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a b s t r a c t

The so-called Modern Theory of Polarization, which rigorously defines the spontaneous polarization of a
periodic solid and provides a route for its computation in electronic structure codes through the Berry
phase, is introduced in a simple qualitative discussion.
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1. Introduction

The concept of electric dipole moment is central in the theory
of electrostatics, particularly in describing the response of sys-
tems to applied electric fields. For finite systems such as mole-
cules it poses no conceptual or practical problems. In the ionic
limit the dipole moment, d, of a collection of charges, qi, at
positions ri is defined as

d¼
X

i

qiri; ð1Þ

for the case of a continuous charge density, enðrÞ (where e is the
electronic charge and n(r) is the number density) this expression
is straightforwardly extended to

d¼
Z

enðrÞr dr: ð2Þ

Provided that the molecule or cluster carries no net charge these
expressions are well defined, can be straightforwardly evaluated
and yield results – for example for the direction of the dipole
moment – that are consistent with our intuitive understanding.

Things apparently start to turn to custard, however, when we
try to extend this simple reasoning to bulk solids. The usual way
to define intrinsic quantities in macroscopic systems is to intro-
duce the property per unit volume or mass. For example the
magnetization is the magnetic moment per unit volume, and the
bulk analog to the electric dipole moment, the electric polariza-
tion, should be represented by the electric dipole moment per
unit volume. The relevant quantity is then evaluated within a
small repeat unit – the unit cell – of the solid, and normalized
with the volume of the chosen unit cell. The problem with this
simple method in the case of electric polarization can be under-
stood in the simple one-dimensional cartoon of Fig. 1: without
performing any calculations, we can see that the two equally valid

unit cells shown with dashed lines have completely opposite
orientations of the polarization!

This difficulty led to tremendous confusion in the field, with
discussions as fundamental as whether the polarization (and related
quantities such as the piezoelectric response) could be considered as
intrinsic properties in bulk solids, or are in fact determined by
details of the surface termination. The answer came gradually as
researchers began to realize that in fact one should work with
changes in polarization rather than with absolute values, because
these are well-defined, and can be compared to experimentally
measurable observables [1]. Then the confusion was thoroughly
resolved around 20 years ago with the introduction of the so-called
Modern theory of polarization [2–4]. This very elegant theory showed
rigorously that the polarization of a periodic system is in fact a
lattice rather than a vector (do not worry, we will explain what this
means later), and that the polarization lattice can be calculated
quantum mechanically using electronic structure methods such as
density-functional theory.

The purpose of this paper is to introduce in the simplest possible
terms the apparent difficulties associated with defining polarization
in bulk solids, and the solutions provided by the modern theory. It is
motivated by my having explained these concepts repeatedly to
many and diverse students ranging from experimentalists with a
casual interest in understanding obscure theory papers to beginning
hard-core theoretical solid-state physicists and quantum chemists.
This paper in no way intends to substitute for the elegant early
papers on the topic, nor the subsequent detailed and rigorous
review papers which are referenced throughout. Indeed I hope that
this informal introduction provides sufficient background for the
reader to tackle these excellent papers without intimidation.

2. Bulk periodicity, the polarization lattice and the
polarization quantum

We begin by reconciling the different values for polarization
obtained for the different choices of unit cells in Fig. 1 by introducing
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a formal concept that at first sight is even more confusing—that is the
multi-valuedness of the bulk polarization. We will show, however,
that a multi-valued polarization is a natural consequence of the
periodicity in a bulk solid, and hopefully that it is actually not so
frightening. We will see, in fact that changes in polarization – which
are the quantities that are anyway measured in experiments – can be
single valued and well defined, and we can once again sleep without
anxiety.

We take the simplest possible example of a one-dimensional
chain of singly charged alternating anions and cations—the
closest real-life analog would be rock-salt structure sodium
chloride along the [111] direction. Look at Fig. 1 which shows
such a chain with the atoms spaced a distance a/2 apart so that
the lattice constant is a. The first thing to notice is that all of the
ions are centers of inversion symmetry: if I sit on any ion and look
to the left, then to the right I see no difference. So by definition
this lattice is non-polar.

