next up previous
Next: Bibliography Up: C. Interacting, closed electric Previous: C..1 Closed Branes


C..2 Open Branes

Equipped with the formalism developed in the previous sections, we now wish to consider the extension of the path-integral method to the case of open $p$-branes. As we shall see, the main difference stems from the fact that a gauge invariant action for an open $p$-brane requires the introduction of new gauge fields to compensate for the gauge symmetry ``leakage'' through the boundary [11]. Thus, we replace the system (57-58) with the following one,

$\displaystyle Z [ \, \overline{N} _{\mathrm{e}} \, ]$ $\textstyle =$ $\displaystyle {1 \over Z [ \, 0 \, ]}
\int [ {\mathcal{D}}A ] [ {\mathcal{D}}C ]
\,
e ^{ - S [ \, A , C , J _{\mathrm{e}} \, ]}$  
$\displaystyle S [ \, A , C , \overline{N} _{\mathrm{e}} \, ]$ $\textstyle =$ $\displaystyle \int
\left[\, -\frac{1}{2}
\overline{F} ^{\, (p+2)}\, \overline{F...
..._{(p+1)} - d C _{(p)}\,\right)
\overline{N} _{\mathrm{e}} ^{\, (p+1)}
\right.
+$  
    $\displaystyle \qquad \qquad \qquad\qquad
\left.
-
\kappa
\left(
d C _{(p)}
-
A _{\, (p+1)}
\right) ^{2}
\,
\right]
\quad .$ (91)

where $C^ { (p) } $ has canonical dimensions $L ^{2-D/2}$, and $\kappa $ is a constant introduced for dimensional reasons. In this case, the divergence of the $p$-brane current is no longer vanishing, but equals the current $J _{\mathrm{e}} ^{(p)}$ associated with the free boundary of the world-manifold. In other words,
\begin{displaymath}
\partial \overline{N} _{\mathrm{e}} ^{\, (p+1)}
=
J _{\mathrm{e}} ^{(p)}
\quad .
\end{displaymath} (92)

However, the action (33) is still invariant under the extended gauge transformation:
$\displaystyle \delta _{\Lambda} A _{\, (p+1)}$ $\textstyle =$ $\displaystyle d \Lambda _{(p)}$ (93)
$\displaystyle \delta _{\Lambda} C _{(p)}$ $\textstyle =$ $\displaystyle \Lambda _{(p)}
\quad .$ (94)

Indeed, the role of the $C_{(p)}$-field, which is a Stückelberg compensating field, is to restore the gauge invariance broken by the boundary of the $p$-brane. Perhaps it's worth emphasizing that $S[\, A , C , \overline{N} _{\mathrm{e}} \,
]$ depends on $C_{(p)}$ only through its covariant curl $d C _{(p)}
\equiv \Theta_{(p+1)} $, which is not gauge invariant, but transforms as follows
\begin{displaymath}
\delta _{\Lambda} \Theta_{(p+1)}
=
d \Lambda _{(p)}
\quad .
\end{displaymath} (95)

The advantage of the path-integral method for constructing the dual action becomes evident at this point, since we can eliminate the Stückelberg potential $C_{(p)}$ in favor of its curl $\Theta _{\, (p+1)}$ by introducing the dual Stückelberg potential $D^{(D-p-2)}(x) $ as we did in equation (85)


$\displaystyle \delta
\left[\, {}^* d\, \Theta _{\, (p+1)}\, \right]$ $\textstyle =$ $\displaystyle \int [ {\mathcal{D}}D ]
e ^ {\imath\, S [ \, D\ , \Theta \, ] }$ (96)
$\displaystyle S [ \, D \ , \Theta \, ]$ $\textstyle =$ $\displaystyle \int\, D ^{\, (p+2)}
\left(\, {}^{\ast}d\,\Theta _{\, (p+1)}\,\right)$  
  $\textstyle =$ $\displaystyle (-1)^ { Dp }
\int \, \Theta ^{\, (p+1)} \left(\, {}^{\ast} K(D)\,\right) _{(p+1)}$ (97)
$\displaystyle \left(\, {}^{\ast} K(D)\,\right) _{(p+1)}$ $\textstyle =$ $\displaystyle \left(\, {}^{\ast} d\, D _{D-p-2}\,\right)
\quad .$ (98)

