimum.

Finally, we wish to discuss the hypothetical case of an highly correlated alkali
halide. It might happen that the electron-electron repulsion dominates over the
standard behaviour discussed above. In this highly correlated regime the anion
would have a positive Z∗

s , and the cation a negative one. This feature has been
discovered via simulations on a two-band Hubbard model in one dimension [186].

D.8.3 Cochran-Cowley formula
We find expedient from now on to switch to compact formulæ adopting tensorial-
vectorial notations, leaving the Cartesian indices implicit, and without a change of
symbols; the dagger indicates the transpose. We thus equivalently cast Eq. (D.66)
as

fs = −
∑
s′

C
(analytic)
ss′ us′ + eZ∗

s
†E (D.69)
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D =
4πe

Vcell

∑
s

Z∗
s us + ε∞E. (D.70)

We have learned from the paradigmatic example of the cubic binary crystal that
the field E must depend on the relative orientation between the wavevector q and
the sublattice displacements us(q). We make this explicit by rewriting Eqs. (D.69)
and (D.70) as

fs(q) = −
∑
s′

C
(analytic)
ss′ us′(q) + eZ∗†

sE(q) (D.71)

D(q) =
4πe

Vcell

∑
s

Z∗
sus(q) + ε∞E(q), (D.72)

and we remind that we remain at the lowest order: the dependence is nonanalytic
and of order zero in q. Eq. (D.72) tells us that the polarization in zero field is

P0(q) =
e

Vcell

∑
s

Z∗
sus(q). (D.73)

Next, it is expedient to define the unit vectors in the q-direction as

q̂ =

 q̂x
q̂y
q̂z

 , q̂† =
(
q̂x q̂y q̂z

)
. (D.74)

Therefore the norm is q̂†q̂ = 1, while the dyadic product q̂ q̂† is the projector in the
direction of q, whose components are qαqβ/q2

We have already observed that in presence of a phonon of wavevector q, the solid
is macroscopically homogeneous in the plane normal to q, while all macroscopic
properties display a modulation in the direction of q. It is immediate to realize that
the component of D(q) parallel to q and the component of E(q) normal to q both
vanish [95]:

q̂†D(q) = 0, (1− q̂ q̂†)E(q) = 0. (D.75)
Whenever nonvanishing, both D(q) and E(q) are nonanalytic functions of order zero
in q. In the following equations, it is tacitly assumed that only the leading term
in q is considered. Whenever convenient, we may therefore replace D(q) and E(q)
with D(q̂) and E(q̂), respectively. Eqs. (D.72) and (D.73) are clearly equivalent to

D(q) = ϵ∞E(q) + 4πP0(q). (D.76)

We now exploit Eqs. (D.75) and (D.76) as follows:

0 = q†D(q) = q†ε∞E(q) + 4πq†P0(q) (D.77)
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E(q) = q̂ q̂†E(q). (D.78)
From these it easily follows that

0 = q̂†ε∞q̂ q̂†E(q) + 4πq̂†P0(q) (D.79)

E(q) = − 4π

q̂†ε∞q̂
q̂ q̂†P0(q),

= − 4πe

Vcellq̂†ε∞q̂
q̂
∑
s

q̂†Z∗
sus(q) (D.80)

which can be interpreted as the depolarization field for an arbitrary q̂-direction. We
can finally eliminate the field in the equations of motion, Eq. (D.71), which reads

fs(q) = −
∑
s′

[
C

(analytic)
ss′ +

4πe2

Vcell

(Z∗†
s q̂)(q̂†Z∗

s′)

q̂†ε∞q̂

]
us′(q). (D.81)

The quantity in parenthesis is indeed the usual expression for the force-constant
matrix at the zone center, including the nonanalytic term, first obtained in 1962
by Cochran and Cowley [278] and implemented much later in some first-principle
codes [279, 134, 106, 104]. This confirms that the matrix elements at the zone center
are indeed nonanalytic functions, homogeneous of degree zero in q; we also remind
that Eq. (D.81) applies to crystals of any symmetry and is exact at the harmonic
level. The simple expression previously found in Eq. (D.61) is clearly a special case
of Eq. (D.81).