Now let’s work out the polarization by calculating the dipole
moment per unit length (the definition in three dimensions is
dipole moment per unit volume) using in turn the two unit cells
shown as the dashed rectangles to compute the local dipole
moment. (Formally, different choices of unit cells correspond to
different bases, that is different ways of specifying the positions of
the atoms.) First, the cell on the left. Taking the left edge of the
shell as the origin (x¼0), we have an ion with charge $1 at
position a/4, and an ion with charge þ1 at position 3a/4. So the
polarization, or dipole moment per unit length is

p¼
1
a

X

i

qixi ¼
1
a
$1&

a
4
þ1&

3a
4

! "
¼

1
a

2a
4
¼

1
2

ð3Þ

in units of 9e9. Immediately we have an apparent problem: using
this method, our non-polar chain has a non-zero polarization.

I am afraid that things will get worse before they get better.
Next, let’s do the same exercise using the right-most unit cell.
Again taking the left edge of the unit cell as the origin, this time
there is a positively charged ion at position a/4, and a negatively
charged ion at 3a/4. So

p¼
1
a
þ1&

a
4
$1&

3a
4

! "
¼

1
a
&$

2a
4
¼$

1
2
: ð4Þ

Again a non-zero value, and this time different from the value we
obtained using the other, equally valid unit cell, by an amount a.

So what is going on here, and how can we connect it to
physical reality? Well, if we were to repeat this exercise with
many choices of unit cell (convince yourself by choosing a couple
of arbitrary unit cells and giving it a try!), we would obtain many
values of polarization, with each value differing from the original
value by an integer. We call this collection of polarization values
the polarization lattice. In this case it is y,$5/2, $3/2, $1/2, 1/2,
3/2, 5/2 y. Notice that the lattice of polarization values is
symmetric about the origin. In fact this is the signature of a
non-polar structure: the polarization lattice may or may not
contain zero as one of its elements, but it must be centrosym-
metric around zero.

Now what is the significance of the spacing (in this case 1)
between the allowed values? Well, imagine removing an electron
from one of the anions in the lattice (leaving a neutral atom) and
moving it by one unit cell to put it on the next anion to the right.

Because of the periodic boundary conditions of the infinite lattice,
the next anion simultaneously has its electron removed and moved
one unit cell to the right, and so it is able to accept the incoming
electron and appear unchanged at the end of the process. There has
been no change in the physics of the system resulting from the
relocation of the electrons by one unit cell to the right. But what has
happened to the polarization? Well, in each unit cell a charge of $1
has moved a distance a, changing the dipole moment by $a and the
polarization by $1. We can clearly perform this thought experiment
any number of times, and in either direction, changing the polariza-
tion by any integer without changing the physical system! We call
the value of polarization resulting from moving one electron by one
unit cell the polarization quantum, Pq. In one dimension it is equal to
the lattice constant divided by the length of the unit cell, which is of
course one (in units of the electronic charge). Going back to the
polarization lattice of our non-polar chain, we see that its polariza-
tion values correspond to half-polarization quanta. In fact all one-
dimensional non-polar systems have polarization lattices of either
07nPq or Pq=27nPq (this is discussed very nicely at greater length
in Ref. [5]).

If this all seems too esoteric, please bear with me for one more
paragraph by which time I hope things should start making sense.
First, let’s think about how we measure electrical polarization, and
what a reported measured polarization really means. Look at
Fig. 2—this is a cartoon of a standard way of measuring the electrical
polarization using a so-called Sawyer-Tower circuit. In the high
temperature, paraelectric structure, the material consists of equally
spaced anions and cations; the positions of the cations in the
paraelectric structure are shown by the pale pink circles, and their
connections to the anions by the dashed-line bonds. At low
temperature, the cations shift off-center relative to the cations, as
indicated by the solid pink circles. On the left the material has
become polarized in the up direction as a result of the cation sub-
lattice displacing upwards relative to the anion sub-lattice. This
could happen, for example during a ferroelectric phase transition
with an external electric field applied in the up direction. Electrons
accumulate at the upper electrode, and holes (or a depletion of
electrons) at the lower electrode in order to screen the surface
charge resulting from the ionic displacements. In fact, on each
electrode, the accumulated charge per unit area is exactly equal to
the polarization of the sample. So if we could measure the amount
of charge accumulation we would have a direct measure of the
polarization. But how can we do this? Well, next, imagine reversing
the orientation of the polarization – for example by applying an
external electric field in the down direction – to reach the config-
uration on the right. Now electrons accumulate at the lower
electrode and holes at the upper electrode to achieve the screening.
They achieve this by flowing through the external circuit connecting
the two electrodes, where they can be counted by comparing the
voltage across the series reference capacitor then using Q¼CV! The
amount of charge per unit area of electrode that flows during the
transition is equal to the change in polarization between the up- and
down-polarized states; the ‘‘effective’’ value of polarization which is
reported – and which is usually referred to as the spontaneous
polarization – is half of this number.