The resulting vacuum amplitude is
\begin{displaymath}
Z [ \, \overline{N} _{\mathrm{e}} \, ]
=
{1 \over Z [ \, ...
...A \ , D \ , \Theta , \overline{N} _{\mathrm{e}} \, ]}
\quad ,
\end{displaymath} (99)

where
$\displaystyle S [ \, A\ , D\ , \Theta\ , \overline{N} _{\mathrm{e}} \, ]$ $\textstyle =$ $\displaystyle \int\left[\,
- { 1\over 2 }\overline{F} _{(p+2)} \,\overline{ F} ...
...- \Theta _{\, (p+1)}\, \right)
\overline{N} _{\mathrm{e}} ^{\, (p+1)}
\right.
+$  
$\displaystyle \qquad$ $\textstyle +$ $\displaystyle { \kappa\over 2 }\left.
\left(
\Theta _{\, (p+1)}- A _{\, (p+1)}
...
...a ^{\, (p+1)}
\left(\, {}^{\ast} K( D )\,\right) _{\, (p+1)}
\,
\right]
\quad .$ (100)

is the ``Stückelberg Dual Action'', in the sense we dualised the $C_{(p)}$ field only.
Translational invariance of the functional integration measure enables us to shift the $I$-field and introduce the gauge invariant field strength $\overline{\Theta}$
\begin{displaymath}
\overline{\Theta} ^{\, (p+1)}
\equiv
\Theta^{\, (p+1)}
-
A ^{\, (p+1)}
\end{displaymath} (101)

as a new integration variable instead of $\Theta$.
Once $\overline{\Theta}$ is integrated out, we find


\begin{displaymath}
Z[\, \overline{N} _{\mathrm{e}} \, ]
=
{1 \over Z[ \, 0 \...
...l{D}}D ]
e^{-S[\, A\ , D\ , \overline{N} _{\mathrm{e}} \, ]}
\end{displaymath} (102)

with


$\displaystyle S [ \, A\ , D\ , \overline{N} _{\mathrm{e}} \, ]$ $\textstyle =$ $\displaystyle \int\left[\, -\frac{1}{2} \overline{F} ^{\, (p+2)}\overline{F} _{...
...} D\, ) ^{\, (p+2)}\left(\,
\overline{F} _{(p+2)}+ G _{(p+2)}\,\right)\right.
+$  
    $\displaystyle \quad \qquad
\left.
+
\frac{1}{2\kappa}\left(\, e _{p} \,
\overli...
...imath\, ( -1 ) ^{Dp}(\, {}^{\ast} K) ^{\, (p+1)}\, \right)^2 \,
\right]
\quad .$ (103)

By recognizing that the first line in equation (103) is the same as (81), once $ {}^{\ast} D$ is identified with $\overline{N}$, i.e.,
\begin{displaymath}
e _{p}\, \overline{N} ^{\, (p+2)}_{\mathrm{e}}
\rightarrow
\imath\, (-1) ^{(D-p)p} \, {}^*(\, D _{\, (D-p-2)}\, )
\quad ,
\end{displaymath} (104)

we can write the Complete Dual Action without repeating all the previous calculations:
$\displaystyle Z [ \, \overline{N} _{\mathrm{e}} , J _{\mathrm{g}} \, ]$ $\textstyle =$ $\displaystyle \frac{1}{Z [ \, 0 , 0 \, ]}
\int [ {\mathcal{D}}B ] [ {\mathcal{D...
... { D-p-3 }
\,
\right]
e ^{ - S [ \, B , \, D , \overline{N} _{\mathrm{e}} \, ]}$  
$\displaystyle S [ \, G , B , \overline{N} _{\mathrm{e}} , \overline{J} _{\mathrm{g}} \, ]$ $\textstyle =$ $\displaystyle \frac{1}{2 \kappa} \int \left[\, d D ^{\, (D-p-2)}
+\imath\, (-1)...
...p+1)^2} e _{p}
\,(\, {}^{\ast} \overline{N} _{e}) ^{\, (D-p-1)}\,
\right] ^{2}+$  
  $\textstyle -$ $\displaystyle {1\over 2}\int
\left[\, D ^{\, (D-p-2)} - (-1) ^{Dp} d B ^{\, (D-p-3)}\,\right] ^2 +$  
  $\textstyle -$ $\displaystyle \imath\int
\left [\, (-1)^{Dp} N ^{ (D-p-2)}\, D _{(D-p-2)}
+ g _...
...\, }\, B _{(D-p-3)}
\overline{J} _{\mathrm{g}} ^{\, (D-p-3)}\,
\right ] \quad .$ (105)