When we restore the Cartesian subscripts the nonanalytic contribution to the
dynamical matrix in Eq. (D.62) takes the more familiar (and prolix) form

C
(nonanalytic)
ss′,αβ (q) =

4πe2

Vcell

∑
γ Z

∗
s,γαqγ

∑
ν Z

∗
s′,νβqν∑

γν qνε∞νγqγ
, (D.82)

where even the sums on dummy indices are explicitated.
To inspect where nonanalyticity enters the dynamical matrix, we exploit

associativity in the matrix products, and we write

C
(nonanalytic)
ss′ (q) =

4πe2

Vcell(q̂†ε∞q̂)
Z∗†

s (q̂q̂†)Z∗
s′ . (D.83)

The scalar q̂†ε∞q̂ is clearly analytic, hence the only source of nonanalyticity is the
projector in the q-direction q̂q̂†, discussed above, and whose elements are qαqβ/q2.

Finally we observe that in a crystal of arbitrarily low symmetry all zone-center
phonons are coupled to the field. Therefore a zero-field calculation of the force
constants, as routinely provided by the popular computer codes [106, 104] does not
provide by itself the frequency (and the eigenvectors) of any zone-center mode. It
only provides C(analytic)

ss′ , which must be used into the full Cochran-Cowley formula
in order to get all zone-center modes.

209



D.9 High-symmetry cases
We consider here only crystals whose symmetry is orthorombic or higher; then all
crystalline tensors can be simultaneously diagonalized. We obviously orient the
Cartesian axes along the orthorhombic crystal axes.

Since all Z∗
s are diagonal Cartesian tensors, we rewrite Eq. (D.83) as

C
(nonanalytic)
ss′,αβ (q) =

4πe2

Vcell(q̂†ε∞q̂)
(Z∗†

s Z
∗
s′)(q̂q̂

†). (D.84)

Even the products Z∗†
s Z

∗
s′ are diagonal, and the modes are purely longitudinal or

purely transverse.
For phonons polarised along the principal axes, the dynamical matrix can be

dealt with as a scalar (in general different in different directions), and one may
proceed analogously to our treatment of a cubic binary crystal. In that case the
6 × 6 dynamical matrix factorized in three 2 × 2 blocks, each with one acoustic
mode and only one optical mode; of the three blocks one was longitudinal and two
transverse. In the generalised case the matrix is 3n× 3n, with n− 1 optical modes
per direction.

Adopting from now on a scalar notation, we write the free energy per cell using
as independent variables the field E and the transverse (zero field) normal mode
coordinates un. The second order expansion of the free energy per cell is

F(E, {uj}) = F0 +
1

2

n−1∑
j=1

ω2
ju

2
j −

Vcell
8π

ε∞E
2 − eE

n−1∑
j=1

Z∗
j uj. (D.85)

We have used for the expansion only 1/3 of the optic modes: those polarised along
the given Cartesian axis. We are thus generalizing the Huang single-mode theory to
the (n − 1)-mode case. Notice however that here the normal-mode coordinates uj
include a factor with the dimensions of (mass)1/2, while the mode effective charges
Z∗

j include a factor with the dimensions of (mass)−1/2.
In Eq. (D.85) the mode frequencies ωj are obviously the transverse ones (E = 0).

The equation of motion for the normal modes are

fj = −ω2
juj + eZ∗

jE (D.86)

D =
4πe

Vcell

n−1∑
j=1

Z∗
j uj + ε∞E. (D.87)

Proceeding as above the dielectric constant in the given direction is

ε′(ω) = ε∞ +
4πe2

Vcell

n−1∑
j=1

(Z∗
j )

2

ω2
j − ω2

(D.88)
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ε′′(ω) =
4π2e2

Vcell

n−1∑
j=1

(Z∗
j )

2δ(ω2
j − ω2), (D.89)

and obviously obeys Kramers-Kronig relationships. While the poles of ε′(ω) are the
frequencies of the transverse zone-center modes, its zeros are the frequencies of the
longitudinal ones: it is not straightforward to find such zeros from Eq. (D.88).

We write therefore the equations of motion for the longitudinal modes by setting
D = 0 in Eqs. (D.86) and (D.87):

−ωuj = −ωjuj + eZ∗
jE

0 = e

n−1∑
j=1

Z∗
j uj + ε∞E, (D.90)

which yields

ω2uj = ω2
juj +

4πe2

Vcellε∞

n−1∑
j′=1

Z∗
jZ

∗
j′uj′ . (D.91)

This equation shows that, in general, the longitudinal normal mode coordinates are
different from the transverse ones. This may happen even in cubic crystals, like e.g.
a cubic perovskite [277], whose structure is shown in Fig. D.4.