Now, bearing in mind that what is measured in an experi-
ment is a change in polarization, let’s go back to our cartoon
one-dimensional model and make some sense out of this

+ +++ __ __

a

x

Fig. 1. One-dimensional chain of alternating anions and cations, spaced a distance a/2 apart, where a is the lattice constant. The dashed lines indicate two representative
unit cells which are used in the text for calculation of the polarization.
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multi-valuedness business. In the upper part of Fig. 3 we repro-
duce the non-polar one-dimensional chain of Fig. 1, and below it
we show a similar chain in which the cations have been displaced
by a distance d relative to the anions in the manner of a ferro-
electric distortion to create a polar system. Let’s repeat our earlier
exercise of calculating the polarization using the two unit cells
shown as the dashed rectangles.

In the left hand case

p¼
d
a
¼

1
a

X

i

qixi

¼
1
a
$1&

a
4
þ1&

3a
4
þd

! "! "
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1
2
þ

d
a

ð5Þ

and in the right hand case

p¼
1
a
þ1&

a
4
þd

# $
$1&

3a
4

! "

¼$
1
2
þ

d
a
: ð6Þ

Again the two answers are different, but this time that does not
worry us, because we recognize that they differ by exactly one

polarization quantum. Next comes the key point: let’s calculate
the change in polarization between the polar and non-polar
chains using each unit cell as our basis. First for the cell on the left

dp¼
1
2
þ

d
a

! "
$

1
2
¼

d
a

ð7Þ

and for the cell on the right

dp¼$ $
1
2
þ

d
a

! "
$ $

1
2

! "
¼

d
a
: ð8Þ

In both cases the change in polarization between polar and non-
polar chains is the same. In fact this would have been the case
whatever unit cell we had chosen to make the calculation. So,
while the absolute value of polarization in a bulk, periodic system,
is multi-valued, the change in polarization – which remembers
the quantity that can be measured in an experiment – is single
valued and well defined, provided that we stick with the same
choice of unit cell and basis throughout the analysis. Phew.

Just to really drive the point home, in Fig. 4 we plot the
polarization of the ideal one-dimensional ionic chain as a function
of the displacement of the cations (as a fraction of the lattice
constant) from their non-polar positions. As we calculated earlier,
for zero displacement the polarization lattice is centrosymmetric

Fig. 2. Schematic of the Sawyer-Tower method of measuring ferroelectric polarization. The material on the left is polarized in the up direction and its surface
charge is screened by electrons in the upper electrode and holes in the lower electrode. When the polarization is switched (right), electrons and holes flow
through the external circuit to screen the new opposite surface charges, and are counted by comparing the voltage across the material with that across a reference
capacitor.
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and consists of all half-integer values (black circles). As the
displacement increases, the polarization increases linearly and
by the same amount along each branch of the polarization lattice
(labeled by n¼$1, 0,1 etc.) The branches are always separated
from each other by the same amount, the polarization quantum,
which is equal to 1 in this case. The dashed lines on the n¼1
branch show that for a displacement of 0.25a, the polarization
increases from 0.5 to 0.75, and so the change in polarization is
0.25. An identical change in polarization is obtained for the same
displacement on any of the other branches. If the displacement is
increased artificially to 0.5 – that is half of the unit cell – the ions
end up on top of each other. In our thought experiment the
polarization is now formally identical on two branches of the
polarization lattice which could have some unusual conse-
quences, although in practice we would have achieved nuclear
fusion which would likely dominate the physics.

2.1. Extension to three dimensions

The one-dimensional example that we chose here for simpli-
city is not entirely without physical relevance; for example
ferroelectric or polar polymers closely resemble one-dimensional
chains. Such an application is discussed in Ref. [6], along with an
excellent analysis of the development of an infinite chain from a
finite one. In most cases, however, we are interested in three-
dimensional systems. Fortunately the extension to three dimen-
sions is straightforward conceptually, if a little bit tricky in
practice: in three dimensions, the allowed values of polarization

form a three-dimensional lattice, with values spaced by

1
O

eR,

where e is the electronic charge, O is the unit cell volume, and
R¼

P
iniRi is any lattice vector, with Ri the length of the ith

primitive basis vector. The units are now dipole per unit volume,
or charge per unit area—often polarizations in practical ferro-
electrics are reported in mC cm$2. There are now three polariza-
tion quanta – one for each direction of the basis vectors – given by

Pq,i ¼
1
O

eRi: ð9Þ

If the spontaneous polarization lies along a general direction that
is not a lattice vector, it is obtained from the projection of the
three-dimensional polarization lattice onto the relevant direction
in real space.