>From the dual action (105) one gets the field equations


$\displaystyle \partial\, \left[ \, D ^{(D-p-2)} - (-1)^{Dp} d B ^{(D-p-1)}\,\right]=
-\imath (-1)^ { Dp } g_{D-p-4 \, } \overline{J} _{\mathrm{g}} ^{\, (D-p-3)}$
(106)
$\displaystyle \partial\, \left[ \,d D ^{\, (D-p-2)}
+\imath\, (-1) ^{D- (p+1)^2...
...1)}\,
\right] + \kappa D ^{\, (D-p-2)}= -\imath\,\kappa (-1)^{Dp}
N ^{ (D-p-2)}$
(107)

Solving equation (107) one finds

$\displaystyle D ^{(D-p-2)} - (-1)^{Dp} d B ^{(D-p-1)}=
\widehat{D} ^{(D-p-2)} -...
...)^ { Dp } g_{D-p-4 \, } d {1\over\Box }
\overline{J}_{\mathrm{g}} ^{\, (D-p-3)}$
(108)
$\displaystyle \partial\,\widehat{D} ^{(D-p-2)}=0$
(109)

After decomposing the magnetic parent current as


\begin{displaymath}
N ^{ (D-p-2)}= \widehat{N} ^{ (D-p-2)} + g_{D-p-4 \, } d {1...
...} ^{\, (D-p-3)}\ ,\qquad \partial\,\widehat{N} ^{
(D-p-2)}=0
\end{displaymath} (110)

equation (108) becomes


\begin{displaymath}
\partial\, d\, \widehat{D} ^{\, (D-p-2)} + \kappa \widehat{...
... (D-p-2)}=
\imath\, \kappa (-1)^{Dp} \widehat{N} ^{ (D-p-2)}
\end{displaymath} (111)

and gives for $\widehat{D} ^{\, (D-p-2)}$ the following solution


$\displaystyle \widehat{D} ^{\, (D-p-2)}= -\imath\,\kappa (-1)^{Dp}
{1\over \Box +\kappa}\widehat{N} ^{ (D-p-2)}$
(112)
$\displaystyle d\, \widehat{D} ^{\, (D-p-2)}=-\imath\,\kappa (-1)^{Dp}
d {1\over \Box +\kappa}\widehat{N} ^{ (D-p-2)}$
(113)

When (112), (113) are inserted back into (105) we find

$\displaystyle S[\,\widehat{ N}\ , \overline{J} _{\mathrm{g}}\ , J_e\,]=$ $\textstyle -$ $\displaystyle {\kappa\over 2 }\int \widehat{N} ^{ (D-p-2)} { 1\over
\Box +\kappa } \widehat{N} _{ (D-p-2)}+$  
  $\textstyle +$ $\displaystyle \int \left[\, { g_{D-p-4 \, }^2\over 2 }
\overline{J} _{\mathrm{g...
... \kappa} j _{\mathrm{e}} ^{\,(p)}
{ 1\over \Box } j _{\mathrm{e}\,(p)}\,\right]$ (114)

where, short-range bulk and long range boundary interaction are clearly displayed.

 



TABLES


 
Spacetime
manifold
Embedding
functions
Fiducial
manifold
Parameters
Source
Current
Dimensionality
Type
Electric ${\mathcal{E}}$ $E$ $\Xi$ $\xi ^{i}$ $J$ $p+1$
Magnetic ${\mathcal{M}}$ $M$ $\Sigma$ $\sigma
^{i}$ $\overline{J}$ $D-p-3$
Magnetic
Dirac brane
${\mathcal{N}}$ $N$ $\Gamma$ $\gamma ^{i}$ $N$ $D-p-2$
Electric
Dirac brane
$\overline{{\mathcal{N}}}$ $\overline{N}$ $\overline{\Gamma}$ $\overline{\gamma} ^{i}$ $\overline{N}$ $p+2$
  ${\mathcal{O}}$ $O$ $\Omega$ $\omega ^{i}$ $\Omega$ $D-p-1$
Table 1: Definition of electric/magnetic objects.


  $p$ $p$-brane $\tilde p=7-p$
dual-brane
 
0 point-particle 7-brane
1 string 6-brane
2 membrane 5-brane
3 bag 4-brane
Table 2: Closed $p$-branes duality in $D=11$ spacetime dimensions.


