Chapter 14

Lecture 14

14.1 More about curves on manifolds - 1 -

In what follows, whenever we will speak of a manifold we will implicitly consider a connection on it, whenever necessary.

14.1.1 Autoparallel curves and the exponential map

Definition 14.1 (Autoparallel)

Let σ be a curve on a manifold $(\mathcal{M}, \mathcal{F})$ such that the vector field $\dot{\sigma}(t)$ tangent to the curve is parallel along the curve, i.e.

$$
\frac{D\dot{\boldsymbol{\sigma}}(t)}{dt} = 0.
$$

Then σ is an autoparallel curve on $\mathcal M$. Please, see appendix A for a note about this definition.

Proposition 14.1 (Autoparallelism equation)

Let σ be a curve on $(\mathcal{M}, \mathcal{F})$ and let $(U, \phi) \in \mathcal{F}$ be a chart of $\mathcal M$ with coordinate functions (x_1, \ldots, x_m) . σ is an autoparallel curve if and only if

$$
\frac{d^2x^k}{dt^2} + \sum_{i,j}^{1,m} \Gamma_{ij}^k \frac{dx^i(t)}{dt} \frac{dx^j(t)}{dt} = 0, \quad k = 1, \dots, m
$$
\n(14.1)

where $\phi \circ \sigma(t) = (x^1(t), \ldots, x^m(t)).$

Proof:

In the given coordinates the tangent vector $\dot{\sigma}$ has components:

$$
\left(\frac{dx^1(t)}{dt},\ldots,\frac{dx^m(t)}{dt}\right).
$$

But, by the definition above, σ is an autoparallel curve if and only if this tangent vector is a parallel vector field along σ and this is true if and only if it satisfies the m differential equations (11.1) of proposition

Figure 14.1: Exponential of a vector.

11.1, where now $v^l = dx^l(t)/dt$. Thus a curve σ is an autoparallel curve if and only if locally the m equations (14.1) are satisfied.

 \Box

Definition 14.2 Let $(\mathcal{M}, \mathcal{F})$ be a manifold and let $m \in \mathcal{M}$ and $v \in \mathcal{M}_m$ be a point of $\mathcal M$ and a vector tangent to $\mathcal M$ at m respectively. The exponentiation of **v** at *m* is the point $p \in M$ which is a unit parameter distance away along the unique autoparallel curve σ_v passing at m at $t = 0$ and having at m tangent vector v . The exponential of the vector v at m is thus defined as

$$
\exp_m(\boldsymbol{v})\stackrel{{\rm def.}}{=} \sigma_{\boldsymbol{v}}(1)
$$

and is a map

$$
\exp_m: W \subset \mathscr{M}_m \longrightarrow \mathscr{M},
$$

where W is a neighborhood of 0 in \mathcal{M}_m .

If k is a constant then of course we have

$$
\left. \frac{d}{dt} \right|_{t=0} \sigma_{\boldsymbol{v}}(kt) = k\boldsymbol{v}
$$

so that

$$
\exp_{\mathbf{m}}(k\boldsymbol{v})=\sigma_{\boldsymbol{v}}(k).
$$

If we interpret k as a parameter we thus have that

$$
\sigma_{\bm{v}}(t) \stackrel{\text{def.}}{=} \exp_{\mathtt{m}}(t\bm{v})
$$

is the only autoparallel curve with $\sigma(0) = \mathbf{m}$ and $\dot{\sigma}(0) = \mathbf{v}$. It is defined for small enough t, let us say $-\epsilon < t < \epsilon$, such that $tv \in W$.

Proposition 14.2 The differential in 0 of the exponential map at m is an isomorphism of \mathcal{M}_m , in particular

$$
d(\exp_m)\big]_{\mathbf{0}} = \mathbb{I}_{\mathscr{M}_m}.
$$

c 2004 by Stefano Ansoldi — Please, read statement on cover page

Proof:

To understand $d(\exp_{m})$ ₀ let us remember that according to its definition, the differential is a map between tangent spaces. In this case the tangent spaces are:

> 1. the tangent space to the tangent space \mathcal{M}_m at the origin 0, which as usual we denote with $(\mathcal{M}_{m})_{0}$; since \mathcal{M}_{m} is a vector space, we can up to an isomorphism use the following identification

$$
\left(\mathscr{M}_m\right)_0 \approx \mathscr{M}_m;
$$

2. the tangent space to \mathcal{M} at m, i.e. \mathcal{M}_{m} .

Thus up to an isomorphism

$$
d(\exp_{m})\big]_{0} : \mathscr{M}_{m} \longrightarrow \mathscr{M}_{m}.
$$

We are now interested in the action of $d(\exp_{m})_{\mathbf{0}}$ on \mathcal{M}_{m} . To grasp it we can take a curve in \mathcal{M}_{m} which has v as tangent vector, consider its image under \exp_{m} and look for the tangent vector of this image (which is a curve on \mathscr{M}).

As a curve in \mathcal{M}_{m} with tangent vector v at the origin 0 we can choose the line $l(t) = tv, -\epsilon < t < +\epsilon$, for some small enough $\epsilon > 0$. Of course

$$
\frac{d}{dt}\bigg|_0 l(t) = v.
$$

The exponential then maps this curve into the unique autoparallel curve $\gamma(t) = \exp_{m}(tv)$ passing through m with tangent vector

$$
\frac{d}{dt}\bigg|_0 \gamma(t) = \mathbf{v},
$$

since $\exp_{\mathfrak{m}}$ is defined exactly in this way. Thus

$$
d(\exp_{\mathbf{m}})
$$
 $\Big|_0 \left(\frac{d}{dt} \right|_0 l(t) \right) = \frac{d}{dt} \Big|_0 \gamma(t) \Rightarrow d(\exp_{\mathbf{m}})$ $\Big|_0 (v) = v$

and this holds $\forall v \in \mathcal{M}_{m}$, i.e.

$$
d(\exp_{\mathfrak{m}})\rceil_{\mathbf{0}}=\mathbb{I}_{\mathscr{M}_{\mathbf{m}}}.
$$

 \Box

From the above results and the implicit function theorem we conclude that the exponential map is a local diffeomorphism around $0 \in \mathcal{M}_{m}$ onto a neighborhood $U \subset \mathcal{M}$ of m. It maps lines in the tangent space to autoparallel curves of \mathcal{M} passing through m and having tangent vector at m which is the director vector of the line.