As an example, let’s look at the case of the prototype multi-
ferroic material, perovskite-structure bismuth ferrite, BiFeO3.
Bulk BiFeO3 is rhombohedral, and the spontaneous polarization
points along the [111] direction of the simple perovskite cube,
which is also the [111] direction of the rhombohedral cell. For the
ideal rhombohedral angle of 601, the usual basis vectors are, in
terms of the unit Cartesian basis vectors, x̂, ŷ and ẑ, and the
primitive cubic lattice constant, a0

R1 ¼ a0½x̂,ŷ,0(,

R2 ¼ a0½x̂,0ẑ(,

R3 ¼ a0½0,ŷ,ẑ(,

and different branches on the polarization lattice differ by any
linear combination of any integer multiple of e=O multiplied by
these vectors. To obtain the spontaneous polarization along the
[111] direction, the component of polarization along only one of
the lattice vectors needs to be calculated because by symmetry
the components along the other lattice vectors are identical. Then
the polarization along the [111] direction is three times the
projection of one component onto this direction, that is 3

ffiffi
2
3

q

times the polarization along a lattice vector. Since each polariza-
tion component along the lattice vectors was defined modulo
eRi=O, the sum of the projections of these polarization quanta
onto the [111] direction – 3& e=O

ffiffi
2
3

q
Ri – gives the polarization

quantum along that direction.
When the symmetry is lower, for example in the monoclinic

structure of strained BiFeO3, the direction of the spontaneous
polarization can often not be determined by inspection. Then the
best way to proceed is to calculate the full polarization lattices for
the structure of interest and a high-symmetry reference structure
and to extract the spontaneous polarization by taking the differ-
ence. In this case, it is often necessary to also calculate the
polarization lattices at intermediate distortions to determine
how to correctly connect the lattice points.

+ +++ __ __

a

+ +++ __ __

d d x

Fig. 3. The upper panel reproduces the one-dimensional chain of alternating anions and cations of Fig. 1. In the lower panel, the cations are displaced to the right by a
distance d relative to the anions, with the vertical dotted lines indicating their original positions.
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Fig. 4. Polarization as a function of the displacement, d, of the cations in the 1D
chain of Fig. 3. The polarization lattice is zero-centered, and the branches are
separated by the polarization quantum. Notice that the branches of the lattice run
exactly parallel to each other, so that differences in polarization along each branch
for the same displacement are identical.
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Two more subtleties to note: first, it is clear from this
discussion that if the shape and/or size of the unit cell is changed
– for example to accommodate a different magnetic ordering, tilt
pattern of oxygen octahedra, or in response to applied strain – the
polarization lattice and quantum will change accordingly. Ref. [7]
provides an excellent discussion of the consequences of this in the
context of piezoelectric response. And second, in non-magnetic
systems, the polarization quantum is usually multiplied by an
additional factor of two because the up- and down-spin electrons
are equivalent, and shifting an up-spin electron by a lattice vector
also shifts the corresponding down-spin electron.

3. Wannier representation and Berry phase

In the previous section we discussed the multi-valuedness of
the polarization in a bulk periodic solid and reconciled it with
what can be measured experimentally for the simple example of
an array of ions. Of course in a real solid, there is (thankfully)
more chemistry to take care of. In this section we will first explain
how this chemistry can be incorporated rather simply by extend-
ing the ionic model through the method of Wannier functions.
(A similar approach is followed in Ref. [8], where an algorithm is
developed that is particularly suited to localized-basis quantum
chemistry codes.) Once we are comfortable with this conceptually
we will move on to the real meat of the modern theory of
polarization—the Berry phase method.

Remember that the Wannier function, wnðrÞ, in unit cell R
associated with band n is defined as

wnðr$RÞ ¼
O
ð2pÞ3

Z

BZ
d3k e$ik)RCnkðrÞ

¼
O
ð2pÞ3

Z

BZ
d3k eik)ðr$RÞunkðrÞ, ð10Þ

where CnkðrÞ ¼ eik:runkðrÞ are the Bloch functions, written as usual
in terms of the cell-periodic part, unkðrÞ. Here O is the unit cell
volume, and the integral is over the Brillouin zone.

