
Density and density matrices

I. GENERAL DEFINITIONS

We consider an N -electron system, with even N , in a singlet ground state Ψ. Indicating

with xi ≡ (ri, σi) the space and spin coordinates of the i-the electron, the one-body and

two-body spin-integrated densities are defined as

n(r1) = N
∑
σ1

∫
dx2dx3 · · · dxN |Ψ(x1,x2, . . .xN )|2; (1)

n(2)(r1, r2) = N(N − 1)
∑
σ1σ2

∫
dx3..dxN |Ψ(x1, ..xN)|2. (2)

These are the most common normalizations; other choices are possible. The one-body

density obviously obtains from the two-body one as

n(r1) =
1

N − 1

∫
dr2 n(2)(r1, r2). (3)

It is customary to define the (dimensionless) pair-correlation function g by means of

n(2)(r1, r2) = n(r1)n(r2) g(r1, r2) (4)

The two-body density becomes uncorrelated whenever the two coordinates are very far apart:

n(2)(r, r′) ≃ n(r)n(r′) for |r − r′| → ∞. (5)

That means that the pair-correlation function g goes to 1 for large interparticle distances.

At small distances g is smaller than 1, due to both the Pauli principle and electron-electron

repulsion.

It is also customary to define the ”exchange-correlation hole” as

nxc(r, r
′) = n(2)(r, r′) − n(r)n(r′) = n(r)n(r′) [ g(r, r′) − 1 ]. (6)

This function integrates to −N , i.e. to −1 per electron, and measures the depletion in the

probability of finding one electron in the neighborhood of a given one. The meaning of this is

very transparent in the simple case of the uniform electron gas, where n(r) = n0 is constant

and

nxc(|r− r′|) = n2
0 [ g(|r− r′|) − 1 ]; (7)
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the spherical function g(r) − 1 integrates thus to −1.

The spin-integrated one-body density matrix is

ρ(r1, r
′

1) = N
∑
σ1σ′

1

δσ1σ′

1

∫
dx2dx3 · · · dxNΨ(x1,x2, . . .xN )Ψ∗(x′

1,x2, . . .xN ). (8)

The one-body density is its diagonal in Schrödinger representation: n(r) = ρ(r, r). In any

system ρ(r, r′) → 0 whenever |r − r′| → ∞. We state (with no justification here) that in

condensed matter the decay is exponential in insulators and polynomial in metals.

II. SINGLE-DETERMINANT WAVEFUNCTIONS

We specialize the above general definitions to the case where the N -electron singlet

wavefunction (N even) is a single determinant:

Ψ =
1√
N !

|ϕ1ϕ1ϕ2ϕ2 . . . ϕN/2ϕN/2 |, (9)

where ϕj and ϕj are spin-up and spin-down spinorbitals, sharing the same spatial orbital

ϕj(r). The N spinorbitals and the N/2 orbitals are orthonormal. Eq. (9) is appropriate

for either the Hartree-Fock (HF) approximation, or the Kohn-Sham (KS) noninteracting

Hamiltonian in the framework of DFT. In fact, the exact eigenfunctions of a system of

noninteracting fermions can be written in single-determinant form.

The (spin-integrated) single-particle density matrix ρ is twice the projector over the

occupied manifold:

ρ(r, r′) = 2P (r, r′) = 2

N/2∑
j=1

ϕj(r)ϕ
∗

j(r
′). (10)

For the uncorrelated Ψ, Eq. (9), all ground-state properties can be explicitly cast in terms

of the projector P .

The general expression for the two-body spin-integrated density, Eq. (2), becomes

n(2)(r, r′) = n(r)n(r′) − 2|P (r, r′)|2. (11)

The two-body density becomes uncorrelated whenever the two coordinates are very far apart,

as it must be:

n(2)(r, r′) ≃ n(r)n(r′) for |r − r′| → ∞. (12)
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A single-determinant is by definition an uncorrelated wavefunction. Nonetheless the Pauli

principle implies that the pair-correlation function g(r, r′) is always smaller than 1, and

significantly smaller than 1 at short interparticle distances |r− r′|. For instance Eq. (11) at

r = r′ yields

n(2)(r, r) =
1

2
n2(r) (13)

and g(r, r) = 1/2. This feature would be present even for noninteracting electrons, and

is often called “Fermi correlation”. The genuine correlation, due to electron-electron

interactions, is often called “Coulomb correlation”.

In the single-determinant case With the given normalization in Eq. (2), the two-body

density integrates to N(N − 1) (over both coordinates), while the first term in Eq. (11)

integrates to N2. The second term therein is minus twice the trace of P 2; we notice that

P 2 = P , and that the trace of P is N/2. We thus recover the correct integrated value.

III. GAUGE ARBITRARINESS & LOCALIZATION

A transformation of the electromagnetic gauge changes the Hamiltonian, hence the

wavefunctions and the density matrices, while all measurable quantities are gauge-invariant.

Once the electromagnetic gauge fixed, the many-body wavefunction is arbitrary by a phase

factor: even this is called gauge arbitrariness. For a single determinant wave function, a

further gauge arbitrariness exists.

Any unitary transformation U of the occupied orbitals between themselves

ϕi → ϕ̃i(r) =

N/2∑
j=1

Uijϕj(r) (14)

yields the same many-body wavefunction, Eq. (9), apart for a phase factor. This is usually

called a “gauge transformation”. The physical properties of the electronic ground state are

gauge-invariant. In particular the density matrix is (twice) the projector over the occupied

manifold (of dimension N/2) in the Hilbert space, and does not depend on the choice of a

particular (orthonormal) basis in that manifold.

In a molecule, the canonical RHF orbitals (and the KS orbitals) are typically delocalized

over the whole molecule; in a crystalline solid they have the Bloch form, hence their modulus

is cell-periodical. It may be useful to describe the same ground state as a Slater determinant
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of localized orbitals by means of a gauge transformation. Notice that while the canonical

orbitals are eigenfunctions of a mean-field Hamiltonian, the transformed orbitals are no

longer such; they are only eigenstates of the density matrix.

The localization can be achieved by some arbitrary criterion, and the most popular choice

is to impose minimum quadratic spread (in average) for the transformed orbitals, i.e

min = λ2 =
2

N

N/2∑
i=1

( 〈ϕ̃i|r2|ϕ̃i〉 − |〈ϕ̃i|r|ϕ̃i〉|2 ) (15)

The orbitals obtained in this way go under the name of “Boys orbitals” in quantum

chemistry, and “maximally localized Wannier functions” (MLWFs) in condensed matter

physics (for either crystalline or noncrystalline insulating materials). In a covalent material,

and considering the valence electrons only, the localized orbitals are typically localized in

the bond regions. For instance, in a methane (CH4) tetrahedral molecules the four valence

orbitals transform to four equivalent hybrids centered on the bonds. For details, figures, and

more, see: N. Marzari et al., Rev. Mod. Phys. 84, 1419 (2012).
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