Suppose then we have diagonalized the longitudinal dynamical matrix,
Eq. (D.91), and found its eigenvalues ω̃2

j : since these are the zeros of ε′(ω), we
may rewrite identically Eq. (D.88) as

ε′(ω)

ε∞
=

∏
j(ω̃

2
j − ω)2∏

j(ω
2
j − ω)2

, (D.92)

thus generalising the analogous single-mode formula, Eq. (D.20). This result was
found in 1961 by Kurosawa [280]. We thus immediately get the generalised Lyddane-
Sachs-Teller relationship in the form

ε0
ε∞

=

∏
j ω̃

2
j∏

j ω
2
j

, (D.93)

and we remind that this only holds if all the Born charge tensors are diagonal on
the Cartesian axes.

For a cubic crystal all the zone-center modes are threefold degenerate (at E = 0):
we may thus rewrite Eqs. (D.88) and (D.89) as

ε′(ω) = ε∞ +
4πe2

3Vcell

3n−3∑
j=1

(Z∗
j )

2

ω2
j − ω2

(D.94)

ε′′(ω) =
4π2e2

3Vcell

3n−3∑
j=1

(Z∗
j )

2δ(ω2
j − ω2), (D.95)
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Where now the sum is over all the 3n− 3 zone-center optic modes.

D.10 Infrared spectra at finite temperature
In the present Appendix, we have implicitly assumed zero temperature so far. In this
framework, the imaginary part of the isotropic dielectric response ε′′(ω) is given by
Eq. (D.95) for a cubic crystalline system. We wish to compare with the fluctuation
formula, Eq. (C.41) valid for a general classical system at finite T . We reproduce
here Eq. (C.41) for the sake of clarity:

ε′′(ω) = 4πχ′′(ω) =
2πβω

3V

∫ ∞

−∞
dt eiωt⟨d(t) · d(0)⟩. (D.96)

As discussed in Sec. C.6 this formula applies when the equilibrium fluctuations are
evaluated at E = 0, and d = VP, where V is the volume of the periodic simulation
cell. Ideally, the thermodynamic limit obtains for V → ∞.

We pause to comment on a very important feature: our expression in Eq. (D.89)
was evaluated at zero T , while Eq. (D.96) provides by definition the finite-T response
of the system. The key point is that—for a purely harmonic system—the correlation
function in Eq. (D.96) is exactly proportional to 1/β, and ε′′(ω) is T -independent.
In fact in a harmonic system at thermal equilibrium the energy is in average half
kinetic and half potential. From the equipartition theorem and from Eq. (D.85) at
E = 0 the average potential energy per degree of freedom is

1

2
ω2
j ⟨u2j⟩ =

1

2β
, (D.97)

where we remind that u2j includes a factor with the dimension of a mass. The 1/β
factor cancel the β factor in Eq. (D.96): a virtue of harmonic systems only.

We are now going to do the bookkeeping, in order to show in detail that for our
harmonic system Eq. (D.95) and Eq. (D.96) are indeed identical. The free evolution
of each normal mode—with zero field—is uj(t) = uj(0)e

−iωjt, hence the dipole of
each normal mode is

dj(t) = eZ∗
j uj(0)e

−iωjt. (D.98)
We remind that here the normal-mode coordinates uj include a factor with the
dimensions of (mass)1/2, while the mode effective charges Z∗

j include a factor with the
dimensions of (mass)−1/2. Due to cubic symmetry, the j-th normal-mode coordinate
is parallel to one of the Cartesian axes.

Since correlation functions are quadratic, it is safer to separate the real from the
imaginary part:

uj(t) = u′j(t) + iu′′j (t) = [u′j(0) + iu′′j (0)](cosωjt− i sinωjt)
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u′j(t) = u′j(0) cosωjt+ u′′j (0) sinωjt

u′j(0)u
′
j′(t) = u′j(0)u

′
j′(0) cosωjt+ u′j(0)u

′′
j′(0) sinωjt. (D.99)

When the system is at equilibrium with a thermostat at the inverse temperature β
the j ̸= j′ fluctuations are uncorrelated. Eq. (D.97) yields

⟨u′j(0)u′j′(t)⟩ = δjj′⟨[u′j(0)]⟩2 cosωjt =
δjj′

βω2
j

cosωjt (D.100)

for any given Cartesian direction; orthogonal fluctuations are uncorrelated.
Summing over the modes polarised in the three directions, the dipole-dipole time
correlation function is