Unlike the Bloch functions which are delocalized in space, the
Wannier functions are localized. As a result they are often used in
visualization of chemical bonding, as well as for basis sets in
electronic structure calculations, where their minimal overlap can
lead to favorable scaling with system size. They are relevant here,
because their localized nature provides a convenient atomic-like
description of the charge density in a solid: while we know in
reality that the charge density in a solid is a continuous function,
the localized picture will allow us to continue to calculate dipole
moments by summing over charges multiplied by positions.

Let’s go back to our 1D chain, and relax the constraint that it is
composed of point charge ions to give it some chemistry. If it is
helpful you could think of it as say a chain of Naþ cations
alternating with Cl$ anions. In the following figures we associate
pink with Na ions or electrons, and green with Cl ions or electrons.
In Fig. 5 (left) we show the molecular orbitals that would form
between two such ions in an Na–Cl ‘‘molecule’’—the lower energy,
bonding orbital is occupied by two electrons and more localized on
the p orbital of the anion, and the higher energy, antibonding orbital
is empty and consists primarily of cation s character. The corre-
sponding band structure cartoon is shown to the right; you can
derive the dispersion using simple linear-combination-of-atomic-
orbital (LCAO) methods; see for example the book by Cox [9]. In
Fig. 6 we show a cartoon of our 1D chain again, but this time we
have separated out the charge on the ions (all of which are þ1, and
which we continue to treat as point charges) from the charge on the
electrons which are spread through the system, but piled up more
on the anions than the cations. The blobs around the anions
illustrate what we might expect the Wannier functions of the
occupied band to look like, with each Wannier function containing
two electrons. The character of the Wannier function is mostly Cl

molecular
orbitals

Na+

Cl-

Energy

k
-π/a π/a

Fig. 5. Left: the molecular orbitals formed in an Na–Cl ‘‘molecule’’. Right: band structure of a one-dimensional Na–Cl chain. The valence band is derived from Cl-like
molecular orbitals each containing two electrons, and is fully occupied; the Na-like conduction band is empty. In both cases pink represents Na-derived states and green
Cl-derived states. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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x

Fig. 6. One-dimensional chain of alternating cations (pink positively charged ion cores) and anions (green positively charged ion cores with their associated negatively
charged valence electron cloud). The dimensions and dashed unit cells are as in Fig. 1. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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p-like, with a little bit of Na s character, indicated by the slight pink
tinge on the edges. Note that if we consider both of the electrons in
each Wannier function to be associated with the Cl ion, then the
formal charge on the Cl is þ1 (the ionic charge) $2¼$1, and that
on the Na ion is þ1 þ0¼þ1, and we recover our simple ionic
model of Figs. 1 and 3.

How should we now calculate the polarization of the chain?
We would like again to reduce our polarization integral to a sum
over localized charges multiplied by their positions. This is
straightforward for the ions which we are still treating as point
charges. For the electrons, it turns out that this procedure will
work too. Since the Wannier functions are localized, we work out
the average position of the electrons in the Wannier function, and
treat them all as sitting at that point. This ‘‘position’’ of the
Wannier function is called the Wannier center, rn. The Wannier
center associated with band n is defined to be the expectation
value of the position operator r for Wannier function wnðrÞ

rn ¼
Z

wn
nðrÞrwnðrÞ d

3r: ð11Þ

Later we will find it useful to rewrite this expression in terms of
the periodic cell functions using the momentum representation of
the position operator r¼$ið@=@kÞ

rn ¼ i
O
ð2pÞ3

Z

BZ
d3k e$ik)R unk

@unk

@k

&&&&

' (
: ð12Þ

You can spend your next free Sunday morning showing that
Eqs. (11) and (12) are equivalent, take my word for it, or follow
the derivation by Blount in Ref. [10].