 
Field Dimension in $\hbar=c=1$ units Rank Physical Meaning
$A _{\, \mu _1 \dots \mu _{p+1}}$ $(length) ^{1-D/2}$ $p+1$ ``electric'' potential
$F _{\, \mu _{1} \dots \mu _{p+2}}$ $(length) ^{-D/2}$ $p+2$ ``electric'' field strength
$G _{\, \mu _{1} \dots \mu _{p+2}}$ $(length) ^{-D/2}$ $p+2$ ``magnetic'' field strength
$\overline{F} _{\, \mu _{1} \dots \mu _{p+2}}$ $(length) ^{-D/2}$ $p+2$ ``singular'' field strength
$B _{\, \mu _{1} \dots \mu _{D-p-3}}$ $(length) ^{1-D/2}$ $D-p-3$ dual gauge potential
$H _{\, \mu _{1} \dots \mu _{D-p-2}}$ $(length) ^{-D/2}$ $D-p-2$ dual field strength
Table 3: Closed $p$-brane gauge potentials and fields.


 
Current Density Dimension in $\hbar=c=1$ units Rank Physical Meaning
$J _{\, \mu _{1} \dots \mu _{p+1}}$ $(length) ^{p+1-D}$ $p+1$ electric current
$\overline{N} _{\, \mu _{1} \dots \mu _{D-p-2}}$ $(length) ^{-D/2}$ $D-p-2$ parent electric current
$\overline{J} _{\, \mu _{1} \dots \mu _{D-p-3}}$ $(length)
^{-p-3}$ $D-p-3$ magnetic current
$N _{\, \mu _{1} \dots \mu _{D-p-2}}$ $(length) ^{-D/2}$ $D-p-2$ parent magnetic current
$\Omega _{\, \mu _{1} \dots \mu _{D-p-1}}$ $(length) ^{1-D/2}$ $D-p-1$ gauge brane current
Table 4: Closed $p$-brane associated currents.


 
Field Dimension in $\hbar=c=1$ units Rank Physical Meaning
$A _{\, \mu _{1} \dots \mu _{p+1}}$ $(length) ^{1-D/2}$ $p+1$ ``electric'' potential
$F _{\, \mu _{1} \dots \mu _{p+2}}$ $(length) ^{-D/2}$ $p+2$ ``electric'' field strength
$C _{\, \mu _{1} \dots \mu _{p}}$ $(length) ^{2-D/2}$ $p$ Stückelberg gauge potential
$K _{\, \mu _{1} \dots \mu _{p+1}}$ $(length) ^{1-D/2}$ $p+1$ Stückelberg field strength
$D _{\, \mu_{p+3}\dots \mu_D}$ $(length) ^{-D/2}$ $D-p-2$ dual Stückelberg potential
$I _{\, \mu_1\dots\mu_{p+1}}$ $(length) ^{-1-D/2}$ $p+1$ dual Stückelberg strength
Table 5: Open $p$-brane gauge potentials and fields.


 
Current Density Dimension in $\hbar=c=1$ units Rank Physical Meaning
$\overline{N} _{\mathrm{e}}^{ \, \mu _{1} \dots \mu _{D-p-2}}$ $(length) ^{p+1-D}$ $p+1$ electric parent current
$J _{\mathrm{e}} ^{\, \mu _{1} \dots \mu _{p}}$ $(length)^{p-D}$ $p$ boundary current
$N ^{\, \mu _{1} \dots \mu _{D-p-2}}$ $(length) ^{-D/2}$ $D-p-2$ parent magnetic current
$\overline{J} _{\mathrm{g}}^{ \, \mu _{1} \dots \mu _{D-p-3}}$ $(length)
^{-p-3}$ $D-p-3$ magnetic current
Table 6: Open $p$-brane associated currents


 
Coupling
constants
Dimension in
$\hbar=c=1$ units
$e$ $(length) ^{D/2-p-2} $
$g$ $(length) ^{p+2-D/2}$
$e \, g$ $1$
$\kappa $ $(length) ^{-2}$
Table 7: Dimension of couplings


 
$p$ $p$-brane $\tilde{p} = 7-p$
dual-brane
$0$ point-particle $7$-brane
$1$ string $6$-brane
$2$ membrane $5$-brane
$3$ bag $4$-brane
Table 8: Open $p$-branes duality in $D=10$ spacetime dimensions.


next up previous
Next: Bibliography Up: C. Interacting, closed electric Previous: C..1 Closed Branes

Stefano Ansoldi