⟨d(t) · d(0)⟩ = e2

β

∑
j

(Z∗
j )

2

ω2
j

cosωjt. (D.101)

Taking then the Fourier transform (a.k.a. “power spectrum”) we get∫ ∞

−∞
dt eiωt ⟨d(t) · d(0)⟩ =

πe2

β

∑
j

(Z∗
j )

2

ω2
j

[ δ(ωj − ω) + δ(ωj + ω) ]

=
2πe2

βω

∑
j

(Z∗
j )

2δ(ω2
j − ω2), ω > 0. (D.102)

Inserting this into the fluctuation-dissipation expression, Eq. (D.96), we cancel—as
anticipated—the apparent β-dependence, and we arrive at

ε′′(ω) =
4π2e2

3V

∑
j

(Z∗
j )

2δ(ω2
j − ω2), (D.103)

which coincides with Eq. (D.95), the only difference being V vs. Vcell in the
denominator. Clearly, the equipartition theorem, Eq. (D.97), holds even for a single
cell with a microscopic number of degrees of freedom, provided these 3n− 3 degrees
of freedom fluctuate at equilibrium with a thermostat at inverse temperature β. In
anharmonic systems with a non separable Hamiltonian, instead, a large supercell of
volume V is mandatory for the use of the fluctuation formula, Eq. (D.96). In any
case, the dipole of a cell is extensive and the response is intensive.

The equipartition theorem no longer holds in quantum statistical mechanics;
nonetheless in the harmonic case it is easy to correct Eq. (D.96) for quantum effects.
It is enough to replace

1

2
ω2
j ⟨u2j⟩ =

1

2β
→ 1

2

ℏω
2

tghβℏω
2

. (D.104)
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One obtains in this way the T -dependent quantum response of the harmonic system
as

ε′′(ω) = 4πχ′′(ω) =
4πβω

3ℏV
tgh

βℏω
2

∫ ∞

−∞
dt eiωt⟨d(t) · d(0)⟩. (D.105)

D.11 Anharmonic systems
As anticipated, the dipole-dipole autocorrelation functions are a standard tool to
compute the infrared spectra of disordered, anharmonic systems, from molecular
dynamics simulations, both classical and Car-Parrinello. The previous discussion of
the harmonic case was provided for pedagogical purposes only.

There is some disagreement between different authors about the relative merits
of Eq. (D.105) vs. Eq. (D.96). In fact Eq. (D.96) is the exact formula at the
purely classical level, while the quantum-corrected formula applies in principle to the
harmonic case only. The issue mostly concerns liquid water and in general hydrogen-
bonded systems, since H atoms are not classical particles at room temperature. The
relative merits of the different quantum corrections for hydrogen-bonded anharmonic
systems are investigated in Ref. [281]. We point out, nonetheless, that only
Eq. (D.96) obeys Kramers-Kronig relationships, as it is clear from the previous
derivation.

The absorption coefficient per unit path length is related to ε′′(ω) as [263]:

α(ω) =
ω

c n(ω)
ε′′(ω) (D.106)

where n(ω) is the index of refraction. We therefore obtain the two main formulæ on
the market, from either Eq. (D.96) or Eq. (D.105), as:

α(ω) =
2πω2β

3cV n(ω)

∫
dt ⟨d(0) · d(t)⟩ eiωt; (D.107)

α(ω) =
4πω

3ℏcV n(ω)
tgh

βℏω
2

∫
dt ⟨d(0) · d(t)⟩ eiωt. (D.108)

Within Car-Parrinello simulations the dipole of the simulation cell is evaluated
as d = VP, where the electronic term in P is given by the modern theory of
polarization, by computing the single-point Berry phase (see Sec. 5.6.2) at each
time step or—equivalently—the Wannier centers. Not surprising, the material
whose infrared spectrum has been most studied is liquid water. The very first Car-
Parrinello infrared spectrum for liquid water appeared in 1997 [93]. Many other
followed over the years; the literature is also flooded by simulations based on a vast
zoology of classical force models: all of them inadequate (in my view) to capture
the key features of hydrogen bonding.
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Notice that the simulation only needs polarization differences in small time steps.
In fact at any discretized time n∆t the polarization is

P(n∆t) = P(0) + [P(∆t)−P(0)] + [P(2∆t)−P(∆t)] + . . .

+ [P(n∆t)−P((n− 1)∆t). (D.109)

For small enough ∆t the polarization quantum is harmless, as discussed in Sec.
5.6.2.
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