With this concept of the Wannier center, the expression for
polarization that we used previously for the ionic chain extends
simply to a sum over the contribution from the point charge ions,
plus a sum over the electronic charges centered at the Wannier
centers of each occupied Wannier function, n

p¼
1
a

X

i

ðqixiÞ
ionsþ

Xocc

n

ðqnrnÞWFs

 !
: ð13Þ

Let’s try it for the case of the left-hand unit cell in our 1D chain. In
the non-polar case, we can see by symmetry that the Wannier
center is at the same position as the green anion; remember now
also that the charge on all of the ions is þ1, and that each
Wannier function contains two electrons. So the dipole moment
per unit length in the left unit cell is

p¼
1
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þ1&
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: ð14Þ

The same result as we obtained previously! This is as expected—

the allowed values of the polarization lattice for a centrosym-
metric structure are dictated by the symmetry of the crystal and
the ionic charges, and are not modified by factors such as the
details of the chemical bonding within the material.

Now let’s think about the off-centered case, in the lower part of
Fig. 6. As before, the cations have moved a distance d to the right,
but this time the Wannier centers have also moved – by a distance
D say – to the left. This occurs as the chemical bond between the
near neighbor anion–cation pairs becomes stronger, and develops
more cation s character, whereas that between the distant neighbor
pairs weakens; you can think of it as a flow of electrons from the
anion (which previously had all of the valence electrons) toward the
cation in the process of covalent bond formation. Let’s see what this
additional covalency does to the polarization
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Compared to the purely ionic case, the polarization has increased by
an amount 2D=a. This is because, in addition to the positively
charged cation moving to the right (along the positive x-axis) some
negatively charged electron density has moved to the left (along the
negative x-axis). This results in a larger effective displacement of
positive charge along þx and a larger polarization. We will return to
this picture later when we discuss the concept of the Born effective
charge.

Let’s summarize the discussion so far before we go on to
formalize it mathematically. Using our Wannier function picture
we can continue to write our polarization as the sum over the
charges times their positions. We include both the contribution from
the positively charged ion cores, and the contribution from the
negatively charged valence electrons, and we take the ‘‘position’’ of
each valence electron to be its Wannier center. Had we repeated our
analysis for the right-hand unit cell, we would have seen that, as in
the purely ionic model, the polarization is multi-valued, but the
difference in polarization for example between a centrosymmetric
and polar structure, is well-defined, and corresponds to the experi-
mentally measurable spontaneous polarization.

Now we will derive the formal mathematical expression for
the spontaneous polarization dp in the Wannier representation.
Since we already have an expression for the Wannier centers this
is going to be rather painless. Remember that the spontaneous
polarization is the difference in polarization, on the same branch
of the polarization lattice, between the final, polarized and initial,
unpolarized states. Using p¼ ð1=OÞ

P
iqiri for the ionic part, and

Eq. (12) for the Wannier centers, we obtain

dp¼ pf$p0
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where f and 0 indicate the final (polar) and initial (high symmetry)
positions/wavefunctions. Since the wavefunctions, at least at the
Kohn–Sham level, are a direct output of standard electronic
structure codes, Eq. (16) can be used to evaluate the polarization
with only a small extension to a standard density functional theory
code. (A rigorous extension to correlated, many-body wavefunc-
tions also exists, see for example Refs. [11,12].) Notice of course
that the issues discussed earlier about multi-valuedness of the
polarization and the polarization lattice persist here, and in taking
the difference in Eq. (16) one must be careful to remain on the
same branch of the polarization lattice.

If you are familiar with the concept of the Berry phase [13] and
its extension to periodic solids [14] you will recognize the
integrals in Eq. (16) to be the Berry phase developed by the
wavefunction unk as it evolves along the path k. As a result, the
formalism for calculating polarization using this method is often
called the Berry phase theory of polarization. Refs. [2,15,3,16] are
the original papers providing the detailed derivations of the Berry
phase formalism, and excellent reviews can be found in Refs.
[17,18,5]. If you find the Berry phase concept too frightening,
however, just stick with the Wannier function ideas, and regard
Eq. (16) as a tool that we will see in Section 5 allows for
convenient computation.

3.1. Subtlety—gauge transformation!

Those of you who have managed to stay awake and alert to
this point might raise an objection: since the Bloch functions are
defined only to within a phase factor, i.e.

CnkðrÞ-eifðkÞCnkðrÞ ð17Þ
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without changing any physically meaningful quantities, the
Wannier functions are not uniquely defined! As a result, the
Wannier centers, which we have just seen are crucial in defining
the polarization, are also not uniquely defined. We are saved,
however, by the fact that the sum over the Wannier centers in any
given unit cell is well-defined – at least modulo the polarization
quantum – and looking again at Eq. (13) we find that this is in
fact the quantity that matters in defining the polarization. In
practice, special choices of Wannier functions are often made in
calculations of the polarization. The so-called Maximally localized
Wannier functions in which the phases of the Bloch functions are
chosen so as to minimize the sum of the mean squares of the
positional spread [19] are particularly popular.

4. The concept of Born effective charge

At this stage I think it is appropriate to formally introduce the
Born effective charge, which is a quantity that is very useful
conceptually in thinking about ferroelectric polarization. In fact we
have already seen the main idea, in Section 3, where we saw that the
polarization resulting from the displacement of an ion could be
different from that expected by multiplying its formal charge times
its displacement, in the case when the Wannier center(s) move by a
different amount than the ion cores. In fact in the example of Fig. 6,
as the positive cations moved to the right, the Wannier centers
shifted to the left, resulting in a larger overall polarization than we
would have expected from the formal charges alone. We say that in
this case the effective charges on the ions – the amount of charge that
effectively contributes to the polarization during the displacement –
are larger than the formal charges.

This is formalized in the concept of the Born effective charge,
Zn, which is defined as the change in polarization divided by the
amount that an ion (or rather the periodic sub-lattice of equiva-
lent ions) is displaced

Zn

ij ¼
O
e
dPi

ddj
: ð18Þ

The Born effective charge is a tensor: when an ionic sub-lattice is
displaced in direction i, there is of course a change in polarization
along the displacement direction, but in addition, the polarization
in perpendicular directions, j, can change. Turning this expression
around we can see immediately what we have been discussing
qualitatively—that the change in polarization is determined by
these effective charges times their displacements, not by the
formal charges

@Pi ¼
e
O

Zn

ijddj: ð19Þ

The total polarization is then obtained by summing over the
contributions from the displacements of all sub-lattices.

In materials that are ferroelectric, or that are close to a
ferroelectric phase transition, the Born effective charges tend to
be anomalously large, particularly on the atoms that displace the
furthest from their high symmetry to their ferroelectric positions.
For example in the prototypical ferroelectric PbTiO3, in which the
formal charges are Pb þ2, Ti þ4 and O $2, the effective charges
on the ions that are active during the ferroelectric phase transi-
tion are Pb þ3.9, Ti þ7.1 and O $5.8 [20]. This is consistent with
the alternative, equivalent definition of the Born effective charge
as the force induced on an ion by a uniform small electric field, E:

Zn

ij ¼$e
dFi

dEj
: ð20Þ

In highly polarizable ferroelectrics, small electric fields generate
large forces on the ions, mediated by the anomalously large Born
effective charges.

Lastly, I want to emphasize that it is important to distinguish
between the Born effective charge, which is a well-defined
dynamical and measurable quantity, and the formal, static charge
on an ion. The latter quantity, which reflects the number of
electrons sitting at a particular ion site, depends on how you
‘‘count’’, since there is not a unique way of deciding how to
apportion the electrons in a chemical bond to one ion or another.
While the static charge indeed indicates a measure of the amount
of covalency in a compound, it is not a good indicator of
ferroelectricity, which is rather indicated by a change in covalency
during ionic displacement.

5. A few tips on getting a Berry phase calculation to work

Finally we describe a few of the tricks and foibles that we have
learned through (sometimes) bitter experience are needed to
make a Berry phase calculation of the polarization both run
and give the correct answer. We try to keep our comments
general—for the specifics of a particular code refer to the relevant
manual.

The first step is of course to calculate the structure (if required)
and self-consistent charge density, as in any standard total energy
calculation. Of course the charge density should be well-con-
verged with respect to the energy cutoff and k-point sampling. In
addition, if one is interested in systems such as improper ferro-
electrics with small polarization values [21,22], the ionic posi-
tions must be obtained with higher-than-usual accuracy. An extra
subtlety is to check that the system is insulating, and with the
same number of bands occupied at every point in k-space,
otherwise the Berry phase is ill-defined. The relaxed ionic posi-
tions and self-consistent charge density are then used as an input
to the Berry phase calculation.

One then proceeds to calculate one of the Berry phase values
on the right-hand side of Eq. (16), that is

Xocc

n

Z

BZ
d3k e$ik)R unk

@unk

@k

&&&&

' (
, ð21Þ

where unk is the cell part of the Bloch function for the structure
we are considering. First, the matrix elements are calculated by
integrating along strings of k-points. Since @=@k is a vector
derivative the matrix elements should be computed along any
three non-collinear directions; usually the lattice vectors are
chosen. Then multiple strings in a particular direction are
sampled so that an integration over the Brillouin zone can be
performed (see Fig. 7). It is important to check convergence both
with respect to the number of k-points along a string, and the
number of strings used in the sampling, as the requirements can
be quite different in each case [23]. Finally the values for all bands

kx

ky

kz

Fig. 7. Choice of the k-point grid for a Berry phase calculation of the polarization.
Here the polarization is to be calculated along the z-direction. The integration to
obtain the Berry phase is carried out along four strings of k points centered around
G in the kx$ky plane, with six sampling points along each string in the kz

direction. The final Berry phase is obtained by averaging the values obtained from
each of the four strings.
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n are summed [5]. One subtlety, which is sometimes not well
taken care of in codes, concerns the procedure for averaging the
Berry phase over the Brillouin zone. This is usually done by taking
the sum of the Berry phase values at each k-point, weighted by
the fractional contribution of the k-point. This procedure works
well provided that the value from each k-point is on the same
branch of the polarization lattice. Fig. 8 illustrates a not-uncom-
mon problem that can occur with some codes during the aver-
aging procedure. Here the four black dots are typical values of the
Berry phase output from a calculation. It is clear by human
inspection that the average Berry phase is close to p, modulo
the phase quantum of 2p. Taking a simple average of the obtained
values, or even after mapping them into the range between 7p,
however, would result in an incorrect value close to zero. The
correct value is obtained by mapping the values into a single
branch – in the figure, moving the values near $p by 2p to the
positions of the white dots as shown – before averaging. We
recommend checking the values of Berry phase obtained for the
individual strings if your code performs an automatic averaging
procedure!

For a spin-polarized system, the Berry phase calculation is
performed for both up- and down-spin electrons separately; the
phases are converted into polarization units by multiplying by
$ie=2p3 and then added to the ionic contribution ð1=OÞ

P
iqiri,

where qi is the charge of the pseudopotential or ion, to obtain the
total polarization of the system along the chosen lattice vector. Be
careful not to add the ionic component twice.

The above procedure is repeated for each lattice vector in turn.
Be careful to check in the output of your code whether the results
are reported with respect to the lattice vectors or in Cartesian
coordinates!

Remember that the number that you have now calculated is
the absolute value of the polarization, and is only defined modulo
a polarization quantum. To calculate the spontaneous polariza-
tion in a ferroelectric for example, the procedure should be
repeated also for a high symmetry, non-polar reference state.
The difference between the two values, taken along the same
branch of the polarization lattice, is then the spontaneous
polarization. Sometimes it is necessary to re-calculate the polar-
ization for a number of structures along the deformation path
between the high- and low-symmetry structures in order to know
unambiguously which difference to take. For example, Fig. 9
shows the calculated polarization values for the case of perovskite
structure BiFeO3, one of the most well-studied multiferroic
materials [24]. Notice first that the polarization lattice for the
non-polar structure, labeled with 0% distortion, does not contain
zero, but is centered around 92:8 mC cm$2, which is half a
polarization quantum. It is clear from following the evolution of
the polarization with distortion that the correct value for the
spontaneous polarization is 187:8292:8¼ 95:0 mC cm$2. From a
calculation of only the end-points at the R3c and $R3c structures
the appropriate difference to take would be unclear, and one
might incorrectly assume a value of 1

2ð2:3$ð$2:3ÞÞ ¼ 2:3 mC cm$2.
Finally a hint for calculating Born effective charges. Since these

are defined as derivatives, in principle the polarization should be
calculated for the structure of interest, and then again for an
infinitesimally small displacement of each ion in turn. In practice,

however, if the displacement is too small the result from this
approach can be noisy. The best plan is to plot polarization as a
function of ionic displacement, starting with very small displace-
ment values, and to take the slope of the line in the region beyond
the noise but before the non-linear regime.

6. Last words

I hope that this paper has taken away some of the mystique
associated with the modern theory of polarization, and motivated
you to start making your own calculations of spontaneous
polarization and related dielectric properties. For more practical
introductory help, I recommend working through the tutorials
that accompany many of the electronic structure computational
packages. For example the Lesson on polarization and finite electric
field provided by the ABINIT code, www.abinit.org, is particularly
helpful. Or even better, attend a hands-on course hosted by one of
the public codes where you will have direct access to leading
experts in the field. Good luck!
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